
1

CS522 - Programming Language Semantics

Polymorphism

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign

2

Types of Polymorphism

The word polymorphism comes from the Greek language, where it
means “having many forms”. In the study of programming
languages, people use polymorphism to state that the same
expression or operation or segment of code can be used with
different types. Generally, there are three kinds of polymorphism in
programming languages:
Overloading or coercion. For example, we can use “+” on
related entities, such as integers, natural numbers, and/or real
numbers, as well as on unrelated ones, such as strings and/or
booleans. However, typically the underlying algorithms are entirely
different; think, for example, of addition on integers versus addition
on float number. Many algebraic specification languages, including
Maude, support operator overloading. In combination with
subsorting, as most of you are already aware, operator overloading

3

can lead to quite non-trivial theoretical and practical issues. We do
not intend to discuss this kind of polymorphism in this class.
Parametric/universal polymorphism. This kind of
polymorphism, also encountered under the name of “generics” in
the literature, will be discussed in depth shortly. The idea
underlying parametric, or universal, polymorphism is that types
need not be concrete, but rather have parameters which can be
instantiated by need. While parametric types can be quite handy in
many situations, they may lead to difficult technical problems,
especially in the context of type inference.
Subtype polymorphism. This is mostly found and considered
indispensable in object-oriented languages, because of the intrinsic
need of these languages to support inheritance. We will also discuss
subtype polymorphism in this course. As it is customary in
discussions on subtyping, we will set up a relatively simple formal
framework, extending the simply typed λ -calculus with records.

4

Parametric/Universal Polymorphism

To capture the essence of parametric polymorphism in a general
and uniform way, we next consider an extension of typed
λ -calculus with universal types. This extension is known in the
literature under the names polymorphic λ -calculus, second-order
λ -calculus, or system F, and represents the foundation for many
works in type theory.

Interestingly, this calculus was invented independently by two
famous scientists, the logician Jean-Yves Girard and the computer
scientist John Reynolds.

The extra ingredients in this calculus are type variables, which can
be universally quantified, and type instantiations.

5

The BNF syntax for types and expressions is extended as follows
(as usual, we use the color red for the new features):

TypeVar ::= s | t | . . .
Type ::= S | Type→ Type |TypeVar|(∀TypeVar)Type
(where S is some set of basic (constant) types)
Var ::= x | y | . . .
Exp ::= Var | ExpExp | λVar :Type.Exp | λTypeVar.Exp | Exp[Type]

Type variables s, t, etc., will be used essentially as parameters for
universal types. These should not be confused with the basic types
S (such as bool, int, etc.). A universal type is “quantified”
universally by a type variable, with the intuition that it represents
a collection of types, one for each particular instance of the
parameter. For example, (∀t) t→ t represents the universal type of
the (polymorphic) identity function: it can be regarded as a
collection of functions, one for each instance of the type t.

6

Besides the usual λ -expressions, we now allow type-parametric
expressions together with a means to instantiate them. Precisely, a
λ -expression λ t.E represents the λ -expression E parameterized by
the type t; that means that E can freely use the type t just like any
other type constant (those in S), but, however, when required by
an instantiation, say (λ t.E)[T] where T is any type, one should be
able to replace each free occurrence of t in E by T . The meaning of
parametric types will be formally given as usual with equations.

In this enriched context, type assignments need to be extended
appropriately to consist of not only typed variables of the form
x : T , but also of type variables of the form t:

TypeAssignment ::= ∅ | Var :Type,TypeAssignment |
TypeVar,TypeAssignment

In what follows, we shall always let E,E′, . . . denote expressions,
T, T ′, . . . types and X,X ′, X1, X2 . . . type assignments.

7

Typing Rules

For deriving the well-formed expressions X ◃ E : t, we consider all
the previous typing rules, plus:

X,x :T ◃ x :T if all the free type variables in T are in X

X, t ◃ E :T

X ◃ λ t.E : (∀t)T

X ◃ E : (∀t)T
X ◃ E[T ′] :T [t← T ′]

if all the free type variables in T ′ are in X

It is intuitively clear what the “free type variables in a type” are -
those that are not bound by any universal quantifier; also
T ′[t← T] is the type obtained from T ′ by replacing each free
occurrence of t in T ′ with T . Note that, like in the case of

8

substitution in λ -calculus, some renamings of bound variables
might be necessary in order to avoid type variable captures. All
these can be formally expressed:

Exercise 1 Define formally Free(T) and T [t← T ′].

Exercise 2 Define a type checker for System F in Maude. Your
type checker should take a closed term E as input and return a type
T if and only if ∅ ◃ E : T (otherwise it can return anything).

Equational Rules

We consider all the previous equational rules that we defined for
λ -calculus, plus the following three rules giving the expected
meaning to the new features. The first two rules are congruence- or
(ξ)-like rules for the new syntax, while the third gives meaning to
type instantiations:

9

(∀X, t) E =T E′

(∀X) λ t.E =(∀t)T λ t.E′

(∀X) E =(∀t)T E′

(∀X) E[T ′] =T [t←T ′] E′[T ′]
if Free(T ′) ⊆ X

(∀X) (λ t.E)[T ′] =T [t←T ′] E[t← T ′] if X, t ◃ E :T and Free(T ′) ⊆ X

All the equations that can be derived using the rules above are
well-typed:

Proposition 1 If (∀X) E =T E′ is derivable with the rules above
then X ◃ E :T and X ◃ E′ :T .

Carrying and checking the type of equalities can be quite
inconvenient in efforts to efficiently automate the applications of
the equational rules above (this would be more or less equivalent to
dynamic type checking). A common practice in formal definitions

10

of typed languages is, whenever possible, to drop the subscript
types of equalities and to derive instead “untyped” equations. The
three rules above would then be:

(∀X, t) E = E′

(∀X) λ t.E = λ t.E′

(∀X) E = E′

(∀X) E[T ′] = E′[T ′]
if Free(T ′) ⊆ X

(∀X) (λ t.E)[T ′] = E[t← T ′] if Free(T ′) ⊆ X

When type subscripts are dropped from equations, a natural
question arises: are the equations consistent with the types? While
the execution of the rules above becomes much simplified, the
problem with dropping the types is that one could be able to derive
equalities containing expressions which are not well-typed:

11

Exercise 3 Give two examples of such meaningless equalities that
can be derived with the untyped equational rules above. The two
examples should reflect two different problems of the resulting
deduction system (more precisely, of the last two rules above).

