4.5 Lambda Calculus

Lambda calculus was introduced in 1930s, as a mathematical theory together with a proof calculus aiming
at capturing foundationally the important notions of function and function application. Those years were
marked by several paradoxes in mathematics and logics. The original motivation of A-calculus was to
provide a foundation of logics and mathematics. Whether A-calculus indeed provides a strong foundation
of mathematics is still open; what is certain is that A-calculus was and still is a quite successful theory of
computation. Today, more than 70 years after its birth, A-calculus and its afferent subjects still fascinates
computer scientists, logicians, mathematicians and, certainly, philosophers.

A-Calculus is a convenient framework to describe and explain many programming language concepts.
It formalizes the informal notion of “expression that can be evaluated” as a A-term, or A-expression. More
precisely, A-calculus consists of:

e Syntax - used to express A-terms, or A-expressions;
o Proof system - used to prove A-expressions equal;

e Reduction - used to reduce A-expressions to equivalent ones.

We will show how A-calculus can be formalized as an equational theory in equational logic (Section 2.4),
provided that an important mechanism of substitution is available. That means that its syntax can be defined
as an algebraic signature; its proof system becomes a special case of equational deduction; and its reduction
becomes a special case of rewriting (when certain equations are regarded as rewrite rules). These results
support the overall theme underlying this book, that equational logic and rewriting are a strong foundation for
describing and explaining programming language concepts. Even though A-calculus is a special equational
theory, it has the merit that it is powerful enough to express most programming language concepts quite
naturally. Equational logic gives us, in some sense, “too much freedom” in how to define concepts; its
constraints and intuitions are not restrictive enough to impose an immediate mapping of programming
language concepts into it. As extensively illustrated in Chapter 3, due to their generality, equational and
rewrite logics need appropriate methodologies to define languages, while A-calculus, due to its particularity,
gives an immediate means to syntactically encode programming languages and hereby give them a semantics.

As discussed in Section 4.5.6, many programming language concepts, and even entire programming
languages, translate relatively naturally into A-calculus concepts or into A-expressions. That includes the
various types of values and numbers, data structures, recursion, as well as complex language constructs.

4.5.1 Syntax

Syntactically, A-calculus consists of two syntactic constructs, A-abstraction and A-application, and a given
infinite set of variables. Let us assume an infinite set of variables, or names, Var. Then the syntax of
A-expressions is given by the following grammar (in BNF notation):

Exp == Var — variables are A-expressions
| AVar.Exp — A-abstraction, or nameless function
| Exp Exp — A-application

We will use lower letters x, y, z, etc., to refer to variables, and capital letters E, E’, E, E», etc., to refer to
A-expressions. The following are therefore examples of A-expressions:

322

Ax.x

Ax.xx

Ax.(fx)(gx)
(Ax.fx)x

A-Expressions of the form Ax.E are called A-abstractions, and those of the form E|E; are called A-
applications. The former captures the intuition of nameless functions, while the latter that of function
applications. To avoid parentheses, we assume that A-application is left associative and binds tighter than
A-abstraction; for example, Ax.Ady.Az.xyz is the same as Ax.Ay.Az.((xy)z).

4.5.2 Free and Bound Variables

Variable occurrences in A-expressions can be either free or bound. Given a A-abstraction Ax.E, also called a
binding, then the variable x is said to be declared by the A-abstraction, or that Ax.E binds x in E; also, E is
called the scope of the binding. Formally, we define the set FV(E) of free variables of E as follows:

o FV(x) = {x},
e FV(E\E») = FV(E,) U FV(E»), and
e FV(Ax.E) = FV(E) \ {x}.

Consider the three underlined occurrences of x in the A-expression (Ax.Ay.yxy)x. The first is called a binding
occurrence of x, the second a bound occurrence of x (this occurrence of x is bound to the binding occurrence
of x), and the third a free occurrence of x. Expressions E with FV(E) = () are called closed or combinators.

4.5.3 Substitution

Evaluation of A-expressions is by substitution. That means that the A-expression that is passed to a A-
abstraction is copied as is at all the bound occurrences of the binding variable. This will be formally defined
later. Let us now formalize and discuss the important notion of substitution. Intuitively, E[E’/x] represents
the A-expression obtained from E by replacing each free occurrence of x by E’. For notational simplicity, we
assume that, syntactically, substitution binds tighter than any A-calculus construct; as usual, parentheses can
be used to enforce desired grouping. Formally, substitution can be defined as follows:

E if y=x

oy[E'/x]z{y if y#£x

o (E\Ep)[E'/x] = E1[E’/x] Eo[E"/x]
o (Ax.E)[E'/x] = Ax.E

The tricky part is to define substitution on A-abstractions of the form (1y.E)[E’/x], where y # x. That is
because E’ may contain free occurrences of y; these occurrences of y would become bound by the binding
variable y if one simply defined this substitution as Ay.(E[E’/x]) (and if E had any free occurrences of x),
thus violating the intuitive meaning of binding. This phenomenon is called variable capturing. Consider,
for example, the substitution (dy.x)[yy/x]; if one applies the substitution blindly then one gets Ay.yy, which
is most likely not what one meant (since Ay.x is by all means equivalent to Az.x—-this equivalence will
be formalized shortly—while Ay.yy is not equivalent to Az.yy). There are at least three approaches in the
literature to deal with this delicate issue:

323

1. Define (Ay.E)[E’/x] as Ay.(E[E’/x]), but pay special attention whenever substitution is used to add
sufficient conditions to assure that y is not free in E’. This approach simplifies the definition of
substitution, but complicates the presentation of A-calculus by having to mention obvious additional
hypotheses all the time a substitution is invoked;

2. Define substitution as a partial operation: (Ay.E)[E’/x] is defined and equal to Ay.(E[E’/x]) if and
only if y ¢ FV(E’). This may seem like the right approach, but unfortunately is also problematic,
because the entire equational definition of A-calculus would then become partial, which has serious
technical implications w.r.t. mechanizing equational deduction (or the process of proving A-expressions
equivalent) and rewriting (or reduction);

3. Define substitution as a fotal operation, but apply a renaming of y in Ay.E to some variable that does
not occur in E or E’ in case y € FV(E’) (this renaming is called a-conversion and will be defined
formally shortly). This approach slightly complicates the definition of substitution, but simplifies the
presentation of many results later on. It is also useful when one wants to mechanize A-calculus, because
it provides an algorithmic way to avoid variable capturing:

.(E[E’ /x]) if y¢FV(E)

(-B)E'[x] = { L (EENDIE () if y e FVE)

where z is a new variable that does not occur in E or E’. Note that the the requirement “z does not
occur in E or E’” is stronger than necessary, but easier to state that way.

