
Programming Language Semantics
A Rewriting Approach

Grigore Ros, u

University of Illinois at Urbana-Champaign

3.5 IMP++: IMP Extended with Several Features

Our goal in this section is to challenge the modularity, reuse capability and flexibility to changes in language
design of the basic semantic approaches discussed so far in this chapter, namely big-step SOS, small-step
SOS and denotational semantics. We do this by means of a simple programming language design experiment.
Specifically, we extend the IMP language in Section 3.1 with several common language features and attempt
to give the resulting language a formal semantics following each of the approaches. In each case, we aim at
reusing the existing semantics of IMP as much as possible.

Below we describe the features that we add to IMP, together with a short motivation for each:

1. A variable increment operation, ++ Id, whose role is to infuse side effects in expressions.

2. An input expression construct, read(), and an output statement construct, “print(AExp);”, whose
role is to modify the configurations (one needs to add input/output buffers).

3. Abrupt termination, both by means of an explicit “halt;” statement and by means of implicit division-
by-zero, whose role is to enforce a sudden change of the evaluation context.

4. Spawning a new thread with an arithmetic expression construct spawn Block, which evaluates to a
unique thread identifier associated to the newly created thread, and synchronizing with any thread using
a “join(AExp);” statement construct. The newly created thread executes the given block concurrently
with the rest of the program, sharing all the variables. The thread encountering a join statement gets
blocked until the thread it wants to join terminates. The role of thread spawning and joining is to test
the support of the various semantic approaches for concurrency.

5. Blocks allowing local variable declarations, { Stmt }, where Stmt can include declarations of the form
“intList{Id};” (regarded as ordinary statements). The scope of local declarations is the remainder of
the current block. The introduction of blocks with locals requires changing some of the existing syntax
and semantics. For example, there is no need for global variable declarations anymore, because they
can be replaced by locals. The role of this extension is threefold: (1) to demonstrate how execution
environment recovery can be achieved in each semantic approach; (2) to generate some non-trivial
feature interactions (e.g., spawned threads share the spawning environment); (3) to highlight a language
design scenario where the introduction of a new feature may affect the design of the previous ones.

Two criteria guided us in selecting these particular language extensions: first, these are quite ordinary
features encountered in many languages; and second, each of them exposes limitations of one or more
of the conventional semantic approaches in this chapter (both before and after this section). We refer to
the resulting language extension of IMP as IMP++. Both IMP and IMP++ are admittedly toy languages.
However, if a certain programming language semantic approach has difficulties in supporting any of the
features of IMP or any of the above IMP extensions in IMP++, then one should most likely expect the same
problems, but of course amplified, to occur in practical attempts to define real-life programming languages.
By “difficulty” we here mostly mean lack of modularity, that is, that in order to define a new feature or to
change an existing one we need to make unrelated changes in the already existing semantics of other features.
Such formalism-artifact changes are not only tedious and thus inconvenient and demotivate the language
designer to extend or experiment with her language, but are also error prone.

IMP++ extends and modifies IMP both syntactically and semantically. Syntactically, it removes from

171

IMP the global declarations and adds the following constructs:

AExp ::= ++ Id
| read()

| spawn Block
Stmt ::= print(AExp);

| halt;

| join(AExp);
| intList{Id};

Pgm ::= Stmt

Semantically, in addition to defining the new language constructs above, we prefer that division-by-zero
implicitly halts the program, same like the explicit use of “halt;”, but in the middle of an expression
evaluation. When such an error takes place, one could also generate an error message. However, for
simplicity, we do not consider error messages here; we only consider silent termination.

As part or our language design experiment to test the modularity, reuse capability and flexibility to
language design changes of the various semantic approaches, we will do the following:

1. We will take each of the IMP++ language features one by one, discussing in detail what it takes
to add each of them to IMP making complete abstraction of the other features. In other words,
each time we define a feature we pretend that we do not know what other features will be added to
the language.Hence, we attempt to achieve local optima for each feature independently. Then, in
Section 3.5.6, we put all the features together in the IMP++ language.

