
1

CS522 - Programming Language Semantics

Lambda Calculus and Combinatory Logic

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign

2

In this part of the course we discuss two important and closely
related mathematical theories:

• Lambda calculus, written also λ-calculus, is a pure calculus of
functional abstraction and function application, with many
applications in logic and computer science;

• Combinatory logic shows that bound variables can be entirely
eliminated without loss of expressiveness. It has applications
both in the foundations of mathematics and in the
implementation of functional programming languages.

A good reference for these subjects is the book “The Lambda
Calculus: Its Syntax and Semantics” by H.P. Barendregt (Second
Edition, North Holland 1984). This book also contains a great
discussion on the history and motivations of these theories.

3

Lambda Calculus (λ-Calculus)

Lambda calculus was introduced in 1930s, as a mathematical
theory together with a proof calculus aiming at capturing
foundationally the important notions of function and function
application. Those years were marked by several paradoxes in
mathematics and logics. The original motivation of λ-calculus was
to provide a foundation of logics and mathematics. Even though
the issue of whether λ-calculus indeed provides a strong foundation
of mathematics is still largely open, it nevertheless turned out to be
a quite successful theory of computation.

Today, more than 70 years after its birth, λ-calculus and its
afferent subjects still fascinates computer scientists, logicians,
mathematicians and, certainly, philosophers.

4

λ-Calculus is a convenient framework to describe and explain many
programming language concepts. It formalizes the informal notion
of “expression that can be evaluated” as a λ-term, or λ-expression.
More precisely, λ-calculus consists of:

• Syntax - used to express λ-terms, or λ-expressions;

• Proof system - used to prove λ-expressions equal;

• Reduction - used to reduce λ-expressions to equivalent ones.

We will show how λ-calculus can be formalized as an equational
theory. That means that its syntax can be defined as an algebraic
signature (to enhance readability we can use the mix-fix notation);
its proof system becomes a special case of equational deduction;
and its reduction becomes a special case of rewriting (when certain
equations are regarded as rewrite rules).

5

We can therefore conclude that equational logic and rewriting also
form a strong foundational framework to describe and explain
programming language concepts. This hypothesis was practically
evaluated through several concrete definitions of languages in
CS422, a course on programming language design.

We will later see in this class that equational logic forms indeed a
strong foundation for programming language semantics, providing a
framework that supports both denotational and operational
semantics in a unified manner. Moreover, rewriting logic, which is a
natural extension of equational logics with rewrite rules, provides a
foundation for concurrent programming language semantics.

6

Even though λ-calculus is a special equational theory, it has the
merit that it is powerful enough to express most programming
language concepts quite naturally. Equational logic is considered
by some computer scientists “too general”: it gives one “too much
freedom” in how to define concepts; its constraints and intuitions
are not restrictive enough to impose an immediate mapping of
programming language concepts into it.

Personal note: I disagree with the above criticisms on
equational logic in particular, and on rewriting logic in general.
What these logics need to become a broadly accepted strong
foundation for programming languages is, in my personal view,
good methodologies to define languages (and this is what we are
developing at UIUC in several research projects and courses).

7

Syntax of λ-Calculus

Assume an infinite set of variables, or names, V . Then the syntax
of λ-expressions is (in BNF notation)

Exp ::= Var | Exp Exp | λVar.Exp

where Var ranges over the variables in V . We will use lower letters
x, y, z, etc., to refer to variables, and capital letters E, E′, E1, E2,
etc., to refer to λ-expressions. The following are therefore examples
of λ-expressions: λx.x, λx.xx, λx.(fx)(gx), (λx.fx)x.

λ-Expressions of the form λx.E are called λ-abstractions, and those
of the form E1E2 are called λ-applications. The former captures the
intuition of “function definition”, while the latter that of “function
application”. To avoid parentheses, assume that λ-application is
left associative and binds tighter than λ-abstraction.

8

Exercise 1 Define the syntax of λ-calculus in a Maude module
using mix-fix notation; then parse some lambda expressions.

Many programming language concepts, and even entire
programming languages, translate relatively naturally into
λ-calculus concepts or into λ-expressions. In particular, one can
define some transformation φ from functional expressions into
λ-expressions. Such a transformation φ would take, for example,

• variable names x to unique variables x ∈ Var;

• function declarations of the form fun x -> E to λx.φ(E); and

• bindings (which generalize the idea of “local declarations”
occurring in most programming languages, functional or not)
let x1 = E1 and x2 = E2 and ... and xn = En in E to
λ-expressions (λx1.λx2. · · · .λxn.φ(E))φ(E1)φ(E2) · · ·φ(En).

9

Free and Bound Variables

Variable occurrences in λ-expressions can be either free or bound.
Given a λ-abstraction λx.E, also called a binding, then the variable
x is said to be declared by the λ-abstraction, or that λ binds x in
E; also, E is called the scope of the binding.

Formally, we define the set FV(E) of free variables of E as follows:

• FV(x) = {x},

• FV(E1E2) = FV(E1) ∪ FV(E2), and

• FV(λx.E) = FV(E)− {x}.

Consider the three underlined occurrences of x in the λ-expression
(λx.λy.yxy)x. The first is called a binding occurrence of x, the
second a bound occurrence of x (this occurrence of x is bound to
the binding occurrence of x), and the third a free occurrence of x.

10

Expressions E with FV(E) = ∅ are called closed or combinators.

Exercise 2 Extend your Maude definition of λ-calculus in the
previous exercise with a definition of free variables. You should
define an operation fv taking an expression and returning a set of
variables (recall how sets are defined in Maude; if you don’t
remember, ask!).

