
1

CS522 - Programming Language Semantics

Recursion

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign

2

We are already familiar with various facets of recursion (in
languages that we encountered, in rewriting, in lambda-calculus,
etc.). The following is an interesting observation that deserves
some further investigation:

The simpler the programming or specification language
paradigm, the simpler the treatment of recursion.

Indeed, recursion is not even noticeable as a “special” feature in a
rewrite engine (for example Maude) or in an imperative
programming language (like C), but it requires special language
support, including special syntax, for more complex languages
(such as ML).

3

Recursion in Term Rewriting

Rewriting supports recursion naturally, without any particular
technical or theoretical infrastructure. It is just us, humans, who
understand a certain rewriting definition as “recursive”; the rewrite
engine does not even need to be aware of that. Consider, for
example, a rewriting “implementation” of the length operator on
lists using Maude notation:

eq length(nil) = 0 .
eq length(M ; L) = 1 + length(L) .

From the perspective of rewriting, there is nothing special going on
here. A term length(L) for some list L is iteratively rewritten
using the rules above as well as the rules of integer numbers, until
it is eventually reduced to a natural number. Even though we may
perceive the rewriting definition of length as “recursive”, the

4

rewrite engine does nothing but match-and-apply rules until a
normal form is reached, which we can interpret as the “value”
obtained after “evaluating” the original expression.

However, note that the process of rewriting itself is recursive.
Indeed, we can regard the process of rewriting a term t, say
rewrite(t), as a procedure defined recursively as follows:

rewrite(t)
1. find a rule l→ r such that l matches some subterm u of
t; if no such rule exists then return t;
2. let θ be a substitution with θ(l) = u;
3. replace u by θ(r) in t and obtain a new term t′;
4. rewrite(t’)

In order for rewriting definitions to be practical, one needs to
ensure that they terminate. To achieve that, one typically needs to

5

ensure that a term is always reduced to a simpler term. This
reduces to showing that any instance of the right-hand side of a
rule is somehow simpler than the corresponding instance of the
left-hand side. What “simpler” means is dependent on the
particular definition. In the case of length, simpler means the
operator is applied on a “strictly smaller list” in the right-hand-side
term. Similar well-founded techniques are needed to prove
termination of recursive programs in any programming language;
the point here is, again, that rewriting definitions do not need to
treat “recursive” definitions any differently.

It is interesting to note that the concept of “simpler term” is a
semantical one - the term does not have to be simpler as a tree or
w.r.t. some other immediate syntactic criterion, as shown by the
following rewriting definition of bubble-sort:

6

eq bubbleSort(L)
= if process(L) == L then L else bubble(process(L)) fi .

eq process(N ; M ; L)
= if N <= M then N ; process(M ; L) else M ; process(N ; L) fi .
eq process(N) = N .
eq process(nil) = nil .

Here, the computation of bubble(L) eventually reduces to the
computation of bubble(L'), where the latter is simpler than the
former in the sense that L' is more sorted than L.

Note, however, that one can speculate the recursive nature of
rewriting and define bubble sort by just one simple and elegant
conditional rewriting rule:

ceq M ; N = N ; M if N <= M .

Now there is no explicit term in the right-hand-side of the rule that

7

one can show “smaller” that a corresponding term in the
left-hand-side. Nevertheless, one can show that any application of
the rule above would decrease the “weight” of any list that it
applies on.

Besides termination, confluence is another important factor that
needs to be considered when designing “recursive” rewriting
definitions. Confluence generalizes the Church-Rosser result (for
variants of λ-calculus) to any rewrite system: a rewrite system is
confluent if and only if for any two reductions of a term t to t1 and
t2, there is some term t′ such that t1 and t2 reduce to t′. A rewrite
system that is both confluent and terminating is called canonical.
Note that terms have unique normal forms when reduced using
canonical rewrite systems. In our context, a recursive rewriting
definitions that is a canonical rewrite system can and should be
regarded as a well-behaved definition.

8

Consider, for example, the following (deliberatly more complicated
than needed) definition of addition of natural numbers:

eq M + 0 = M .
eq 0 + N = N .
eq s(M) + N = s(M + N) .
eq M + s(N) = s(M + N) .

The above simulates a non-deterministic recursive definition.
According to this definition, there are many ways to compute the
sum of m and n, since each time there is no unique way to reduce a
term containing + to a simpler one. One can relatively easily show
that this definition is well-behaved, because each rule simplifies the
term to reduce in some way (first two eliminate a + operator, while
the other two push an s operator higher).

We can therefore see that canonical rewrite systems support in a
simple and natural way arbitrarily complex recursive definitions.

9

Moreover, since rewrite rules can be applied in parallel when their
applications do not overlap, canonical rewrite systems can also be
regarded as potentially very efficient implementations of recursive
definitions. In particular, divide-and-conquer recursive definitions
can be regarded operationally as starting a new “thread” solving
the subproblems; on a parallel implementation of a rewrite engine,
one can achieve a computational speed close to as many times as
processors available at no additional programming effort.

One should not underestimate the difficulty of showing rewrite
systems canonical. Since rewriting is Turing-complete, not even
termination is decidable. One can show that in general neither
termination nor confluence of a rewrite system is decidable. To
have a better feel for the difficulty of the confluence problem,

10

consider the following problem.

Suppose that a group of children have a large collection of black
and white balls and decide to play a game. They put a bunch of
balls in a bag and then each of them, at any moment they wish and
potentially in parallel, extracts two balls from the bag and puts one
back as follows: if the two balls have the same color they put a
black ball back in the bag, otherwise they put a white one. If the
bag is declared as an associative binary operator __, then this game
can be easily defined as a four rule ground rewrite system:

• • → • , ◦ ◦ → • , • ◦ → ◦ , ◦ • → ◦.