2. We will first define spawn as a statement construct, pretending that join thread synchronization were
not intended to be an explicit language construct, and will use this variant of spawn when putting
together all the features of the IMP++ language in Section 3.5.6. Then, in Section 3.5.7, we add
join thread synchronization to the resulting IMP++ language by turning spawn into an expression
construct that evaluates to the identifier of the newly created thread, and by adding the “join(AExp);”
statement construct that takes the identifier of the thread to join as argument.

We believe that our experiment in this section is not unrealistic. It is quite possible that language designers
extend their language one feature at a time, for example to more easily experiment with it or to test it, and
that while doing so they would like to only concentrate on the feature at hand and not to think of other
possible extensions of the language. It is also reasonable to not worry about thread synchronization from the
very beginning when designing a multi-threaded language, particularly because synchronization can also be
achieved using shared variables and busy waiting (e.g., using Dekker’s algorithm).

3.5.1 Adding Variable Increment

Like in several main-stream programming languages, ++ x increments the value of x in the state and evaluates
to the incremented value. This way, the increment operation makes the evaluation of expressions to now have
side effects. Consider, for example, the following two programs:

int m, n, s ;

n = 100 ;

while (++ m <= n) { s = s + m ; }

int x ;

x = 1 ;

x = ++ x / (++ x / x) ;

172

The first program shows that the side effect of variable increment can take place anywhere, even in
the condition of a while loop; this is actually quite a common programming pattern in languages with
variable increment. The second program shows that the addition of side-effects makes the originally intended
evaluation strategies of the various expression constructs important. Indeed, recall that for demonstration
purposes we originally wanted + and / to be non-deterministic (i.e., to evaluate their arguments stepwise
non-deterministically, possibly interleaving their evaluations), while <= to be left-to-right sequential. These
different evaluation strategies can now lead to different program behaviors. For example, the second program
above has five different behaviors! Indeed, the expression assigned to x can evaluate to 0, 1, 2, 3, and can also
perform a division-by-zero. Unfortunately, not all semantic approaches are able to capture all these behaviors.

Big-Step SOS

Big-step SOS is one of the semantics which is the most affected by the inclusion of side effects in expressions,
because the previous triples 〈a, σ〉 ⇓ 〈i〉 and 〈b, σ〉 ⇓ 〈t〉 need to change to four-tuples of the form 〈a, σ〉 ⇓
〈i, σ′〉 and 〈b, σ〉 ⇓ 〈t, σ′〉. These changes are necessary to account for collecting the possible side effects
generated by the evaluation of expressions (note that the evaluation of Boolean expressions, because of <= ,
can also have side effects). The big-step SOS of almost all the language constructs needs to change as well.
For example, the original big-step SOS of division, namely

〈a1, σ〉 ⇓ 〈i1〉 〈a2, σ〉 ⇓ 〈i2〉
〈a1 / a2, σ〉 ⇓ 〈i1 /Int i2〉 if i2 , 0

changes as follows:
〈a1, σ〉 ⇓ 〈i1, σ1〉 〈a2, σ1〉 ⇓ 〈i2, σ2〉

〈a1 / a2, σ〉 ⇓ 〈i1 /Int i2, σ2〉 if i2 , 0

〈a1, σ2〉 ⇓ 〈i1, σ1〉 〈a2, σ〉 ⇓ 〈i2, σ2〉
〈a1 / a2, σ〉 ⇓ 〈i1 /Int i2, σ1〉 if i2 , 0

The rules above make an attempt to capture the intended nondeterministic evaluation strategy of the division
operator. We will shortly explain why they fail to fully capture the desired behaviors. One should similarly
consider the side effects of expressions in the semantics of statements that need to evaluate expressions. For
example, the semantics of the while loop needs to change to propagate the side effects of its condition both
when the loop is taken and when the loop is not taken.