11

Substitution

Evaluation of λ-expressions is “by-substitution”. That means that
the λ-expression that is “passed” to a λ-abstraction is “copied as it
is” at all the bound occurrences of the binding variable. This will
be formally defined later. Let us now formalize and discuss the
important notion of substitution. Intuitively, E[x← E′] represents
the λ-expression obtained from E by replacing each free occurrence
of x by E′. Formally, substitution can be defined as follows:

• y[x← E′] =

 E′ if y = x

y if y ̸= x,

• (E1E2)[x← E′] = (E1[x← E′])(E2[x← E′]),

• (λx.E)[x← E′] = λx.E.

The tricky part is to define substitution on λ-abstractions of the

12

form (λy.E)[x← E′], where y ̸= x. That is because E′ may contain
free occurrences of y; these occurrences of y would become bound
by the binding variable y if one simply defined this substitution as
λy.(E[x← E′]) (and if E had any free occurrences of x), thus
violating the intuitive meaning of binding. This phenomenon is
called variable capturing. Consider, for example, the substitution
(λy.x)[x← yy]; if one applies the substitution blindly then one gets
λy.yy, which is most likely not what one meant (since λy.x is by all
means “equivalent” to λz.x - this equivalence will be formalized
shortly - while λy.yy is not equivalent to λz.yy). There are at least
three approaches in the literature to deal with this delicate issue:

1. Define (λy.E)[x← E′] as λy.(E[x← E′]), but pay special
attention whenever substitution is used to add sufficient
conditions to assure that y is not free in E′. This approach
simplifies the definition of substitution, but complicates the
presentation of λ-calculus by having to mention “obvious”

13

additional hypotheses all the time a substitution is invoked;

2. Define substitution as a partial operation: (λy.E)[x← E′] is
defined and equal to λy.(E[x← E′]) if and only if y ̸∈ FV(E′).
This may seem like the right approach, but unfortunately is
also problematic, because the entire equational definition of
λ-calculus would then become partial, which has serious
technical implications w.r.t. mechanizing equational deduction
(or the process of proving λ-expressions equivalent) and
rewriting (or reduction);

3. Define substitution as a total operation, but apply a renaming
of y to some variable that does not occur in E or E′ in case
y ∈ FV(E′) (this renaming is called α-conversion and will be
defined formally shortly). This approach slightly complicates
the definition of substitution, but simplifies the presentation of
many results later on. It is also useful when one wants to
mechanize λ-calculus, because it provides an algorithmic way

14

to avoid variable capturing:

(λy.E)[x← E′] =

 λy.(E[x← E′]) if y ̸∈ FV(E′)

λz.((E[y ← z])[x← E′]) if y ∈ FV(E′)
,

where z is a new variable that does not occur in E or E′. Note
that the the requirement “z does not occur in E or E′” is
stronger than necessary, but easier to state that way.

All three approaches above have their advantages and
disadvantages, and one can find many scientists defending each of
them. However, we will later on choose a totally different approach
to define λ-calculus as an executable specification, in which
substitutions play no role anymore. More precisely, we will define
λ-calculus through its translation to combinatory logic.

15

α-Conversion

In mathematics, functions that differ only in the name of their
variables are equal. For example, the functions f and g defined (on
the same domain) as f(x) = x and g(y) = y are considered
identical. However, with the machinery developed so far, there is
no way to show that the λ-expressions λx.x and λy.y are equal. It
is a common phenomenon in the development of mathematical
theories to add desirable but unprovable properties as axioms. The
following is the first meaningful equational axiom of λ-calculus,
known under the name of α-conversion:

(α) λx.E = λz.(E[x← z])

for any variable z that does not occur in E (this requirement on z

is again stronger than necessary, but it is easier to state).

16

Using the equation above, one has now the possibility to prove
λ-expressions “equivalent”. To capture this provability relation
formally, we let E ≡α E′ denote the fact that the equation E = E′

can be proved using standard equational deduction from the
equational axioms above ((α) plus those for substitution).

Exercise 3 Prove the following equivalences of λ-expressions:

• λx.x ≡α λy.y,

• λx.x(λy.y) ≡α λy.y(λx.x),

• λx.x(λy.y) ≡α λy.y(λy.y).

17

β-Equivalence and β-Reduction

We now define another important equation of λ-calculus, known
under the name of β-equivalence:

(β) (λx.E)E′ = E[x← E′]

The equation (β) tells us how λ-abstractions are “applied”.
Essentially, it says that the argument λ-expression that is passed to
a λ-abstraction is copied at every free occurrence of the variable
bound by the λ-abstraction within its scope.

We let E ≡β E′ denote the fact that the equation E = E′ can be
proved using standard equational deduction from the equational
axioms above: (α), (β), plus those for substitution. For example
(λf.fx)(λy.y) ≡β x, because one can first deduce that
(λf.fx)(λy.y) = (λy.y)x by (β) and then that (λy.y)x = x also by

18

(β); the rest follows by the transitivity rule of equational deduction.

Exercise 4 Show that (λx.(λy.x))yx ≡β y

When the equation (β) is applied only from left to write, that is, as
a rewrite rule, it is called β-reduction. We let ⇒β denote the
corresponding rewriting relation on λ-expressions. To be more
precise, the relation ⇒β is defined on α-equivalence classes of
λ-expressions; in other words, ⇒β applies modulo α-equivalence.

