
1

CS522 - Programming Language Semantics

Simply Typed Lambda Calculus

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign

2

We now discuss a non-trivial extension of λ-calculus with types.
The idea is that each variable binding is assigned a type, which will
allow one to calculate a unique type for each well-formed
λ-expression or λ-term.

As we know from our experience with programming languages, the
addition of types will allow one to reject “programs” that are not
well-typed, with the intuition that those programs are most likely
wrong (with respect to what the programmer meant).

Typing comes at a price: sometimes correct programs are rejected.
One can, of course, argue that those programs are not correct (by
definition, because they do not type). All in all, practice has shown
that typing is overall useful in programming languages. Simply
typed λ-calculus is perhaps the simplest typed language.

3

Syntax

The BNF syntax of simply-typed λ-calculus is

Var ::= x | y | . . .

Type ::= ◦ | Type→ Type

Exp ::= Var | λVar :Type.Exp | ExpExp.

To keep the presentation simple, for the time being we assume only
one constant type, ◦, and only one type constructor, →. Thus
(◦ → ◦)→ (◦ → (◦ → ◦)) is a well-formed type. To simplify
writing, we assume that → is right-associative; the type above can
then be written (◦ → ◦)→ ◦ → ◦ → ◦. As in the case of untyped
λ-calculus, the λ-application is still assumed to be left-associative.

Exercise 1 Define the syntax above in a Maude module, using the
alternative mix-fix notation.

4

Terms

Using the syntax above, one can naturally generate simply-typed
terms or “programs”, such as, for example, λx :◦.λf :◦ → ◦.fx. The
intuition for this λ-abstraction is that it takes some λ-expressions
of types ◦ and ◦ → ◦, respectively, and applies the latter on the
former. Naturally, the type of the result is expected to be ◦.

Unlike in the case of untyped λ-calculus, the BNF (or, equivalently,
the mix-fix notation) is not powerful enough to express all the
intended well-formed, or better say well-typed, terms. Indeed, for
example the term λx :◦.xx does not make any sense, because x, in
order to be applied on an expression of type ◦, in particular on
itself, must have the type ◦ → s for some type s; however, x is
declared of type ◦. Moreover, one can formally show that λx :s.xx

is not well-formed for any type s.

5

Even more, it can be shown that there is no context free grammar
(CFG) whose language consists of all well-typed λ-expressions.
This is perhaps the simplest language supporting the “folklore”
claim that “programs do not form a context-free language”.

Now the natural question is how to characterize, or how to “parse”,
simply-typed λ-expressions. There are three equivalent approaches
to do this, all being easily adaptable to other typed frameworks.
Let us first introduce some important notation.

A type assignment is a finite set X = {x1 :s1, . . . , xn :sn} of pairs
x :s, where x is a variable and s a type, with the property that each
variable occurs at most once in X: it is not possible to have
x :s1, x :s2 ∈ X for different types s1, s2. One of the main reasons
for this limitation is that well-formed λ-expressions, including those
which are just variables, are desired to have unique types. Then if

6

x occurs in X, written (admittedly ambiguously) x ∈ X, we may
let X(x) denote the type s such that x :s ∈ X. Often the curly
brackets “{” and “}” are omitted from the notation of X and its
elements are permuted conveniently; thus, if x ̸∈ X, then X,x :s is
a type assignment containing x :s. We let TypeAssignment denote
the set of type assignments.
For the time being, let us introduce the notation X ◃ E : t,
typically called a type judgment, or a well-typed λ-expression or
λ-term (sometimes “well-typed” may be dropped if understood),
with the intuition that under the type assignment X, the
λ-expression E is well-typed and has the type t. For example, one
can write x :◦, f :◦ → ◦ ◃ fx :◦. We will shortly see three different
ways to define this intuition precisely.
Alternative notations for X ◃ E : t could be (∀X)E : t or (E : t).X,
or just E : t when X is understood from context, or even simply E

if both X and t are understood. Let us next discuss the three

7

different (but related) formal approaches to define this.

