
1

CS522 - Programming Language Semantics

Cartesian Closed Categories as
Models for Simply-Typed λ -Calculus

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign

2

We next focus on showing that CCCs can be organized as models
of simply-typed λ -calculus. The idea is to interpret types as
objects and λ -expressions as morphisms. As expected,
exponentiation is going to play a crucial role. Indeed, if A and B

are objects interpreting types s and t, respectively, then BA will
interpret the type s→ t.

To make our categorical framework and modeling more interesting,
in the sequel we consider a common extended variant of simply
typed λ -calculus, namely one with a set of type constants (as
opposed to just one type constant, ◦, like before), a product type
constructor, and a set of typed λ -constants.

3

Formally, let S be a set of type constants, also possibly called basic
or primitive types. The extended λ -calculus that we consider from
here on has types built over the following grammar:

Type ::= S | Type→ Type | Type× Type

As expected, types s× t stand for pairs of values, one of type s and
the other of type t.
Let us also consider a set Σ of typed λ -constants, that is, pairs σ : t,
where t is some type. Like for type assignments, we assume that Σ

does not contain constants with multiple types and let Σ(σ) denote
the type t such that σ : t ∈ Σ. We also take the liberty to write
σ ∈ Σ, without mentioning the type of σ. Then the formal CFG of
(possibly not well-typed) λ -expressions is:

Exp ::= V ar | Σ | λx :s.Exp | Exp Exp |
| (Exp,Exp) | proj1 Exp | proj2 Exp

4

The set of constant λ -expressions Σ is also called a signature.
Besides the constants in the signature, our extended simply-typed
λ -calculus also includes the pairing construct, as well as the two
corresponding projections. The typing rules for the new constructs
are as follows:

X ◃ σ : s for any X and σ :s ∈ Σ;

X ◃ E1 : t1 X ◃ E2 : t2
X ◃ (E1, E2) : t1 × t2

for any X, any Exp-terms E1, E2,
and any types t1, t2;

X ◃ E : t1 × t2
X ◃ proj1E : t1

for any type assignment X, Exp-
term E, and types t1, t2;

X ◃ E : t1 × t2
X ◃ proj2E : t2

for any type assignment X, Exp-
term E, and types t1, t2.

5

Two equational axioms need to be added, to capture the
relationship between pairing and projections:

(Proj)1 E ⊢ (∀X) proj1(E1, E2) =t1 E1 if X ◃ E1 : t1 and X ◃ E2 : t2;

(Proj)2 E ⊢ (∀X) proj2(E1, E2) =t2 E2 if X ◃ E1 : t1 and X ◃ E2 : t2.

Exercise 1 Show that it is not necessarily the case that
E ⊢ (∀X)(proj1E, proj2E) =t1×t2 E whenever X ◃ E : t1 × t2.
Hint: What if σ : t1 × t2 is a constant in Σ?

6

Simply-Typed λ-Calculus
Captures Algebraic Specifications

The extension of simply-typed λ -calculus defined above captures
algebraic signatures quite elegantly. Given a many-sorted algebraic
signature (S,Σ), i.e., a set of sorts S and a set of operations
σ : s1 × . . . sn → s (we define algebraic signatures in Maude, for
example), all one needs to do is to declare the sorts in S as basic
types and the operations in Σ as λ -constants, noting that
s1 × . . . sn are types that can be constructed in λ -calculus (assume
right or left associativity for the product of types).

One can show that the simply-typed λ -calculus obtained this way
is a conservative extension of the original equational theory, in the
sense that it can derive precisely all the equational consequences of
the equational theory.

7

(S,Σ)-CCC

The simply-typed λ -calculus defined above is therefore
parameterized by the pair (S,Σ) of basic types and constant
λ -expressions. We next show that any CCC providing
interpretations for just the basic types in S and for the λ -constants
in Σ can be extended to a model of (simply-typed) λ -calculus,
providing interpretations for all the types and for all the
λ -expressions. This is possible because the CCCs provide an
elegant corresponding categorical machinery to the syntactic
constructs of types and λ -expressions.