Let us next include the big-step semantics of the increment operation; once all the changes to the existing
semantics of IMP are applied, the big-step semantics of increment is straightforward:

〈++ x, σ〉 ⇓ 〈σ(x) +Int 1, σ[(σ(x) +Int 1)/x]〉 (BigStep-Inc)

Indeed, the problem with big-step is not necessarily to define the semantics of variable increment, but what
it takes to be able to do it. One needs to redefine configurations as explained above and, consequently, to
change the semantics of all the already existing features of IMP to use the new configurations. This, and
other features defined later on, show how non-modular big-step semantics is.

In addition to being non-modular, big-step SOS cannot properly deal with non-determinism. While it can
capture some limited degree of non-determinism as shown above with / , namely it can non-deterministically
choose which of the subexpressions to evaluate first, it cannot define the full non-deterministic strategy
(unless we make radical changes to the definition, such as working with sets of values instead of values, which

173

significantly complicate everything and still fail to capture the non-deterministic behaviors—as it would only
capture the non-deterministic evaluation results). To see how the non-deterministic choice evaluation strategy
in big-step semantics fails to capture all the desired behaviors, consider the expression ++ x / (++ x / x) with
x initially 1, as in the second program at the beginning of Section 3.5.1. This expression can only evaluate to
1, 2 or 3 under non-deterministic choice strategy, like we get in big-step SOS. Nevertheless, as explained at
the beginning of Section 3.5.1, it could also evaluate to 0 and even perform a division-by-zero under a fully
non-deterministic evaluation strategy, as we will see when we use small-step semantic approaches.

Big-step semantics not only misses behaviors due to its lack of support for non-deterministic evaluation
strategies, like shown above, but also hides misbehaviors that it, in principle, detects. For example, assuming
x > 0, the expression 1 / (x / ++ x) can either evaluate to 1 or perform an erroneous division-by-zero. If
one searches for all the possible evaluations of a program containing such an expression using the big-step
semantics in this section, one will only see the behavior where this expression evaluates to 1; one will never
see the erroneous behavior where the division by zero takes place. This will be fixed in Section 3.5.3, where
we modify the big-step SOS to support abrupt termination. However, without modifying the semantics, the
language designer using big-step semantics may wrongly think that the program is correct. Contrast that with
small-step semantics, which, even when one does not add support for abrupt termination, one still detects the
wrong behavior by getting stuck on the configuration obtained right before the division by zero.

Additionally, as already explained in Section 3.2.3, the new configurations may be problematic when one
wants to execute big-step definitions using rewriting. Indeed, one needs to remove resulting rewrite rules
that lead to non-termination, such as rules of the form R → R corresponding to big-step sequents R ⇓ R
where R are result configurations (e.g., 〈i, σ〉 with i ∈ Int or 〈t, σ〉 with t ∈ {true, false}). We do not use
this argument against big-step SOS (its poor modularity is sufficient to disqualify big-step in the competition
for an ideal language definitional framework), but rather as a warning to the reader who wants to execute it
using rewriting engines (like Maude).

Type System using Big-Step SOS

The typing policy of variable increment is the same as that of variable lookup: provided it has been declared,
the incremented variable types to an integer. All we need is to add the following typing rule for increment to
the already existing typing rules in Figure 3.10:

(xl, x, xl′) ` ++ x : int (BigStepTypeSystem-Inc)

Small-Step SOS

Including side effects in expressions is not as bad in small-step semantics as in big-step semantics, because,
as discussed in Section 3.3, in small-step SOS one typically uses sequents whose left and right configurations
have the same structure even in cases where only some of the configuration components change (e.g., one
typically uses sequents of the form 〈a, σ〉 → 〈a′, σ〉 instead of 〈a, σ〉 → 〈a′〉); thus, expressions, like any
other syntactic categories including statements, can seamlessly modify the state if they need to. However,
since we deliberately did not anticipate the inclusion of side effects in expression evaluation, we still have to
go back through the existing definition and modify all the rules involving expressions to propagate the side
effects. For example, the small-step rule

〈a1, σ〉 → 〈a′1, σ〉
〈a1 / a2, σ〉 → 〈a′1 / a2, σ〉

174

for the first argument of / does not apply anymore when the next step in a1 is an increment operation (since
the state σ changes), so it needs to change to

〈a1, σ〉 → 〈a′1, σ′〉
〈a1 / a2, σ〉 → 〈a′1 / a2, σ

′〉

Of course, all these changes due to side-effect propagation would have not been necessary if we anticipated
that side effects may be added to the language, but the entire point of this exercise is to study the strengths of
the various semantic approaches without knowing what comes next.