Using variables, one can define it as just one rule:

eq X Y = if X == Y then black else white fi .

Exercise 1 Prove that the rewrite system above is canonical.

11

Recursion in Simple Imperative Languages

Recall the implementation of the Hanoi tower problem in a simple
C-like imperative language:

function h(x, y, z, n) {
if n >= 1 then {

h(x, z, y, n - 1) ;
print(x) ;
print(z) ;
h(y, x, z, n - 1)

}
}

In this recursive function, h refers to itself directly and
“transparently”. This is possible because of the default design
conventions of the imperative language:

12

• all functions are declared at the top level of the program (more
precisely at the begining);

• no nested function declarations allowed;

• function declarations are assumed visible anywhere in the
program, including in the body of the functions themselves.

Therefore, languages can support recursion “naturally” if they are
constrained by design appropriately. Nevertheless, many
programmers may not be happy with such language constraints
just for the sake of supporting recursion transparently.

13

Recursion in Higher Order Languages

Recursion can be supported in a more flexible (but also more
intricate) way when we climb to higher order languages, where
functions, as first-order volatile citizens of the program, start
raising non-trivial scoping and visibility issues. For instance, in the
recursive definition of factorial

letrec f n = if n eq 0 then 1 else n * f(n - 1) in f 7

one has to explicitly state, using letrec instead of let, that the
expression defining f is not a usual, but a recursive binding. Any
other trick of simulating recursion would be unnatural and
statically untypeable, like the classical

let f n g = if n eq 0 then 1 else n * g (n - 1) g in f 7 f

14

Recursion in Untyped λ-Calculus

The latter (untypeable) definition of factorial, which did not have
to use the explicit recursion construct letrec, was given in the
style of untyped λ -calculus, by passing a function to itself as an
argument. As we have already seen, this technique can be applied
very generally in the context of untyped λ-calculus, taking
advantage of the fixed point theorem:

Theorem. If Y denotes λ f.(λx.f(xx))(λx.f(xx)), then
Y F ≡β F (Y F) for any λ -expression F .

A λ-expression Y with the property above, namely that
Y F ≡β F (Y F) for any λ -expression F , is called a fixed point
operator. The particular Y above is also known as the call-by-name
fixed point operator (for reasons that will become clear shortly).
As expected, there can are many other fixed point operators,

15

including the following:

Exercise 2 Show that the following λ-expressions are also fixed
point operators:

• (λx.λ f.f(xxf))(λx.λ f.f(xxf)), also known as the Turing
fixed point operator;

• λ f.(λx.f(λ y.xxy))(λx.f(λ y.xxy)), also known as the
call-by-value fixed point operator.

We have already discussed how the fixed-point operator Y in the
fixed-point theorem can be used to prove equational properties
about “recursive programs”. For example, if we let F be the usual
“factorial” λ-expression

λ f.λ n. if n eq 0 then 1 else n ∗ f(pred n) ,

where we assume if-then-else and pred , the latter taking any
strictly positive number n into n− 1 and 0 into 0, as already

16

defined syntactic sugar (note that if-then-else has no associated
evaluation strategy.), then one can easily show by using the
equational rules of λ-calculus properties like (Y F)3 ≡β 6.

But how does (recursive) computation actually take place in
λ -calculus? Of course, our computational mechanism must be
based on β-reduction here. We have no need, and no intuitive
computational meaning, for the η rule; the latter makes sense only
for expressing and proving equivalence of programs. However, one
cannot blindly apply β-reduction whenever a possibility is found
inside the current term, since this way one might miss oportunities
of termination; although it is true that, by the Church-Rosser
theorem, no β-reduction is an irreparable ”mistake“, nevertheless a
persistent chain of “wrong” β-reductions might indefinitely continue
a virtually terminating computation. For example, one can easily

17

see that in the case of our factorial, the following can take place

(Y F)3⇒β YF 3⇒β FYF 3⇒β F (FYF)3⇒β F (F (FYF))3 . . . ,

where YF is the λ -expression Y [f ← F].

Exercise 3 If for any λ-expression F we let YF denote the
λ-expression (λx.F (xx))(λx.F (xx)), show that YF ⇒β FYF . The
fixed-point theorem tells us that Y F ≡β F (Y F) anyway; is it also
true that Y F ⇒β F (Y F)? How about the other two fixed-point
operators in Exercise 2?

Thanks to the Church-Rosser theorem, we know that if a normal
form exists then it is unique. In particular, 6 is the only normal
form of (Y F)3 despite the fact that the reduction of (Y F)3 may
not terminate. Needless to mention that, in practical
implementations of programming languages, one would like to
devise reduction or evaluation “strategies” that would lead to
normal forms whenever they exists.

18

One simplistic way to achieve the desired computation would be by
breadth-first search in the space of computations, until a β-normal
form is eventually reached. Clearly, such a computation strategy
would be unacceptably inefficient in practice. For that reason,
strategies that are not based on search are desirable. Many
reduction strategies have been investigated in the literature and
implemented in various languages.
We next discuss one interesting reduction strategy, called
leftmost-outermost β-reduction, also known as call-by-name or
normal-order: each time, β-reduction is applied outside in and
left-to right; this corresponds to β-reducing the first suitable
subterm found by a prefix traversal of the term to reduce. The
application of a β-reduction step can enable another reduction
which occurs earlier in the prefix traversal, so each time a reduction
is applied, the entire term to rewrite is assumed to be retraversed
using the prefix strategy (better algorithms are used in practical

19

implementations). Notice that argument expressions passed to
λ-abstractions are not evaluated at “call time”, but instead at
“need time”.