Fortunately, the untyped equations preserve the well-typed-ness,
which is the main result supporting and justifying type-checking:

Proposition 2 (Type preservation) If (∀X) E = E′ is derivable
with the untyped equational rules and X ◃ E :T for some type T ,
then X ◃ E′ :T .

In practical implementations of programming languages, the result
above says that if one wants to correctly “execute” a program E,
all one needs to do is to type-check E before execution and then
ignore the types during the execution as far as the equational rules
above are not violated. This allows more efficient implementations,
which is precisely why most compilers have built-in type-checkers

12

as front-ends.

Different transitional semantics can be now given by orienting and
restricting the applications of the equations above accordingly.
Since the obtained transition relations are included in the
equational derivation relation, that is, (∀X) E → E′ implies
(∀X) E = E′, the type preservation property also holds for the
various transitional semantics.

Notice that polymorphic λ -calculus is, in some sense, an untyped
(w.r.t. type variables) λ -calculus over a typed (w.r.t. usual
variables) λ -calculus. For that reason, polymorphic λ -calculus is
also often called second-order typed λ -calculus. Instead of going
through the theoretical intricacies of this calculus, we shall just
give some examples showing how it can be used in parameterized
programming.

13

Some Examples

Polymorphic conditional.
Recall that in simply typed λ -calculus we had a “conditional”
constant for any type t, namely condt : bool→ t→ t→ t. In
polymorphic λ -calculus we can instead define just one constant of
polymorphic type, namely cond : (∀t) bool→ t→ t→ t. Given a
type T , it follows by the typing rules that cond[T] has the type
bool→ T → T → T . To capture the expected meaning of the
conditional, two equational rules need to be added (we only
consider the untyped equations here):

(∀X) cond[T] true E E′ = E if Free(T) ⊆ X

(∀X) cond[T] false E E′ = E′ if Free(T) ⊆ X

Exercise 4 Does the type preservation property still hold when the
polymorphic conditional is added to the language? If yes, prove it.

14

If no, give a counter-example.

The drawback of polymorphic conditionals in particular, and of
expressions of polymorphic type in general, is that one needs to
instantiate them explicitly whenever one wants to apply them.

It is interesting to note that the conditional in Maude is also
polymorphic (type “show module TRUTH .”), but that one does
not need to instantiate it explicitly.

Exercise 5 Would it be possible to change the definition of
polymorphic λ -calculus so that one does not need to instantiate
polymorphic expressions explicitly, that is, so that polymorphic
expressions are instantiated automatically depending on the context
in which they are used? Comment on the advantages and the
disadvantages of such a language.

15

Identity function.

Recall the FUN example that we used to motivate the concept of
let-polymorphism:

let i = fun x -> x
in if (i true) then (i 7) else 0

Without let-polymorphism the program above will not type, that
is, there is no way to find a type - by type inference or otherwise -
to i, making useless the “polymorphic” declarations of functions.

However, in polymorphic λ -calculus, one can define the identity
function explicitly polymorphic (or universal) as the λ -expression
λ t.λ x : t.x of universal type (∀t) t→ t. Then the FUN program
above can be given as the following λ -expression which is
well-typed (has the type nat) in polymorphic λ -calculus:

(λ i : (∀t) t→ t . cond[nat] (i[bool] true) (i[nat] 7) 0) (λ t.λ x : t.x)

16

Function composition.
Function composition is a standard operation in functional
programming languages. One would like to generically compose
two functions f : t1 → t2 and g : t2 → t3 to obtain a function
t1 → t3, for any types t1, t2 and t3. The corresponding
λ -expression in polymorphic λ -calculus is

λ t1.λ t2.λ t3.λ f : t1 → t2.λ g : t2 → t3.λ x : t1.g(fx)

and will type to (∀t1)(∀t2)(∀t3)(t1 → t2)→ (t2 → t3)→ t1 → t3.

Exercise 6 Derive the type of the function composition expression
formally, using the typing rules.

Exercise 7 Would it make any sense to introduce the parameter
types “by need”, that is, to define function composition as

λ t1.λ t2.λ f : t1 → t2.λ t3.λ g : t2 → t3.λ x : t1.g(fx)

17

Type this expression and comment on its advantages and
disadvantages in contrast to the standard polymorphic function
composition above.

On Recursion

Recall that in simply-typed λ -calculus there was no way to type an
expression of the form λx :T.xx, for any type T . Let us try to
represent this expression within System F.
First, note that λx : (∀t) t→ t.xx is not a good choice, because it
would not type. Indeed, trying to type it, we need to find some
type T such that x : (∀t) t→ t ◃ xx : T ; then the type of the entire
expression would be ((∀t) t→ t)→ T . Trying to type the
expression xx, one gets the type constraint
((∀t) t→ t)→ T = (∀t) t→ t, which, unfortunately, does not
admit a solution even in the enriched context of polymorphic types.

18

The solution is to use a type instantiation in order to change the
type of the first x to one which can be applied on the second x: the
expression λx : (∀t) t→ t . x[(∀t) t→ t] x, say E, will type to
((∀t) t→ t)→ ((∀t) t→ t).

Note, however, that we cannot type anything similar to the
untyped ω combinator, namely (λx.xx)(λx.xx), or to the untyped
fixed-point operators. As a matter of fact, we cannot simulate
recursion in System F without µ.

Exercise 8 Try, and fail, to simulate recursion in system F. You
should see that, despite the fact that one may use instantiation to
type expressions previously untypable in simply typed λ -calculus,
one actually cannot use polymorphism for dealing with recursion.

For that reason, like we did in simply typed λ -calculus, to deal
with recursion we extend our calculus with the usual µ-abstraction.
Assume the same usual typing/equational rules for µ.

19

More Examples

Polymorphic lists.

Recall that one of the interesting aspects of typing FUN programs in
CS422 was the fact that lists were polymorphic. Because of that
reason, we were able to regard, for example, the empty list as both
a list of integers and as a list of booleans.

