THE GRAINGER COLLEGE OF ENGINEERING

CS 521

Technological Foundations of Blockchain and Cryptocurrency

Grigore Rosu

Topic 2 - Basic Crypto Primitives

I ILLINOIS

THE GRAINGER COLLEGE OF ENGINEERING

Thanks!

To Professors

David Tse (Stanford)
Sriram Viswanath (UT Austin)

Sreeram Kannan (UW - now at EigenLayer)

Some crypto primitives E

* Encryption and Signatures
* Cryptographic Hash Functions

 Hash Accumulators
* Blockchain
 Merkle trees

Basic Encryption

encryption decryption
plaintext ciphertext plaintext

I

Encuyption Decyption

hello > lipps > hello

plaintesxt cipherteat plaintesxt

Cypher: Offset the Alphabet
Key: 4

Scene from “Breaking the Enigma Code” E

https://youtu.be/zZuqLLdx2YQ

Symmetric (aka Secret-Key) Cryptography E

encryption decryption
plaintext ciphertext plaintext

How Secret-Key Cryptography Works E

* Single Shared Key - Both sender and receiver use the same secret key
for encryption and decryption

 Key Distribution - The shared key must be securely exchanged between
parties before communication

* Fast Performance - Symmetric algorithms are computationally efficient,
ideal for encrypting large amounts of data

« Common Algorithms - Examples include AES (Advanced Encryption
Standard), DES, and 3DES

Pros and Cons of Secret-Key Cryptography E

v" High performing - fast, especially if the data is not going to be
transmitted

v" Can be implemented in hardware and software

% Secure key distribution is difficult, requires trust and secrecy between
the parties as well as trust for the “distribution mechanism” if the
parties are not in the same location

Asymmetric (aka Public-Key) Cryptography

CONFIDENTIALITY

(Encrypt with recipient's PUBLIC key)

(®

Alice Bob
(Sender) (Recipient)

[Bob's Public Key]

[Bob's Private I(ey]

Message EI‘.cZ.I"{Dt Ciphertext Dec:.rypt
with with

Bob's Public Key

Bob's Private Key

v Only Bob can read the message

AUTHENTICATION

(Sign with sender's PRIVATE key)

®

Alice Bob
(Sender) (Verifier)

[Alice's Public Key]

[Alice's Private Key]

Message i Bigned Msg Verify
with with

Alice's Private Key

Alice's Public Key

v Anyone can verify it came from Alice

Goal: Keep message secret

Goal: Prove sender identity

How Public-Key Cryptography Works E

» Key Pair - Each party has a public key (shared openly) and a private key
(kept secret)

* No Key Exchange Required - Public keys can be freely distributed; only
the private key must remain secret

* Asymmetric Encryption - Data encrypted with one key can only be
decrypted with the other key in the pair

» Confidentiality - Encrypt with recipient's public key; only they can decrypt with
their private key

« Authentication - Encrypt with your private key; anyone can verify it came from
you using your public key

« Common Algorithms - Examples include RSA, Elliptic Curve
Cryptography (ECC), and Diffie-Hellman

RSA Cryptosystem

1. Key Generation

Choose large primes E| and |§|
typically 1024+ bits each

Computen=p X q
n is public, 2048+ bits

Compute = (p-1)(g-1)

Euler's totient = count of integers < n coprime ton

Choose e with 1 < e < ¢(n), gcd(e, o(n)) =1

Common e = 65537 (Fermat prime 215+1)

Compute @ = e ! mod ¢(n)

Extended Euclidean Algorithm: since ged(e, @(n)) = 1,
Bézout's identity guarantees 3d, k: e-d + @(n)-k =1
Repeat division: ro=@(n), ri=e, ri+1 = ri-1 mod r; until r.=0
Back-substitute to find d from the quotients

O(log n) steps — very fast even for 2048-bit numbers

~

2. Confidentiality

Public Key
(n, e)
share openly

Private Key
(n, d)

keep secret

L public key

Encrypt

Message m
v
c = m°modn
v
Ciphertext c

Decrypt Ciphertextc
v
m = c® mod n
v

) Message m
L private key

3. Authentication

-

Sign

L private key

Message m
v
s =m9modn
v

Sighature s

-

Why RSA Works

Verify Signature s
v

m = s* mod n
\i

Message m v

L public key

Euler's Theorem: If gcd(m, n) = 1, then m™¢(n) = 1 (mod n)

Security: Factoring n = p X g is computationally infeasible for large primes

Confidentiality: e.d =1 (mod ¢(n)) =c™d =(mMm~"e)~d = m™(e-d) = m-(Mm~@(n)) "k = m (mod n)

Authenticity: s™e = (m"d)”e = m”™(d-e) = m (mod n); only private key holder can produce valid s