The first programming language providing a call-by-name
evaluation strategy was Algol-60. An important variation of
call-by-name, supported by several programming languages
including most notoriusly Haskel, is call-by-need. Under
call-by-need, λ-expressions are evaluated at most once: any
subsequent use of a λ-expression just uses the previously calculated
normal form. As we know from CS422, in the context of side effects
call-by-name and call-by-need can lead to different normal forms.

20

Theorem. If a λ -expression has a β-normal form, then it
can be reached by leftmost-outermost β-reductions.

An intuitive argument for the above result is the following: if one
applies β-reductions as close to the top as possible, then one can
prevent any unnecessary non-termination obtained by infinitely
rewriting a term which is supposed to dissapear anyway by an
upper β-reduction.

Exercise 4 Modify your Maude implementation of λ-calculus
(either the one based on the De Bruijn transformation or the one
based on combinators) to support the call-by-name reduction
strategy.
Hint. You only need to add appropriate rewriting strategies to
certain operations in the signature.

Another very important, if not the most important, reduction
strategy is the one called call-by-value. Under call-by-value,

21

λ-expressions are always evaluated before they are passed to
λ-abstractions. In order for call-by-value to work, one needs to
inhibit reductions under certain language constructs, such as within
the body of λ-abstractions and within the two choices of the
conditional. Also, an appropriate fixed-point operator needs to be
chosen.

Exercise 5 Reduce (Y F)3 using a call-by-value strategy. Can you
just use the call-by-need fixed-point operator? How about the other
two fixed-point operators in Exercise 2?

22

Mu Simply-Typed Lambda Calculus

Once one decides that types are a useful feature of one’s language
and one decides to declare and/or check them statically, the next
important thing one should ask oneself is how such a decision
affects recursive definitions.

Typed functional languages do not allow functions to pass
themselves to themselves, so in order to support recursion, one
needs to introduce a new language construct (letrec). The goal of
this topic is to discuss in more depth the relationship between
types and recursive definitions of functions. To focus on the essence
of the problem, we start with the simplest typed language discussed
so far, namely simply-typed λ-calculus.

Let us first understand why the presented fixed-point technique to
support recursive definitions in untyped λ -calculus does not work

23

in the context of types. Consider the fixed-point combinator Y

suggested by the fixed-point theorem, λ f.(λx.f(xx))(λx.f(xx)).
To make Y a well-typed λ-expression in simply typed λ-calculus,
we need to come up with some types tf , t1x and t2x, such that the
λ-expression λ f : tf .(λx : t

1
x.f(xx))(λx : t

2
x.f(xx)) can be typed.

The reason for that is the subexpression xx: there is no type that
one can assign to x such that xx can be calculated a type.

Let us assume though, for the sake of the discussion, that
fixed-point combinators Y existed in simply-typed λ-calculus and
let us try to understand what their type should be. Recall that
such combinators are intended to apply on λ-expressions F

encoding the one-step “unrolling” of a recursive definition.

For example, the “unrolling” λ -expression associated to the
definition of the (typed) factorial function of type nat→ nat would

24

be

F := λ f :nat→ nat.λ n :nat. if n eq 0 then 1 else n ∗ f(pred n)

having the type (nat→ nat)→ nat→ nat.
Any recursive function, of any type, has such a one-step “unrolling”
λ-expression associated to it. For example, a function of type
nat→ bool returning the parity of a natural number is associated
the following λ-expression of type (nat→ bool)→ nat→ bool:

F := λ f :nat→ bool.λ n :nat. if n eq 0 then true else not (f(pred n)).

It is interesting to note that recursion can mean more than just a
recursive function. For example, in lazy functional programming it
is customary to define “infinite” data structures, such as infinite
lists or infinite trees, by defining their actual behavior when asked
to produce values. For example, an infinite list of zeros should be
able to produce a zero whenever asked for its first element (by

25

passing it to car). The “unrolling” λ-expression for such a
recursive data-structure would be

F := λ l :list nat. cons 0 l,

which has the type list nat→ list nat.
Finally, one may want to compactly define “error” values for any
type t as recursive expressions referring just to themselves, having
therefore associated the trivial “unrolling” λ-expression
F := λx : t.x of type t→ t.
Consequently, for any type t, it is reasonable to assume that any
recursively defined λ -expression E of type t has an “unrolling”
λ -expression FE of type t→ t. Since one expects that E ≡ Y FE ,
one can intuitively claim that a fixed-point combinator Y , if it
exists, must have the type (t→ t)→ t. More precisely, one would
expect for each type t some corresponding fixed-point combinator
Yt of type (t→ t)→ t.

26

In fact, one can prove that there exist no such magic fixed-point
combinators Yt in the simply-typed λ -calculus language. It is
relatively usual in computer science foundational works to enrich a
certain formalism with desired features “by definition”, or “by
axiom”, when those features cannot be explained or simulated by
the existing framework. Since the concept of fixed-point seems to
very naturally capture the essence of recursion, the solution that
has been adopted by scientists to allow recursion in typed
programming environments is to extend the language by bringing a
Yt for each type t “from the outside”.
Thus, for each type t we assume the existence of a new constant
Yt : (t→ t)→ t, called for simplicity the fixed-point operator for type
t. Whether Yt can or not be explained from more basic principles
does not concern us here. Instead, we axiomatize its behavior by
requiring that

YtF ≡ F (YtF) for any λ -expression F of type t→ t.