An (S,Σ)-CCC is a CCC C together with

• a mapping [[_]] : S → |C|, associating some object [[s]] ∈ |C| to
any s ∈ S;

8

• some morphism [[σ]] : ⋆→ [[t]] for any σ : t ∈ Σ, where
[[_]] : Type→ |C| extends the map above as follows:

– [[s→ t]]
def
= [[t]][[s]], and

– [[s× t]]
def
= [[s]]× [[t]].

Recall that ⋆ is the final object of C.

We show that the operator [[_]] : Σ→ C above can be extended to
any λ -expressions. Our goal is therefore to define for each
well-typed λ -expression X ◃ E : t, where X = x1 :s1, . . . , xn :sn, a
morphism [[X ◃ E : t]] : [[s1]]× . . . [[sn]]→ [[t]] in C.

Before that, let us first discuss how such morphisms would relate to
the more natural interpretation of well-typed λ -expressions in
Henkin models, namely as functions MX ◃ E : t : [X →M]→Mt on
environments. The key observation here is the set of
M -environments [X →M] is in a one-to-one correspondence with

9

the set Ms1 × . . .×Msn . Indeed, an M -environment is nothing but
a choice of an element in each of the sets Ms1 , . . . ,Msn , which is
nothing but an element in Ms1 × . . .×Msn . Therefore, we regard
the functions MX ◃ E:t that appear in a Henkin model as functions
Ms1 × . . .×Msn →Mt, which now look closely related to our
morphisms [[X ◃ E : t]] : [[s1]]× . . .× [[sn]]→ [[t]] defined next. We
will actually see later on that there is a very tight relationship
between the CCC models defined next and Henkin models.

Recall that A×B and B ×A are isomorphic in C. Therefore, the
objects [[s1]], . . . , [[sn]] can be permuted in any order in the product
[[s1]], . . . , [[sn]]. However, in what follows, we prefer to work with
type assignments as lists rather than sets; this way we can generate
fixed interpretations rather than the possibly confusing
“up-to-isomorphism” ones. To accomplish this, we need to slightly
modify the inference rules to account for lists rather than sets.

10

Fortunately, this is quite easy. We only need to replace each
“X,x :s” by “X1, x :s,X2” correspondingly in the premise of rules,
where X1 and X2 are any type assignments. For example, the rule
(ξ) becomes

E ⊢ (∀X1, x :s,X2) E =t E
′

E ⊢ (∀X1, X2) λx :s.E =s→t λx :s.E′

Now we can extend [[_]] : Type→ |C| to type assignments, i.e.,
[[_]] : TypeAssignment→ |C|, as follows:

[[x1 :s1, . . . , xn :sn]]
def
= [[s1]]× . . .× [[sn]] .

We are now ready to define the morphisms [[X ◃ E : t]] : [[X]]→ [[t]]

in C, inductively on the structure of well-typed λ -expressions:

• [[X1, xi :si, X2 ◃ xi :si]]
def
= πi, the i-th projection given by the

definition of the product, i.e., πi : [[X1]]× [[si]]× [[X2]]→ [[si]];

11

• [[X ◃ σ : t]]
def
= ![[X]]; [[σ]] for any σ : t ∈ Σ, where ![[X]] : [[X]]→ ⋆ is

the unique morphism from [[X]] to the final object ⋆, and
[[σ]] : ⋆→ [[t]] is the interpretation of σ given as part of the
definition of the (S,Σ)-CCC C. Intuitively, the morphism
[[X ◃ σ : t]] “forgets” its input and “recalls” the “built in” σ;

• [[X ◃ λx :s.E :s→ t]]
def
= curry([[X,x :s ◃ E : t]]) . Note that,

indeed, this morphism is well-defined: this is because
[[X,x :s ◃ E : t]] is a morphism [[X]]× [[s]]→ [[t]] and curry takes
morphisms in C([[X]]× [[s]], [[t]]) to morphisms in C([[X]], [[t]][[s]]).
Therefore, curry([[X,x :s ◃ E : t]]) is a morphism
[[X]]→ [[s→ t]], as expected. Note the elegance of the definition
of this CCC interpretation, in contrast to the corresponding
definition in Henkin models;

• [[X ◃ E1E2 : t]]
def
= ⟨[[X ◃ E1 :s→ t]], [[X ◃ E2 :s]]⟩; app[[s]],[[t]].

This definition needs some explanation. Note that

12

[[X ◃ E1 :s→ t]] is a morphism [[X]]→ [[t]][[s]], while
[[X ◃ E2 :s]] is a morphism [[X]]→ [[s]], so
⟨[[X ◃ E1 :s→ t]], [[X ◃ E2 :s]]⟩ is a morphism
[[X]]→ [[t]][[s]] × [[s]]. This morphism can be indeed composed
with app[[s]],[[t]] : [[t]][[s]] × [[s]]→ [[t]], thus giving a morphism
[[X]]→ [[t]], as desired. All these morphisms are depicted in the
following figure:

[[t]][[s]]

[[X]]
⟨[[X ◃ E1 :s→t]],[[X ◃ E2 :s]]⟩//

[[X ◃ E1 :s→t]]
//

[[X ◃ E2 :s]] //

[[t]][[s]] × [[s]]

π1

99ttttttttt

π2

%%KK
KKK

KKK
KKK

app[[s]],[[t]]

// [[t]]

[[s]]

Like in the diagram above, it is often the case that constructions

13

and proofs in category theory are driven almost automatically by
diagrams; note that there are no other simpler ways to put together
the morphisms [[X]]→ [[t]][[s]] and [[X]]→ [[s]] into a morphism
[[X]]→ [[t]].

The remaining definitions are straightforward:

• [[X ◃ (E1, E2) : t1 × t2]]
def
= ⟨[[X ◃ E1 : t1]], [[X ◃ E2 : t2]]⟩;

• [[X ◃ proj1E : t1]]
def
= [[X ◃ E : t1 × t2]];π1;

• [[X ◃ proj2E : t2]]
def
= [[X ◃ E : t1 × t2]];π2.

14

We can associate a morphism [[X ◃ E : t]] : [[X]]→ [[t]] to any
well-typed λ -expression X ◃ E : t. Let us construct such a
morphism for a concrete λ -expression:

[[∅ ◃ λ x :s.(λ f :s → s.λ g :s × s → t.g(x, fx))(λ y :s.y) :s → (s × s → t) → t]] =

curry([[x :s ◃ (λ f :s → s.λ g :s × s → t.g(x, fx))(λ y :s.y) : (s × s → t) → t]]) =

curry(⟨[[x :s ◃ λ f :s → s.λ g :s × s → t.g(x, fx) :u]], [[x :s ◃ λ y :s.y :v]]⟩; app[[u]],[[v]]) =

curry(⟨curry(curry([[x :s, f :s → s, g :s × s → t ◃ g(x, fx) :t]])), curry([[x :s, y :s ◃ y :s]])⟩; app[[u]],[[v]]) =

curry(⟨curry(curry(⟨[[X ◃ g :s × s → s]], [[X ◃ (x, fx) :s × s]]⟩; app[[s×s]],[[s]])), curry(π2)⟩; app[[u]],[[v]]) =

curry(⟨curry(curry(⟨π3, ⟨π1, ⟨π2, π1⟩; app[[s]],[[s]]⟩⟩; app[[s×s]],[[s]])), curry(π2)⟩; app[[u]],[[v]]),

where u
def
= (s→ s)→ (s× s→ t)→ t, v def

= s→ s, and
X

def
= x :s, f :s→ s, g :s× s→ s.

Interestingly, note that the morphism obtained above contains no
references to the variables that occur in the original λ -expression.
It can be shown that the interpretation of λ -expressions into a
CCC is invariant to α-conversion. To see that, let us draw the
morphism above as a tree, where we write λ instead of curry, _ _

15

instead of ⟨_ ,_⟩; app[[s]],[[t]], (_ ,_) instead of the remaining ⟨_ ,_⟩
and n instead of πn (and omit the types):

λx

_ _
nnnn PPPP

λ f λ y

λ g y

_ _
www

OO

g (_ ,_)

ppp
p NNN

NN

x _ _
ppp

pp FF
F

f x

16

λ

_ _
mmm

m QQQ
Q

λ λ

λ 2

77

_ _
www

OO

3

::

(_ ,_)

qqq
q

MMM
MM

1

//

_ _
ppp

pp FF
F

2

CC

1

kk

The (right) tree above suggests a representation of λ -expressions
that is invariant to α-conversion: each binding variable is replaced
by a natural number, representing the number of λ s occurring on
the path to it; that number then replaces consistently all the bound
occurrences of the variable. The corresponding lambda expression
without variables obtained using this transformation is

17

λ (λλ (3 (1, (2 1))) λ 2).

Exercise 2 Explain why this representation is invariant to
α-conversion.

The representation of α-expressions above was explicitly proposed
as a means to implement λ -calculus in 1971 by Nicholas de Bruijn.

In the same paper, de Bruijn proposed another encoding which
became more popular. We do not know whether de Bruijn was
influenced by the CCC interpretation of λ -expressions or not, but
we discuss his other representation technique here.

18

de Bruijn Nameless Representation of λ -expression

The second and more popular representation technique of
λ -expressions proposed by Nicholas de Bruijn in 1971 is a
bottom-up version of the above representation. For the above
example the tree representing the encoding is (we omit the types):

λx

_ _
nnnn PPPP

λ f λ y

λ g y

_ _
www

OO

g (_ ,_)

ppp
p NNN

NN

x _ _
ppp

pp FF
F

f x

19

λ

_ _
mmm

m QQQ
Q

λ λ

λ 0

77

_ _
www

OO

0

::

(_ ,_)

qqq
q

MMM
MM

2

//

_ _
ppp

pp FF
F

1

CC

2

kk

In this encoding, each variable is replaced by the number of lambda
abstractions on the path from it to the lambda abstraction binding
it. The encoding for the given example is λ (λλ (0 (2, (1 2))) λ 0).
One can easily define application for the above de Bruijn encoding:

20

(λE′ E) ⇒ ↓ (E′[↑ (E)/0])

(E1 E2)[E/n] = (E1[E/n]) (E2[E/n])

(λE′)[E/n] = λ (E′[↑ (E)/(n+ 1)])

m[E/n] =

 E if m = n

m if otherwise

↑ (E) = ↕10 (E)

↓ (E) = ↕−1
0 (E)

↕cn (E1 E2) = (↕cn (E1)) (↕cn (E2))

↕cn (λE) = λ ↕cn+1 (E)

↕cn (m) =

 m+ c if m ≥ n

m if otherwise

Exercise 3 Define the transformation above formally in Maude.

Exercise 4 Define application for the first de Bruijn encoding, in
a similar style to the one above.

21

Extending Henkin models

We can extend the definition of Henkin models to (S,Σ)-Henkin
models. Thus, an (S,Σ)-preframe or premodel (Henkin) consists of
the following:

• a set Mt for each type t;

• a (Type-indexed) mapping M_ : Σ→M ;

• for any s, t ∈ Type

– a function Ms,t : Ms→t ×Ms →Mt which is extensional,
i.e., for any f, g ∈Ms→t, if Ms,t(f, u) = Ms,t(g, u) for all
u ∈Ms then f = g;

– two functions Ms×t
s : Ms×t →Ms and Ms×t

t : Ms×t →Mt

which form an extensional pair, i.e., for any p, q : Ms×t, if
Ms×t

s (p) = Ms×t
s (q) and Ms×t

t (p) = Ms×t
t (q) then p = q;

22

Given u ∈Ms and v ∈Mt, when it exists we let (u, v) denote the
unique element in Ms×t such that Ms×t

s (p) = u and Ms×t
t (p) = v.