Once all the changes are applied, one can define the small-step SOS of the increment operation almost
identically to its big-step SOS (increment is one atomic step, so small equals big):

〈++ x, σ〉 → 〈σ(x) +Int 1, σ[(σ(x) +Int 1)/x]〉 (SmallStep-Inc)

Denotational Semantics

The introduction of expression side effects affects denotational semantics even worse than it affects the
big-step SOS. Not only that one has to change the denotation of almost every language construct, but the
changes are also heavier and more error prone than for big-step SOS. The first change that needs to be made
is the type of the denotation functions for expressions:

~ � : AExp→ (State ⇁ Int)
~ � : BExp→ (State ⇁ Bool)

need to change into
~ � : AExp→ (State ⇁ Int × State)
~ � : BExp→ (State ⇁ Bool × State)

respectively, to take into account the fact that expressions also return a new possibly changed state besides a
result when evaluated. Then one has to change the definitions of the denotation functions for each expression
construct to propagate the side effects and to properly extract/combine values and states from/in pairs. For
example, the previous denotation function of division, where ~a1 / a2�σ was defined as

{
~a1�σ +Int ~a2�σ if ~a2�σ , 0
⊥ if ~a2�σ = 0

needs to change to be defined as
{

(1st(~a1�σ) +Int 1st(~a2�(2nd(~a1�σ))), 2nd(~a2�(2nd(~a1�σ))) if 1st(~a2�(2nd(~a1�σ))) , 0
⊥ if 1st(~a2�(2nd(~a1�σ))) = 0

The above is a bit heavy, repetitive and thus error prone. In implementations of denotational semantics, and
sometimes even on paper definitions, one typically uses let binders, or λ-abstractions (see Section 4.5), to
bind each subexpression appearing more than once in a denotation function to some variable and then using
that variable in each place.

In addition to the denotations of expressions, the denotation functions of all statements except for those
of the empty block {} and sequential composition also need to change, because they involve expressions
and need to take their side effects into account. For example, the denotation of the while loop statement
while (b) s is the fixed-point of the total function

F : (State ⇁ State)→ (State ⇁ State)

175

defined as

F (α)(σ) =

α(~s�(2nd(~b�σ))) if 1st(~b�σ) =true

2nd(~b�σ) if 1st(~b�σ) =false

⊥ if ~b�σ = ⊥
All the changes above were necessary to support the side effects generated by the increment construct.

The denotational semantics of programs does not need to change. All programs that make no use of increment
should still have exactly the same semantics as before (to be precise, the program denotation functions are
different as syntactic terms, but they evaluate to the same values when invoked). We are now ready to give
the denotational semantics of increment:

~++ x�σ =

{
(σ(x) +Int 1, σ[(σ(x) +Int 1)/x]) if σ(x) , ⊥
⊥ if σ(x) = ⊥ (DENOTATIONAL-Inc)

Like for big-step SOS, giving the denotational semantics of increment is not difficult; the difficulty stays in
what it takes to be able to do so.

Needless to say that denotational semantics, as we used it here, is very non-modular. The brute force
approach above is the most straightforward approach when one’s goal is to exclusively add increment to
IMP—recall that our experiment in this section assumes that each language extension is the last one. When
one expects many extensions to a language that in an operational setting would yield changes to the program
configuration, in denotational semantics one is better served using a continuation based or a monadic style.
These styles were briefly mentioned in Section 3.4.3 and will be further discussed in Section 3.9. They
are more involved, and thus less accessible to non-expert language designers. Moreover, switching to such
styles is a radical change which requires a complete redefinition of the language. It is therefore highly
recommended that one starts directly with a continuation or monadic style if one expects many and non-trivial
language extensions. We here, however, prefer the straightforward denotational approach because it is easier
to understand and because our overall focus of this book is more operational than denotational.