Polymorphic λ -calculus supports polymorphic lists very naturally.
In what follows we add the list type construct, give the signature of
the usual list operators, and show how polymorphic lists can be
used in practice. Here we are not concerned with how lists are
represented, nor with how the list operators are defined: we just
assume them given. We will later discuss Church lists, showing that
all the list operators can be defined from more basic principles.

20

Let us first add the type construct for lists:

Type = . . . | list Type

The usual operators on lists can be now given as just constants of
universal types:

nil : (∀t) list t
cons : (∀t) t→ list t→ list t

nil? : (∀t) list t→ bool

car : (∀t) list t→ t

cdr : (∀t) list t→ list t

21

Supposing these list operations already defined, let us define a
polymorphic “map” operator, which takes as arguments a list and a
function and applies that function on each element of the list:

λ t1 . λ t2 . λ f : t1 → t2.

µ m : list t1 → list t2 .

λ l : list t1.

cond[list t2] (nil?[t1] l)

(nil[t2])

(cons[t2] (f (car[t1] l)) (m (cdr[t1] l)))

Exercise 9 Derive the type of the “map” expression above using
the formal type inference rules.

Exercise 10 Define and type a “reverse” on polymorphic lists.

22

Church booleans.
Recall the Church booleans from untyped λ -calculus. They already
had a “polymorphic” intuitive meaning: true and false were the
first and the second projection functions, respectively, expecting
two arguments of the same “type”. With the machinery of
polymorphic λ -calculus, we can take the “boolean” type to be the
following universal type:

boolλ := (∀t) t→ t→ t

and the two boolean constants to be:

true := λ t.λ x : t.λ y : t.x

false := λ t.λ x : t.λ y : t.y

Note that the two expressions above have indeed the type boolλ .
The logical operators can now be naturally defined. For instance,
“not” can be defined as λ b :boolλ.λ t.λ x : t.λ y : t.b[t] y x.

Exercise 11 Define and type the other Church boolean operators.

23

Church numerals.
Recall that, in untyped λ -calculus, Church numerals were
characterized by their latent application to a “successor function” s

and a “zero” element z, which would result in applying s to z a
certain number of times. Therefore, the expected type of s would
be t→ t, where t is the type of z. Thus we can define the
polymorphic type of Church numerals as

natλ := (∀t) (t→ t)→ t→ t

Number n can then be encoded as the expression of type natλ

nλ := λ t . λ s : t→ t . λ z : t . s(s...(s z)...),

with n applications of s. All the usual arithmetical operations on
numbers can now be defined. For instance,

succ λ := λn :natλ . λ t . λ s : t→ t . λ z : t . s (n[t] s z)

+λ := λn :natλ . λm :natλ . λ t . λ s : t→ t . λ z : t . n[t] s (m[t] s z).

Exercise 12 Define the polymorphic multiplication and power.

24

Church lists.

Following a similar idea as for Church numerals, one can define
Church lists. A list is regarded through its latent application to a
“binary operation” f and an “initial value” v, which would result in
iteratively applying the binary operation as follows: first to the last
element of the list and v, then to the last but one element and the
previous result, and so on, until the list is exhausted. For instance,
the list [a, b, c] is encoded as λ f . λ v . f a (f b (f c v)).

For each type t, let us define the polymorphic type

list t := (∀p) (t→ p→ p)→ p→ p

Note, however, that we want the list operations to be themselves
polymorphic. For example, we want the type of cons to be
(∀t) t→ list t→ list t. We can now define the usual list operators
quite naturally:

25

nil := λ t . λ p . λ f : t→ p→ p . λ v :p . v

(the type of nil is (∀t) list t),
cons := λ t . λ head: t . λ tail : list t .

λ p . λ f : t→ p→ p . λ v :p .

f head (tail[p] f v)

(the type of cons is (∀t) t→ list t→ list t),
nil? := λ t . λ l : list t . l[boolλ] (λx : t . λ y :boolλ . false) true

(the type of nil? is (∀t) list t→ boolλ),
car := λ t . λ l : list t . l[t] (λx : t . λ y : t . x) (error[t])

(the type of car is (∀t) list t→ t)

Note that car is intended to be a partial function, undefined on the
empty list; hence we introduced a polymorphic constant error, of
type (∀t)t. This constant is also useful for any other partial
function definitions. Some prefer to define “error for type t” as an
infinite recursion, for example µx : t.x; in other words, they either
replace each instance error[t] by µx : t . x, or otherwise add an

26

equation error = λ t . µx : t . x. The drawback of this adhoc
convention is that the evaluation of expressions applying car will
not terminate under call-by-value evaluation strategy.

Exercise 13 Define and formally type the cdr operator.

27

Giving System F an Executable Semantics

Let us now focus on the original formulation of System F, namely
the one without recursion (µ). Let us orient all the equations
left-to-right, thus obtaining a transitional semantics (→) of System
F. One of the most famous results of System F is the following:

Theorem (Girard). (very hard) In System F without µ,
the transition relation → is confluent and terminates.

Exercise 14 Define System F equationally in Maude. Your
definition should take a polymorphic λ -expression and evaluate it to
its unique normal form.
Hint. You can use either the provided generic substitution, or,
alternatively, can use the de Bruijn technique to properly avoid
variable captures; note that variable captures can now appear both
at the λ -expression level and at the type level.

28

Type inference/reconstruction

The problem of type inference can be stated in the polymorphic
λ -calculus framework as follows.

Given any untyped λ -expression E, is it the case that E is
typable in System F?

In other words, is there any polymorphic λ -expression EF in
System F such that erase(EF) = E? Here, the operator erase just
loses any type information and can be formally defined as follows:

erase(x) = x,
erase(λx :T.E) = λx.erase(E),
erase(E1E2) = erase(E1)erase(E2),
erase(λ t.E) = erase(E),
erase(E[T]) = erase(E)

This problem, open for more than 20 years, was finally proven to

29

be undecidable. Algorithms were developed to partially solve this
problem, some of them based on Huet’s partial algorithms for
higher-order unification (another undecidable problem).

30

Subtype Polymorphism

We next focus on the other major approach to polymorphism,
namely subtype polymorphism, which is mostly encountered in the
context of modern object-oriented programming languages.