27

Alternatively and more compactly, noticing that the considered
expression F always has the form λx : t.E, we can define a new
“recursive” binding operator µ to bind x in E and replace the
functionality of Yt as follows:

YtF = Yt(λx : t.E) = µx : t.E.

More precisely, we are going to have a new binding operator µ with
the same syntax as λ and a new equational rule saying that

µx : t.E ≡ E[x← (µx : t.E)],

with the intuition that arbitrarily many copies of µx : t.E can be
generated, typically by need, nesting the original expression in all
places where x occures free. An even more intuitive equivalent form
of this rule is

µx : t.E ≡ (λx : t.E)(µx : t.E),

which says that µx : t.E is a fixed point of the function

28

λ -abstracting the expression E in the variable x.

So far, we only justified the µ-extension of simply-typed λ -calculus
by examples. A rigorously formulated reason for extending
simply-typed λ -calculus is that it is not expressive enough as a
model of computation: it can only encode very simple programs
which do not have any recursive behavior. In particular,
simply-typed λ -calculus is decidable; this follows from two facts:

• like for untyped λ -calculus, the Church-Rosser theorem holds;

• unlike for untyped λ -calculus, all computations eventually
terminate, thus leading to the reach of unique normal forms.

Hence one can decide if two terms are provably equal by simply
reducing them into their normal forms and then syntactically
comparing the results.

29

Programming Language for Computable Functions

As one might expect, simply typed λ-calculus extended with the
recursion operator µ has full computational power. We are going to
present a language called PCF (abbreviating Programming
language for Computable Functions), a µ-extension of simply typed
λ -calculus with a particular but important signature (S,Σ)

together with corresponding equations.
The BNF syntax for types and expressions in PCF is the following

Var ::= x | y | . . .

Type ::= S | Type→ Type

Exp ::= Σ | Var | ExpExp | λVar :Type.Exp | µVar :Type.Exp.

where S = {nat,bool} is the set of basic types. and
Σ={0 :nat, succ :nat→ nat,pred :nat→ nat, true :bool, false :

30

bool, zero? : nat→ bool} ∪ {condt : bool→ t→ t→ t | ∀t ∈ Type}
is the signature.
When discussing typing and equations, we build on top of the
already defined (S,Σ)-simply-typed λ -calculus.
We only add one typing rule:

X,x : t ◃ E : t

X ◃ µx : t.E : t

for any type assignment X,x : t,
λ -expression E of type t;

Exercise 6 Type the following expressions:

• + := µf :nat→ nat→ nat.λ x :nat.λ y :nat.

condnat (zero? x) y (succ (f(pred x) y)),

• ∗ := µf :nat→ nat→ nat.λ x :nat.λ y :nat.

condnat (zero? x) 0 (+ (f(pred x) y) y).

We add the folowing equational rules, describing the desired
behavior of the Σ-constants and of the recursion operator µ; by a

31

language abuse, we let n denote succ succ . . . succ 0 (n times):

E ⊢ (∀∅) pred 0 =nat 0

E ⊢ (∀X) pred succ n =nat n

E ⊢ (∀∅) zero? 0 =bool true

E ⊢ (∀∅) zero? succ n =bool false

E ⊢ (∀X) condt true E E′ =t E if X ◃ E : t, X ◃ E′ : t

E ⊢ (∀X) condt false E E′ =t E
′ if X ◃ E : t, X ◃ E′ : t

32

(ξµ) E ⊢ (∀X,x : t) E =t E
′

E ⊢ (∀X) µx : t.E =t µx : t.E′

(µ) E ⊢ (∀X) µx : t.E =t E[x← (µx : t.E)]

(Conσ) E ⊢ (∀X) E =nat E
′

E ⊢ (∀X) σE =nat σE
′ , where σ ∈ {succ ,pred}

(Conzero?) E ⊢ (∀X) E =nat E
′

E ⊢ (∀X) zero? E =bool zero? E′

(Concond)
E ⊢ (∀X) C =bool D, E ⊢ (∀X) E =t F, E ⊢ (∀X) E′ =t F

′

E ⊢ (∀X) condt CEE′ =t condt DFF ′

33

Exercise 7 Derive the following identities:

• (∀∅) + (succ 0) (succ (succ 0)) =nat succ (succ (succ 0)),

• (∀∅) zero? (succ 0) =bool false .

We have already discussed (in a rather informal context) a possible
computational semantics of untyped λ-calculus, based on
leftmost-outermost β-reduction.

Now we shall give the PCF language two operational semantics, a
transitional or small-step one, and a natural or big-step one.

34

Transitional semantics

The transitional semantics will be given as a restricted rewriting
relation on λ -terms (“restricted” in the sense that it cannot be
applied inside any arbitrary context). This relation will tell us how
to evaluate programs (that is, terms) to values (that is, terms
which are normal forms). But what are the values in our
framework? They are just the usual natural and boolean values,
plus the λ -abstractions. Here is the BNF description of values:

Value ::= 0 | succ Value | true | false | λVar :Type.Exp

The fact that we take all λ -abstractions as values, even though it
might be possible to further evaluate their body, might seem
strange at a first glance; however, this is natural if we consider the
body of a λ -abstraction as just the text describing a function,
which will be evaluated only if the function is to be applied

35

(remember closures from functional languages). We shall soon
come back to this discussion.

Like in any functional language, we have to make a choice between
several evaluation strategies when we define semantics. We choose
call-by-name below, since this is immediately related to the
intuition of β-reduction, but one can easily adapt it to consider
other evaluation startegies.

Exercise 8 In a similar manner to the call-by-name transitional
semantics below, give a transitional semantics to PCF following the
call-by-value evaluation strategy.

