THE GRAINGER COLLEGE OF ENGINEERING

) (

SIEBEL SCHOOL OF COMPUTING AND DATA SCIENCE

CS 521

Technological Foundations of Blockchain and Cryptocurrency

Grigore Rosu

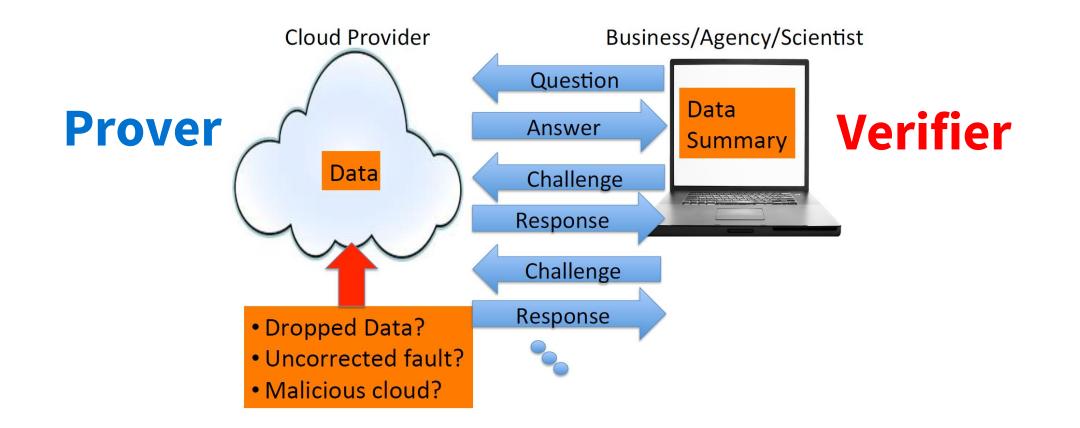
Topic 4 – Zero Knowledge Proofs

Thanks

- Justin Thaler
 - His book: <u>https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html</u>

Interactive Proof

Checking that something you do not have direct access to is true/correct



Proving Color Challenge

Given two objects, and , which Verifier owns but cannot distinguish

Goal: Prover to convince Verifier that it knows that $\blacksquare \neq \blacksquare$

Reed-Solomon Fingerprinting

Goal: Prover to convince Verifier that it knows $(a_1, a_2, ..., a_n)$, where $a_i \in F$.

Naïve solution: Prover sends $a_1, a_2, ..., a_n$ (expensive, violates privacy, etc)

Good solution:

Verifier sends Prover random element $r \in F$ Prover sends Verifier $h = \sum_{i=1}^{n} a_i \cdot r^{i-1}$ Verifier checks received *h* against its locally computed $\sum_{i=1}^{n} a_i \cdot r^{i-1}$

Reed-Solomon Fingerprinting

The randomly chosen $r \in F$ needs to be a solution of $p_a(x) - p_b(x) = 0$, where

$$p_a(x) = \sum_{i=1}^n a_i \cdot x^{i-1}$$
 $p_b(x) = \sum_{i=1}^n b_i \cdot x^{i-1}$

But there are at most *n* solutions, so probability of *r* to be solution very small

Freivald's Algorithm

Verifier has two n * n matrices, A and B, with elements in field F_p . Goal: Prover to convince Verifier that it knows C such that C = A * B

Naïve solution: Prover sends C to Verifier. Verifier computes A * B and checks if it is equal to C or not. This is expensive (n^3) , violates privacy, etc.

Good solution:

Verifier sends Prover random element $r \in F_p^n$

Prover sends Verifier h = C * r

Verifier checks received *h* against its locally computed *A* * (*B* * *r*)

Schnorr: proving knowledge of logarithm

Common Input: the description of a prime-order group \mathbb{G} of (exponentially large) order p with a generator g, and a group element h.

Prover Witness: A value $x \in \mathbb{Z}_p$ such that $g^x = h$.

Protocol:

1. \mathcal{P} : pick $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, send $\rho \leftarrow g^r$. 2. \mathcal{V} : pick $e \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, send e. 3. \mathcal{P} : send $d \leftarrow e \cdot x + r \mod p$

Verification: \mathcal{V} accepts iff $g^d = h^e \rho$.

The Sum-Check Protocol

Given a *v*-variate polynomial *g* over a finite field *F*.

Goal: Prover to provide Verifier with the following sum:

$$H \coloneqq \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_v \in \{0,1\}} g(b_1,\dots,b_v)$$

Naïve solution: Verifier can compute *H* in $2^{v} * eval(g)$

• Considered unacceptable, suppose eval(g) is very expensive

Good solution: O(v + eval(g)) for Verifier; $O(2^v)$ for Prover

Round 1

Prover claims C_1 to Verifier as value of H and sends $g_1(X_1)$ claimed to equal

$$\sum_{(x_2,...,x_v)\in\{0,1\}^{\nu-1}}g(X_1,x_2,\ldots,x_v)$$

Verifier checks $C_1 = g_1(0) + g_1(1)$

Verifier sends random element $r_1 \in F$ to Prover

Round j (1 < j < v)

Prover sends Verifier $g_i(X_i)$ claimed to equal

$$\sum_{(x_{j+1},...,x_{\nu})\in\{0,1\}^{\nu-j}}g(r_1,\ldots,r_{j-1},X_j,x_{j+1},\ldots,x_{\nu})$$

Verifier checks
$$g_{j-1}(r_{j-1}) = g_j(0) + g_j(1)$$

Verifier sends random element $r_i \in F$ to Prover

Round *v*

Prover sends Verifier $g_v(X_v)$ claimed to equal

$$g(r_1,\ldots,r_{\nu-1},X_{\nu})$$

Verifier checks
$$g_{v-1}(r_{v-1}) = g_v(0) + g_v(1)$$

Verifier chooses random element $r_v \in F$ and checks $g_v(r_v) = g(r_1, \ldots, r_v)$

Verifier evaluated *g*, which was assumed expensive, only once!