1. Proof system

We can define e proof system that can derive precisely the
well-typed λ-expressions. The following three rules do this:

X,x :s ◃ x :s for any type assignment X,x :s;

X[s/x] ◃ E : t

X ◃ λx :s.E :s→ t

for any type assignment X, any
Exp-term E, and any type t;

X ◃ E :s→ t X ◃ E′ :s

X ◃ EE′ : t

for any type assignment X, Exp-
terms E,E′, and types s, t.

8

As usual, X ◃ E : t is called derivable if there is some sequence
X1 ◃ E1 : t1, . . . , Xn ◃ En : tn such that Xn ◃ En : tn is X ◃ E : t

and each Xi ◃ Ei : ti “follows” by one of the three rules above from
previously (< i) derived well-typed terms. We may write
⊢ X ◃ E : t, or sometimes even just X ◃ E : t, whenever X ◃ E : t

is derivable.

Exercise 2 Derive x :◦ ◃ λf :◦ → ◦.fx : (◦ → ◦)→ ◦. Also, find
the type “?” and derive ∅ ◃ λx :◦.λf :◦ → ◦ → ◦ → ◦.fxx : ?

When X is empty, we write E : t instead of ∅ ◃ E : t. We are not
going to (re)define the notions of free variable, with the
corresponding operator FV , and substitution. They have precisely
the same meaning as in untyped λ-calculus.

9

Properties about well-typed λ-expressions are typically proved by
induction on the length of derivation.

Proposition 1 The following hold:

• If X ◃ E : t then FV (E) ⊆ X;

• If X ◃ λx :s.E :s→ t then X, y :s ◃ (E[x← y]) : t for any
y ̸∈ X;

• If X ◃ E :s and X ◃ E : t then s = t;

• If X[s/x] ◃ E : t and X ◃ E′ :s then X ◃ E[x← E′] : t;

• If X,X ′ are type assignments and E is a λ-expression such
that for all x ∈ FV (E), x :s ∈ X iff x :s ∈ X ′, then X ◃ E : t

iff X ′ ◃ E : t;

• λx :s.xx does not type.

10

2. Typing Algorithm

We can also define a relatively trivial typing algorithm that takes a
type assignment X together with a λ-expression E, and tries to
calculate a type t for E. The algorithm traverses E recursively:

Algorithm A(X,E)

• if E is x and x :s ∈ X then return s;

• if E is λx :s.E′ and A(X[s/x], E′) returns t then return t→ s;

• if E is E1E2 and A(X,E1) returns s→ t and A(X,E2) returns
s then return t;

• otherwise return error

Exercise 3 Prove that X ◃ E : t is derivable if and only if
A(X,E) returns t. (Hint: By structural induction on E.)

11

3. Sets of Terms

Let us next give another characterization of the well-typed λ-terms.
We define the family of sets {Tt(X)}X∈TypeAssignment,t∈Type as the
(componentwise) smallest set {WX,t}X∈TypeAssignment,t∈Type of
words in the (CF) language of λ-calculus such that:

• x ∈WX,s if x :s ∈ X

• λx :s.E ∈WX,s→t if E ∈WX[s/x],t

• E1E2 ∈WX,t if E1 ∈WX,s→t and E2 ∈WX,s for some
s ∈ Type.

Exercise 4 Prove that X ◃ E : t is derivable iff E ∈ Tt(X).
(Hint: By structural induction on E.)

12

Equational Rules

We have discussed so far techniques to check that λ-expressions are
well-typed. From now on we assume that all the λ-expressions that
occur in any context are well-typed. More precisely, whenever we
write X ◃ E : t, we assume that E is well-typed under the type
assignment X and that it has the type t. We now focus on
equational properties of simply-typed λ-calculus. These equations
play a dual role: on the one hand they give means to show
“programs” equivalent, while on the other hand underlay the
infrastructure necessary to define a canonical model of λ-calculus.