Given a λ-expression E, one can always apply α-conversion on E to
rename its binding variables so that all these variables have
different names which do not occur in FV(E). If that is the case,
then note that variable capturing cannot occur when applying a
β-reduction step. In particular, that means that one can follow the
first, i.e., the simplest approach of the three discussed previously to
define or implement substitution. In other words, if one renames
the binding variables each time before applying a β-reduction, then

19

one does not need to rename binding variables during substitution.
This is so convenient in the theoretical developments of λ-calculus,
that most of the works on this subject make the following

Convention. All the binding variables occurring in any given
λ-expression at any given moment are assumed to be
different. Moreover, it is assumed that a variable cannot
occur both free and bound in any λ-expression.

If a λ-expression does not satisfy the above convention then one
can apply a certain number of α-conversions and eventually
transform it into an α-equivalent one that does satisfy it.

Clearly, this process of renaming potentially all the binding
variables before applying any β-reduction step may be quite
expensive. In a more familiar setting, it is like traversing and
changing the names of all the variables in a program at each
execution step! There are techniques aiming at minimizing the

20

amount of work to be performed in order to avoid variable
captures. All these techniques, however, incur certain overheads.

One should not get tricked by thinking that one renaming of the
binding variables, at the beginning of the reduction process, should
be sufficient. It is sufficient for just one step of β-reduction, but not
for more. Consider, e.g., the closed λ-expression, or the combinator,

(λz.zz)(λx.λy.xy).

It has three binding variables, all different. However, if one applies
substitution in β-reductions blindly then one quickly ends up
capturing the variable y:

21

(λz.zz)(λx.λy.xy) ⇒β

(λx.λy.xy)(λx.λy.xy) ⇒β

λy.(λx.λy.xy)y ⇒β

λy.λy.yy

We have enough evidence by now to understand why substitution,
because of the variable capture phenomenon, is considered to be
such a tricky and subtle issue by many computer scientists.

We will later see an ingenious technique to transform λ-calculus
into combinatory logic which, surprisingly, eliminates the need for
substitutions entirely.

22

Confluence of β-Reduction

Consider the λ-expression (λf.(λx.fx)y)g. Note that one has two
different ways to apply β-reduction on this λ-expression:

1. (λf.(λx.fx)y)g ⇒β (λf.fy)g, and

2. (λf.(λx.fx)y)g ⇒β (λx.gx)y.

Nevertheless, both the intermediate λ-expressions above can be
further reduced to gy by applying β-reduction.

This brings us to one of the most notorious results in λ-calculus
(⇒∗

β is the reflexive and transitive closure of ⇒β):
Theorem. ⇒β is confluent. That means that for any λ-expression
E, if E ⇒∗

β E1 and E ⇒∗
β E2 then there is some λ-expression E′

such that E1 ⇒∗
β E′ and E2 ⇒∗

β E′. All this is, of course, modulo
α-conversion.

23

The confluence theorem above says that it essentially does not
matter how the β-reductions are applied on a given λ-expression. A
λ-expression is called a β-normal form if no β-reduction can be
applied on it. A λ-expression E is said to admit a β-normal form if
and only if there is some β-normal form E′ such that E ⇒∗

β E′.
The confluence theorem implies that if a λ-expression admits a
β-normal form then that β-normal form is unique modulo
α-conversion.

Note, however, that there are λ-expressions which admit no
β-normal form. Consider, for example, the λ-expression
(λx.xx)(λx.xx), say omega, known also as the divergent combinator.
It is easy to see that omega ⇒β omega and that’s the only
β-reduction that can apply on omega, so it has no β-normal form.

24

Exercise 5 Define λ-calculus formally in Maude. As we noticed,
substitution is quite tricky. Instead of assuming that the
λ-expressions that are reduced are well-behaved enough so that
variable captures do not occur during the β-reduction process, you
should define the substitution as a partial operation. In other
words, a substitution applies only if it does not lead to a variable
capture; you do not need to fix its application by performing
appropriate α-conversions. To achieve that, all you need to do is to
define the substitution of (λy.E)[x← E′] when y ̸= x as a
conditional equation: defined only when y ̸∈ FV(E′). Then show
that there are λ-expressions that cannot be β-reduced automatically
with your definition of λ-calculus, even though they are closed (or
combinators) and all the binding variables are initially distinct
from each other.

25

λ-Calculus as a Programming Language

We have seen how several programming language constructs
translate naturally into λ-calculus. Then a natural question arise:
can we use λ-calculus as a programming language?

The answer is yes, we can, but we first need to understand how
several important programming language features can be
systematically captured by λ-calculus, including functions with
multiple arguments, booleans, numbers, and recursion.

26

Currying

Recall from mathematics that there is a bijection between
[A×B → C] and [A→ [B → C]], where [X → Y] represents the
set of functions X → Y . Indeed, any function f : A×B → C can
be regarded as a function g : A→ [B → C], where for any a ∈ A,
g(a) is defined as the function ha : B → C with ha(b) = c if and
only if f(a, b) = c. Similarly, any function g : A→ [B → C] can be
regarded as a function f : A×B → C, where f(a, b) = g(a)(b).

This observation led to the important concept called currying,
which allows us to eliminate functions with multiple arguments
from the core of a language, replacing them systematically by
functions admitting only one argument as above. Thus, we say that

27

functions with multiple arguments are just syntactic sugar.