36

We define the one-step-transition binary relation → on
λ -expressions as the smallest relation closed under the following
rules, where we assume that all (outermost) expressions that
appear in the left-hand side of the rules are well-typed (e.g., we
assume that FE in the application rule is well-typed, hence we also
implicitly assume that E and F are typeable to some types t→ s

and t, respectively):

pred 0→ 0

pred succ V → V , if V is a value
zero? 0→ true

zero? succ V → false , if V is a value
condt true E E′ → E

condt false E E′ → E′

37

E → E′

σE → σE′ , if σ ∈ {succ ,pred , zero?}

C → C ′

condt CEE′ → condt C ′EE′

F → F ′

FE → F ′E

(λx : t.E)E′ → E[x← E′]

(µx : t.E)→ E[x← (µx : t.E)]

38

Note that, unlike in the case of general term rewriting, the above
rules cannot be applied inside any context (subterm), but actually
apply “on top”. Some incursions into the to-be-rewritten term
context are possible, but only those obeying some restrictions:

• never evaluate the passed argument (call-by-name),

• never evaluate the second and third arguments of a condition,

• never apply β-reduction or µ-unwinding in the body of another
λ or µ-abstraction, etc.

And all the above “negative” facts are just implicit in the rules,
which do not allow arbitrary congruence.

39

A property that one wants to be satisfied by the one-step-transition
relation is that the latter is sound, in the sense that it rewrites a
program into an equivalent program.

Proposition 1 (Soundness of the one-step transition relation)
Suppose X ◃ E : t. If E → E′, then ⊢ (∀X)E =t E

′.

(Proof hint: Define the relation R on terms as E ≃ E′ iff there
exists a type assignment X such that ⊢ (∀X)E =t E

′, and show
that ≃ is closed under all the transition rules.)
An important consequence is the fact that types are preserved by
transitions, which allows one to type-check the program only once,
at the begining, and then not worry about types during the
execution:

Corollary 1 If X ◃ E : t and E → E′, then X ◃ E′ : t.

Another fact to notice is that we were able to define our values (i.e.
normal forms) a priori, and then guide our notion of computation

40

towards them. And indeed, what we initially called “values” are
precisely those closed terms that cannot be further reduced:

Proposition 2 The following are equivalent for any closed (i.e.,
without free variables) expression E:

• E is a value;

• there is no E′ such that E → E′.

(Proof hint: Show that, on the one hand, a value cannot be
rewritten and, on the other hand, that any closed non-value can be
rewritten.)

Notice that there are non-closed expressions, like the variables or
applications between two variables, that are neither values nor can
transit in one step into anything. Moreover, there are closed
expressions that are neither values nor can transit in one step into
any expression other than themselves, like, for instance, µx : t.x.

41

Exercise 9 Characterize the non-closed expressions satisfying the
former property. Is there any other expression, not α-equivalent to
µx : t.x, satisfying the latter property?

Define →∗, the transition relation, to be the reflexive and transitive
closure of →. By the soundness of the one-step-transition relation,
one can immediately infer

Theorem(Soundness of the transition relation) Suppose X ◃ E : t.
If E →∗ E′, then ⊢ (∀X) E =t E

′.

Corollary 2 (Subject reduction) If X ◃ E : t and E →∗ E′, then
X ◃ E′ : t.

Since our language is deterministic, any expression can evaluate to
at most one value:

Proposition 3 If E is an expression and V, V ′ are values such
that E →∗ V and E →∗ V ′, then V = V ′.

42

(Proof hint: First show that, for each expression E, there exists at
most one expression E′ such that E → E′.)

If E →∗ V , then we say that E evaluates to V . There are
expressions (like µx : t.x) that do not evaluate to any value; this is
natural, since not all programs terminate (on all inputs). But if an
expression E evaluates to some value V , then this unique value is
considered to be the result of the computation. Thus we have a
partial function mapping expressions to values, which could be
regarded as the final product of the transitional semantics.

43

What about completeness?

We saw that the transition relation is sound w.r.t. equivalence of
programs. But how complete is it? That is, what can we infer
about equivalence of two programs by evaluating them
transitionally? Well, according to this restricted and pragmatic
form of evaluation, not much. And here are two reasons for that
(can you find more reasons?):

• η-equivalence is not in the scope of our transitional semantics;
for instance, λ f :nat→ nat.λ y :nat.fy and λ f :nat→ nat.f

are different values;

• even without the η equation, two different values can be proved
equivalent, if they are λ -abstractions; for instance,
λx :nat.(λ y :nat.y)x and λx :nat.x; this is actually a
semantical decision, since we do not want to look into the body

44

of functions, unless we have to apply them.

However, one can prove a restricted form of completeness:

Theorem(Basic-type-completeness of the transition) If
⊢ (∀X) E =t E

′ and t ∈ {nat,bool}, then, for each value
V , E evaluates to V if and only if E′ evaluates to V .
(Proof hint: First show that, if V is a value of type
t ∈ {nat,bool} and ⊢ (∀X) E =t V , then E →∗ V .)

Hence, if we restrict our class to programs of basic types only, two
programs that are provably equivalent either both do not
terminate, or they both terminate and return the same value. Note
that the restriction of returning basic typed values does not inhibit
higher-order programing: diverse functions can be passed as
arguments and returned as values in the process of calculating an
integer value! Note that the restriction to basic types is crucial.