All three approaches above have their advantages and disadvantages, with no absolute best approach.
Sections 4.5.9 and 4.5.10 discuss alternative approaches to define A-calculus, where the explicit lambda
bindings and the implicit variable capturing problem are eliminated by design.

4.5.4 Alpha Conversion

In mathematics, functions that differ only in the name of their variables are equal. For example, the functions
f and g defined (on the same domain) as f(x) = x and g(y) = y are considered identical. However, with the
machinery developed so far, there is no way to show that the A-expressions Ax.x and Ay.y are equal. It is
common in the development of mathematical theories to add desirable but unprovable properties as axioms.
The following is the first meaningful equational axiom of A-calculus, known under the name of @-conversion:

Ax.E = Az.(E[z/x]), for any variable z that does not occur in £ ()

The requirement on z not occurring in E is again stronger than necessary, but it is easier to state.

Using the equation above, one has now the possibility to formally prove A-expressions equivalent. To
capture this provability relation formally, we let E =, E’ denote the fact that the equation £ = E’ can be
proved using standard equational deduction from the equational axioms above ((@) plus those for substitution).

4.5.5 Beta Equivalence and Beta Reduction

We now define another important equation of A-calculus, known under the name of 8-equivalence:
(Ax.E)E’ = E[E’/x] B

324

The equation () tells us how A-abstractions are applied. Essentially, the argument A-expression passed to a
A-abstraction is copied at every free occurrence of the variable bound by the A-abstraction within its scope.

We let E =g E’ denote the fact that the equation E = E’ can be proved using standard equational deduction
from the equational axioms above: (@), (8), plus those for substitution. For example (Af.fx)(1y.y) =g x,
because one can first deduce that (Af.fx)(1y.y) = (1y.y)x by (5) and then that (1y.y)x = x also by (8); the rest
follows by the transitivity rule of equational deduction.

When the equation (8) is applied only from left to write, that is, as a rewrite rule, it is called S-reduction.
We let =4 denote the corresponding rewriting relation on A-expressions. To be more precise, the relation =g
is defined on a-equivalence classes of A-expressions; in other words, =g applies modulo a-equivalence.

Given a A-expression E, one can always apply a-conversion on E to rename its binding variables so that
all these variables have different names and they do not occur in FV(E). If that is the case, then note that
variable capturing cannot occur when applying a S-reduction step. In particular, that means that one can
follow the first, i.e., the simplest approach of the three discussed previously in Section 4.5.3 to define or
implement substitution. In other words, if one renames the binding variables each time before applying a
S-reduction, then one does not need to rename binding variables during substitution. This is so convenient in
the theoretical developments of A-calculus, that most works on this subject adopt the following convention:
all the binding variables occurring in any given A-expression at any given moment are assumed to be
different; moreover, it is assumed that a variable cannot occur both free and bound in any A-expression. If
a A-expression does not satisfy this, then one can apply a certain number of a-conversions and eventually
transform it into an @-equivalent one that does satisfy it. Clearly, this process of renaming potentially all
the binding variables before applying any S-reduction step may be computationally quite expensive. In a
more familiar setting, it is like traversing and changing the names of all the variables in a program at each
execution step! There are techniques aiming at minimizing the amount of work to be performed in order to
avoid variable capturing. All these techniques, however, incur certain overheads.

One should not get tricked by thinking that one renaming of the binding variables, at the beginning
of the reduction process, should be sufficient. It is sufficient for just one step of g-reduction, but not for
more. Consider, for example, the closed A-expression, or the combinator, (1z.zz)(Ax.Ay.xy). It has three
binding variables, all distinct, so their renaming makes no difference. However, if one applies substitution in
B-reductions blindly then one quickly ends up capturing the variable y:

(A2.22)(Ax.Ay.xy) =g (Ax.Ay.xy)(Ax.Ay.xy) =g /ly.(/lx./ly.xy) =3 /ly./ly.

Section 4.5.9 will discuss an ingenious technique to transform A-calculus into combinatory logic which,
surprisingly, eliminates the need for substitutions entirely.
Consider the A-expression (A f.(dx.fx)y)g. There are two different ways to apply S-reduction on it:

L (Af.(Ax.fx)y)g =p (Af.fy)g, and
2. (Af(Ax.fx)y)g =p (Ax.gx)y.

Nevertheless, both resulting A-expressions above can be further reduced to gy by applying S-reduction. This
brings us to one of the most notorious results in A-calculus (:; is the reflexive and transitive closure of =p):

Theorem 23. =g is confluent. That means that for any A-expression E, if E :>/’§ Eiand E ﬁ; E> then there
is some A-expression E’ such that E| ﬁg E’ and E, =>Z; E’. All this is, of course, modulo a-conversion.

The confluence theorem above says that it essentially does not matter how the S-reductions are applied
on a given A-expression. A A-expression is called a S-normal form if no S-reduction can be applied on it.

325

A A-expression E is said to admit a B-normal form if and only if there is some B-normal form E’ such that
E :; E’. The confluence theorem implies that if a A-expression admits a 8-normal form then that S-normal
form is unique modulo a-conversion.

Note, however, that there are A-expressions which admit no S-normal form. Consider, for example,
the A-expression (Ax.x x) (Ax.x x), known as the divergent combinator omega. It is easy to see that
omega =4 omega and that’s the only S-reduction that can apply on omega, so it has no S-normal form.

4.5.6 Lambda Calculus as a Programming Language

In contrast to Turing machines, which are rather low-level computational devices, A-calculus is closer in spirit
to higher-level programming languages, particularly to functional programming languages. In this section
we show how several common programming language features, including particular language constructs,
data-types, and recursion, can be naturally represented as A-expressions. We say that such language features
are derived (from A-calculus), or syntactic sugar (for equivalent but harder to read A-expressions). All these
suggest that A-calculus is rich and intuitive enough to safely be regarded as a programming language itself.

Anonymous Functions and Let Binders

Most functional programming languages, and also some other languages which are not necessarily considered
functional, provide anonymous, or nameless functions, which are functions that are not bound to any particular
name. For example, the anonymous successor function is written as fn x => x+1 in the Standard ML
functional language. Anonymous functions can still be applied to arguments, for example (fn x => x+1) 2
evaluates to 3 in Standard ML, and they can typically be passed as arguments to or returned as results by
other functions. Almost all languages supporting anonymous functions have a different syntax for them.
Nevertheless, anonymous functions are nothing but A-abstractions. For example, the successor function above
can be regarded as the A-abstraction Ax.(x+1), where 1 and + are either builtins or can be also encoded as
A-expressions (these are discussed in the sequel).