From now on we may write λ-expressions of the form λxyz · · · .E as
shorthands for their uncurried versions λx.λy.λz. · · · .E. With this
convention, λ-calculus therefore admits multiple-argument
λ-abstractions. Note, however, that unlike in many familiar
languages, curried functions can be applied on fewer arguments.
For example, (λxyz.E)E′ β-reduces to λyz.(E[x← E′]). Also,
since λ-application was defined to be left-associative,
(λxyz.E)E1E2 β-reduces to λz.((E[x← E1])[y ← E2]).

Most functional languages today support curried functions. The
advantage of currying is that one only needs to focus on defining
the meaning or on implementing effectively functions of one
argument. A syntactic desugaring transformer can apply
uncurrying automatically before anything else is defined.

28

Church Booleans

Booleans are perhaps the simplest data-type that one would like to
have in a programming language. λ-calculus so far provides no
explicit support for booleans or conditionals. We next show that
λ-calculus provides implicit support for booleans. In other words,
the machinery of λ-calculus is powerful enough to simulate
booleans and what one would normally want to do with them in a
programming language. What we discuss next is therefore a
methodology to program with “booleans” in λ-calculus.

The idea is to regard a boolean through a “behavioral” prism: with
a boolean, one can always choose one of any two objects – if true
then the first, if false then the second. In other words, one can
identify a boolean b with a universally quantified conditional “for
any x and y, if b then x else y”. With this behavior of

29

booleans in mind, one can now relatively easily translate booleans
and boolean operations in λ-calculus:

true := λxy.x

false := λxy.y

if-then-else := λxyz.xyz

and := λxy.(x y false)

Exercise 6 Define the other boolean operations (including at least
or, not, implies, iff, and xor) as λ-expressions.

This encoding for booleans is known under the name of Church
booleans. One can use β-reduction to show, for example, that and
true false ⇒β false. Therefore, and true false ≡β false.

One can show relatively easily that the Church booleans have all
the desired properties of booleans. Let us, for example, show the
associativity of and:

30

and (and x y) z ≡β x y false z false
and x (and y z) ≡β x (y z false) false

Obviously, one cannot expect the properties of booleans to hold for
any λ-lambda expressions. Therefore, in order to complete the
proof of associativity of and, we need to make further assumptions
regarding the “booleanity” of x, y, z. If x is true, that is λxy.x,
then both right-hand-side λ-expressions above reduce to y z
false. If x is false, that is λxy.y, then the first reduces to false
z false which further reduces to false, while the second reduces
to false in one step.

Exercise 7 Prove that the Church booleans have all the properties
of booleans (the Maude command “show module BOOL” lists them).

We may often introduce “definitions” such as the above for the
Church booleans, using the symbol :=. Note that this is not a
“meta” binding constructor on top of λ calculus. It is just a way

31

for us to avoid repeating certain frequent λ-expressions; one can
therefore regard them as “macros”. Anyway, they admit a simple
translation into standard λ-calculus, using the usual convention for
translating bindings. Therefore, one can regard the λ-expression
“and true false” as syntactic sugar for

(λand.λtrue.λfalse. and true false)
((λfalse.λxy. x y false)(λxy.y))(λxy.x)(λxy.y).

32

Pairs

λ-calculus can also naturally encode data-structures of interest in
most programming languages. The idea is that λ-abstractions, by
their structure, can store useful information. Let us, for example,
consider pairs as special cases of “records”.

Like booleans, pairs can also be regarded behaviorally: a pair is a
“black-box” that can store any two expressions and then allow one
to retrieve those through appropriate projections.

Formally, we would like to define λ-expressions pair, 1st and 2nd
in such a way that for any other λ-expressions x and y, it is the
case that 1st (pair x y) and 2nd (pair x y) are β-equivalent

33

to x and y, respectively.

Fortunately, these can be defined quite easily:

pair := λxyb.bxy,
1st := λp. p true, and
2nd := λp. p false.

The idea is therefore that pair x y gets evaluated to the
λ-expression λb.bxy, which “freezes” x and y inside a λ-abstraction,
together with a handle, b, which is expected to be a Church
boolean, to “unfreeze” them later. Indeed, the first projection, 1st,
takes a pair and applies it to true hereby “unfreezing” its first
component, while the second projection applies it to false to
“unfreeze” its second component.

34

Church Numerals

Numbers and the usual operations on them can also be defined as
λ-expressions. The basic idea is to regard a natural number n as a
λ-expression that has the potential to apply a given operation n

times on a given starting λ-expression. Therefore, λ-numerals, also
called Church numerals, take two arguments, “what to do” and
“what to start with”, and apply the first as many times as the
intended numeral on the second. Intuitively, if the action was
“successor” and the starting expression was “zero”, then one would
get the usual numerals. Formally, we define numerals as follows:

0λ := λsz.z

1λ := λsz.sz

2λ := λsz.s(sz)

3λ := λsz.s(s(sz)) ...

35

With this intuition for numerals in mind, one can now easily define
a successor operation on numerals:

succ := λnsz.ns(sz)

The above says that for a given numeral n, its successor “succ n”
is the numeral that applies the operation s for n times starting
with sz. There may be several equivalent ways to define the same
intended meaning. For example, one can also define the successor
operation by applying the operation s only once, but on the
expression nsz; therefore, one can define succ' := λnsz.s(nsz).

One may, of course, want to show that succ and succ' are equal.
An interesting observation is that they are not equal as
λ-expressions. To see it, one can apply both of them on the
λ-expression λxy.x: one gets after β-reduction λsz.s and,
respectively, λsz.ss. However, they are equal when applied on
Church numerals:

36

Exercise 8 Show that for any Church numeral nλ, both succ nλ

and succ' nλ represent the same numeral, namely (n+ 1)λ.
Hint. Induction on the structure of nλ.