To stay focused on the major aspects of subtype polymorphism, we
here introduce a very simply λ-calculus language extended with
various features that reflect most of the interesting issues related to
subtype polymorphism encountered in other languages or
formalisms.

31

Simply Typed λ -Calculus with Records

We extend simply typed λ -Calculus by adding records. Let Field

be a countably infinite set, disjoint from Var, and let us extend
types and expressions as follows:

Type ::= S | Type→ Type | {Field :Type, ...,Field :Type}.

Exp ::= Var | Exp Exp | λVar :Type.Exp |
{Field = Exp, ...,Field = Exp} | Exp.Field

Thus a record type is a set of typed attributes, each represented as
a (Field,Type) pair. For example, we can declare a record type, say
person, as {name : string, age : nat, height : nat, ...}. Two kinds of
expressions are introduced for dealing with records:

• record expressions (written like sets of equalities, assigning
expressions to the fields of a record), and

32

• field accessing expressions.

The first one creates a record by assigning a value to every
attribute, while the second fetches the value of an attribute of a
record. For instance, the expression

{name = ‘John Smith’, age = 27, height = 180, ... }

defines a record variable, say john. We can get the values of its
fields with expressions like john.name, john.age, etc.

Records inherently bring the issue of subtyping. Intuitively, if a
context requires a record R of a certain kind, it should be the case
that a record R′ having more information than needed be still
suitable for that context. Thus we would like to be able to write

(λ p : {age : nat} . (p.age))
{name=‘John Smith’, age=27, height=180, ...}

33

However, with the previous typing system, this is not allowed since
the argument type is not exactly the same as the parameter type.
To avoid this kind of unnecessary constraints, but still maintain a
rigorous typing discipline, we introduce the following important
notion of subtyping, first intuitively and then rigorously:

Intuitive definition of subtyping: Given two types t1 and t2,
we say that t1 is a subtype of t2, written t1 ≤ t2, iff t1 has
at least the same information as t2, or, in other words, a
value of type t1 can be used wherever a value of type t2 is
expected; one also may say that t1 is more concrete than
t2, or that t2 is more general than t1.

34

Subtyping Rules

Now we set up the rules that will allow us to formally derive
subtype relationships of the form t1 ≤ t2, which will be further
needed to define the typing system:

(≤-reflexivity) t ≤ t

(≤-transitivity) t1 ≤ t t ≤ t2
t1 ≤ t2

(≤-arrow) t2 ≤ t1 t′1 ≤ t′2
t1 → t′1 ≤ t2 → t′2

(≤-record) t1 ≤ t′1 . . . tm ≤ t′m
{l1 : t1, . . . , ln : tn} ≤ {l1 : t′1, . . . , lm : t′m}

when m ≤ n

35

The first two rules are clear. To understand the (≤-arrow) rule, let
us suppose a context which expects a value of type t2 → t′2 but
actually receives a value V of type t1 → t′1. In a presumptive later
use, V might be applied to an argument W of type t2. To assure
that V can handle W , one needs that every inquiry that V makes
to its argument (expected to be of type t1) be answered by W , i.e.,
that W provides at least as much information as a value of type t1;
thus t2 ≤ t1. Furthermore, the result of applying V to W is a value
of type t′1, while a value of type t′2 would be expected; thus t′1 ≤ t′2.

The rule (≤-record) says two important things: first, that the
subtype record must include the fields of the supertype record, and
second, that the types of those fields in the subtype record are
subtypes of the types of those fields in the supertype record. Both
these facts are needed in order for a value of subtype record to be
used in contexts where values of supertype record are expected.

36

The next two properties of the subtype relation say that one can
only derive meaningful subtypings. These properties may be used
later to prove important properties of type systems supporting
subtyping.

Exercise 15 If t ≤ t2 → t′2 then t has the form t1 → t′1 such that
t2 ≤ t1 and t′1 ≤ t′2.

Exercise 16 If t ≤ {l1 : t′1, . . . , lm : t′m} then t has the form
{l1 : t1, . . . , ln : tn} with m ≤ n and ti ≤ t′i, i ∈ {1, . . . ,m}.

37

Type System

Building upon the subtype relation formally defined above, we can
now give subtype-flexible rules for deriving types:

(subsumption) X ◃ E : t1
X ◃ E : t2

when t1 ≤ t2

(record) X ◃ E1 : t1 . . . X ◃ En : tn
X ◃ {l1 = E1, . . . , ln = En} :{l1 : t1, . . . , ln : tn}

(field access) X ◃ E :{l1 : t1, . . . , ln : tn}
X ◃ E.lj : tj

when j ∈ {1, . . . , n}

38

(subsumption) allows us to “lift” the type of an expression to any
supertype, thus formally justifying our informal claim that
“expressions of type t1 can be used in any context where
expressions of supertype t2 are expected”.

(record) allows us to derive a type of a record from the names and
the types of its fields, while (field access) allows us to derive the
type of a field once the type of the entire record is known.

Proposition 3 If X ◃ (λx : t.E) : t1 → t2 then t1 ≤ t and
X,x : t ◃ E : t2.

Proposition 4 (Substitution.) If X,x :s ◃ E : t and X ◃ F :s

then X ◃ E[x← F] : t.

39

Equational Rules

The following natural equational rules are added to those of
simply-typed λ-calculus. We here assume the untyped variants of
equational rules, which, as usual, will rise the question of type
preservation:

(∀X) {l1 = E1, . . . , ln = En}.li = Ei for all i ∈ 1, n

(∀X) E = E′

(∀X) E.l = E′.l
for any field l

(∀X) En = E′n
(∀X) {(li = Ei)i=1,n−1, ln = En} = {(li = Ei)i=1,n−1, ln = E′n}

40

Exercise 17 Using the rules for typing and for equation derivation
above, show formally that the expression

(λ p :{age :nat} . (p.age))
{name = ‘John Smith’, age = 27, height = 180...}

types to nat and is equal to 27.

Proposition 5 (Type preservation.) If (∀X) E = E′ is
derivable and X ◃ E : t then X ◃ E′ : t.