Another common construct in programming languages is the 1et binder, which allows to bind expressions
to names and then use those names as replacements for their corresponding expressions. For example,

let x1 = E1 and x2 = E2 and...and xn = En in E

first binds the expressions E1, E2, ..., En to the names x1, X2, ..., xn, respectively, and then E is evaluated.
It is not hard to see that this construct is equivalent to the A-expression (1x1.4x2...Axn.E) E1 E2.. . En.

Currying

Recall from Section 2.1.1 that there is a bijection between [A X B — C] and [A — [B — C]], where [X — Y]
represents the set of functions of domain X and codomain Y. Indeed, any function f : A X B — C can be
regarded as a function g : A — [B — C], where for any a € A, g(a) is defined as the function 4, : B — C
with h,(b) = c if and only if f(a,b) = c. Similarly, any function g : A — [B — C] can be regarded as a
function f : A X B — C, where f(a, b) = g(a)(b).

This observation led to the important concept called currying, which allows us to eliminate functions
with multiple arguments from the core of a language, replacing them systematically by functions admitting
only one argument as above. Thus, functions with multiple arguments are just syntactic sugar.

From now on we may write A-expressions of the form Axyz--- .E as shorthands for their uncurried
versions Ax.Ay.Az.--- .E. With this convention, A-calculus therefore admits multiple-argument A-abstractions.

326

Note, however, that unlike in many familiar languages, curried functions can be applied on fewer arguments.
For example, (Axyz.E)E’ B-reduces to Ayz.(E[E’/x]). Also, since A-application was defined to be left-
associative, (Axyz.E)E| E, B-reduces to Az.((E[E{/x])[E2/Y]).

Most functional languages today support curried functions. The advantage of currying is that one only
needs to focus on defining the meaning or on implementing effectively functions of one argument.

Church Booleans

Booleans are perhaps the simplest data-type that one would like to have in a programming language. A-
calculus so far provides no explicit support for Booleans or conditionals. We next show that A-calculus
provides implicit support for Booleans. In other words, the machinery of A-calculus is powerful enough to
simulate Booleans and what one would normally want to do with them in a programming language. What we
discuss next is therefore a methodology to program with Booleans in A-calculus.

The idea is to regard a Boolean through a behavioral prism: with a Boolean, one can always choose one
of any two objects—if true then the first, if false then the second. In other words, one can identify a Boolean
b with a universally quantified conditional “for any x and y, if b then x else y”. With this behavior of
Booleans in mind, one can now relatively easily translate Booleans and Boolean operations in A-calculus:

true := Axy.x

false := Axy.y
if-then-else := Axyz.xyz
and := Axy.(xy false)

Other Boolean operations can be defined in a similar style (see Exercise 198).

This encoding for Booleans is known under the name of Church Booleans. We can use -reduction to
show, for example, that and true false =p false,thatis, and true false =g false. We can show
relatively easily that the Church Booleans have all the desired properties of Booleans. Let us, for example,
show the associativity of and. First, note the obvious equivalences:

and (and xy) z =g xy false z false
and x(and y z) =g x (v z false) false

These equivalences tell us that we cannot expect the properties of Booleans to hold for any A-expressions.
Therefore, in order to complete the proof of associativity of and, we need to make further assumptions
regarding the Booleanity of x, y, z. If x is true, that is Axy.x, then both right-hand-side A-expressions
above reduce toy z false. If x is false, that is Axy.y, then the first reduces to false z false which
further reduces to false, while the second reduces to false in one step. We can similarly prove the desired
properties of all the Boolean operators (Exercise 199), relying only on the generic S-equivalence of A-calculus.

We may often introduce definitions such as the above for the Church Booleans, using the symbol :=.
Note that this is not a meta binding constructor on top of A calculus. It is just a way for us to avoid repeating
certain frequent A-expressions; one can therefore regard them as macros. Anyway, they admit a simple
translation into standard A-calculus, using the usual convention for translating bindings. Therefore, one can
regard the A-expression “and true false” as syntactic sugar for

(dand.Atrue.Afalse. and true false) ((Afalse.Axy. xy false) (1xy.y)) (Axy.x) (Axy.y)

327

Pairs

A-calculus can also naturally encode data-structures of interest in most programming languages. The idea is
that A-abstractions, by their structure, can store useful information. Let us, for example, consider pairs as
special cases of records. Like Booleans, pairs can also be regarded behaviorally: a pair is a black-box that
can store any two expressions and then allow one to retrieve those through appropriate projections. Formally,
we would like to define A-expressions pair, 1st and 2nd in such a way that for any other A-expressions E
and E’, it is the case that 1st (pair E E’) and 2nd (pair E E’) are B-equivalent to E and E’, respectively.
Fortunately, these can be defined quite easily:

pair := Axyb. bxy,
1st := Ap. p true, and

2nd := Ap. p false.

The idea is therefore that pair E E” S-reduces to the A-expression Ab. b E E’, which freezes E and E’
inside a A-abstraction, together with a handle, b, which is expected to be a Church Boolean, to unfreeze
them later. Indeed, the first projection, 1st, takes a pair and applies it to true hereby unfreezing its first
component, while the second projection applies it to false to unfreeze its second component.

Church Numerals

Numbers and the usual operations on them can also be defined as A-expressions. The basic idea is to regard a
natural number n as a A-expression that has the potential to apply a given operation n times on a given starting
A-expression. Therefore, A-numerals, also called Church numerals, take two arguments, what fo do and what
to start with, and apply the first as many times as the intended numeral on the second. Intuitively, if the action
was successor and the starting expression was zero, then one would get the usual numerals. Formally, we
define numerals as follows:

0,:=As2. 2
1y:=Asz.52
2):=Asz2.5(52)
31:=Asz.5(s(52))

With this intuition for numerals in mind, we can now easily define a successor operation on numerals:
succ := Ansz.ns(sz)

The above says that for a given numeral n, its successor succ n is the numeral that applies the given
operation s for n times starting with s z. There may be several equivalent ways to define the same intended
meaning. For example, one can also define the successor operation by applying the operation s only once, but
on the expression n s z; therefore, we can define

succ’ := Ansz. s(nsz)

328

One may, of course, want to show that succ and succ’ are equal. However, they are not equal as A-

expressions. To see it, one can apply both of them on the A-expression Axy. x: one gets after S-reduction Asz. s

and, respectively, Asz. s s. However, they are equal when applied on Church numerals (see Exercise 200).
One can also define addition as a A-abstraction, e.g., as follows:

plus := Amnsz.ms(nsz)

One of the most natural questions that one can and should ask when one is exposed to a new model of
natural numbers, is whether it satisfies the Peano axioms. In our case, this translates to whether the following
properties hold for all Church numerals n, and m, (see Exercise 201):

plus 0, my =g m,, and

plus (succ ny) my =g succ (plus ny my).