One can also define addition as a λ-abstraction, e.g., as follows:

plus := λmnsz.ms(nsz)

One of the most natural questions that one can and should ask
when one is exposed to a new model of natural numbers, is whether
it satisfies the Peano axioms. In our case, this translates to
whether the following properties hold:

plus 0λ mλ ≡β mλ , and
plus (succ nλ) mλ ≡β succ (plus nλ mλ).

Exercise 9 Prove that Church numerals form indeed a model of
natural numbers, by showing the two properties derived from
Peano’s axioms above.

37

Exercise 10 Define multiplication on Church numerals and prove
its Peano properties.
Hint. Multiplication can be defined several different interesting
ways.

Exercise 11 Define the power operator (raising a number to the
power of another) using Peano-like axioms. Then define power on
Church numerals and show that it satisfies its Peano axioms.

Interestingly, Church numerals in combination with pairs allow us
to define certain recursive behaviors. Let us next define a more
interesting function on Church numerals, namely one that
calculates Fibonacci numbers. More precisely, we want to define a
λ-expression fibo with the property that fibo nλ β-reduces to the
n-th Fibonacci number. Recall that Fibonacci numbers are defined
recursively as f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

38

The trick is to define a two-number “window” that “slides” through
the sequence of Fibonacci numbers until it “reaches” the desired
number. The window is defined as a pair and the sliding by moving
the second element in the pair on the first position and placing the
next Fibonacci number as the second element. The shifting
operation needs to be applied as many times as the index of the
desired Fibonacci number:

start := pair 0λ 1λ,
step := λp . pair (2nd p) (plus (1st p) (2nd p)),
fibo := λn . 1st (n step start).

We will shortly discuss a technique to support recursive definitions
of functions in a general way, not only on Church numerals.

39

Another interesting use of the technique above is in defining the
predecessor operation on Church numerals:

start := pair 0λ 0λ,
step := λp . pair (2nd p) (plus 1λ (2nd p)),
pred := λn . 1st (n step start).

Note that pred 0λ ≡β 0λ, which is a slight violation of the usual
properties of the predecessor operation on integers.

The above definition of predecessor is computationally very
inefficient. Unfortunately, there does not seem to be any better way
to define this operation on Church numerals.

Subtraction can now be defined easily:

sub := λmn. n predm.

Note, again, that negative numbers are collapsed to 0λ.

40

Let us next see how relational operators can be defined on Church
numerals. These are useful to write many meaningful programs. We
first define a helping operation, to test whether a number is zero:

zero? := λn . n (and false) true.

Now the “less than or equal to” (leq), the “larger than or equal to”
(geq), and the “equal to” (equal) can be defined as follows:

leq := λmn . zero? (sub m n),
geq := λmn . zero? (sub n m),
equal := λmn . and (leq m n) (geq m n).

41

Adding Built-ins

As we have discussed, λ-calculus is powerful enough to define many
other data-structures and data-types of interest. As it is the case
with many other, if not all, pure programming paradigms, in order
to be usable as a reasonably efficient programming language,
λ-calculus needs to provide “built-ins” comprising efficient
implementations for frequent data-types and operations on them.

We here only discuss the addition of built-in integers to λ-calculus.
We say that the new λ-calculus that is obtained this way is
enriched. Surprisingly, we have very little to do to enrich λ-calculus
with builtin integers: we only need to define integers as
λ-expressions. In the context of a formal definition of λ-calculus as
an equational theory in Maude or any other similar language that
already provides efficient equational libraries for integers, one only

42

needs to transform the already existing definition of λ-calculus, say
mod LAMBDA is

sort Exp .
...

endm

into a definition of the form
mod LAMBDA is

including INT .
sort Exp .
subsort Int < Exp .
...

endm

importing the builtin module INT and then stating that Int is a
subsort of Exp. This way, integers can be used just like any other
λ-expressions. One can, of course, write now λ-expressions that are
not well formed, such as the λ application of one integer to

43

another: 7 5. It would be the task of a type checker to catch such
kind of errors. We here focus only on the evaluation, or reduction,
mechanism of the enriched calculus (so we would “catch” such
ill-formed λ-expressions at “runtime”.
β-reduction is now itself enriched with the rewriting relation that
the builtin integers come with. For example, in INT, 7 + 5 reduces
to 12; we write this 7 + 5⇒ 12. Then a λ-expression λx.7 + 5

reduces immediately to λx.12, without applying any β-reduction
step but only the reduction that INT comes with.

Moreover, β-reduction and INT-reduction work together very
smoothly. For example, (λyx.7+ y)5 first β-reduces to λx.7+ 5 and
then INT-reduces to λx.12. In order for this to work, since integers
are now constructors for λ-expressions as well, one needs to add
one more equation to the definition of substitution:

I[x← E′] = I, for any integer I.

44

Recursion

To understand recursion, one must first understand recursion.
Unknown.

Recursion almost always turns out to be a subtle topic in
foundational approaches to programming languages. We have
already seen the divergent combinator

omega := (λx.xx)(λx.xx),

which has the property that omega ⇒β omega · · ·, that is, it leads
to an “infinite recursion”. While omega has a recursive behavior, it
does not give us a principial way to define recursion in λ-calculus.