As an operational consequence of the property above, we obtain the
so-called “subject reduction” property for the transition relation →
obtained by orienting the equations:

Corollary 1 If X ◃ E : t and E → E′ then X ◃ E′ : t.

41

Subtyping and Other Language Features

Subtyping occurs many places in computer science. Therefore, it is
important to understand how subtyping interacts with different
other features that also appear often in practice.

We next investiage the relationship between subtyping and several
other interesting and important programming language features,
including built-in types, lists, references, arrays, type casting and a
bit with objects. The list of features can continue. In fact, it is
customary that programming language designers analyze the
effectiveness of new conceptual developments by studying their
interaction with subtyping.

42

Built-in Types

Basic subtyping may be given by many other features besides
records. As you know, programming languages usually provide
built-in, also called basic, types, such as bool, int, real, etc.

Programmers find it very convenient to assume subtyping on some
basic types, e.g., bool ≤ int. In fact, in many languages, the
constant true is represented as integer 1 and false as 0. This way,
one can use a bool expression whenever an integer expression is
expected. For example, with a boolean variable b, one can write an
expression: scale ∗ b, which evaluating to wither 0 or scale,
depending on whether b is false or true. To support this feature, we
need that bool ≤ int. Other common subtype relationships are nat
≤ int, or int ≤ real.

43

Lists

We can also introduce list types into our type system:

Type ::= ... | list Type

The subtyping rule for lists is
t1 ≤ t2

list t1 ≤ list t2

Although this rule seems straightforward and intuitive, it only
works when we build and use lists without applying any change on
them. As we will next see in the discussion of references and
arrays, some restrictions are raised by changing values at given
locations in the list.

44

References

Most languages allow assignments of new values to existing, i.e.,
already declared, names. In many languages this is supported by
introducing the notion of reference (also called location or cell
index). We next extend our simply typed λ -calculus to support
references and assignments:

Type ::= ... | Ref Type | Unit
Exp ::= ... | ref Exp | !Exp | Exp := Exp

Therefore, we allow explicit types for references. For example,
Ref (nat→ nat) is a type for references to, or locations storing,
functions nat→ nat. Values of reference types are just like any
other values in the languages, that is, they can be passed to and
returned as results of functions.
Together with refereces and assignments, side effects are

45

unavoidable. Unit is the type of expressions, such as assignments,
that are intended to be used just for their side effects; these are not
supposed to evaluate to any particular value. In other words, one
may read Unit as “no type”.

Three new expression constructors are introduced.

ref E evaluates to a new location, say L, where the expression E is
also stored; this is equivalent to the “new” construct in object
oriented languages, or to “malloc” in C. Depending upon the
particular evaluation strategy desired in one’s language, the
expression E stored at L may be already evaluated to some value.
The language construct ref is also called referencing.

!E, which expects E to evaluate to a location, say L, returns the
expression/value stored at L. The language construct ! is also
called dereferencing.

E := F first evaluates E to a location, say L, and then stores F at

46

location L. Again, depending upon the desired evaluation strategy,
one may first evaluate F to some value V and then store V at L.

To give a full equational semantics of our λ-calculus language
extended with references, we would need to follow the same
approach as in FUN, that is, to introduce infrastructure for stores,
to evaluate λ-abstractions to closures, etc. We do not do this here,
because it would essentially duplicate what we’ve already done in
the definition of FUN. Instead, we just focus on aspects related to
typing in the context of references.

47

Typing references.

The typing rules for references are straighforward:

X ◃ E : t

X ◃ ref E : Ref t

X ◃ E : Ref t

X ◃ !E : t

X ◃ E : Ref t X ◃ E′ : t

X ◃ E := E′ : Unit

The subtleties of typing in the context of references come from
their interaction with subtyping.

48

Subtyping and references.
The question to be asked here is how, and under what conditions,
can one derive subtyping relations of the form Ref t1 ≤ Ref t2? In
other words, when can a reference to an expression/value of type t1
be safely used in a context where a reference to an expression/value
of type t2 is expected?
There are two concerns regarding the use of a reference
expression/value R of type Ref t1 when a reference
expression/value of type Ref t2 is expected:

1. If R is dereferenced (read) in a context, such as, for example, in
3+!R, the expression/value stored at R should be safely usable
in that context, where an expression/value of type t2 is
expected; therefore, t1 ≤ t2.

2. If R is assigned (written) in a contex, for example using an
assignment of the form R := E with E of type t2, then since

49

there can be other places in the program “expecting” (by
dereferencing R) the expression/value at location R to have the
declared type t1, one deduces that t2 ≤ t1.

Therefore, the only safe possibility to have Ref t1 ≤ Ref t2 is that
t1 = t2, which obviously implies Ref t1 = Ref t2. We conclude
from here that reference types admit no proper subtypes.
While this is an “elegant” conclusion in what regards the
implementation of a type system, because one basically needs to do
absolutely nothing to support it, it is very important to understand
the deep motivations underlying it.

Don’t speak unless you can improve on the silence
Spanish Proverb

While this may seem rather straightforward, when references and
types live together in a language almost nothing is simple enough
to avoid misunderstandings or subtle problems.

50

Arrays

Arrays can be very easilly added to a language, at least in what
regards their typing. For example, in our language we can extend
both the types and the expressions as follows:

Type ::= ... | Array Type

Exp ::= ... | Exp[Exp] | Exp[Exp] := Exp

Essentially, arrays are similar to references. In fact, in many
languages, arrays are nothing but references pointing to the first
location of a block of memory. Consequently, by an analysis of
subtyping similar to that for references, we can infer that the only
reasonable way to have Array t1 ≤ Array t2 is that t1 = t2, maning
that array types have no proper subtypes. This conclusion can
similarly be applied to lists when one is allowed to write at specific
locations in lists (with statements of the form car E := E′,

51

car (cdr E) := E′, etc.).

Some programming language designers, while still adopting type
systems for their languages, find some of the above (static)
subtyping restrictions too strong, arguing that they limit the use of
references, arrays, lists, etc. In fact, designers of programming
languages tend to easily become “religious”; for example, those
designing untyped or dynamically typed languages think of static
typing as a serious impediment the programmers have to deal with
in one way or another.