13

An equation is a 4-tuple consisting of a type assignment X, two
λ-expressions E and E′, and a type t, such that X ◃ E : t and
X ◃ E′ : t. To simplify notation, we write such equations as
(∀X) E =t E

′, with the intuition that for any interpretation of the
variables in X (i.e., any assignment of values of corresponding type
to variables in X), the expressions E and E′ evaluate to the same
value, which has the expected type t.

A set of equations E is also called an equational theory (in
λ-calculus). Given an equational theory E and an equation e, we
call the syntactic construct E ⊢ e an equational judgment. We next
give a set of derivation rules for equational judgments:

14

(axiom) E ⊢ (∀X) E =t E
′ if (∀X) E =t E

′ is in E

(add) E ⊢ (∀X) E =t E
′

E ⊢ (∀X,x : s) E =t E′ if x ̸∈ X

(reflexivity) E ⊢ (∀X) E =t E if X ◃ E : t

(symmetry) E ⊢ (∀X) E =t E
′

E ⊢ (∀X) E′ =t E

(transitivity) E ⊢ (∀X) E =t E
′ E ⊢ (∀X) E′ =t E

′′

E ⊢ (∀X) E =t E′′

15

(application) E ⊢ (∀X) E1 =s→t E
′
1 E ⊢ (∀X) E2 =s E

′
2

E ⊢ (∀X) E1E2 =t E′
1E

′
2

(ξ) E ⊢ (∀X[s/x]) E =t E
′

E ⊢ (∀X) λx :s.E =s→t λx :s.E′

(β) E ⊢ (∀X) (λx :s.E)E′ =t E[x← E′]
if X[s/x] ◃ E : t and
X ◃ E′ :s

(η) E ⊢ (∀X) λx :s.Ex =s→t E if x ̸∈ FV (E)

16

The rule (axiom) says that any equation already existing in E is
derivable from E . The rule (add) allows one to add typed variables
to the type assignment of a derived equation; this is necessary for
several technical reasons, such as, for example, to bring the two
equations to the same type assignment in order to apply the
(transitivity) or the (application) rule. The next four rules,
(reflexivity), (symmetry), (transitivity), and (application), are self
explanatory and are instances of general equational reasoning in
algebraic specifications to the signature of λ-calculus; in particular,
(application) is an instance of the congruence deduction rule. The
rule (ξ) is “almost” an instance of the equational congruence rule
to the λ-abstraction construct; note, however, that the type
assignment needs to be changed appropriately. The last two rules,
(β) and (η) are nothing but the equational rule and typed versions
of the (β) and (η) equations from untyped λ-calculus.

17

Proposition 2 If E ⊢ (∀X) E =t E
′ then X ◃ E : t and X ◃ E′ : t.

Proposition 3 If E,E′ are two λ-expressions and x ̸∈ X then
E ⊢ (∀X) E =t E

′ iff E ⊢ (∀X,x : s) E =t E
′.

Corollary 1 If E,E′ are λ-expressions and X,X ′ are type
assignments such that x :s ∈ X iff x :s ∈ X ′ for any x ∈ FV (EE′),
then E ⊢ (∀X) E =t E

′ iff E ⊢ (∀X ′) E =t E
′.

Proposition 4 If E ⊢ (∀X) E =s E
′ and Y [s/y] ◃ F : t such that

X ∪ Y is a proper type assignment, then
E ⊢ (∀X ∪ Y) F [y ← E] =t F [y ← E′].
(Proof hint: “Eliminate” the substitution by applying the rule (β)

twice backwards.)

18

Models

1. A Type-indexed set M = {Mt}t∈Type is an infinite collection of
sets, one for each type; there is no relationship required among the
sets Ms, Mt, and Ms→t for any types s and t. Note that type
assignments can be regarded as Type-indexed sets with only a finite
number of sets non-empty. For example, the type assignment
{x :s, y :s, z : t} can be regarded as the Type-indexed set whose
s-component is {x, y}, whose t-component is {z}, and whose other
components are all empty.