But what is a “recursion”? Or to be more precise, what is a
“recursive function”? Let us examine the definition of a factorial
function, in some conventional programming language, that one

45

would like to be recursive:

function f(x) {
if x == 0 then 1 else x * f(x - 1)

}

In a functional language that is closer in spirit to λ-calculus the
definition of factorial would be:

let rec
f(x) = if x == 0 then 1 else x * f(x - 1)

in f(3) .

Note that the “let rec” binding is necessary in the above
definition. If we used “let” instead, then according to the
“syntactic sugar” transformation of functional bindings into
λ-calculus, the above would be equivalent to

(λ f . f 3)
(λ x . if x == 0 then 1 else x * f(x - 1)) ,

46

so the underlined f is free rather than bound to λ f, as expected.
This also explains in some more foundational way why a functional
language would report an error when one uses “let” instead of
“let rec”.

The foundational question regarding recursion in λ-calculus is
therefore the following: how can one define a λ-abstraction

f := <begin-exp ... f ... end-exp>,

that is, one in which the λ-expression “refers to itself” in its scope?

Let us put the problem in a different light. Consider instead the
well-formed well-behaved λ-expression

F := λ f . <begin-exp ... f ... end-exp>,

that is, one which takes any λ-expression, in particular a
λ-abstraction, and “plugs” it at the right place into the scope of the

47

λ-expression that we want to define recursively.

The question now translated to the following one: can we find a fix
point f of F, that is, a λ-expression f with the property that

F f ≡β f ?

Interestingly, λ-calculus has the following notorious and surprising
result:

Fix-Point Theorem. For any λ-expression F , there is some
λ-expression X such that FX ≡β X.

One such X is the λ-expression (λx.F (xx))(λx.F (xx)). Indeed,

X = (λx.F (xx))(λx.F (xx))

≡β F ((λx.F (xx))(λx.F (xx)))

= FX.

48

The fix-point theorem above suggests defining the following famous
fixed-point combinator:

Y := λF.(λx.F (xx))(λx.F (xx)).

With this, for any λ-expression F , the λ-application Y F becomes
the fix-point of F ; therefore, F (Y F) ≡β (Y F). Thus, we have a
constructive way to build fix-points for any λ-expression F . Note
that F does not even need to be a λ-abstraction.

Let us now return to the recursive definition of factorial in
λ-calculus enriched with integers. For this particular definition, let
us define the λ-expression:

F := λf.λx.(if x == 0 then 1 else x * f(x - 1))

The recursive definition of factorial is therefore the fix-point of F,
that is, Y F. It is such a fixed-point λ-expression that the “let rec”

49

functional language construct in the definition of factorial refers to!

Let us experiment with this λ-calculus definition of factorial, by
calculating factorial of 3:

(Y F) 3 ≡β

F (Y F) 3 =

(λf.λx.(if x == 0 then 1 else x * f(x - 1))) (Y F) 3 ⇒β

if 3 == 0 then 1 else 3 * (Y F)(3 - 1) ⇒
3 * ((Y F) 2) ≡β

...
6 * ((Y F) 0) ≡β

6 * (F (Y F) 0) =

6 * ((λf.λx.(if x == 0 then 1 else x * f(x - 1))) (Y F) 0) ⇒β

6 * if 0 == 0 then 1 else 0 * (Y F)(0 - 1) ⇒
6 * 1 ⇒
6

50

Therefore, λ-calculus can be regarded as a simple programming
language, providing support for functions, numbers,
data-structures, and recursion. It can be shown that any
computable function can be expressed in λ-calculus in such a way
that its computation can be performed by β-reduction. This means
that λ-calculus is a “Turing complete” model of computation.

There are two aspects of λ-calculus that lead to complications
when one wants to implement it.

One is, of course, the substitution: efficiency and correctness are
two opposing tensions that one needs to address in any direct
implementation of λ-calculus.

The other relates to the strategies of applying β-reductions: so far
we used what is called full β-reduction, but other strategies include
normal evaluation, call-by-name, call-by-value, etc. There are

51

λ-expressions whose β-reduction does not terminate under one
strategy but terminates under another. Moreover, depending upon
the strategy of evaluation employed, other fix-point combinators
may be more appropriate.

Like β-reduction, the evaluation of expressions is confluent in many
pure functional languages. However, once a language allows side
effects, strategies of evaluation start playing a crucial role; to avoid
any confusion, most programming languages “hardwire” a
particular evaluation strategy, most frequently “call-by-value”.

We do not discuss strategies of evaluation here. Instead, we
approach the other delicate operational aspect of λ-calculus,
namely the substitution. In fact, we show that it can be completely
eliminated if one applies a systematic transformation of
λ-expressions into expressions over a reduced set of combinators.

52

More precisely, we show that any closed λ-expression can be
systematically transformed into a λ-expression build over only the
combinators K := λxy.x and S := λxyz.xz(yz), together with the
λ-application operator. For example, the “identity” λ-abstraction
λx.x is going to be SKK; indeed,

SKK ≡β λz.Kz(Kz) = λz.(λxy.x)z(Kz) ≡β λz.z ≡α λx.x.

Interestingly, once such a transformation is applied, one will not
need the machinery of λ-calculus and β-reduction anymore. All
we’ll need to do is to capture the “contextual behavior” of K and
S, which can be defined equationally very elegantly: KXY = X

and SXY Z = XZ(Y Z), for any other KS-expressions X, Y , Z.

Before we do that, we need to first discuss two other important
aspects of λ-calculus: η-equivalence and extensionality.