45

Natural Semantics

The two-step process of first defining a transition on expressions,
and then extracting from it a partial map from expressions to
values, can be performed in only one step. The natural semantics
captures directly the idea of evaluation E →∗ V , by giving rules in
terms of pairs (Expression,Value). The binary relation ⇓ between
expressions and values is defined as the smallest closed under the
following rules (below, V denotes a value, and E, E1, E2

expressions; obviously, succ V is then also a value; we assume that
all expressions below are well-typed:

46

V ⇓ V
E ⇓ V

succ E ⇓ succ V

E ⇓ 0

pred E ⇓ 0

E ⇓ succ V

pred E ⇓ V

E ⇓ 0

zero? E ⇓ true

E ⇓ succ V

zero? E ⇓ false

C ⇓ true , E1 ⇓ V

condt C E1 E2 ⇓ V

C ⇓ false , E2 ⇓ V

condt C E1 E2 ⇓ V

E1 ⇓ λx :s.E , E[x← E2] ⇓ V

E1E2 ⇓ V

E[x← (µx : t.E)] ⇓ V

µx : t.E ⇓ V

47

The above rules describe the evaluation process in a bottom-up
fashion, starting from the values. One can show that transitional
and natural semantics are equivalent:

Proposition 4 For each expression E and value V , E ⇓ V iff
E →∗ V .

The next corollary, expressing the determism of evaluation, might
be instructive to be proved directly about natural semantics:

Corollary 3 If E is an expression and V, V ′ are values such that
E ⇓ V and E ⇓ V ′, then V = V ′.

48

Complete Partial Orders

In what follows we recall some mathematical concepts related to
complete partial orders and the fixed-point theorem, which will be
useful to give a denotational semantics to PCF. For more details on
how these concepts relate to recursive/iterative behavior of
programs, you can also check the corresponding lecture notes in
CS422 (lectures 21 and 22).

Let (D,⊑) be a partial order, that is, a set D together with a
binary relation ⊑ on it which is reflexive, transitive and
anti-symmetric. Partial orders are also called posets. Given a set of
elements X ⊆ D, an element p ∈ D is called an upper bound (ub) of
X if and only if x ⊑ p for any x ∈ X. Furthermore, p ∈ D is called
a least upper bound (lub) of X if and only if p is an upper bound
and for any other upper bound q of X it is the case that p ⊑ q.

49

Note that upper bounds and least upper bounds may not always
exist. For example, if D = X = {x, y} and ⊑ is the identity
relation, then X has no upper bounds. Least upper bounds may
not exist even though upper bounds exist. For example, if
D = {a, b, c, d, e} and ⊑ is defined by a ⊑ c, a ⊑ d, b ⊑ c, b ⊑ d,
c ⊑ e, d ⊑ e, then any subset X of D admits upper bounds, but the
set X = {a, b} does not have a least upper bound.

Due to the anti-symmetry property, least upper bounds are unique
when they exist. For that reason, we let ⊔X denote the lub of X.

Given a poset (D,⊑), a chain in D is an infinite sequence
d0 ⊑ d1 ⊑ d2 ⊑ · · · ⊑ dn ⊑ . . . of elements in D, also written using
set notation as {dn | n ∈ N}. Such a chain is called stationary when
there is some n ∈ N such that dm = dm+1 for all m ≥ n.

A poset (D,⊑) is called a complete partial order (cpo) if and only if
any of its chains has a lub. (D,⊑) is said to have bottom if and

50

only if it has a minimal element. Such element is typically denoted
by ⊥, and the poset with bottom ⊥ is written (D,⊑,⊥). If
{dn | n ∈ N} is a chain in (D,⊑), then we also let

⊔
n∈N

dn or even

⊔dn denote its lub ⊔{dn | n ∈ N}.

Examples.
(P(S),⊆, ∅) is a cpo with bottom, where P(S) is the set of
subsets of a set S and ∅ is the empty set.
(N,≤), the set of natural numbers ordered by “less than or
equal to”, has bottom 0 but is not complete: the sequence
0 ≤ 1 ≤ 2 ≤ · · · ≤ n ≤ · · · has no upper bound in N.
(N ∪ {∞},≤, 0), the set of natural numbers plus infinity,
where infinity is larger than any number, is a cpo with
bottom 0. It is a cpo because any chain is either
stationary, in which case its lub is obvious, or is unbounded
by any natural number, in which case ∞ is its lub.

51

(N,≥) is a cpo but has no bottom.
(Z,≤) is not a cpo and has no bottom.
(S,=), a flat set S where the only partial ordering is the
identity, is a cpo. It has bottom if and only if S has only
one element.
Most importantly, (A ⇁ B,≼,⊥), the set of partial
functions A ⇁ B ordered by the informativeness relation
“f ≼ g iff f(a) defined implies g(a) defined and
g(a) = f(a)” is a cpo with bottom ⊥ : A ⇁ B, the
function which is undefined in each state.

If (D,⊑) and (D′,⊑′) are two posets and f : D → D′ is a function,
then f is called monotone if and only if f(x) ⊑′ f(y) for any
x, y ∈ D with x ⊑ y. If f is monotone, then we simply write
f : (D,⊑)→ (D′,⊑′).

Monotone functions preserve chains, that is, {f(dn) | n ∈ N} is a

52

chain in (D′,⊑′) whenever {dn | n ∈ N} is a chain in (D,⊑).
Moreover, if (D,⊑) and (D′,⊑′) are cpos then for any chain
{dn | n ∈ N} in (D,⊑), we have⊔

n∈N

f(dn) ⊑′ f(
⊔
n∈N

dn)

Indeed, since f is monotone and since dn ⊑ ⊔dn for each n ∈ N, it
follows that f(dn) ⊑′ f(⊔dn) for each n ∈ N. Therefore, f(⊔dn) is
an upper bound for the chain {f(dn) | n ∈ N}. The rest follows
because ⊔f(dn) is the lub of {f(dn) | n ∈ N}.