For a given X ∈ TypeAssignment, we let T (X) denote the
Type-indexed set {Tt(X)}t∈Type.

19

2. Given Type-indexed sets M = {Mt}t∈Type and N = {Nt}t∈Type,
a Type-indexed function h : M → N is a collection of functions
{ht : Mt → Nt}t∈Type defined on the corresponding components of
the Type-indexed sets, one for each type t. If X is a type
assignment and M is a Type-indexed set, then we call the
Type-indexed functions ρ : X →M M -environments. As usual, we
let [X →M] denote the set of all M -environments over the
assignment X. If x :s ∈ X and v ∈Ms, then we let
ρ[x← v] : X →M denote the M -environment ρ′ with ρ′(y) = ρ(y)

for all y ̸= x and ρ′(x) = v.

A pre-frame or pre-model is a pair
({Mt}t∈Type, {Ms,t : Ms→t ×Ms →Mt}s,t∈Type) consisting of a
Type-indexed set and a (Type×Type)-indexed collection of
functions, such that Ms,t is extensional for any s, t: for any
f, g ∈Ms→t, if Ms,t(f, v) = Ms,t(g, v) for all v ∈Ms, then f = g.

20

A pre-frame or pre-model
M = ({Mt}t∈Type, {Ms,t : Ms→t ×Ms →Mt}s,t∈Type) is called a
frame or model of simply-typed λ-calculus iff there is a
Type-indexed mapping, say M_, taking well-typed λ-expressions
X ◃ E : t to mappings MX ◃ E:t : [X →M]→Mt with the
following properties for any M -environment ρ : X →M :

1) MX ◃ x:s(ρ) = ρ(x : s) ∈Ms;

2) Ms,t(MX ◃ λx:s.E:s→t(ρ), v) = MX[s/x] ◃ E:t(ρ[x← v]) for any
v ∈Ms;

3) MX ◃ E1E2:t(ρ) = Ms,t(MX ◃ E1:s→t(ρ),MX ◃ E2:s(ρ)).

When such a mapping exists, we say, by a slight language abuse,
that the model M extends the pre-model
({Mt}t∈Type, {Ms,t : Ms→t ×Ms →Mt}s,t∈Type).

21

Exercise 5 Show that there is at most one extension of any
pre-model to a model.
(Hint: by induction on λ-expressions, using extensionality.)

Therefore, if a pre-frame can be extended to a frame, than that
extension is unique. Given a model M and an M -environment
ρ : X →M , we let ρ# : T (X)→M denote the Type-indexed map
defined as ρ#(X ◃ E : t) = MX ◃ E:t(ρ).

Definition 1 A model M satisfies an equation (∀X) E =t E
′,

written M |= (∀X) E =t E
′, iff ρ#(X ◃ E : t) = ρ#(X ◃ E′ : t) for

any ρ : X →M .

Given a set of equations E and an equation e, we extend our
satisfaction relation to M |= E iff M satisfies all equations in E ,
and E |= e iff for any model M, if M |= E then M |= e.
Theorem (Soundness) If E ⊢ e then E |= e.
Proof Sketch. By induction on the length of the derivation. All

22

one needs to prove is that each derivation rule is sound. For
example, in the case of the (ξ) rule, we should show that if
E |= (∀X,x :s) E =t E

′ then E |= (∀X) λx :s.E =s→t λx :s.E
′. Let

M be a model such that M |= E , and let ρ : X →M be an
M -environment. Then note that

Ms,t(ρ#(X ◃ λx :s.E :s→ t), v) = MX,x:s ◃ E:t(ρ[x← v])

= MX,x:s ◃ E′:t(ρ[x← v])

= Ms,t(ρ#(X ◃ λx :s.E′ :s→ t), v).