53

η-Equivalence

Let us consider the λ-expression λx.Ex, where E is some
λ-expression that does not contain x free. Intuitively, λx.Ex does
nothing but wraps E: when “called”, it “passes” its argument to E

and then “passes” back E’s result. When applied on some
λ-expression, say E′, note that λx.Ex and E behave the same.
Indeed, since E does not contain any free occurrence of X, one can
show that (λx.Ex)E′ ≡β EE′. Moreover, if E is a λ-abstraction,
say λy.F , then λx.Ex = λx.(λy.F)x ≡β λx.F [y ← x]. The latter is
α-equivalent to λy.F , so it follows that in this case λx.Ex is
β-equivalent to E.

Even though λx.Ex and E have similar behaviors in applicational
contexts and they can even be shown β-equivalent when E is a
λ-abstraction, there is nothing to allow us to use their equality as

54

an axiom in our equational inferences. In particular, there is no
way to show that the combinator λx.λy.xy is equivalent to λx.x.

To increase the proving capability of λ-calculus, still without
jeopardizing its basic intuitions and applications, we consider its
extension with the following equation:

(η) λx.Ex = E,

for any x ̸∈ FV(E). We let E ≡βη E′ denote the fact that the
equation E = E′ can be proved using standard equational
deduction from all the equational axioms above: (α), (β), (η), plus
those for substitution. The relation ≡βη is also called
βη-equivalence. The λ-calculus enriched with the rule (η) is also
called λ+ η.

55

Extensionality

Extensionality is a deduction rule encountered in several branches
of mathematics and computer science. It intuitively says that in
order to prove two objects equal, one may first “extend” them in
some rigorous way. The effectiveness of extensionality comes from
the fact that it may often be the case that the extended versions of
the two objects are easier to prove equivalent.

Extensionality was probably first considered as a proof principle in
set theory. In “naive” set theory, sets are built in a similar fashion
to Peano numbers, that is, using some simple constructors
(together with several constraints), such as the empty set ∅ and the
list constructor {x1, ..., xn}. Thus, {∅, {∅, {∅}}} is a well-formed set.

With this way of constructing sets, there may be the case that two

56

sets with “the same elements” have totally different representations.
Consequently, it is almost impossible to prove any meaningful
property on sets, such as distributivity of union and intersection,
etc., by just taking into account how sets are constructed. In
particular, proofs by structural induction are close to useless.

Extensionality is often listed as the first axiom in any
axiomatization of set theory. In that context, it basically says that
two sets are equal iff they have the same elements. Formally,

If x ∈ S = x ∈ S′ for any x, then S = S′.

Therefore, in order to show sets S and S′ equal, one can first
“extend” them (regarded as syntactic terms) by applying them the
membership operator. In most cases the new task is easier to prove.

57

In λ-calculus, extensionality takes the following shape:

(ext) If Ex = E′x for some x ̸∈ FV(EE′), then E = E′.

Therefore, two λ-abstractions are equal if they are equal when
applied on some variable that does not occur free in any of them.
Note that “for some x” can be replaced by “for any x” in ext. We
let E ≡βext E′ denote the fact that the equation E = E′ can be
proved using standard equational deduction using (α) and (β),
together with ext. The λ-calculus extended with ext is also called
λ+ ext.

The following important result says the extensions of λ-calculus
with (η) and with ext are equivalent:

Theorem. λ+ η is equivalent to λ+ ext.

Proof. In order to show that two mathematical theories are
equivalent, one needs to show two things: (1) how the syntax of one

58

translates into the syntax of the other, or in other words to show
how one can mechanically translate assertions in one into assertions
in the other, and (2) that all the axioms of each of the two theories
can be proved from the axioms of the other, along the
corresponding translation of syntax. In our particular case of λ+ η

and λ+ ext, syntax remains unchanged when moving from one
logic to another, so (1) above is straightforward. We will shortly
see another equivalence of logics, where (1) is rather involved.
Regarding (2), all we need to show is that under the usual
λ-calculus with (α) and (β), the equation (η) and the principle of
extensionality are equivalent.

Let us first show that (η) implies ext. For that, let us assume that
Ex ≡βη E′x for some λ-expressions E and E′ and for some variable
x ̸∈ FV(EE′). We need to show that E ≡βη E′:

E ≡βη λx.Ex ≡βη λx.E′x ≡βη E′.

59

Note the use of ≡βη in the equivalences above, rather than just ≡β .
That is because, in order to prove the axioms of the target theory,
λ+ ext in our case, one can use the entire calculus machinery
available available in the source theory, λ+ η in our case.

Let us now prove the other implication, namely that ext implies
(η). We need to prove that λx.Ex ≡βext E for any λ-expression E

and any x ̸∈ FV(E). By extensionality, it suffices to show that
(λx.Ex)x ≡βext Ex, which follows immediately by β-equivalence
because x is not free in E. �

60

Combinatory Logic

Even though λ-calculus can be defined equationally and is a
relatively intuitive framework, as we have noticed several times by
now, substitution makes it non-trivial to implement effectively.
There are several approaches in the literature addressing the subtle
problem of automating substitution to avoid variable capture, all
with their advantages and disadvanteges. We here take a different
approach. We show how λ-expressions can be automatically
translated into expressions over combinators, in such a way that
substitution will not even be needed anymore.

A question addressed by many researchers several decades ago, still
interesting today and investigated by many, is whether there is any
simple equational theory that is entirely equivalent to λ-calculus.
Since λ-calculus is Turing complete, such a simple theory may

61

provide a strong foundation for computing.