Church numerals in combination with pairs allow us to define certain recursive behaviors. Let us next
define a more interesting function on Church numerals, namely one that calculates Fibonacci numbers.
Specifically, we want to define a A-expression fibo with the property that fibo n, B-reduces to the n'
Fibonacci number. Recall that Fibonacci numbers are defined recursively as fo = 0, fi = 1, and f;, =
Jfu—1 + fu—n for all n > 2. The idea is to define a two-number window that slides through the sequence of
Fibonacci numbers until it reaches the desired number. The window is defined as a pair and the sliding
by moving the second element in the pair on the first position and placing the next Fibonacci number as
the second element. The shifting operation needs to be applied as many times as the index of the desired
Fibonacci number:

start :=pair 0, 1,,
step := Ap.pair (2nd p) (plus (1st p) (2nd p)),
fibo := An. 1st (n step start).

We will shortly discuss a technique to support recursive definitions of functions in a general way, not
only on Church numerals.
Another use of the technique above is in defining the predecessor operation on Church numerals:

start :=pair 0, 0,,
step := Ap.pair (2ndp) (plus 1, (2ndp)),
pred := An. 1st (n step start).

Note that pred 0, =g 0,, which is a slight violation of the usual properties of the predecessor operation
on integers. The above definition of predecessor is computationally very inefficient. Unfortunately, there
does not seem to be any better way to define this operation on Church numerals.

Subtraction can now be defined easily:

sub := Amn.npredm.

Note, again, that negative numbers are collapsed to 0,.
Let us next see how relational operators can be defined on Church numerals. These are useful to write
many meaningful programs. We first define a helping operation, to test whether a number is zero:

329

zero? := An.n (and false) true.

Now the “less than or equal to” (1eq), the “larger than or equal to” (geq), and the “equal to” (equal) can
be defined as follows:

leq := Amn. zero? (sub m n),
geq := Amn. zero? (sub n m),

equal := Amn. and (leq m n) (geq m n).

Adding Built-ins

As shown above, A-calculus is powerful enough to encode many data-structures and data-types of interest.
However, as it is the case with many other pure programming paradigms, in order for A-calculus to be
usable as a reasonably efficient programming language, it needs to provide built-ins comprising efficient
implementations for common data-types and operations on them.

We here only discuss the addition of built-in integers to A-calculus; the addition of other data-types is
similar. We say that the new A-calculus obtained this way is enriched. Depending on how the underlying
substitution operation and how the builtin operations are defined, enriching A-calculus with builtin integers
can take very little effort: syntactically, we may only need to add integers as A-expressions, and semantically,
we may only need to add the rules defining the builtin operations to the language, in addition to the already
existing S-reduction rule. Specifically, assume a substitution operation that works over any syntactic extension
of A-calculus, essentially applying homomorphically through all non-binding language constructs, like in
Exercise 196. Also, assume a syntactic category Int for integer values, e.g., 5, 7, etc., and operations on them,
e.g., +, together with a rewrite relation capable of reducing Int expressions, e.g., 5+7 = 12.

There are at least two ways to enrich A-calculus with integers: the simplest is to collapse the Inf and Exp
syntactic categories; another is to make Int a syntactic subcategory of Exp, but then all the Int operations
need to be overloaded to take and yield Exp. In both cases, the integer values become particular expressions,
and the integer reduction rules harmoniously co-exist with S-reduction. For example, 5+7 still reduces to
12. But what is more interesting is that Ax.7+5 also makes sense and reduces to Ax.12 (without applying any
S-reduction step, but only the reduction that /nt provides). Moreover, (dyx.7+y) 5 first S-reduces to Ax.7+5
and then Int-reduces to Ax.12. The above S-reduction works because integer values are regarded as constants,
that is, operations with no arguments, so the generic substitution (homomorphically) applies on them, too,
keeping them unchanged, as expected: I[E’/x] = I, for any integer I.

Note that one can now write A-expressions that are not well formed, such as the A application of one
integer to another: 7 5. It would be the task of a type checker to catch such kind of errors. We here focus only
on the evaluation, or reduction, mechanism of the enriched calculus, assuming that programs are well-formed.
Ill-formed A-expressions may get stuck when S-reduced.

4.5.7 Fixed-Points and Recursion

Recursion almost always turns out to be a subtle topic in foundational approaches to programming languages.
We have already seen the divergent combinator

omega := (Ax. x x) (1x. x x),

which has the property that omega =4 omega, that is, it leads to an infinite recursion. While omega has a
recursive behavior, it does not give us a principled way to define recursion in A-calculus.

330

But what is recursion? Or to be more precise, what is a recursive function? Let us examine the definition
of a factorial function, in some conventional programming language, that we would like to be recursive:

function f(x) {
if x == 0 then 1 else x * f(x - 1)
}

In a functional language that is closer in spirit to A-calculus the definition of factorial would be:

letrec
f(x) = if x == 0 then 1 else x * f(x - 1)
in £(3) .

Note that the 1etrec binding is necessary in the above definition. If we used 1let instead, then according to
the syntactic sugar transformation of functional bindings into A-calculus, the above would be equivalent to

(1af. £3)
(1 x . 1if x == 0 then 1 else x * f(x - 1)) ,

so the underlined f£ is free rather than bound to A f, as expected. A functional programming language would
report an error here.

The foundational question regarding recursion in A-calculus is therefore the following: how can we define
a A-abstraction

f := <begin-exp ... f ... end-exp>,

that is, one in which the A-expression refers to itself in its scope? Let us put the problem in a different light.
Consider instead the well-formed well-behaved A-expression

F :=1f . <begin-exp ... f ... end-exp>,

that is, one which takes any A-expression, in particular a A-abstraction, and plugs it at the right place into the
scope of the A-expression that we want to define recursively. The question now becomes the following one:
can we find a fixed point £ of F, that is, a A-expression f with the property that

Interestingly, A-calculus has the following notorious and perhaps surprising result:

Theorem 24. (Fixed-point theorem of untyped A-calculus) For any A-expression F, there is some A-
expression X such that FX =g X.