Confidentiality - Encrypt with Recipient's Public Key

public key private key

encryption decryption
plaintext ciphertext plaintext

Authentication - Digital Signatures E

private key public key

(verified text

verifying

original text signed text

Digital Signatures API

1. Key Generation 2. Sign 3. Verify
. N ') ' ™\
(secretKey, publicKey) = GenerateKeys(keysize) signature = sign(secretKey, message) isValid = verify(publicKey, message, signature)
secretKey publicKey — [signature] —> true / false
(keep private) (share openly)
| Randomized function) | Only secretKey holder can sign y L Anyone can verify with publicKey)
Key Properties
4 ™
Security Guarantees: Common Algorithms:
* Authenticity: Only the secret key holder can create valid signatures * RSA-PSS: RSA with probabilistic padding
* Integrity: Any modification to the message invalidates the signature ®* ECDSA: Elliptic Curve Digital Signature Algorithm
¢ Non-repudiation: Signer cannot deny having signed the message * EdDSA: Edwards-curve DSA (Ed25519)

Unforgeable Signatures E

* Existential Unforgeability - Computationally infeasible to forge a valid
signature on any message without the secret key

* Adaptive Chosen Message Attack - Secure even if adversary can request
signatures on chosen messages before attempting forgery

« Computational Hardness - Based on hard math problems: discrete log
(ECDSA), integer factorization (RSA)

 Common Algorithms
* ECDSA - Elliptic Curve Digital Signature Algorithm; used in Bitcoin and Ethereum
« EdADSA - Edwards-curve DSA (Ed25519); faster and used in newer protocols
 Schnorr - Provably secure with signature aggregation; adopted by Bitcoin (Taproot)

Pros and Cons of Public-Key Cryptography

R R RN

No Pre-Shared Secret - Communicate securely without prior key exchange arrangement
Scalable Key Management - N users need only N key pairs (vs N? keys for symmetric)
Digital Signatures - Enables authentication, integrity, and non-repudiation
Decentralized Identity - Public keys can serve as pseudonymous identities (addresses)
Computationally Expensive - 100-1000x slower than symmetric encryption
Key-ldentity Binding - Public key alone doesn’t prove real-world identity of holder
Secret Key Protection - Loss or theft of private key compromises all security

Quantum Vulnerability - RSA/ECDSA broken by quantum computers (Shor’s algorithm)

Decentralized Identity Management E

* Public Key as Identity - Your public key is your identity; called an
address in blockchain terminology

* Multiple Identities - Generate as many (publicKey, secretKey)

pairs as you want
* Publish publicKey as your address; sign transactions with secretKey

* Self-Issued - No central authority needed; anyone can create an identity
at any time

* Verifiable - Others can verify messages came from you using your public
key

* Pseudonymous - Identity not linked to real-world name; privacy by
default

(Digital identity use case by Erdion Hoxha, project in CS521 in 2025)

https://docs.google.com/presentation/d/1YsxcOm2FrR5ZnR5pdSKYLuhNUmap50wfpVrijo80wXQ/

Hash Functions

A function that maps data of arbitrary size to a fixed-size
output: H(x) >y

* Defining Properties
— Arbitrary sized inputs - Accepts data of any length

— Fixed size deterministic output - Same input always yields
same hash

— Efficiently computable - Fast to compute for any given input

— Minimize collisions - Different inputs should produce different
outputs

« Canonical Application - Hash Tables
— Map keys to buckets; store and retrieve data records efficiently

hash
keys function

01
hn Smith
John Smi f: 02
03
Lisa Smith)
Sandra D 13
nar.
e T

15

buckets

521-8976

521-1234

521-9655

Example: Division Hashing

y = x mod 2?°6

» Satisfies Basic Properties
— Uniform output - Output evenly distributed across 2%°° possible values
— Simple deterministic function - Same input always gives same output
— Collision resistant - Hard to find two inputs that hash to the same output

* Not Sufficient for Cryptography
— Easily reversible - Given y, trivial to find an x such that H(x) = y
— Collisions easy to construct - An adversary can deliberately craft collisions
— Cryptography needs extra properties beyond what hash tables require >

Cryptographic Hash Functions

Extra Security Properties

* Adversarial collision resistance

Infeasible to find any two inputs x # x' where H(x) = H(x'), even
for a determined attacker (birthday paradox: ~2"/2 attempts
for n-bit hash)

* One-way function (preimage resistance)
Giveny, infeasible to find any x such that H(x) =y

» Specialized one-way (2nd preimage resistance)
Given x, infeasible to find x" # x such that H(x') = H(x)

* Avalanche effect (puzzle friendliness)

Tiny change in input > completely different output; no
shortcut to find inputs that produce a target output pattern

Canonical Applications
» Message digest

Compact fingerprint to verify data integrity
« Commitments

Commit to a value without revealing it; reveal later to prove
no change

* Puzzle generation
Create problems that are hard to solve but easy to verify
* Mining process

Find nonce such that H(block + nonce) < target - basis of
proof-of-work in Bitcoin