Then by extensionality we get

ρ#(X ◃ λx :s.E :s→ t) = ρ#(X ◃ λx :s.E′ :s→ t).

Exercise 6 Show that all the equational inference rules of
simply-typed λ-calculus are sound.

23

Full Type Frame

We next define a special (but very important) type frame, or
model, of λ-calculus, called the full type frame. It consists of the
most intuitive interpretation of λ-expressions, namely as values and
functions.

Let us fix a set T and let us define inductively the following set HO
of sets of “high-order” functions starting with T :

• T ∈ HO;

• [A→ B] ∈ HO whenever A,B ∈ HO.

Recall that for any two sets A and B, [A→ B] is the set of all
functions of domain A and codomain B. In other words, HO is
defined as the smallest set of sets that is closed under the

24

operations above; that is, it contains T and whenever it contains
the sets A,B, it also contains the set of functions between them.

We can now define a unique function [[_]] : Type→ HO with the
property that [[◦]] = T and [[s→ t]] = [[[s]]→ [[t]]] for any s, t ∈ Type.
Note that this function actually organizes HO as a Type-indexed
set: HO = {[[t]]}t∈Type.

From now on we regard HO as a Type-indexed set and organize it
into a model of simply-typed λ-calculus. To make it a pre-model,
let us define HOs,t : [[s→ t]]× [[s]]→ [[t]] as expected:
HOs,t(f, x) = f(x) for any s, t ∈ Type and any f : [[s]]→ [[t]] and
x ∈ [[s]]; note that x can be itself a function if s is a function type.
One can immediately see that HOs,t are extensional: indeed, if
f(x) = g(x) for any x then f = g (by the definition of function
equality). Therefore, HO is a pre-model.

25

To make HO a model, we need to define appropriate
interpretations of well-typed λ-expressions. For simplicity, we use
the same notation [[_]] as for the interpretation of types. For a
given X ◃ E : t, we define [[X ◃ E : t]] : [X → HO]→ [[t]] by
induction as follows:

• [[X,x :s ◃ x :s]](ρ)
def
= ρ(x :s) ∈ [[s]] for any HO-environment

ρ : X → HO;

• [[X ◃ λx :s.E :s→ t]](ρ)(v)
def
= [[X,x :s ◃ E : t]](ρ[x← v]) for

any ρ : X → HO and v ∈ [[s]];

• [[X ◃ EE′ : t]]
def
= ([[X ◃ E :s→ t]](ρ))([[X ◃ EE′ :s]](ρ)) for

any HO-environment ρ.

Exercise 7 Prove that HO defined above is a model of λ-calculus.

HO is perhaps the most natural model of simply-typed λ-calculus,
in which types are interpreted as sets of their corresponding values,

26

λ-abstractions as functions on appropriate domains and
co-domains, and λ-applications as function applications.

Term model

Let us now fix a Type-indexed set X = {Xt}t∈Type such that Xt is
infinite for any t ∈ Type and Xs ∩ Xt = ∅ for s, t ∈ Type. From now
on we consider only (well-typed) λ-experiments over variables in X ,
i.e., of the form X ◃ E : t with X ⊆ X .

Technically speaking, since X is a partition of
∪

t∈Type Xt, each
variable is now tagged automatically with its type. This means
that one can simply ignore the type assignment X when writing
well-typed terms X ◃ E : t. However, for uniformity in notation, we
prefer to keep the assignments in the notation of terms; we can
think of them as the variables over which the corresponding

27

λ-expression was intended to be defined. For example, the
right-hand side in the equation (∀a :s, b :s) (λx :s.λy :s.x)ab =s a

was intended to be (a :s, b :s) ◃ a :s in order for the equation to
make sense, even though b :s is not necessary in the type
assignment.

Given a set of equations E , we define the E-equivalence class of the
a λ-expression X ◃ E : t as the set

[X ◃ E : t]E
def
= {X ′ ◃ E′ : t | there is some Y such that E ⊢ (∀Y) E =t E

′}.