Proof. One such X is the A-expression (Ax. F (x x)) (Ax. F (x x)). Indeed,

X = (x.F(xx)dx. F(xx))
=3 F((Ax. F(xx))(Ax. F (x x)))
= FX
Therefore, X is a fixed-point of F. |

The proof of the fixed-point theorem above suggests defining the following famous fixed-point combinator:

Y = AF. (Ax. F (xx)) (Ax. F (x x)).

331

With this, for any A-expression F, the A-application Y F becomes the fix-point of F'; therefore, F' (Y F) =g
Y F. Thus, we have a constructive way to build fixed-points for any A-expression F. Note that F does not
need to be a A-abstraction.

Let us now return to the recursive definition of factorial in A-calculus enriched with integers. For this
particular definition, let us define the A-expression:

F:=A1f.A2x . (if x == 0 then 1 else x * £f(x - 1))
The recursive definition of factorial is therefore a fixed-point of F, namely, YF. It is such a fixed-point

A-expression that the letrec functional language construct in the definition of factorial refers to!
Let us experiment with this A-calculus definition of factorial, by calculating factorial of 3:

Y F) 3 =

F(YF) 3=

(1f.2x . @fx==20then1elsex * f(x - 1)) (Y F) 3 =4
if 3 ==0 then 1else3 * (Y F)3-1) =

3% (Y F)2) =

6 * ((Y F) 0) =

6 * (F(YF)® =

6 * ((1f.2x . (@Afx==20then1lelsex * f(x - 1))) (Y F) 0) =4
6 *if © == 0 then 1 else 0 * (Y (O - 1) =

6 * 1=

6

Therefore, A-calculus can be regarded as a simple programming language, providing support for functions,
numbers, data-structures, and recursion. It can be shown that any computable function can be expressed in
A-calculus in such a way that its computation can be performed by S-reduction. This means that A-calculus is
a Turing-complete model of computation.

There are two aspects of A-calculus that lead to complications when one wants to implement it.

One is, of course, the substitution: efficiency and correctness are two opposing tensions that one needs to
address in any direct implementation of A-calculus.

The other relates to the strategies of applying S-reductions: so far we used what is called full 5-reduction,
but other strategies include normal evaluation, call-by-name, call-by-value, etc. There are A-expressions
whose S-reduction does not terminate under one strategy but terminates under another. Moreover, depending
upon the strategy of evaluation employed, other fixed-point combinators may be more appropriate.

Like S-reduction, the evaluation of expressions is confluent in many pure functional languages. However,
once a language allows side effects, strategies of evaluation start playing a crucial role; to avoid any confusion,
most programming languages hardwire a particular evaluation strategy, most frequently call-by-value.

We do not discuss strategies of evaluation here. Instead, we approach the other delicate operational aspect
of A-calculus, namely the substitution. In fact, we show that it can be completely eliminated if one applies a
systematic transformation of A-expressions into expressions over a reduced set of combinators.

More precisely, we show that any closed A-expression can be systematically transformed into a A-
expression build over only the combinators K := Axy.x and S := Axyz.xz(yz), together with the A-application
operator. For example, the identity A-abstraction Ax.x is going to be S KK; indeed,

SKK =g 12.K2(K7) = Az.(Axy.x)2(K2) =g A2.2 = AX.X.

332

Interestingly, once such a transformation is applied, one will not need the machinery of A-calculus and
B-reduction anymore. All we’ll need to do is to capture the contextual behavior of K and S, which can be
defined equationally very elegantly: KXY = X and S XYZ = XZ(YZ), for any other KS -expressions X, Y, Z.

Before we do that, we need to first discuss two other important aspects of A-calculus: n-equivalence and
extensionality.

4.5.8 Eta Equivalence and Extensionality

Here we discuss two common but equivalent extensions of A-calculus, both concerned with additional
proof support for equality of A-expressions (besides a-conversion and S-equivalence). The former is called
n-equivalence and allows us to state that expressions Ax. E x and E are always equivalent, provided that x
does not occur free in E. The latter is called extensionality and allows us to derive that E and E’ are equal
provided that £ x and E’ x are equal for some variable x that does not occur free in any of £ and E’.

Eta Equivalence

Let us consider the A-expression Ax.Ex, where E is some A-expression that does not contain x free. Intuitively,
Ax.Ex does nothing but wraps E: when called, it passes its argument to £ and then passes back E’s result.
When applied on some A-expression, say E’, note that Ax.Ex and E behave the same. Indeed, since E does
not contain any free occurrence of x, one can show that (Ax.Ex)E’ =g EE’. Moreover, if E is a A-abstraction,
say Ay.F, then Ax.Ex = Ax.(dy.F)x =g Ax.F[x/y]. The latter is a-equivalent to Ay.F, so it follows that in this
case Ax.Ex is B-equivalent to E.

Even though Ax.Ex and E have similar behaviors in applicational contexts and they can even be shown
B-equivalent when E is a A-abstraction, there is nothing to allow us to use their equality as an axiom in our
equational inferences. In particular, there is no way to show that the combinator Ax.dy.xy is equivalent to
Ax.x. To increase the proving capability of A-calculus, still without jeopardizing its basic intuitions and
applications, we consider its extension with the following equation:

(m) Ax.Ex=E,

for any x ¢ FV(E). We let E =g, E’ denote the fact that the equation E = E’ can be proved using standard
equational deduction from all the equational axioms above: (@), (8), (17), plus those for substitution. The
relation =), is also called Sn-equivalence. The A-calculus enriched with the rule (7) is also written A + 7.

Extensionality

Extensionality is a deduction rule encountered in several branches of mathematics and computer science. It
intuitively says that in order to prove two objects equal, one may first extend them in some rigorous way. The
effectiveness of extensionality comes from the fact that it may often be the case that the extended versions of
the two objects are easier to prove equivalent.

Extensionality was probably first considered as a proof principle in set theory. In naive set theory, sets are
built in a similar fashion to Peano numbers, that is, using some simple constructors (together with several
constraints), such as the empty set () and the list constructor {xi, ..., x,}. Thus, {0, {0, {0}}} is a well-formed
set. With this way of constructing sets, there may be the case that two sets with the same elements have
totally different representations. Consequently, it is almost impossible to prove any meaningful property on
sets, such as distributivity of union and intersection, etc., by just taking into account how sets are constructed.
In particular, proofs by structural induction are close to useless.