Hashing Algorithms

SHA-2 family | 256-bit output | NSA 2001 | Used in Bitcoin, TLS, SSH v No Collisions (yet)
SHA-2 family | 512-bit output | NSA 2001 | Higher security margin (v No Collisions (yet)
160-bit | NSA 1995 | Derived from MD4 | Predecessor to SHA-2 (X Broken (Google, 2017)
128-bit | Rivest 1991 | Derived from MD4 | Chained compression (X Collisions found! (2004)

MD4 (1990) > MD5 (1991) & SHA-1 (1995) » SHA-2 (2001) > SHA-3/Keccak (2015, backup not replacement)

Why This Matters for Blockchain

» Bitcoin uses SHA-256 - Proof-of-work mining, transaction IDs, Merkle trees, address generation

« Ethereum uses Keccak-256 - A SHA-3 variant for addresses and state storage

» Scale - Bitcoin network computes ~600 quintillion SHA-256 hashes per second (6 x 10%° H/s) - and still no collision found
» If SHA-256 broke - An attacker could forge transactions, rewrite block history, or steal funds

Putting It Together: Hash-then-Sign

Digital signatures combine hashing and asymmetric

cryptography into one workflow:

» Step 1 - Hash the plaintext

— Compute a fixed-size message digest of the
document

« Step 2 - Sign the digest
— Encrypt the digest with the sender’s private key

» Step 3 - Send plaintext + signature

— Receiver can verify by hashing the plaintext and
comparing against the decrypted signature

Why hash first?

» Signingis slow on large data - hashing reducesitto a
small fixed-size digest first

Blockchain connection

* Every Bitcoin transaction is hash-then-signed - this
proves ownership and authorizes transfers on-chain

plaintext

digest signed
with private key

T

private key
used for signing

message digest :
plaintext
+

signature

Hash Pointers

A hash pointer stores the location of information plus a hash of that information, enabling tamper detection.

Regular Pointer

[Pointer] —p [Data
(address)

Retrieve information - used to build linked lists, binary
trees, etc.

Hash Pointer

Pointer

(address) —_—> Data
+ H(data)

v verify H(data)

Retrieve information and verify it has not changed

If data changes > H(data) # stored hash - tamper detected!

Data Structures with Hash Pointers
* Regular pointers build data structures (linked lists, binary
trees, etc.)

* Hash pointers can also build data structures - but with
tamper detection builtin

Crucially Useful for Blockchains

* Blockchain = hash-pointer-based data structure
 Two key applications:
— Linked list of blocks - the chain itself
— Merkle trees - efficient data verification inside each block

Blockchain: A Linked List with Hash Pointers

Each block has a header (hash pointer to previous block) + data (e.g., transactions).

(.)

Hash of Block N-3

< hash pointer to prev

Tx data....

Tamper-Evident Log

7

N

Hash of Block N-2
< hash pointer to prev

Tx data....

« Ifan attacker modifies data in Block N-2, its hash changes

* Block N-1’s stored hash no longer matches > tampering detected
* This cascades: changing any block invalidates every block after it
* Knowing only the head is enough to detect tampering anywhere in the chain

Hence the name: block chain < blockchain

7

Block N (latest)

Hash of Block N-1
< hash pointer to prev

Tx data ...

N

Merkle Trees: Binary Trees of Hash Pointers
O

Root Hash
H(HO1 || H23)

H23=H(H2| H3) e

HO1=H(HO || H1)

w-nror [
e) [)e S R —

H1=H(Tx1) H2 = H(Tx2) H3 =H(Tx3)

* Binary tree of hash pointers - only need to retain the root hash to detect tampering in any leaf
* Proof of Membership: to verify Tx1 is in the tree, provide HO, H23, and root - verifier recomputes upward in O(log n)
* Proof of Non-membership: with a sorted Merkle tree, show that a value falls between two consecutive leaves - also O(log n)

* Blockchain use: each block’s data section organizes transactions into a Merkle tree - the root hash goes in the block header

Merkle Trees Inside Blocks

Block = Header + Data

* Header contains:
— Hash pointer to the previous block
— Merkle root hash of all transactions
— Nonce, timestamp, difficulty

» Data = block-specific information (transactions
organized as a Merkle tree)
Why Merkle trees in blocks?

* Alightweight node can verify any single transaction
belongs to a block by downloading only O(log n) hashes
instead of the entire block

* Bitcoin blocks contain ~2,000 transactions - proof of
membership requires only ~11 hashes

* This enables SPV (Simplified Payment Verification) -
mobile wallets rely on this

Block N

hash pointer

Header
prev hash: 0x91d2...

nonce | timestamp | difficulty
Merkle root: Oxe3bO0...

Data (Transactions)
Organized as a Merkle tree v

HO = H(Tx0)

HO1=H(HO||H1)

H1=H(Tx1)

Root Hash
H(HO1 || H23)

Tx0

Tx1

H23 =H(H2||H3)

H2 =H(Tx2) H3 = H(Tx3)

Tx2

Tx3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