Besides lacking modularity, the denotational semantics above also lacks non-determinism. Indeed, note
that, for example, our denotation of division first evaluates the first expression and then the second expression.
Since expressions have side effects, different orders of evaluation can lead to different behaviors. Since the
denotations of expressions are partial functions, they cannot have two different behaviors in the same state;
therefore, unlike in big-step SOS, we cannot simply add another equation for the other order of evaluation
because that would yield an inconsistent mathematical/equational theory, which would violate the basic
property of a function to produce no more than one output for any given input. The consecrated method to
define non-determinism in denotational semantics is to use powerdomains, as briefly discussed in Section 3.4.3
and further discussed in Section 3.9. Like using continuations or monads, the use of powerdomains also
requires a complete redesign of the entire semantics and makes it less accessible to non-experts. Moreover,
one cannot obtain a feasible executable model of the language anymore, because the use of powerdomains
requires to collect all possible behaviors of any fragment of program at any point in execution; this will
significantly slow down the execution of the semantics, making it, for example, infeasible or even unusable
as an interpreter anymore.

3.5.2 Adding Input/Output

The semantics of the input expression construct read() is that it consumes the next integer from the “input
buffer” and evaluates to that integer. The semantics of the output statement construct print(a); is that a is
first evaluated to some integer, which is then collected in an “output buffer”. By a “buffer” we here mean a
list structure over integers. The semantics of the input/output constructs will be given such that the input

176

buffer can only be removed integers from its beginning and the output buffer can only be appended integers
to its end. If there is no integer left in the input buffer then read() blocks. The output buffer is unbounded,
so “print(a);” never blocks when outputting the value of a. Consider the following two programs:

int m, n, s ;

n = read() ;

while (m <= n)

{ print(m) ; s = s + m ; m = m + 1 ; }

print(s) ;

int s ;

s = 0 ;

while (!(read() <= 0))

{ s = s + read() ; }

print(s) ;

The first reads one integer i from the beginning of the input buffer and then it appends i + 2 integers to the
end of the output buffer (the numbers 0, 1, 2, ..., i followed by their sum). The second reads a potentially
unbounded number of integers from the input buffer, terminating if and only if it reads a non-positive integer
on an odd position in the input buffer; when that happens, it outputs the sum of the elements on the even
positions in the input buffer up to that point.

The addition of read() to IMP means that expression evaluation becomes non-deterministic, regardless
of whether we have variable increment or not in our language. Indeed, since / is non-deterministic, an
expression of the form read() / read() can evaluate the two reads in any order; for example, if the first two
integers in the input buffer are 7 and 3, then this expression can evaluate to either 2 or 0.

Let us formalize buffers. Assume colon-separated integer lists with ε as identity, Listε: {Int}, and let ω, ω′,
ω1, etc., range over such lists. The same way we decided for notational convenience to let State be an alias
for the map sort Map{Id 7→ Int} (Section 3.1.2), from here on we also let Buffer alias the list sort Listε: {Int}.

In a formal language semantics, providing the entire input as part of the initial configuration and collecting
the entire output in the result configuration is acceptable, although in implementations of the language one
will most likely want the input/output to be interactive. There is some flexibility as to where the input and
output buffers should be located in the configuration. One possibility is as new top-level components in
the configuration. Another possibility is as special variables in the already existing state. The latter would
require some non-trivial changes in the mathematical model of the state, so we prefer to follow the former
approach in the sequel. An additional argument in favor of our choice is that sooner or later one needs to add
new components to the configuration anyway, so we take this opportunity to discuss how robust/modular the
various semantic styles are with regards to changes in the structure of the configuration.