Some languages split the task of type checking into a static
component and a dynamic one. For example, Java only takes the
deferencing (reading) into account during its static type checking,
and checks every write at runtime to maintain the type safety. But
this is also considered by some researchers as a design flaw ...

52

Type Casting

Type casting allows one to assign to terms types that type checkers
may not be able to find statically. One can regard casting as a
“type annotation” which helps the type checker analyze the
program. At some extent, unless a language admits some form of
dynamic type checking that can lead to different executions when
expressions are evaluated to values of different types (such as
“instance of” checks), one can regard all the type declarations as
just “annotations” to help a particular “static program analysis”
tool, the type checker, analyze the program.
The corresponding syntax for type casting in our language can be:

Exp := ...|⟨Type⟩ Exp

We do not discuss the formal (equational) semantics of casting here,
but, intuitively, ⟨t⟩E is simply equal to E when E can be shown of

53

type t. In some cases one may be able to show statically that E has
type t or that E cannot have type t, in which case the type casting
may be simply dropped or a static error reported, but in general
the problem is undecidable. In practice, a dynamic checker, or a
monitor, is inserted to ensure that the type of E is indeed as
claimed; if not, an error or an exception is generated. The benefit
of this dynamic check is that the static type checker can then
assume that E has indeed the claimed type t and can therefore
continue unperturbed the type checking process on the rest of the
program. The typing rule of casting is then simply as follows:

X ◃ E : t2
X ◃ ⟨t1⟩E : t1

Therefore, as far as an expression type checks to any type, it can
also be cast to any other type, but a dynamic check still needs to
be performed. For example, (⟨{age : nat}⟩x).age is assumed of type

54

nat for static type checking purposes, but it may cause a runtime
error if the type t of x is not a record type containing a field age of
type nat.

Exercise 18 Give a simple program containing the expression
(⟨{age : nat}⟩x).age which types and executes correctly, but which
would not type if one replaced the expression above by just x.age.

To facilitate casting, many languages have a top type, like the
Object class in Java.

55

Syntax-Directed Subtyping

The subtyping rules, together with the typing rules in the context
of subtypes, gave us a logical means to entail type judgements of
the form X ◃ E : t. However, note that the type system is bound
to the fact that all three components of the type judgement,
namely X, E, and t, need to be available.
For some typed frameworks, for example simply typed λ-calculus,
as we know it is relatively trivial to translate the typing rules into a
typing algorithm, calculating for a given expression E in a given
type environment X a type t, if the expression is indeed well-typed,
and reporting an error otherwise.
In the context of subtyping, one needs some additional work to
obtain an effective typing algorithm.
Let us first understand what are the complications that appear

56

when one tries to type a program within a language with subtyping.

Unlike typing in the context of our previous, non-subtyped
languages, in the context of subtypes the application of the typing
rules is not deterministic, i.e., not syntax-directed. Consider for
example the λ -expression, say mkY ounger,

λx : {age : nat, height : nat} .
{age = x.age− 20, height = x.height+ 3}

and suppose that we would like to derive that it can have the type
{age : nat, height : nat} → {age : nat}, say t. There are two
different ways to do it:

57

1) One can first apply typing rules for as long as possible, and then
“ask for the help” the subtyping rules:

(1) ...
∅ ◃ mkY ounger:{age:nat,height:nat}→{age:nat,height:nat}

(2) ...
{age:nat,height:nat}→{age:nat,height:nat}≤{age:nat,height:nat}→{age:nat}

(3) (1) (2)
∅ ◃ mkY ounger:t

58

2) Alternatively, a subtyping rule can be applied earlier, before
typing the outermost expression:

(1) ...
x:{age:nat,height:nat} ◃ {age=x.age−1,height=x.height−10}:{age:nat,height:nat}

(2) {age:nat,height:nat}≤{age:nat}

(3) (1) (2)
x:{age:nat,height:nat} ◃ {age=x.age−1,height=x.height−10}:{age:nat}

(4) (3)

∅ ◃ mkY ounger : t

59

In order for the entailment system to immediately provide a typing
algorithm, one would like to have a well-defined, deterministic way
to apply the typing rules by just examining the syntax of the
program without any “search”. This is also called “syntax-directed”
typing.

Of course, one may argue that, in the above example, chosing one
of the two possible computations is not problematic, thanks to
their confluence; hence one could pick, for instance, the
lexicographically lower computation. But there are some rules in
our context of subtyping that are really non-syntax-directed, in the
sense that one has no clue where to find the catalyzers needed to
continue computation.

60

Undeterministic subtyping rules.

Consider for instance the rules:

(≤-transitivity) t1 ≤ t t ≤ t2
t1 ≤ t2

How to pick a t when ap-
plying this rule?

(subsumption) X ◃ E : t1 t1 ≤ t2
X ◃ E : t2

How to pick a t1?
Structure/syntax of E is
not taken into account.

Can one change the rules so that typing becomes syntax-directed
and mechanical? The answer is yes.

61

Eleminating the bad rules.
A first interesting observation is that the (≤-transitivity) rule is not
needed. The intuitive reason underlying this claim is that the
subtyping relation derived using the other subtyping rules,
excluding (≤-transitivity), is already transitive.

Exercise 19 Prove formally the claim above.

A second important observation is that we can also eliminate the
other problematic rule, (subsumption), by carefully inspecting its
usage. This rule really only needs to be used to type check function
applications: (λx : t . E)E′ requires that the type of E′ is a subtype
of t. Then one can simply eliminate the problematic (subsumption)

rule and instead modify the λ -abstraction application rule into the
following rule. To reflect the fact that the newly obtained type
system is different from the original one, we use a different but
closely related syntax, namely X D E : t, to denote the type

62

judgements derived with the latter type system:

(≤-application) X D E1 : t1 → t′1, X D E2 : t2, t2 ≤ t1
X D E1E2 : t′1

Note that the (≤-application) rule above is syntax-driven, in the
sense that the syntax of the goal type judgement (an
“application”), tells us precisely what to do next: calculate the
type of the two expressions involved and then derive the
corresponding subtype relation.

Proposition 6 Prove that the resulting typing system above has
the following properties:

• For each expression E and type assignment X, one can derive
X D E : t for a at most one type t;

• (Soundness) X D E : t implies X ◃ E : t;

• (Completeness) X ◃ E : t implies X D E : t′, where t′ ≤ t.