Proposition 5 [X ◃ E : t]E = [X ′ ◃ E′ : t]E iff there is some Y

such that E ⊢ (∀Y) E =t E
′.

We can now define a Type-indexed set TE = {TE,t}t∈Type, by letting
TE,t be the set {[X ◃ E : t]E | X ⊆ X} for any t ∈ Type.

Further, we can extend TE to a pre-model, by defining functions

28

T s,t
E : TE,s→t × TE,s → TE,t for any types s, t ∈ Type as follows:

T s,t
E ([X ◃ E :s→ t]E , [Y ◃ F :s]E)

def
= [X ∪ Y ◃ EF : t]E .

Proposition 6 TE is a pre-model.

Proof. All we need to show is that T s,t
E is well-defined and

extensional.

For well-definedness, we need to prove that if
[X ′ ◃ E′ :s→ t]E = [X ◃ E :s→ t]E and
[Y ′ ◃ F ′ :s]E = [Y ◃ F :s]E then
[X ′ ∪ Y ′ ◃ E′F ′ : t]E = [X ∪ Y ◃ EF : t]E . Since there are some X̄

and Ȳ such that E ⊢ (∀X̄) E =s→t E
′ and E ⊢ (∀Ȳ) F =s F

′, by
using the rule (add) a finite number of times we can derive
E ⊢ (∀X̄ ∪ Ȳ) E =s→t E

′ and E ⊢ (∀X̄ ∪ Ȳ) F =s F
′; then by

(application) we can derive E ⊢ (∀X̄ ∪ Ȳ) EF =t E
′F ′. By

Proposition 5, it follows that

29

[X ′ ∪ Y ′ ◃ E′F ′ : t]E = [X ∪ Y ◃ EF : t]E .

For extensionality, we need to show that given X ◃ E :s→ t and
X ′ ◃ E′ :s→ t such that [X ∪ Y ◃ EF : t]E = [X ′ ∪ Y ◃ E′F : t]E

for any Y ◃ F :s, it is indeed the case that
[X ◃ E : t]E = [X ′ ◃ E′ : t]E . Let us pick Y = {y :s} ̸⊆ X ∪X ′ and
F = y. Then [X, y :s ◃ Ey : t]E = [X ′, y :s ◃ E′y : t]E , so by
Proposition 5, E ⊢ (∀Z) Ey =t E

′y for some Z ⊆ X . Note that, in
order for Z ◃ Ey : t and Z ◃ E′y : t to be well-typed, Z must
contain the variable y :s. Let Z be W,y :s. By rule (ξ) we then
derive E ⊢ (∀W) λy :s.Ey =s→t λy :s.E

′y. Finally, by applying the
rule (η) twice we can derive E ⊢ (∀W) E =s→t E

′, which concludes
our proof that [X ◃ E : t]E = [X ′ ◃ E′ : t]E . Therefore, TE is a
pre-model. �

30

Our goal next is to organize TE as a model. To do it, we first need
to define mappings TE,X ◃ E:t : [X → TE]→ TE,t for all X ◃ E : t.
Note that TE -environments map variables to E-equivalence classes
of λ-expressions. If X = {x1 :s1, . . . xn :sn} and ρ : X → TE is a
TE -environment taking xi to, say [Xi ◃ Ei :si]E , then we let
TE,X ◃ E:t(ρ) be defined as [

∪n
i=1 Xi ◃ E[x1, . . . , xn ← E1, . . . En]]E ,

where E[x1, . . . , xn ← E1, . . . En] is the term obtained by
substituting E1, . . . En for x1, . . . xn in parallel. One way to achieve
this is to choose some fresh variables z1 :s1, . . . , zn :sn in
X \ (X ∪

∪n
i=1 Xi) and to let E[x1, . . . , xn ← E1, . . . En] be defined

as E[x1 ← z1] . . . [xn ← zn][z1 ← E1] . . . [zn ← En].