Big-Step SOS

To accommodate the input/output buffers, all configurations and all sequents we had in the original big-step
SOS of IMP in Sections 3.2.1 and 3.2.2 need to change. For example, since expressions can now consume
input, the original expression sequents of form 〈a, σ〉 ⇓ 〈i〉 and 〈b, σ〉 ⇓ 〈t〉 need to change into sequents
〈a, σ, ω〉 ⇓ 〈i, ω′〉 and 〈b, σ, ω〉 ⇓ 〈t, ω′〉 (recall that we add one feature at a time, so expression evaluation
currently does not have side effects on the state), respectively, where ω,ω′ ∈ Buffer. Also, the big-step
SOS rules for expressions need to change to take into account both the new configurations and the fact that
expression evaluation can now affect the input buffer. For example, the original big-step SOS of division,

〈a1, σ〉 ⇓ 〈i1〉 〈a2, σ〉 ⇓ 〈i2〉
〈a1 / a2, σ〉 ⇓ 〈i1 +Int i2〉 if i2 , 0

177

changes as follows:
〈a1, σ, ω〉 ⇓ 〈i1, ω1〉 〈a2, σ, ω1〉 ⇓ 〈i2, ω2〉

〈a1 / a2, σ, ω〉 ⇓ 〈i1 /Int i2, ω2〉 if i2 , 0

〈a1, σ, ω2〉 ⇓ 〈i1, ω1〉 〈a2, σ, ω〉 ⇓ 〈i2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈i1 /Int i2, ω1〉 if i2 , 0

Like for the variable increment, the rules above make an attempt to capture the intended nondeterministic
evaluation strategy of the division operator. Unfortunately, they also only capture a non-deterministic choice
strategy, failing to capture the intended full non-determinism of division.

Since statements can both consume input and produce output, their big-step SOS sequents need to change
from 〈s, σ〉 ⇓ 〈σ′〉 to 〈s, σ, ωin〉 ⇓ 〈σ′, ω′in, ωout〉, where ωin, ω

′
in ∈ Buffer are the input buffers before and,

respectively, after the evaluation of statement s, and where ωout ∈ Buffer is the output produced during the
evaluation of s. Unfortunately, all big-step SOS rules for statements also have to change, to accommodate
the additional input and/or output components in configurations. For example, the semantics of sequential
composition needs to change from

〈s1, σ〉 ⇓ 〈σ1〉 〈s2, σ1〉 ⇓ 〈σ2〉
〈s1 s2, σ〉 ⇓ 〈σ2〉

to
〈s1, σ, ωin〉 ⇓ 〈σ1, ω

1
in, ω

1
out〉 〈s2, σ1, ω

1
in〉 ⇓ 〈σ2, ω

2
in, ω

2
out〉

〈s1 s2, σ, ωin〉 ⇓ 〈σ2, ω
2
in, ω

1
out : ω2

out〉
Note that the outputs of s1 and of s2 have been appended in order to yield the output of s1 s2.

Finally, we also have to change the initial configuration holding programs to also take an input, as well as
the big-step SOS rule for programs from

〈s, xl 7→ 0〉 ⇓ 〈σ〉
〈int xl; s〉 ⇓ 〈σ〉

into
〈s, xl 7→ 0, ωin〉 ⇓ 〈σ,ω′in, ωout〉
〈int xl; s, ωin〉 ⇓ 〈σ,ω′in, ωout〉

We keep the input buffer in the final configuration for two reasons: to avoid having to define a new configu-
ration holding only the state and the output, and to allow the language designer to more easily debug her
semantics, in particular to see whether there is any input left unused at the end of the program. One can argue
that now, since we have output in our language, the result configuration may actually contain only the output
(that is, it can also drop the state). The reader is encouraged to experiment with different final configurations.

