THE GRAINGER COLLEGE OF ENGINEERING
SIEBEL SCHOOL OF COMPUTING AND DATA SCIENCE

CS 521

Technological Foundations of Blockchain and Cryptocurrency

Grigore Rosu

Topic 2 - Basic Crypto Primitives

1T ILLINOIS

THE GRAINGER COLLEGE OF ENGINEERING

Thanks!

To Professors

David Tse (Stanford)
Sriram Viswanath (UT Austin)

Sreeram Kannan (UW - now at EigenLayer)

I

Some crypto primitives

* Encryption and Signatures
* Cryptographic Hash Functions
* Hash Accumulators

— Blockchain
— Merkle trees

I

Basic Encryption

A/

encryption decryption
plaintext ciphertext plaintext

I

Encuyption Decyption

hello > lipps > hello

plaintesxt ciphexteat plaintesxt

Cypher: Offset the Alphabet
Key: 4

I

Scene from “Breaking the Enigma Code”

https://youtu.be/zZuqLLdx2YQ

I

Symmetric Key Cryptography

T

Pros and Cons

v" High performing - fast, especially if the data is not going to be
transmitted

v' Can be implemented in hardware and software

x Secure key distribution is difficult, requires trust and secrecy
between the parties as well as trust for the “distribution
mechanism” if the parties are not in the same location

I

Public-Private (aka Public-Key) Cryptography

I

Pros and Cons

v People can exchange messages securely without a security
arrangement

v Makes secure message exchange available to a wider group
of people

x Does not ensure foolproof identity of the sender

I

Digital Signatures

Digital Signatures

* Key generation * Signature
(secretkey,publickey) = Sig =

Generatekeys (keysize) sign(secretkey, message)
* Randomized function Verification

verify(publickey,Sig,message)

I

Unforgeable Signatures

* Unforgeable « ECDSA
Computationally hard Elliptic Curve Digital
to generate a verifiable Signature Algorithms

signature without

knowing the secret key
Cryptographically secure

against an adaptive adversary

I

Decentralized Identity Management

* Public keys are your identity
— address in Bitcoin/blockchain terminology

* Can create multiple identities
— (publickey, secretkey) pairs

— Publish publickey

— Sign using secretkey
e Can create oneself
 Verifiable by others

hash

keys function buckets

Hash Functions ™=~ -uf=

13
Sandra Dee
a o T~ > 14| 5219655

15

Defining Properties: Canonical application:

* Arbitrary sized inputs * Hash Tables

* Fixed size deterministic output

* Efficiently computable » Store and retrieve data records
* Minimize collisions

I

Example: Hash Functions

* Division hashing * Uniform output

* Simple deterministic function

y =2 mod 2%°°
e Collision resistant

I

Cryptographic Hash Functions

Extra Properties: Canonical applications:
» Adversarial collision resistance * Message digest

— Birthday paradox e Commitments
* One way function * Puzzle generation

* Specialized one way function * Mining process

SHAZ2 (Secure

Hashing Algorithm)

MD5 (Message

Digest)

Hashing Algorithms
NSA 2001

No Collisions (yeQ

SHAZ2 takes strings of arbitrary length and generates a unique and irreversible 256 (SHA256)
or 512 (SHA512) bit strings (SHAZ2 is the successor to SHA1L that generated 160 bit strings)

SHA1 was derived from MD4

/
Coy,. A
MDS5 is also a “child” of MD4 and produces a 128 bit output string /,S/.
MD5 works by chaining a “compression function OI)S
'6(, _/

I

Basic building blocks together

I

Hash Pointer

* Pointer to: * Regular pointers
location of information — Used to build data structures
+ hash of the information * linked lists, binary trees, etc
» Regular pointer * Hash pointers
— retrieve information — Can also be used to build data structures

— Crucially useful for blockchains!

* Hash pointer
* Blockchain = hash pointer based data structure

— retrieve information and verify the
information has not changed

T

Blockchain: a linked list via hash pointers

* Block: Header + Data * Application: tamper evident
» Header: hash pointer to information log
location of previous block * Head of the chain being known is
+ hash of the previous block enough to find tamper evidence
* Data: information specific to in any internal block
the block (e.g., transactions) * Hence the phrase: block chain

blockchain

I

Merkle Tree
Binary tree of hash pointers * Proof of Membership
* Retain only the tree root * Proof of Non-membership

 Tamper of any data in the
bottom of the tree is evident

I

Merkle Trees

 Block: Header + Data
Merkle Tree

* Header: Pointer to \
location of previous block o
+ hash of the previous block

* Data
— block specific information

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