63

Therefore, in terms of the original type system, the new type
system derives the most concrete type of an expression.

Syntax-directed subtyping algorithm.

The important proposition above immediately provides an
algorithm to decide whether, under a type assignment X, an
expression E has a type t:

First derive X D E : t′ and then check whether t′ ≤ t; if
any of the two fails than E cannot have the type t in the
type environment X.

Exercise 20 Define the syntax-directed typing algorithm above in
Maude. You need to define both the subtyping relation and the
typing rules equationally. Your definition should be executable.

64

Typing Conditionals

In simply typed λ -calculus we had to define one conditional
constant condt : t→ t→ bool for each type t. With subtyping, like
with universal polymorphism, we only need to define one generic
conditional. Precisely, we can add a Top constant type defined to
be the most general type together with a subtyping rule

(top) −
t ≤ Top

and then define just one constant conditional expression,
cond : bool→ Top→ Top→ Top. (This actually follows a general
technique to simluate universal polymorphism with subtyping).
Previously, the rule for typing conditionals was the following:

X ◃ C :bool, X ◃ E1 : t, X ◃ E2 : t

X ◃ cond C E1 E2 : t

65

This rule still works in the context of subtyping, but note, however,
that one is expected to use subsumption to lift the possibly more
concrete types of E1 and E2 to some common supertype. In fact,
the conditional expression can be derived any type that is a
supertype of the most concrete types of E1 and E2. For example,
consider the following expression (“keep one’s height if one is older
than 10, otherwise keep one’s weight”):

cond (x.age > 10)

{name = x.name, age = x.age, height = x.height}
{name = x.name, age = x.age, weight = x.weight}

One cannot apply directly the typing rule of the conditional,
because the two branches have different types. But by subsumption
one can first calculate some common type to both branches, such as
{name : String, age : nat}, or {name : String}, or {age : nat}, or
even {}, and then apply the typing rule for conditional.

66

The limitations of the typing rule for conditional above becomes
clear in the context of syntax-directed typing, where one calculates
the most concrete types of the two branches and then one wants to
calculate a type for the conditional.

First, note that under syntax-directed typing, the typing rule for
conditional above is close to useless, because the most concrete
types of the branches may be different.

Second, what should the type of the conditional actualy be,
knowing the types t1 and t2 of its branches? Since we want to
calculate the type of the conditional statically, unless using
sophisticated theorem provers (which typically do not to scale), we
cannot know which of the two branches would be taken during an
actual execution.

One possibility would be two consider both branches separately
and ensure that the program would type regardless of which branch

67

is taken. Unfortunately, the number of possibilities to analyze
doubles with each conditional in the program. Therefore, despite
its precision in analysis, this exhaustive approach would hardly
have any practical use.
An extreme possibility would be to say that the type of the
conditional is Top, because we do not know which of the two
branches is taken. The problem with this aggressive approach is
that all the type information about the two branches is lost, so one
may need casting to explicitely “concretize” the type of the
conditional to the expectations of a particular context.
The practical solution here is to accept loosing some precision but
not all of it. Any common supertype of t1 and t2 is clearly better
than Top. This suggests that we should actually pick the least
common supertype of t1 and t2, written t1 ∨ t2, as the type of the
conditional; since the subtype relation is a partial order, the least
common supertype of t1 and t2, also called their join type, is

68

nothing but the least upper bound of t1 and t2 with respect to the
subtyping relation. With this, the syntax-driven typing rule of the
conditional is the following:

X D C : bool X D E1 : t1, X D E2 : t2
X D cond C E1 E2 : t1 ∨ t2

G: something is not right here, as the rule above destroys
the syntax-drivenness. Indeed, we can either apply the
application typing rule (in various ways) or the above.

Thus our sample conditional expression discussed above types to
{name : String, age : nat}.

Exercise 21 (continuation of Exercise 20) Define (also in Maude)
the join operation on types and add the “universal” conditional to
the language together with its syntax-driven typing.

69

Subtypes and Objects

Objects and the object-oriented (OO) paradigm form an important
player in today’s theory and practice of programming languages.
Objects are considered by many software engineers crucial in the
process of software development, because they improve the
modulality and reusability of code.
Essentially, an object encapsulates a state and provides the outside
world an interface to partially manipulate its state, like for example
to access or modify parts of it. We next show how objects and
some OO concepts can be supported, without any additional
machinery, by typed λ -calculus with subtyping and references.
That should not mean that we are actually claiming that typed
high-order languages should replace OO languages. Similarly, the
fact that all programming language paradigms can be supported by
rewriting does not mean that rewriting can replace all these.

70

Syntax

The syntax is left almost unchanged:

Type ::= ... | Ref Type | Unit
Exp ::= ... | ref Exp |! Exp | Exp := Exp | ()

The only increment here is () that is used for calling functions
without paramenters. This feature is not required, since we can
pass a dummy argument that is ignored in the function, but it is
more natural and concise for programming. The type of () is Unit,
as expected:

X ◃ () : Unit

71

Representing objects

Let us consider a very simple example, that of a counter object
which contains a “private” integer value and provides two functions
to the outside world, namely get() to get the value of the integer
and inc() to increment it. Once such a counter object is created,
say c, one would like to be be able to write expressions like c.get()

and c.inc(), with the obvious meaning.

In our framework, it is then natural to represent objects as records,
containing a field for each operation allowed to be visible, or part of
the interface, to the outside world. In our particular case, an
already created counter object can be represented as a record
{get = ..., inc = ...}. The concrete integer value is not intended to
be accessed directly from the outside, so it does not have a
corresponding field in the record; neverthless, one still wants to
access is indirectly, using the field get.

72

For the time being, let us assume that the state of an object has
already been created. In our case of the simple counter, since the
state consists of just one integer, let us assume that is has already
been created in an outer scope and that a reference x to it is
available. Then the representation of our already created object is:

{get = λ_ : Unit . !x, inc = λ_ : Unit . x := (!x+ 1)}

We will later see that the state of an object can be actually kept in
a record (of references), which is made visible to the functions. As
we already know by now, the evaluation strategies play a much
more important role in the design of a language in the presence of
side effects. Since OO programming is all about side effects, we
impose a call-by-value evaluation strategy in our language. Also,
function bodies are evaluated only when functions are called;
othewise, the body of the function inc can be evaluated indefinitely
and therefore the counter incremented in an uncontrolled manner.