333

Extensionality is often listed as the first axiom in any axiomatization of set theory. In that context, it
basically says that two sets are equal iff they have the same elements. Formally, sets S and S’ are equal
whenever we can prove the statement “for any element x, x € S iff x € §’”. Therefore, in order to show sets
S and S’ equal, we can first extend them (regarded as syntactic terms) by applying them the membership
operator. In most cases the new task is easier to prove.

Similarly, the principle of extensionality applies to functions: two functions are equal whenever they
evaluate to the same values for the same elements. Formally, functions f and g are equal whenever we can
prove the statement “for any element x, f(x) = g(x)”. We again have to prove a syntactically extended task,
but like for sets it is often the case that the extended task is simpler to prove.

In A-calculus, extensionality takes the following shape:

(ext) If Ex=FE'x for some x ¢ FV(EE’'), then E=F’.

Therefore, two A-abstractions are equal if they are equal when applied on some variable that does not
occur free in any of them. Note that “for some x” can be replaced by “for any x” in ext. We let E =gexx E’
denote the fact that the equation E = E’ can be proved using standard equational deduction using (@) and (8),
together with ext. The A-calculus extended with ext is also called A + ext.

The following important result says the extensions of A-calculus with (1) and with ext are equivalent:
Theorem 25. A + 1 is equivalent to 1 + ext.

Proof. In order to show that two mathematical theories are equivalent, one needs to show two things:
(1) how the syntax of one translates into the syntax of the other, or in other words to show how one can
mechanically translate assertions in one into assertions in the other, and (2) that all the axioms of each of the
two theories can be proved from the axioms of the other, along the corresponding translation of syntax. In our
particular case of A + 17 and A + ext, syntax remains unchanged when moving from one logic to another, so
(1) above is straightforward. We will shortly see another equivalence of logics, where (1) is rather involved.
Regarding (2), all we need to show is that under the usual A-calculus with (@) and (), the equation (1) and
the principle of extensionality are equivalent.

Let us first show that () implies ext. For that, let us assume that Ex =g, E’x for some A-expressions E
and E’ and for some variable x ¢ FV(EE’). We need to show that E =g, E":

E =g, Ax.Ex =g, Ax.E'x =g, E'.

Note the use of =g, in the equivalences above, rather than just =g. That is because, in order to prove the
axioms of the target theory, A + ext in our case, one can use the entire calculus machinery available available
in the source theory, A + 7 in our case.

Let us now prove the other implication, namely that ext implies (7). We need to prove that Ax.Ex =gext E
for any A-expression E and any x ¢ FV(E). By extensionality, it suffices to show that (Ax.Ex)x =gext Ex,
which follows immediately by S-equivalence because x is not free in E. O

4.5.9 Combinatory Logic

Even though A-calculus can be defined equationally and is a relatively intuitive framework, as we have noticed
several times by now, substitution makes it non-trivial to implement effectively. There are several approaches
in the literature addressing the subtle problem of automating substitution to avoid variable capture, all with
their advantages and disadvanteges. We here take a different approach. We show how A-expressions can be

334

automatically translated into expressions over combinators, in such a way that substitution will not even be
needed anymore.

A question addressed by many researchers several decades ago, still interesting today and investigated
by many, is whether there is any simple equational theory that is entirely equivalent to A-calculus. Since
A-calculus is Turing complete, such a simple theory may provide a strong foundation for computing.

Combinatory logic was invented by Moses Shonfinkel in 1920. The work was published in 1924 in a
paper entitled “On the building blocks of mathematical logic”. Combinatory logic is a simple equational
theory over two sorts, Var and Exp with Var < Exp, a potentially infinite set x, y, etc., of constants of sort Var
written using lower-case letters, two constants K and S of sort Exp, one application operation with the same
syntax and left-associativity parsing convention as in A-calculus, together with the two equations

KXY =X,
SXYZ = XZ(YZ),

quantified universally over X, Y, Z of sort Exp. The constants K and S are defined equationally in such a
way to capture the intuition that they denote the combinators Axy.x and Axyz.xz(yz), respectively. The terms
of the language, each of which denoting a function, are formed from variables and constants K and S by
a single construction, function application. For example, S (S xKS)yS (S KxK)z is a well-formed term in
combinatory logic, denoting some function of free variables x, y, and z.

Let CL be the equational theory of combinatory logic above. Note that a function FV returning the free
variables that occur in a term in combinatory logic can be defined in a trivial manner, because there are no
bound variables in CL. Also, note that the extensionality principle from A-calculus translates unchanged to CL:

(ext) If Ex=FE'x for some x ¢ FV(EE’'), then E=F’.

Let CL + ext be CL enriched with the principle of extensionality. The following is a landmark result:

Theorem 26. A + ext is equivalent to CL + ext.

Proof. Let us recall what one needs to show in order for two mathematical theories to be equivalent: (1)
how the syntax of one translates into the syntax of the other; and (2) that all the axioms of each of the two
theories can be proved from the axioms of the other, along the corresponding translation of syntax.

Let us consider first the easy part: A + ext implies CL + ext. We first need to show how the syntax of
CL + ext translates into that of A + ext. This is easy and it was already mentioned before: let K be the
combinator Axy.x and let S be the combinator Axyz.xz(yz). We then need to show that the two equational
axioms of CL + ext hold under this translation: they can be immediately proved by S-equivalence. We also
need to show that the extensionality in CL + ext holds under the above translation: this is obvious, because
it is exactly the same as the extensionality in 1 + ext.

Let us now consider the other, more difficult, implication. So we start with CL + ext, where K and §
have no particular meaning in A-calculus, and we need to define some map that takes any A-expression and
translates it into an expression in CL.

To perform such a transformation, let us add syntax for A-abstractions to CL, but without any of the
equations of A-calculus. This way one can write and parse A-expressions, but still have no meaning for those.
The following ingenious bracket abstraction rewriting system transforms any uninterpreted A-expression into
an expression using only K, S, and the free variables of the original A-expression:

335

1. Ax.p = [x]p
SKK ifx=y
2'Mh:${Ky ifx#y

3. [x]Gep") = S ([xlp)([x]p")
4. [xIK = KK

5. [x]S = KS

The first rule removes all the A-bindings, replacing them by corresponding bracket expressions. Here p
and p’ can be any expressions over K, S, variables, and the application operator, but also over the A-abstraction
operator A_._: Var — Exp. However, note that rules 2-5 systematically elliminate all the brackets. Therefore,
the bracket abstraction rules above eventually transform any A-expression into an expression over only K, S,
variables, and the application operator.