Exercise 8 Why would it not be correct to define parallel
substitution as E[x1 ← E1] . . . [xn ← En]?

Propositions 5 and 4 tell us that the maps
TE,X ◃ E:t : [X → TE]→ TE,t are indeed well defined.

31

Proposition 7 TE is a model of simply-typed λ-calculus.

Proof. We need to prove that the three conditions in the definition
of a model hold.

1) Let X,x :s be a type assignment and let ρ : X,x :s→ TE be a
TE -environment where ρ(xi :si) = [Xi ◃ Ei :si]E for all xi :si ∈ X

and ρ(x :s) = [Y ◃ F :s]. Then TE,(X,x:s ◃ x:s)(ρ) is by definition
[Y ∪

∪n
i=1 Xi ◃ F :s]E , which is equal to ρ(x :s) by Proposition 5,

noting that E ⊢ (∀Y ∪
∪n

i=1 Xi) F =s F by (reflexivity).

2) Let X ◃ λx :s.E :s→ t be a well formed λ-expression, let
ρ : X → TE be a TE -environment, and let [Y ◃ F :s]E be an
E-equivalence class in TE,s. We need to show that
T s,t
E (TE,(X ◃ λx:s.E:s→t)(ρ), [Y ◃ F :s]E) =

TE,(X,x:s ◃ E:t)(ρ[x← [Y ◃ F :s]E]).

32

If ρ(xi :si) = [Xi ◃ Ei :si]E for each xi :si ∈ X, then

TE,(X ◃ λx:s.E:s→t)(ρ) = ρ#(X ◃ λx :s.E :s→ t) =

= [
n∪

i=1

Xi ◃ λx :s.E[x1, . . . , xn ← E1, . . . , En] : s→ t]E ,

so the left-hand side of the equality becomes, after an application
of (β), [Y ∪

∪n
i=1 Xi ◃ E[x1, . . . , xn, x← E1, . . . , En, F] : t]E , which

is by definition equal to [TE,(X,x:s ◃ E:t)(ρ[x← [Y ◃ F :s]E]])].

3) Easy.

Exercise 9 Prove 3) above, thus completing the proof that TE is a
model.

33

Completeness

We are now ready to prove one of the most important results of
simply-typed λ-calculus, namely the completeness of the equational
deduction rules. In other words, we show that the equational rules
are sufficient to derive any equation that is true in all models of
λ-calculus.
Let us first investigate the satisfaction in TE . By definition,
TE |= (∀X) E =t E

′ iff for any TE -environment ρ : X → TE , it is the
case that ρ#(X ◃ E : t) = ρ#(X ◃ E′ : t). If
ρ(xi :si) = [Xi ◃ Ei :si]E for any xi :si ∈ X, then the above says
that [

∪n
i=1 Xi ◃ E[x1, . . . , xn ← E1, . . . En] : t]E =

[
∪n

i=1 Xi ◃ E′[x1, . . . , xn ← E1, . . . En] : t]E , or by Proposition 5
that there is some Y ⊆ X such that
E ⊢ (∀Y) E[x1, . . . , xn ← E1, . . . En] =t E

′[x1, . . . , xn ← E1, . . . En].
Taking ρ to be the identity TE -environment, that is,

34

ρ(xi :si) = [xi :si ◃ xi :si], we obtain that TE |= (∀X)E =t E
′

implies E ⊢ (∀Y)E =t E
′ for some Y ⊆ X . By Proposition 3, we

then get the following important result:

Proposition 8 TE |= (∀X) E =t E
′ iff E ⊢ (∀X) E =t E

′.

Corollary 2 TE |= E.

Theorem (Completeness) If E |= e then E ⊢ e.

Proof. If E |= e then by Corollary 2 we get that TE |= e, so by
Proposition 8 we obtain that E ⊢ e. �

