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General Information about Maude

Maude is an executable specification language supporting rewrite
logic specifications and having at its core a very fast rewrite engine.

We will use Maude as a platform for executing programming
language definitions following various definitional styles. Our short
term objectives are:

1. Learn how to use Maude;

2. Show how various language definitional styles, including the
ones discussed so far or to be discussed (big-step and small-step
SOS, MSOS, reduction semantics with evaluation contexts, the
CHAM, denotational semantics) can be formally defined in
Maude;
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Maude’s roots go back to Clear (Edinburgh) in 1970s and to OBJ
(Stanford, Oxford) in 1980s. There are many other languages in
the same family, such as CafeOBJ (Japan), BOBJ (San Diego,
California), ELAN (France).

Maude is currently being developed at Stanford Research Institute
and at the University of Illinois at Urbana-Champaign. You can
find more about Maude, including a manual and many papers and
examples, on its webpage at http://maude.cs.uiuc.edu.

Due to the fact that Maude is executable, interpreters for
programming languages defined in Maude will be obtained for free,
which will be very useful for understanding, refining and/or
changing the languages.
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Moreover, analysis tools for the specified languages can also be
obtained with little effort, such as type checkers, abstract
interpreters or model-checkers, either by using analysis tools
already provided by Maude or by deriving them explicitly from a
language definition.

Devising formal semantic executable models of desired languages or
tools before these are implemented is a crucial step towards a deep
understanding of the language or tool.

In simplistic terms, it is like devising a simulator for an expensive
system before building the actual system.
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However, our “simulators” in this class will consist of exactly the
semantics, or the meaning, of our desired systems, defined using a
very rigorous, mathematical notation.

In the obtained formal executable model of a programming
language, “executing a program” will correspond to nothing but
logical inference within the semantics of the language.

Maude is easy to install and should run on the assigned machines.
Type maude and you should see a welcome screen like the following:
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bash$ maude
\||||||||||||||||||/

--- Welcome to Maude ---
/||||||||||||||||||\

Maude ... built: ...
Copyright 1997-... SRI International

.........................
Maude>

You can download Maude from its web page at
http://maude.cs.uiuc.edu. Unix/Linux is preferred, but it also
works on Windows. Also save its user manual. You will need it.
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How to Use Maude

Maude is interpreted; just type your specifications and commands.

Better way to use it:

1. Type everything in one file, say p.maude

2. Start Maude

3. Include that file with the command “in p” or “in p.maude”

4. Use “quit” or “q”, to quit.
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Modules

Specifications are introduced as modules, or theories. We will use
only general modules in this class, which have the syntax

mod <NAME> is
<BODY>

endm

The <BODY> can include

• Importation of other modules

• Sort and operation declarations, forming the signature of that
module; this is the interface of that module to the outside world

• Sentences.
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We will use modules to define programming language features.
These features can be then imported by other modules, which can
extend them or use them to define other features. A programming
language will be also defined as a module, namely one importing all
the modules defining its desired features.

Let us exemplify this paradigm by defining the simplest
programming language that we will see in this class. It is so simple,
that it does not even deserve to be called a “programming
language”, but we do so for the sake of a uniform terminology.

The language specified in what follows defines natural numbers with
addition and multiplication. One module will define the feature
“addition” and another will define the feature “multiplication” on
top of addition.



10

An Example: Peano Natural Numbers

The following defines natural numbers with successor and addition,
using Peano’s axiomatization:

mod PEANO-NAT is
sort Nat .
op zero : -> Nat .
op succ : Nat -> Nat .
op plus : Nat Nat -> Nat .
vars N M : Nat .
eq plus(zero, M) = M .
eq plus(succ(N), M) = succ(plus(N, M)) .

endm

Declarations are separated by periods, which should typically have
white spaces before and after.
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Signatures

One sort, Nat, and three operations, zero, succ, and plus, form
the signature of PEANO-NAT. Sorts are declared with the keywords
sort or sorts, and operations with op or ops.

The three operations have zero, one and two arguments, resp.,
whose sorts are between : and ->. Operations of zero arguments
are also called constants, those of one argument are called unary
and those of two binary. The result sort appears after ->.

Use ops when two or more operations of same arguments are
declared together, and use white spaces to separate them:

ops plus mult : Nat Nat -> Nat .

There are few special characters in Maude. If you use op in the
above then only one operation, called “plus mult”, is declared.
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Equations

The two equations in PEANO-NAT are “properties”, or constraints,
that these operations should satisfy. More precisely, any correct
implementation of Peano natural numbers should satisfy them.
All equations are quantified universally, so we should read “for all M
and N of sort Nat, plus(s(N), M) = s(plus(N,M))”. All equations
in a module can be used in reasoning about the defined structures.

Exercise 1 Prove that any correct implementation of PEANO-NAT
should satisfy the property

plus(succ(succ(zero)), succ(succ(succ(zero)))) =
plus(succ(succ(succ(succ(zero)))), succ(zero)).

Equations can be applied from left-to-right or from right-to-left in
reasoning, which means that equational proofs may require
exponential search, thus making them theoretically intractable.
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Rewriting

Maude regards all equations as rewriting rules, which means that
they are applied only from left to right. Thus, any well-formed
term can either be derived infinitely often, or be reduced to a
normal form, which cannot be reduced anymore by applying
equations as rewriting rules.
Maude’s command to reduce a term to its normal form is reduce
or simply red. Reduction will be made in the last defined module:

Maude> reduce plus(succ(succ(zero)), succ(succ(succ(zero)))) .
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: succ(succ(succ(succ(succ(zero)))))
Maude>

Millions of rewrites per second can be performed, for which reason
Maude can be (almost) used as a programming language.
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Importation

Modules can be imported, using the keywords protecting,
extending or including. The difference between these
importation modes is subtle and semantical rather than
operational. Fell free to use including, the most general of them,
all the time and read the manual for more information.
The following module extends PEANO-NAT with multiplication:

mod PEANO-NAT* is
including PEANO-NAT .
op mult : Nat Nat -> Nat .
vars M N : Nat .
eq mult(zero, M) = zero .
eq mult(succ(N), M) = plus(mult(N, M), M) .

endm

Variable declarations are not imported.
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Putting it all Together

We can now define our simple programming language and “execute
programs” (in this case, PEANO-NAT* already had all the features):

mod SIMPLEST-PROGRAMMING-LANGUAGE is
including PEANO-NAT .
including PEANO-NAT* .

endm
red mult(succ(succ(zero)), mult(succ(succ(zero)), succ(succ(zero)))) .

The following is Maude’s output:

reduce in SIMPLEST-PROGRAMMING-LANGUAGE :
mult(succ(succ(zero)), mult(succ(succ(zero)), succ(succ(zero)))) .

rewrites: 16 in 0ms cpu (0ms real) (~ rewrites/second)
result Nat: succ(succ(succ(succ(succ(succ(succ(succ(zero))))))))

Even though this language is very simple and its syntax is ugly, it



16

nevertheless shows a formal and executable definition of a language
using equational logic and rewriting.

Our languages or analysis tools discussed in this class will be
defined in a relatively similar manner, though, as expected, they
will be more involved. For example, a notion of state will be
needed, as well as several control structures.
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The Mix-fix Notation

Some operations are prefix, but others are infix, postfix, or mix-fix,
i.e., arguments can occur anywhere, like in the case of
if_then_else_.
Maude supports mix-fix notation by allowing the user to place the
arguments of operations wherever one wants by using underscores.
Here are some examples:

op _+_ : Int Int -> Int .
op _! : Nat -> Nat .
op in_then_else_ : BoolExp Stmt Stmt -> Stmt .
op _?_:_ : BoolExp Exp Exp -> Exp .

Exercise 2 Rewrite PEANO-NAT and PEANO-NAT* using mix-fix
notation. What happens if you try to reduce an expression
containing both _+_ and _*_ without parentheses?
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BNF (Bachus-Naur Form) or CFG (Context Free Grammar)
notations to describe the syntax of programming languages are
very common. We also used BNF to define the syntax of our simple
language in the lectures on SOS. From here on, we can
interchangeably use the mix-fix notation instead of BNF or CFG,
so it is important to understand the relationship between the
mix-fix notation and BNF and CFG:

Exercise 3 Argue that the mix-fix notation is equivalent to BNF
and CFG. Find an interesting simple example language and express
its syntax using the mix-fix notation, BNF, and production-based
CFG (e.g., A → AB | a and B → BA | b).
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Parsing

Mix-fix notation leads to an interesting problem, that of parsing. In
the modified PEANO-NAT* of Ex. 2, how do we parse x + y * z?
Maude has a command called parse, which parses a term using the
syntax of the most recently defined module. To see all the
parentheses, first type the command “set print with
parentheses on .” (see Subsection 17.5 in Maude’s manual).
“parse x + y * z .” reports ambiguous parsing. Use parentheses
to disambiguate parsing, such as “parse x + (y * z) .”. To give
priorities to certain operators in order to reduce the number of
parentheses, use precedence attribute when you declare operators:
op _+_ : Int Int -> Int [prec 33] .
op _*_ : Int Int -> Int [prec 31] .

The lower the precedence the stronger the binding!
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Maude has several builtin modules, including ones for natural and
integer numbers. The operations _+_ and _*_ have precedences 33
and 31, respectively, in these builtin modules. With these
precedences, one can parse as follows:

Maude> set print with parentheses on .
Maude> parse -10 + 2 * 3 .
Int: (-10 + (2 * 3))

Sometimes, especially when debugging, the mixfix notation may be
confusing. If you wish to turn it off, use the command:

Maude> set print mixfix off .
Maude> parse -10 + 2 * 3 .
Int: _+_(-10, _*_(2, 3))
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Associativity, Commutativity and Identity Attributes

Many of the binary operations that will be used in this class will be
associative (A), commutative (C) or have an identity (I), or
combinations of these. E.g., _+_ is associative, commutative and
has 0 as identity. All these can be added as attributes to operations
when declared:

op _+_ : Int Int -> Int [assoc comm id: 0 prec 33] .
op _*_ : Int Int -> Int [assoc comm id: 1 prec 31] .

Notice that each of the A, C, and I attributes are logically
equivalent to appropriate equations, such as

eq A + (B + C) = (A + B) + C .
eq A + B = B + A . ---> attention: rewriting does not terminate!
eq A + 0 = A .

Then why are the ACI attributes necessary? For several reasons:
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1. Associativity removes the need for useless parentheses:
Maude> parse -10 + 2 + 3 .
Int: -10 + 2 + 3

2. Commutativity will allow rewriting to terminate. The normal
form will, however, be modulo commutativity.

3. ACI matching is perhaps the most interesting reason. It will be
described next.
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Matching Modulo Attributes

Lists occur in many programming languages. The following module
is a an elegant but tricky specification for lists of integers with a
membership operation _in_:

mod INT-LIST is protecting INT .
sort IntList .
subsort Int < IntList .
op nil : -> IntList .
op __ : IntList IntList -> IntList [assoc id: nil] .
op _in_ : Int IntList -> Bool .
var I : Int . vars L L' : IntList .
eq I in L I L' = true .
eq I in L = false [owise] .

endm
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Note the declaration “subsort Int < IntList .”, which says that
integers are also lists of integers. Then the constant nil and the
concatenation operation __ can generate any finite list of integers:
Maude> parse 1 2 3 4 5 .
IntList: 1 2 3 4 5
Maude> red 1 nil 2 nil 3 nil 4 nil 5 6 7 nil .
result IntList: 1 2 3 4 5 6 7

Further, by AI matching, the membership operation can be defined
without having to traverse the list element by element!
Maude> red 3 in 2 3 4 .
result Bool: true
Maude> red 3 in 3 4 5 .
result Bool: true
Maude> red 3 in 1 2 4 .
result Bool: false

By AI matching, I, L, and L’ in the left-hand-side term of “eq I
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in L I L' = true .” can match any integer or lists of integers,
respectively, including nil. Since I can only be matched by 3, the
other matches follow automatically.
The attribute owise in “eq I in L = false [owise] .” tells
Maude to apply that equation only “otherwise”, that is, only if no
other equation, in this case the previous one only, can be applied.
If one wants to define sets of integers, then, besides replacing the
sort IntList probably by IntSet, one has to declare the
concatenation also commutative, and one has to replace the first
equation by “eq I in I L = true .”.

Exercise 4 Define a Maude module called INT-SET specifying sets
of integers with membership, union, intersection and difference
(elements in one set and not in the other).

The matching modulo attributes are implemented very efficiently in
Maude, so you (typically) don’t have to worry about efficiency.
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Built-in Modules

There are several built-in modules. We will use the following:

• BOOL. Provides a sort Bool with two constants true, false and
basic boolean calculus, together with if_then_else_fi and
_==_ operations. The later takes two terms, reduces them to
their normal forms, and then returns true iff they are equal
(modulo ACI, as appropriate); otherwise it returns false.

• INT. Provides a sort Int, arbitrary large integers as constants
of sort Int, together with the usual operations on these.

• QID. Provides a sort Qid together with arbitrary large quoted
identifiers, as constants of sort Qid, of the form: 'a, 'b,
'a-larger-identifier, etc.

To see an existing module, built-in or not, type the command

Maude> show module <NAME> .
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For example, “show module BOOL .” will output
mod BOOL is protecting TRUTH .

op _and_ : Bool Bool -> Bool [assoc comm prec 55] .
op _or_ : Bool Bool -> Bool [assoc comm prec 59] .
op _xor_ : Bool Bool -> Bool [assoc comm prec 57] .
op not_ : Bool -> Bool [prec 53] .
op _implies_ : Bool Bool -> Bool [prec 61 gather (e E)] .
vars A B C : Bool .
eq true and A = A . eq false and A = false .
eq A and A = A . eq false xor A = A .
eq A xor A = false . eq not A = A xor true .
eq A and (B xor C) = A and B xor A and C .
eq A or B = A and B xor A xor B .
eq A implies B = not (A xor A and B) .

endm

Exercise 5 Use the command “show module <NAME> .” on the
three modules above and try to understand them.
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Constructor versus Defined Operations

When we defined the operation plus on Peano natural numbers, we
defined it recursively on numbers of the form zero and succ(N).
Why did we do that, considering that PEANO-NAT had declared
three operations:

op zero : -> Nat .
op succ : Nat -> Nat .
op plus : Nat Nat -> Nat .

Intuitively, the reason is that because we want plus to be
completely defined in terms of zero and succ. Formally, this means
that any term over the syntax zero, succ, and plus can be shown,
using the given equations, equal to a term containing only zero and
succ operations, that is, zero and succ alone are sufficient to build
any Peano number. For that reason, they are called constructors.
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Defining Operations using Constructors

There is no silver-bullet recipe on how to define “defined”
operators, but essentially the main (safe) idea is to

Define the operator’s “behavior” on each constructor.

That is what we did when we defined plus in PEANO-NAT and mult
in PEANO-NAT*: we first defined them on zero and then on succ.
In general, if c1, ..., cn are the intended constructors of a data-type,
in order to define a new operation d, make sure that all equations
eq d(c1(X1,...)) = ...
...
eq d(cn(Xn,...)) = ...

are in the specification. This gives no guarantee (e.g., one can
“define” plus as plus(succ(M),N) = plus(succ(M),N)), but it is
a good enough principle to follow.
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Defining Operations on Lists

Let us consider the following specification of lists:

mod INT-LIST is protecting INT .
sort IntList . subsort Int < IntList .
op __ : Int IntList -> IntList [id: nil] .
op nil : -> IntList .

endm

Therefore, there are two constructors for lists: the empty list and
the concatenation of an integer to a list. Let us next define several
other important and useful operations on lists. Notice that the
definition of each operator treats each of the constructors
separately.
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The following defines the usual length operator:

mod LENGTH is protecting INT-LIST .
op length : IntList -> Nat .
var I : Int . var L : IntList .
eq length(I L) = 1 + length(L) .
eq length(nil) = 0 .

endm

red length(1 2 3 4 5) . ***> should be 5
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The following defines membership, without speculating associative
matching (in fact, this would not be possible anyway because
concatenation is not defined associative as before):

mod IN is protecting INT-LIST .
op _in_ : Int IntList -> Bool .
vars I J : Int . var L : IntList .
eq I in J L = if I == J then true else I in L fi .
eq I in nil = false .

endm

red 3 in 2 3 4 . ***> should be true
red 3 in 3 4 5 . ***> should be true
red 3 in 1 2 3 . ***> should be true
red 3 in 1 2 4 . ***> should be false
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The next operator appends two lists of integers:

mod APPEND is protecting INT-LIST .
op append : IntList IntList -> IntList .
var I : Int . vars L1 L2 : IntList .
eq append(I L1, L2) = I append(L1, L2) .
eq append(nil, L2) = L2 .

endm

red append(1 2 3 4, 5 6 7 8) .
***> should be 1 2 3 4 5 6 7 8
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The following imports APPEND and defines an operation which
reverses a list:

mod REV is protecting APPEND .
op rev : IntList -> IntList .
var I : Int . var L : IntList .
eq rev(I L) = append(rev(L), I) .
eq rev(nil) = nil .

endm

red rev(1 2 3 4 5) . ***> should be 5 4 3 2 1



35

The next module defines an operation which sorts a list of integers
by insertion sort:

mod ISORT is protecting INT-LIST .
op isort : IntList -> IntList .
vars I J : Int . var L : IntList .
eq isort(I L) = insert(I, isort(L)) .
eq isort(nil) = nil .
op insert : Int IntList -> IntList .
eq insert(I, J L) = if I > J then J insert(I,L) else I J L fi .
eq insert(I, nil) = I .

endm

red isort(4 7 8 1 4 6 9 4 2 8 3 2 7 9) .
***> should be 1 2 2 3 4 4 4 6 7 7 8 8 9 9
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Defining Operations on Binary Trees

Let us now consider a specification of binary trees, where a tree can
be either empty or an integer with a left and a right subtree:

mod TREE is protecting INT .
sort Tree .
op ___ : Tree Int Tree -> Tree .
op empty : -> Tree .

endm

We next define some operations on such trees, also following the
structure of the trees given by the two constructors above.
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The next simple operation simply mirrors a tree, that is, it
recursively replaces each left subtree by the mirrored right subtree
and vice-versa:

mod MIRROR is protecting TREE .
op mirror : Tree -> Tree .
vars L R : Tree . var I : Int .
eq mirror(L I R) = mirror(R) I mirror(L) .
eq mirror(empty) = empty .

endm

red mirror((empty 3 (empty 1 empty)) 5 ((empty 6 empty) 2 empty)) .
***> should be (empty 2 (empty 6 empty)) 5 ((empty 1 empty) 3 empty)
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Searching in binary trees can be defined as follows:
mod SEARCH is protecting TREE .
op search : Int Tree -> Bool .
vars I J : Int . vars L R : Tree .
eq search(I, L I R) = true .
eq search(I, L J R) = search(I, L) or search(I, R) [owise] .
eq search(I, empty) = false .

endm

red search(6, (empty 3 (empty 1 empty)) 5 ((empty 6 empty) 2 empty)) .
***> should be true
red search(7, (empty 3 (empty 1 empty)) 5 ((empty 6 empty) 2 empty)) .
***> should be false

Notice the use of the attribute [owise] for the second equation.

Exercise 6 Define search with only two equations, by using the
built-in if_then_else_fi.
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Putting Together Trees and Lists

We next define a module which imports both modules of trees and
of lists on integers, and defines an operation which takes a tree and
returns the list of all integers in that tree, in an infix traversal:
mod FLATTEN is
protecting APPEND .
protecting TREE .
op flatten : Tree -> IntList .
vars L R : Tree . var I : Int .
eq flatten(L I R) = append(flatten(L), I flatten(R)) .
eq flatten(empty) = nil .

endm
red flatten((empty 3 (empty 1 empty)) 5 ((empty 6 empty) 2 empty)) .
***> should be 3 1 5 6 2

Exercise 7 Do the same for prefix and for postfix traversals.
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Exercise 8 Write an executable specification in Maude that uses
binary trees to sort lists of integers. You should define an operation
btsort : IntList -> IntList, which sorts the argument list of
integers, as isort did above. In order to define it, define another
operation bt-insert : IntList Tree -> Tree, which inserts
each integer in the list at its place in the tree, and also use the
already defined flatten operation.