The correctness of the translation of 4 + ext into CL + ext via the bracket abstraction technique is
rather technical: one needs to show that the translated versions of equations in A can be proved (by structureal
induction) using the machinery of CL + ext.

Exercise 185. (Technical) Prove the correctness of the translation of 1 + ext into CL + ext above.

We do not need to understand the details of the proof of correctness in the exercise above in order to
have a good intuition on why the bracket abstraction translation works. To see that, just think of the bracket
abstraction as a means to associate equivalent A-expressions to other A-abstractions, within the framework of
A-calculus, where K and S are their corresponding A-expressions. As seen above, it eventually reduces any A-
expression to one over only combinators and variables, containing no explicit A-abstractions except those that
define the combinators K and S . To see that the bracket abstraction is correct, we can think of each bracket
term [x]E as the A-expression that it was generated from, Ax.E, and then show that each rule in the bracket
abstraction transformation is sound within A-calculus. For example, rule 3 can be shown by extensionality:
(Ax.pp")z =g (plz/xD)(p'[2/x]) =p (Ax.p)2)(Ax.0")2)) =p (Axyz.xz(y2))(Ax.p)(Ax.p")z = S (Ax.p)(Ax.p")z, O
by extensionality, Ax.00" =gext S (A1x.0)(Ax.0").

This way, one can prove the soundness of each of the rules in the bracket abstraction translation. As one
may expect, the tricky part is to show the completeness of the translation, that is, that everything one can
do with A-claculus and ext can also do with with its subcalculus CL + ext. This is not hard, but rather
technical.

Exercise 186. Define the bracket abstraction translation above formally in Maude. To do it, first define CL,
then add syntax for A-abstraction and bracket to CL, and then add the bracket abstraction rules as equations
(which are interpreted as rewrite rules by Maude). Convince yourself that substitution is not a problem in
CL, by giving an example of a A-expression which would not be reducible with the definition of A-calculus in
Exercise ??, but whose translation in CL can be reduced with the two equations in CL.

some additional notes:

In the pure system there is a small set of constants all of which are themselves pure combinators, usually
the primitive combinators are named S, K and I, though I is in fact definable in terms of S and K.

336

The intended meaning of these constants can be described simply by showing a corresponding transfor-
mation or reduction which the constant may be thought of as effecting.

The transformations are as follows: [x =x Kxy =x S f g x = (f x)(g x) This set of combinators has
the property of combinatory completeness which means that for any function definition of the form: f x =
combinatory expression involving x

There exists an expression E in S,K and I such that: f = E

This property establishes the close relationship between Pure Combinatory Logic and the Pure lambda
Calculus, in which a special notation for functional abstraction is available. It shows that the notation for
functional abstraction, though a great convenience, adds no expressiveness to the language.

As well as having combinatorial completeness, Pure Combinatory Logic is able to express all effectively
computable functions over natural numbers appropriately represented as combinators.

[Barenderegt84] Barendregt, H.P.; The Lambda Calculus - Its Syntax and Semantics; Second Edition,
North Holland 1984 purchase from amazon purchase from ibs

This is the first published work in the field which came later to be known as combinatory logic.

Schonfinkel shows how the use of bound variables in logic can be dispensed with. The use of higher order
functions makes possible the reduction of logic to a language consisting of one constructor (the application
of a function to an argument) and three primitive constants U, C (now usually called K) and S. A function is
termed "higher order” if it will accept a function as an argument, or return one as its result. U, C, and S are
all higher order functions.

The meaning of these primitives may be understood through the following informal definitions:

Cxy = (C(x))(y) = x C is a function which given any value x, returns the constant x valued function.
Sfgx = ((S))(g))(x) = (f(x))(g(x)) S is a function which combines two functions, say f and g, supplied as
successive arguments. The resulting function, given a value X, returns the value obtained by applying the
value of f at x to the value of g at x. UPQ = (U(P))(Q) = forall x. not(P(x) and Q(x)) U is a generalised
scheffer stroke. It should be thought of as applying to two predicates and returns the universal quantification
of the negated conjunction of the two predicates.

These combinators are sufficient to enable arbitrary first order predicates to be expressed without the use
of bound variables, which appear in first order logic whenever a quantifier is used. This can be demonstrated
most straightforwardly using a simple algorithm which converts lambda-expressions to combinators. They
are not limited to first-order predicates, but without some constraints (equivalent to those found in first order
logic, or more liberally and appropriately to those in Church’s Simple Theory of Types [Church40]) the
logic which results from the use of these combinators is at risk of proving inconsistent. Combinatory logic
has traditionally tried to avoid type constraints and has therefore been dogged with difficulties in achieving
strength and consistency.

Schonfinkel’s paper remains an accessible introduction to combinatory logic which makes clear the
original motivation for this innovation. This original motivation was vigorously pursued later by H.B.Curry
and his collaborators. The results of Curry’s programme were published in Combinatory Logic, Vols 1 & 2.

While Schofinkel was successful in showing that combinators could provide plausible notation, the
semantic and proof theoretic aspects were more difficult to put in place. The difficulty is more pronounced if
it hoped to use combinatory logic as a foundation for mathematics, than it is for the use of combinators in
less demanding roles (e.g. for programming languages).

The Pure combinatory logic may be thought of as Schonfinkels system with the logical operator U’
omitted (though the presentation may vary). Illative combinatory logics are formed by adding additional
logical primitives to the pure combinators. There are many illative combinatory logics, which vary among
themselves in substance as well as in presentation.

337

Pure combinatory logic is so closely related to Church’s lambda-calculus that it is best studied alongside
the lambda-calculus, for which the most comprehensive modern text is probably The Lambda Calculus. A
very popular and entertaining introduction to the pure combinators may be found in To Mock a Mockingbird.

Research on illative combinatory logics has been continued by Curry’s students, Roger Hindley and
Jonathan Seldin, and by Martin Bunder. Hindley, Lercher and Seldin published An Introduction to Com-
binatory Logic, an excellent and readable short introduction to the subject, now superseded by the more
comprehensive An Introduction to Combinators and the Lambda-Calculus

Recently Randall Holmes has developed logical systems based on combinatory logic and the lambda
calculus using methods derived from Quine’s formulations of set theory.

The attempt to make a foundation for mathematics using the illative combinatory logic were blighted
by Curry’s paradox and semantic opacity. While systems avoiding this paradox have been devised, they are
typically weak, and lack the kind of convincing semantic intuition found in first order set theory.

