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Some crypto primitives

* Encryption and Signatures
* Cryptographic Hash Functions
* Hash Accumulators

— Blockchain
— Merkle trees
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Basic Encryption

A/

encryption decryption
plaintext ciphertext plaintext
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Encuyption Decyption

hello > lipps > hello

plaintesxt ciphexteat plaintesxt

Cypher: Offset the Alphabet
Key: 4
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Scene from “Breaking the Enigma Code”

https://youtu.be/zZuqLLdx2YQ
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Symmetric Key Cryptography
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Pros and Cons

v" High performing - fast, especially if the data is not going to be
transmitted

v' Can be implemented in hardware and software

x Secure key distribution is difficult, requires trust and secrecy
between the parties as well as trust for the “distribution
mechanism” if the parties are not in the same location
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Public-Private (aka Public-Key) Cryptography
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Pros and Cons

v People can exchange messages securely without a security
arrangement

v Makes secure message exchange available to a wider group
of people

x Does not ensure foolproof identity of the sender



I

Digital Signatures




Digital Signatures

* Key generation * Signature
(secretkey,publickey) = Sig =

Generatekeys (keysize) sign(secretkey, message)
* Randomized function  Verification

verify(publickey,Sig,message)
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Unforgeable Signatures

* Unforgeable « ECDSA
Computationally hard Elliptic Curve Digital
to generate a verifiable Signature Algorithms

signature without

knowing the secret key
Cryptographically secure

against an adaptive adversary
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Decentralized Identity Management

* Public keys are your identity
— address in Bitcoin/blockchain terminology

* Can create multiple identities
— (publickey, secretkey) pairs

— Publish publickey

— Sign using secretkey
e Can create oneself
 Verifiable by others



hash

keys function buckets
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Defining Properties: Canonical application:

* Arbitrary sized inputs * Hash Tables

* Fixed size deterministic output

* Efficiently computable » Store and retrieve data records
* Minimize collisions
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Example: Hash Functions

* Division hashing * Uniform output

* Simple deterministic function

y =2 mod 2%°°
e Collision resistant
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Cryptographic Hash Functions

Extra Properties: Canonical applications:
» Adversarial collision resistance * Message digest

— Birthday paradox e Commitments
* One way function * Puzzle generation

* Specialized one way function * Mining process



SHAZ2 (Secure

Hashing Algorithm)

MD5 (Message

Digest)

Hashing Algorithms
NSA 2001

No Collisions (yeQ

SHAZ2 takes strings of arbitrary length and generates a unique and irreversible 256 (SHA256)
or 512 (SHA512) bit strings (SHAZ2 is the successor to SHA1L that generated 160 bit strings)

SHA1 was derived from MD4

/
Coy,. A
MDS5 is also a “child” of MD4 and produces a 128 bit output string /,S/.
MD5 works by chaining a “compression function OI)S
'6(, _/
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Basic building blocks together
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Hash Pointer

* Pointer to: * Regular pointers
location of information — Used to build data structures
+ hash of the information * linked lists, binary trees, etc
» Regular pointer * Hash pointers
— retrieve information — Can also be used to build data structures

— Crucially useful for blockchains!

* Hash pointer
* Blockchain = hash pointer based data structure

— retrieve information and verify the
information has not changed
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Blockchain: a linked list via hash pointers

* Block: Header + Data * Application: tamper evident
» Header: hash pointer to information log
location of previous block * Head of the chain being known is
+ hash of the previous block enough to find tamper evidence
* Data: information specific to in any internal block
the block (e.g., transactions) * Hence the phrase: block chain

blockchain
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Merkle Tree
Binary tree of hash pointers * Proof of Membership
* Retain only the tree root * Proof of Non-membership

 Tamper of any data in the
bottom of the tree is evident
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Merkle Trees

 Block: Header + Data
Merkle Tree

* Header: Pointer to \
location of previous block o
+ hash of the previous block

* Data
— block specific information
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