73

Creating objects
One needs to be able to create an object before one can use it.
Intuitively, creation of an object comes to intializing the state of the
object. Considering again our example, we need to create an integer
reference with some value and “give” it to the object. To achieve
this, we can use a macro, say createCounter, defined as follows:

(λx : Ref nat .
{get = λ_ : Unit . !x, inc = λ_ : Unit . x := succ(!x)})

(ref 1)

Because of the assumed call-by-value evaluation strategy, each time
the macro above is evaluated the following happen (recall also the
definition of FUN): (1) a location is created and the integer value is
stored at that location; (2) that location is bound to x in an
environment, say Env, in which the record is evaluated; (3) the two
functions in the record are evaluated to corresponding closures,

74

each freezing the environment Env (further calls of these functions
will therefore see the same location of x).

In short, this macro creates a counter object with the initial value
of 1, which types as expected:

∅ ◃ createCounter : {get : Unit→ nat, inc : Unit→ Unit}

One would like to have the possibility to create many objects with
a similar functionality, in our case many counters, without having
to write the creation code over an over again. In a similar fashion
to the new construct in object oriented programming, one can
define a newCounter macro as the λ-abstraction
λ_ : Unit . createCounter. One can now create counter objects in
any context, by simply invoking newCounter(). Note that a new
state is indeed created with each invocation of newCounter.

75

Exercise 22 Define another macro for creating counter objects,
namely one which takes as argument an intenger and creates a
counter object initialized to that integer. Therefore, newCounter(7)
should create a counter object initialized to 7.

Subtyping objects
We know from OO that objects that are instances of subclasses can
also be regarded as instances of superclasses. Without yet
discussing classes and sub/superclasses, let us first see how an
object having “more information” than another one, is actually
typed to a subtype of the later object in our framework.
Consider an enriched counter, which, besides the usual get and inc
methods, has a method reset which resets the counter to 0. The
new enriched counter objects have therefore the type:

{get : Unit→ nat, inc : Unit→ Unit, reset : Unit→ Unit}

76

Therefore, the type of the enriched counters is a subtype of the
simpler counters, which is consistent with the OO intuitions for
objects and their types/classes. One can easily write a
λ -abstraction for creating reset counter objects, say
newResetCounter:

(λ_ : Unit .
(λx : Ref nat .
{get = λ_ : Unit . !x,

inc = λ_ : Unit . x := (!x+ 1),

reset = λ_ : Unit . x := 0}
) (ref 1)

)

Let us next understand how classes can be encoded in our typed
high-order framework.

77

Classes
In OO programming languages, classes typically are regarded as
the types of objects, while objects are regarded as instances of
classes. As it turns out, these words can mean almost everything,
depending upon context, who says them and who listens to them.
It is customary though to consider that classes contain a certain
kind of functionality and structure, while an object of a class
contains, or encapsulates, a concrete “state” together with a handle
to the class that it is an instances of. By a state, one typically
means a type-consistent assignment of values to fields.
With this model in mind, we can refine our definition of an object
as follows.

1. First introduce a record type containing all the intended fields
of a class; since the values of these fields may be changed
during the life-time of an object, the types of the fields must be

78

reference types. In the case of our counter we have only one
field, so let us introduce the record type {x : Ref nat} and call
it CounterRef . Whenever an object is created as an “instance”
of a class, one should first create a record allocating concrete
values to the fields;

2. Next define the class itself as a λ -abstraction taking a value
record type as above and adding methods to it to taste. In our
case, we can define a “class” CounterClass as follows:

λ r : CounterRef .

{get = λ_ : Unit . (r.x),
inc = λ_ : Unit . (r.x) := (r.x+ 1)}

Classes therefore evaluate to closures and type to function
types taking field record types to method record type. For
example, the class CounterClass types to

CounterRef→ {get : Unit→ nat, inc : Unit→ Unit}

79

3. Create objects by passing desired field records to classes. In
our case, a counter with integer value 1 is created by simply
evaluating Counter({x = ref 1}). Also, one can define
newCounter as λ_ : Unit . Counter({x = ref 1}), and so on.

This way, we therefore have a means to device “classes” and then
to create “objects” as instances of them. The type system of our
calculus maintains a certain discipline in how objects are created
and used, but it may still allow one to develop programs which one
would rather want to reject.

Subclasses/Inheritance
Inheritance, or the process of extending existing classes with
functionality, is an important, if not the most important, feature of
the OO paradigm. The extended classes, despite the fact that they
add functionality to the extended classes, are actually called
subclasses. This terminology is in full synch with our terminology

80

for “subtypes”. Let us next see, again via an example, how we can
simulate inheritance within our framework in a consistent way, in
the sense that the type system will rank “subclasses” as subtypes.

Let us define a class ResetCounterClass which extends
CounterClass by adding a reset “method”:

λ r : CounterRef .
(λ super : ? .

{get = super.get,

inc = super.inc,

reset = λ_ : Unit . (r.x = 0)})
(CounterClass r)

Exercise 23 What is the type of super above (the red question
mark)? Type the ResetCounterClass above and show that it is a
subtype of CounterClass.

81

The use of super above is not required, but it helps to highlight the
relationship between the subclass and the superclass.

However, although we would like to see a one-to-one relationship
between the notions of “subclass” and corresponding “subtype” in
our framework, the simulation of the OO paradigm above is so
“flexible” that it actually allows one to also remove methods from
the superclass, thus breaking the subtyping relationship,
disallowing the use of the subclass where the superclass is expected,
etc. To prevent that, we may need to provide more powerful
mechanisms or primitives in the language, e.g., extends/inherits,
together with appropriate typing rules/policies.

82

Exercise 24 Comment on the encoding of OO programming in
high-order typed languages presented above. Tell straight your
opinion and think of desirable OO features that could not be
supported this way. Also, show how self-reference can also be
supported by allowing recursion (µ) in the language. How about
dynamic versus static method dispatch?