[Curry58] Curry, Haskell B., Feys, Robert; Combinatory Logic, Volume I; North Holland 1958; [Curry72]
Curry, Haskell B., Hindley, J.Roger, Seldin, Jonathan P.; Combinatory Logic, Volume II; North Holland 1972;
ISBN 0 7204 2208 6

4.5.10 De Bruijn Nameless Representation

Interestingly, note that the morphism obtained above contains no references to the variables that occur in the
original A -expression. It can be shown that the interpretation of A -expressions into a CCC is invariant to
a-conversion. To see that, let us draw the morphism above as a tree, where we write A instead of curry, _ _
instead of (_, _); app“sﬂ’“’“, (-, -) instead of the remaining (- ,) and i instead of &r; (and omit the types):

AX > <.
| I | .
PN e T ~
Af Ay 4/} > ,|1
| |
g y ; 7/|1 2
| PE—
. e \(: i3 SN)

f/’\x o 2/ \1:‘:

The (right) tree above suggests a representation of A -expressions that is invariant to @-conversion: each
binding variable is replaced by a natural number, representing the number of A s occurring on the path to it;
that number then replaces consistently all the bound occurrences of the variable. The corresponding lambda
expression without variables obtained using this transformation is A (44 (3 (1,(2 1))) 412).

Exercise 187. Explain why this representation is invariant to a-conversion.

The representation of a-expressions above was explicitly proposed as a means to implement A -calculus
in 1971 by Nicholas de Bruijn.

In the same paper, de Bruijn proposed another encoding which became more popular. We do not know
whether de Bruijn was influenced by the CCC interpretation of A -expressions or not, but we discuss his other
representation technique here.

de Bruijn Nameless Representation of 1 -expression

338

The second and more popular representation technique of A -expressions proposed by Nicholas de Bruijn
in 1971 is a bottom-up version of the above representation. For the above example the tree representing the
encoding is (we omit the types):

AX -
| e e
<N PN
Af Ay 4,} 7/}
g y 7/Il 0
g/f ’\(: 0/ ~)

f/”\x S 1/ \2,‘«

In this encoding, each variable is replaced by the number of lambda abstractions on the path from it to

the lambda abstraction binding it. The encoding for the given example is A (14 (0 (2, (1 2))) 10).
One can easily define application for the above de Bruijn encoding:

(AE E") = E[E'/0]

(E ENE"[i] = (E[E”/1]) (E'[E"[1])

(AE)E'/i] = AELT E'/(] +pe)]

JIE/i] = if j == ithen E else (if j > i then j — 1 else j fi) fi
TE =>1E

TEE)= (1 E(E)

T@E)= A" E)

1M j=if j>=ithen(j+ 1)else jfi

Exercise 188. Define the transformation above formally in Maude.

Exercise 189. Define application for the first de Bruijn encoding, in a similar style to the one above.

4.5.11 Notes
4.5.12 Exercises

Exercise 190. * Define the syntax of A-calculus in a Maude module using mix-fix notation. Then parse the
various A-expressions that were discussed in this section.

Exercise 191. & Extend the Maude definition of A-calculus in Exercise 190 with a definition of free variables.
You should define an operation fv taking an expression and returning a set of variables.

Exercise 192. Prove the following equivalences of A-expressions:
o lx.x =, Ay.y,
o Ax.x(Ay.y) =4 Ay.y(Ax.x),
o Ax.x(Ay.y) =4 Ay.y(Ay.y).

Exercise 193. Show that (Ax.(1y.x))yx =g y.

339

Exercise 194. % Define substitution in Maude, as a partial operation. As discussed in Section 4.5.3, a partial
substitution applies only if it does not lead to a variable capture; otherwise the substitution operation is
undefined. In other words, when applying a partial substitution we do not need to perform any a-conversions.
Hint. Define (1y.E)[E’/x] when y # x as a conditional equation, with condition 'y ¢ FV(E").

Exercise 195. * Define unrestricted substitution in Maude, which takes into account and avoids variable
capture. Use the core-level Maude capabilities for this exercise (see also Exercise 196).

Hint. You need a mechanism to generate fresh variables. For example, you may define an operation var
Jfrom Int to Var, where var(l), var(2), etc., represent fresh variables. A simple but wasteful solution when
calculating (Ay.E)[E’/x] is to always replace y in Ay.E by a fresh variable before applying the substitution; a
better solution is to only do it when y € FV(E").

Exercise* 196. % Define unrestricted substitution in Maude, using the meta-level capabilities of Maude (see
also Exercise 195). You should traverse the meta-term and propagate the substitution operation through any
operation label which is not a A-binding. For A-bindings you should apply the same conceptual operation
as in Exercise 195. The advantage of the meta-level approach is that it is more modular that the other
approaches. We will be able to add new constructs to A-calculus, for example builtins, without having to
change the definition of the substitution.

Exercise 197. % Define A-calculus formally in Maude, using each of the substitution approaches in Exer-
cises 194, 195, and 196. For the former approach (partial substitution), show that there are A-expressions
that cannot be B-reduced automatically with your definition of A-calculus to a normal form, even though they
are closed (or combinators) and all the binding variables are initially distinct from each other.

Exercise 198. Define the other Boolean operations which were not already defined in Section 4.5.6 (including
at least or, not, implies, iff, and xor) as A-expressions.

Exercise 199. Prove that the Church Boolean operators defined in Exercise 198 have all their desired
properties (a set of such desired properties can be found in the Maude BOOL module; use the command
“show module BOOL” lists them).

Exercise 200. With the notions and notations in Section 4.5.6, show that for any Church numeral n,, both
succ ny and succ’ ny represent the same numeral, namely (n + 1),.
Hint. Induction on the structure of n,.

Exercise 201. Prove that Church numerals form indeed a model of natural numbers, by showing the two
properties derived from Peano’s axioms (see Section 4.5.6).

Exercise 202. Define multiplication on Church numerals and prove its Peano properties.
Hint. Multiplication can be defined several different interesting ways.

Exercise 203. Define the power operator (raising a number to the power of another) using Peano-like axioms.
Then define power on Church numerals and show that it satisfies its Peano axioms.

Exercise 204. Add builtin integers to A-calculus in Maude, extending Exercise 197 based on substitution as
defined in Exercise 196.

Hint. The only change needed should be to subsort Int to Exp. Since Maude’s parsing is at the level of
kinds, instead of sorts, we should not need to overload the Int operations to take and return EXp sorts.

340