Combinatory logic was invented by Moses Shönfinkel in 1920. The
work was published in 1924 in a paper entitled “On the building
blocks of mathematical logic”. Combinatory logic is a simple
equational theory over two sorts, Var and Exp with Var < Exp, a
potentially infinite set x, y, etc., of constants of sort Var written
using lower-case letters, two constants K and S of sort Exp, one
application operation with the same syntax and left-associativity
parsing convention as in λ-calculus, together with the two equations

KXY = X,
SXY Z = XZ(Y Z),

quantified universally over X, Y , Z of sort Exp. The constants K

and S are defined equationally in such a way to capture the
intuition that they denote the combinators λxy.x and λxyz.xz(yz),
respectively. The terms of the language, each of which denoting a

62

function, are formed from variables and constants K and S by a
single construction, function application. For example,
S(SxKS)yS(SKxK)z is a well-formed term in combinatory logic,
denoting some function of free variables x, y, and z.

Let CL be the equational theory of combinatory logic above. Note
that a function FV returning the “free” variables that occur in a
term in combinatory logic can be defined in a trivial manner,
because there are no “bound” variables in CL. Also, note that the
extensionality principle from λ-calculus translates unchanged to CL:

(ext) If Ex = E′x for some x ̸∈ FV(EE′), then E = E′.

Let CL + ext be CL enriched with the principle of extensionality.
The following is a landmark result:

Theorem. λ+ ext is equivalent to CL + ext.

Proof. Let us recall what one needs to show in order for two

63

mathematical theories to be equivalent: (1) how the syntax of one
translates into the syntax of the other; and (2) that all the axioms
of each of the two theories can be proved from the axioms of the
other, along the corresponding translation of syntax.

Let us consider first the easy part: λ+ ext implies CL + ext. We
first need to show how the syntax of CL + ext translates into that
of λ+ ext. This is easy and it was already mentioned before: let K

be the combinator λxy.x and let S be the combinator λxyz.xz(yz).
We then need to show that the two equational axioms of CL + ext
hold under this translation: they can be immediately proved by
β-equivalence. We also need to show that the extensionality in CL
+ ext holds under the above translation: this is obvious, because
it is exactly the same as the extensionality in λ+ ext.

64

Let us now consider the other, more difficult, implication. So we
start with CL + ext, where K and S have no particular meaning
in λ-calculus, and we need to define some map that takes any
λ-expression and translates it into an expression in CL.

To perform such a transformation, let us add syntax for
λ-abstractions to CL, but without any of the equations of
λ-calculus. This way one can write and parse λ-expressions, but
still have no meaning for those. The following ingenious bracket
abstraction rewriting system transforms any uninterpreted
λ-expression into an expression using only K, S, and the free
variables of the original λ-expression:

65

1. λx.ρ⇒ [x]ρ

2. [x]y ⇒

 SKK if x = y

Ky if x ̸= y

3. [x](ρρ′)⇒ S([x]ρ)([x]ρ′)

4. [x]K ⇒ KK

5. [x]S ⇒ KS

The first rule removes all the λ-bindings, replacing them by
corresponding bracket expressions. Here ρ and ρ′ can be any
expressions over K, S, variables, and the application operator, but
also over the λ-abstraction operator λ_._ : Var→ Exp. However,
note that rules 2-5 systematically elliminate all the brackets.
Therefore, the “bracket abstraction” rules above eventually
transform any λ-expression into an expression over only K, S,

66

variables, and the application operator.

The correctness of the translation of λ + ext into CL + ext via
the bracket abstraction technique is rather technical: one needs to
show that the translated versions of equations in λ can be proved
(by structureal induction) using the machinery of CL + ext.

Exercise 12 (Technical) Prove the correctness of the translation
of λ + ext into CL + ext above.

We do not need to understand the details of the proof of
correctness in the exercise above in order to have a good intuition
on why the bracket abstraction translation works. To see that, just
think of the bracket abstraction as a means to associate equivalent
λ-expressions to other λ-abstractions, within the framework of
λ-calculus, where K and S are their corresponding λ-expressions.
As seen above, it eventually reduces any λ-expression to one over
only combinators and variables, containing no explicit

67

λ-abstractions except those that define the combinators K and S.
To see that the bracket abstraction is correct, we can think of each
bracket term [x]E as the λ-expression that it was generated from,
λx.E, and then show that each rule in the bracket abstraction
transformation is sound within λ-calculus. For example, rule 3 can
be shown by extensionality:
(λx.ρρ′)z ≡β (ρ[x← z])(ρ′[x← z]) ≡β ((λx.ρ)z)((λx.ρ′)z)) ≡β

(λxyz.xz(yz))(λx.ρ)(λx.ρ′)z = S(λx.ρ)(λx.ρ′)z, so by
extensionality, λx.ρρ′ ≡βext S(λx.ρ)(λx.ρ

′).

This way, one can prove the soundness of each of the rules in the
bracket abstraction translation. As one may expect, the tricky part
is to show the completeness of the translation, that is, that
everything one can can do with λ-claculus and ext can also do with
with its “sub-calculus” CL + ext. This is not hard, but rather
technical.

68

Exercise 13 Define the bracket abstraction translation above
formally in Maude. To do it, first define CL, then add syntax for
λ-abstraction and bracket to CL, and then add the bracket
abstraction rules as equations (which are interpreted as rewrite
rules by Maude). Convince yourself that substitution is not a
problem in CL, by giving an example of a λ-expression which would
not be reducible with the definition of λ-calculus in Exercise 5, but
whose translation in CL can be reduced with the two equations in CL.