A well-typed λ -expression X ◃ E : t is interpreted by a mapping
MX ◃ E:t : [X →M]→Mt such that:

• MX ◃ σ:s(ρ) = Mσ ∈Ms;

• MX ◃ x:s(ρ) = ρ(x : s) ∈Ms;

• Ms,t(MX ◃ λx:s.E:s→t(ρ), v) = MX,x:s ◃ E:t(ρ[x← v]) for any
v ∈Ms;

• MX ◃ E1E2:t(ρ) = Ms,t(MX ◃ E1:s→t(ρ),MX ◃ E2:s(ρ));

• Ms×t
s (MX ◃ (E,E′):s×t(ρ)) = MX ◃ E:s(ρ) and

Ms×t
t (MX ◃ (E,E′):s×t(ρ)) = MX ◃ E′:t(ρ);

• MX ◃ proj1E:s(ρ) = Ms×t
s (MX ◃ E:s×t(ρ));

• MX ◃ proj2E:t(ρ) = Ms×t
t (MX ◃ E:s×t(ρ)).

23

Henkin models are CCCs

Given an (S,Σ)-Henkin model M, one can define a (S,Σ)-CCC C:

• the objects of C: Mt for each t ∈ Type;

• the set of morphisms C(Ms,Mt) is Ms→t;

• the identity morphism 1Ms is M∅ ◃ λ x:s.x:s→s;

• given f ∈ C(Ms,Mt) and g ∈ C(Mt,Mt′), define f ; g as
Mu:s→t,v:t→t′ ◃ λ x:s.v(ux):s→t′(ρ) where ρ(u) = f and ρ(v) = g;

• Ms ×Mt = Ms×t and the projections are Ms×t
s and Ms×t

t ;

• the exponentiation object MMs
t is Ms→t, and the application

morphism appMs,Mt is M∅ ◃ λ x:(s→t)×s.proj1(x) proj2(x):(s→t)×s→t;

• [[t]] = Mt and [[σ]] = Mσ.

Exercise 5 Prove that C is indeed a (S,Σ)-CCC.

24

Some CCCs are Henkin models

Let C be an (S,Σ)-CCC such that for each object A, C(⋆,A) is a
homomorphic family, that is, for any object B and any two
morphisms f, g : A→ B, if h; f = h; g for each h : ⋆→ A then
f = g; such a category is also called well-pointed. Then we can
define a Henkin model M for (S,Σ) as follows:

• Mt = C(⋆, [[t]]) for each type t;

• Ms,t : Ms→t ×Ms →Mt is given by: for any
f : ⋆→ [[s→ t]] = [[t]][[s]] and any x : ⋆→ [[s]],
Ms,t(f, x) = ⟨f, x⟩; app[[s]],[[t]];

• given X = x1 : s1, . . . , xn : sn let
∏

X = [[s1]]× · · · × [[sn]]. Each
morphism h : ⋆→

∏
X is equivalent with the tuple

⟨h;π[[s1]], . . . , h;π[[sn]]⟩. Thus environments ρ : X →M and
morphisms ⋆→

∏
X are in bijection. Let ρ : ⋆→

∏
X denote

25

the image of ρ through this bijection;

• For each well-typed λ -expression X ◃ E : s, and each
assignment ρ, let MX ◃ E:s(ρ) = ρ; [[X ◃ E : s]].

Exercise 6 Show that M is indeed an (S,Σ)-Henkin model.

