Abstract. We show that for any behavioral -specification there is an ordinary algebraic specification over a larger signature, such that a model behaviorally satisfies iff it satisfies, in the ordinary sense, the -theorems of . The idea is to add machinery for contexts and experiments (sorts, operations and equations), use it, and then hide it. We develop a procedure, called ''unhiding'', which takes a finite and produces a finite . The practical aspect of this procedure is that one can use any standard equational inductive theorem prover to derive behavioral theorems, even if neither equational reasoning nor induction is sound for behavioral satisfaction.