Note that ⊔f(dn) ⊒′ f(⊔dn) does not hold in general. Let, for
example, (D,⊑) be (N ∪ {∞},≤), (D′,⊑′) be ({0,∞}, 0 ≤ ∞), and
f be the monotone function taking any natural number to 0 and ∞
to ∞. For the chain {n | n ∈ N}, note that ⊔n =∞, so f(⊔n) =∞.
On the other hand, the chain {f(n) | n ∈ N} is stationary in 0, so
⊔f(n) = 0.

53

One can think of a lub of a chain as a “limit” of that chain. Inspired
by the analogous notion of continuous function in mathematical
analysis, which is characterized by the property of preserving
limits, we say that a monotone function f : (D,⊑)→ (D′,⊑′) is
continuous if and only if ⊔f(dn) ⊒′ f(⊔dn), which is equivalent to
⊔f(dn) = f(⊔dn), for any chain {dn | n ∈ N} in (D,⊑).

54

The Fixed-Point Theorem

Any monotone function f : (D,⊑,⊥)→ (D,⊑,⊥) defined on a cpo
with bottom to itself admits an implicit and important chain,
namely ⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ · ⊑ fn(⊥) ⊑ · · ·, where fn denotes n

compositions of f with itself. The next is a key result in
denotational semantics.

Theorem. Let (D,⊑,⊥) be a cpo with bottom, let
f : (D,⊑,⊥)→ (D,⊑,⊥) be a continuous function, and let fix (f)
be the lub of the chain {fn(⊥) | n ∈ N}. Then fix (f) is the least
fix-point of f .

55

Proof. We first show that fix (f) is a fix-point of f :

f(fix (f)) = f(
⊔

n∈N fn(⊥))
=

⊔
n∈N fn+1(⊥)

=
⊔

n∈N fn(⊥)
= fix (f).

Next we show that fix (f) is the least fix-point of f . Let d be
another fix-point of f , that is, f(d) = d. We can show by induction
that fn(⊥) ⊑ d for any n ∈ N: first note that f0(⊥) = ⊥⊥ ⊑ d;
assume fn(⊥) ⊑ d for some n ∈ N; since f is monotone, it follows
that f(fn(⊥)) ⊑ f(d) = d, that is, fn+1(⊥) ⊑ d. Thus d is an
upper bound of the chain {fn(⊥) | n ∈ N}, so fix (f) ⊑ d.
In CS422 we have discussed how the fixed-point theorem above
plays a crucial role in defining the denotational semantics of while.
In the sequel we will see that the same powerful theorem allows us

56

to give denotational semantics to the more general form of
recursion that we have in PCF. Before we do that, let us first see
two other interesting applications of the fixed-point theorem,
mentioning that it actually has many applications in both computer
science and mathematics (there is even a conference, called FIX,
dedicated to the use of fixed-points in computer science!).

Examples. Consider the following common definition of
the factorial:

f(n) =

 1 , if n = 0

n ∗ f(n− 1) , if n > 0

How does one know that such a mathematical object, i.e., a
function satisfying the above property, actually exists ?
According to the fixed-point theorem, since the operator F

57

defined on the set of partial functions between IN and IN as

F(g)(n) =

1 , if n = 0

n ∗ g(n− 1) , if n > 0 and g defined
undefined , if n > 0 and g undefined

is continuous, hence it has a least fixed point. We thus can
take f = fix(F), and get

f(n) = F(f)(n) =

 1 , if n = 0

n ∗ f(n− 1) , if n > 0 and f(n) defined

Here it happens that f is total, thus it is the unique fixed
point of F .
Any context-free language over an (possibly infinite)
alphabet can be defined as the least fixed point of some
continuous operator on the power set of the set of words

58

over the given alphabet. Let for instance the alphabet T be
Var ∪ Z ∪ {+,−, ∗}, where Z is the set of integers and Var

is a set of variables. Consider the following BNF syntax for
arithmetic expressions:
• Exp ::= Z | Var | Exp+ Exp | −Exp | Exp ∗ Exp
Then the language coinsisting of all arithmetic expressions
can of course be defined, as usually, using the notion of
derivation. But it is also the least fixed point of the
continuous operator F : (P(T ∗),⊆, ∅)→ (P(T ∗),⊆, ∅),
defined by F(L) = Z ∪Var ∪ L{+}L ∪ {−}L ∪ L{∗}L.
Notice that the iterations F(∅), F2(∅), . . . correspond to
the one-step, two-steps, . . . derivations applying the
grammar’s productions.

59

Fixed-Point Semantics of PCF

We are now ready to define a canonical model of PCF. Unlike the
canonical functional models of simply-typed λ -calculus, our model
should be able to capture non-termination of programs;
non-termination will be handled by the interpretation of the
recursion operator µ. In our semantical framework,

• basic types will be interpreted as certain CPOs with bottom
element ⊥, where ⊥ will stand for “undefined”;

• types will be interpreted as continuous functions between the
interpretations of their component types;

• environments will be, as usual, (Type-indexed) mappings from
type assignments into the model;

• well-typed expressions will be interpreted as mappings from
environments into the interpretation of their types.

60

In what follows, we consider bottomed CPOs (BCPOs for short),
i.e., structures of the form (P,⊑,⊥), where (P,≤) is a CPO and ⊥
is its bottom element. Note that Cont((P,≤,⊥P), (Q,≤,⊥Q)), the
set of continuous functions from P to Q, can be naturally endowed
with a BCPO structure, if we let f ≤ g iff f(p) ≤ g(p) for all p ∈ P ;
the bottom element will be the function ⊥ defined by ⊥(p) = ⊥Q

for all p ∈ P . In what follows, this will be the BCPO structure that
we will implicitly assume on Cont((P,≤,⊥P), (Q,≤,⊥Q)).

Exercise 10 Prove that Cont((P,≤,⊥P), (Q,≤,⊥Q)), with the
indicated structure, is indeed a BCPO.

Exercise 11 Prove that BCPOs, together with continuous
functions between them, form a category.

61

Recall that IN and IB denote the sets of natural numbers and
booleans respectively. Let ⊥ ̸∈ IN ∪ IB, and let IN⊥ and IB⊥ be the
sets IN ∪ {⊥} and IB ∪ {⊥} respectively, endowed with the partial
orders {(⊥, i) | i ∈ IN} ∪ {(i, i) | i ∈ IN ∪ {⊥}} and
{(⊥, false), (⊥, true), (⊥,⊥), (true, true), (false , false)} respectively.

Exercise 12 Find a natural correspondence between the set of
partial functions from X to Y and the set of continuous functions
from X⊥ to Y⊥, where X,Y ∈ {IN, IB}. Is this correspondence
bijective?

62

Interpreting types

We are now ready to define [[_]] : Type→ [The class of BCPOs]:

• [[nat]] = IN⊥, [[bool]] = IB⊥;

• [[s→ t]] = Cont([[s]], [[t]]).

We let HO⊥ denote the Type-indexed set {[[s]]}s∈Type.

63

Interpreting constants

• [[succ]], [[pred]] ∈ [[nat→ nat]] = Cont(IN⊥, IN⊥),

[[succ]](v) =

 v + 1 , if n ∈ IN

⊥ , if v = ⊥

[[pred]](v) =

v − 1 , if n ∈ IN − {0}
0 , if n = 0

⊥ , if v = ⊥

• [[true]], [[false]] ∈ [[bool]], [[true]] = true, [[false]] = false

• [[condt]] ∈ [[bool→ t→ t→ t]] =

Cont(IB⊥,Cont([[t]],Cont([[t]], [[t]]))),

64

[[condt]](b)(v1)(v2) =

v1 , if b = true

v2 , if b = false

⊥ , if b = ⊥

Exercise 13 Show that all the above are correct interpretations, in
the sense that [[succ]], [[pred]], [[condt]], [[condt]](b), [[condt]](b)(v) are
indeed continuous functions.

65

Interpreting well-typed terms

We define [[X ◃ E : t]] : [X → HO⊥]→ [[t]] recursively on the
structure of X ◃ E : t.

• [[X ◃ x : t]](ρ) = ρ(x) if x is a variable;

• [[X ◃ σ : t]](ρ) = [[σ]] ∈ [[t]] if σ is a constant;

• [[X ◃ E1E2 : t]](ρ) = ([[X ◃ E1 :s→ t]](ρ))([[X ◃ E2 :s]](ρ)),
if X ◃ E1 :s→ t and X ◃ E2 :s;

• [[X ◃ λx :s.E :s→ t]](ρ)(v) = [[X,x :s ◃ E : t]](ρ[x← v])

for each v ∈ [[s]];

• [[X ◃ µx : t.E : t]](ρ) = fix([[λx : t.E : t→ t]](ρ)).

Exercise 14 Show that the above mapping is correctly defined, in
the sense that the returned values indeed belong to the specified
codomains. (Hint: The proof will proceed, as usually, by induction

66

on E; note that there is nothing to prove for the case of a
µ-operator on top.)

Let us try to explain the intuition behind the definition of
[[X ◃ µx : t.E : t]](ρ). To parallel the “syntactic” intuition of µ
(given formally in the equational proof system which acts like a
guide for all our semantic frameworks), the desired denotation
would be a fixed point of the function whose “law” is expressed by
E, that is, a fixed point of [[λx : t.E : t→ t]](ρ) (since we want to be
able to unwind µx : t.E into E[x← µx : t.E], i.e., into
(λx : t.E)µx : t.E). But why the least fixed point? Intuitively, we do
not want [[X ◃ µx : t.E : t]](ρ) to possess more information than the
one provided by iterated unwindings.

67

Exercise 15 The denotation of X ◃ µx : t.E : t could be
equivalently expressed as fix(g), where g : [[t]]→ [[t]] is defined by
g(v) = [[X,x : t ◃ E : t]][ρ(x← v)] for all v ∈ [[t]].

As usually, we say that HO⊥ satisfies an equation (∀X)E =t E
′,

denoted HO⊥ |= (∀X)E =t E
′, iff [[X ◃ E : t]] = [[X ◃ E′ : t]].

Theorem HO⊥ is a model of PCF, in the sense that it satisfies all
the PCF rules.

Corollary 4 If PCF ⊢ (∀X)E =t E
′, then

[[X ◃ E : t]] = [[X ◃ E′ : t]].

Corollary 5 If E → E′, X ◃ E : t and X ◃ E′ : t, then
[[X ◃ E : t]] = [[X ◃ E′ : t]].

Corollary 6 If E ⇓ V , X ◃ E : t and X ◃ V : t, then
[[X ◃ E : t]] = [[X ◃ V : t]].

Proposition 5 If V is a value and X ◃ V : t, where

68

t ∈ {nat,bool}, then [[X ◃ V : t]] ̸= ⊥.

Theorem If X ◃ E : t, X ◃ V : t and [[X ◃ E : t]] = [[X ◃ V : t]],
then E ⇓ V .