Hence, almost everything changed in the original big-step SOS of IMP in order to prepare for the addition
of input/output. All theses necessary changes highlight, again, the lack of modularity of big-step SOS. Once
all the changes above are applied, one can easily define the semantics of the input/output constructs:

〈read(), σ, i : ωin〉 ⇓ 〈i, ωin〉 (BigStep-Read)

〈a, σ, ωin〉 ⇓ 〈i, ω′in〉
〈print(a);, σ, ωin〉 ⇓ 〈σ,ω′in, i〉 (BigStep-Print)

178

Type System using Big-Step SOS

The typing policy of the input/output constructs is straightforward, though recall that we decided to only
allow to read and to print integers. To type programs using input/output, we therefore add the following
typing rules to the already existing typing rules in Figure 3.10:

xl ` read() : int (BigStepTypeSystem-Read)

xl ` a : int
xl ` print(a); : stmt (BigStepTypeSystem-Print)

Small-Step SOS

Like in big-step SOS, in small-step SOS we also need to change all IMP’s configurations in Section 3.3.1
in order to add input/output. In the spirit of making only minimal changes, we modify the configurations
holding expressions to also hold an input buffer, and the configurations holding statements to also hold both
an input and an output buffer. Implicitly, all IMP’s small-step SOS rules in Section 3.3.2 also need to change.
The changes are straightforward, essentially having to just propagate the output through each statement
construct, but they are still changes and thus expose, again, the lack of modularity of small-step SOS. Here is,
for example, how the small-step SOS rules for division and for sequential composition need to change:

〈a1, σ, ωin〉 → 〈a′1, σ, ω′in〉
〈a1 / a2, σ, ωin〉 → 〈a′1 / a2, σ, ω

′
in〉

〈a2, σ, ωin〉 → 〈a′2, σ, ω′in〉
〈a1 / a2, σ, ωin〉 → 〈a1 / a′2, σ, ω

′
in〉

〈s1, σ, ωin, ωout〉 → 〈s′1, σ′, ω′in, ω′out〉
〈s1 s2, σ, ωin, ωout〉 → 〈s′1 s2, σ

′, ω′in, ω
′
out〉

The expression configurations do not need to consider an output buffer because, as already discussed, in this
language design experiment we assume at each stage only the current feature, without attempting to anticipate
other features that will be possibly added in the future, and we attempts to do minimal changes. For example,
if functions were to be added to the language later, in which case expressions will also possibly affect the
output through function calls, then all the expression configurations and their corresponding small-step SOS
rules will need to change again.

Finally, we also have to change the initial configuration holding programs to also take an input, as well as
the small-step SOS rule for programs to initialize the output buffer to ε as follows:

〈int xl; s, ωin〉 → 〈s, (xl 7→ 0), ωin, ε〉
Once all the changes are applied, we can give the small-step SOS of input/output as follows:

〈read(), σ, i : ωin〉 → 〈i, σ, ωin〉 (SmallStep-Read)

〈a, σ, ωin〉 → 〈a′, σ, ω′in〉
〈print(a);, σ, ωin, ωout〉 → 〈print(a′);, σ, ω′in, ωout〉 (SmallStep-Print-Arg)

〈print(i);, σ, ωin, ωout〉 → 〈{}, σ, ωin, ωout : i〉 (SmallStep-Print)

179

Denotational Semantics

To accommodate the input and the output buffers, the denotation functions associated to IMP’s syntactic
categories need to change their types from

~ � : AExp→ (State ⇁ Int)
~ � : BExp→ (State ⇁ Bool)
~ � : Stmt→ (State ⇁ State)
~ � : Pgm→ State⊥

to
~ � : AExp→ (State × Buffer ⇁ Int × Buffer)
~ � : BExp→ (State × Buffer ⇁ Bool × Buffer)
~ � : Stmt→ (State × Buffer ⇁ State × Buffer × Buffer)
~ � : Pgm→ (Buffer ⇁ State × Buffer × Buffer)

We next discuss the definitions of the new denotation functions.
The denotations of expressions now take a state and an input buffer and produce a value and a possibly

modified input buffer. For example, the denotation of division becomes:

~a1 / a2�π =

{
(1st(arg1) /Int 1st(arg2), 2nd(arg2)) if 1st(arg2) , 0
⊥ if 1st(arg2) = 0

where arg1 = ~a1�π and arg2 = ~a2�(1st(π), 2nd(arg1)).
The denotations of statements can now produce an output buffer in addition to a modified input buffer

(and a state). For example, the denotation of sequential composition becomes:

~s1 s2�π = (1st(arg2), 2nd(arg2), 3rd(arg1) : 3rd(arg2))

where arg1 = ~s1�π and arg2 = ~s2�(1st(arg1), 2nd(arg1)). As another example of statement denotational
semantics, the denotational semantics of while loops remains a fixed-point, but in order to be consistent with
the new type of the denotation function for statements, it needs to be the fixed point of a (total) function

F : (State × Buffer ⇁ State × Buffer × Buffer)→ (State × Buffer ⇁ State × Buffer × Buffer)

It is not difficult to see that the following definition of F has the right type and that F (α) indeed captures the
information that is added to α by unrolling the loop while (b) s once:

F (α)(π) =

(1st(arg3), 2nd(arg3), 3rd(arg2) : 3rd(arg3)) if 1st(arg1) =true

(1st(π), 2nd(arg1), ε) if 1st(arg1) =false

⊥ if arg1 = ⊥

where arg1 = ~b�π, arg2 = ~s�(1st(π), 2nd(arg1)), and arg3 = α(1st(arg2), 2nd(arg2)).
Programs now take an input as well; like for big-step SOS, we prefer to also make the remaining input

available at the end of the program execution, in addition to the state and the output:

~int xl; s�ω = ~s�((xl 7→ 0), ω)

Once all the changes on the denotations of the various syntactic categories are applied as discussed above,
adding the semantics of the new input/output constructs is immediate:

180

~read()�π = (head(2nd(π)), tail(2nd(π))) (DENOTATIONAL-Read)

~print(a);�π = (1st(π), 2nd(~a�π), 1st(~a�π)) (DENOTATIONAL-Print)

Like in the case of IMP’s extension with the variable increment expression construct, the denotational
semantics of the extension with the input/output constructs would have been more modular if we had adopted
a continuation or monadic style from the very beginning.

3.5.3 Adding Abrupt Termination

IMP++ adds both implicit and explicit abrupt program termination. The implicit one is given by division by
zero, while the explicit abrupt termination is given by a new statement added to the language, “halt;”. For
uniformity and demonstration purposes, we choose a silent termination semantics. That is, in both cases of
abrupt termination, the resulting configuration has the same structure as if the program terminated normally;
for example, in the case of big-step SOS, we would like the result configuration for statements to be 〈σ〉,
where σ is the state when the program was terminated abruptly. Specifically, we want the programs

int m, n, s ;

n = 100 ;

while (true) {

if (m <= n) {

s = s + m ;

m = m + 1 ;

}

else { halt ; }

}

int m, n, s ;

n = 100 ;

while (true) {

if (m <= n) {

s = s + m ;

m = m + 1 ;

}

else { s = s / (n / m) ; }

}

to yield the result configuration < m |-> 101 & n |-> 100 & s |-> 5050 > instead of a special configu-
ration of the form < halting, m |-> 101 & n |-> 100 & s |-> 5050 > or similar. Unfortunately, that
is not possible in all cases without intrusively modifying the syntax of the IMP language (to catch the
exceptional behavior and explicitly discard the additional information), since some operational styles need
to make a sharp distinction between a halting configuration and a normal configuration (for propagation
reasons). Proponents of those semantic styles may argue that our semantic choice above seems inappropriate,
since giving more information in the result configuration, such as “this is a halting configuration”, is better
for all purposes than giving less information. There are, however, also reasons to always want a normal result
configuration upon termination. For example, one may want to include IMP in a larger context, such as in
a distributed system, where all the context wants to know about the embedded language is that it takes a
statement and produces a state and/or an output; IMP’s internal exceptional situations are of no concern to the
outer context. There is no absolute better or worse language design, both in what regards syntax and in what
regards semantics. Our task here is to make the language designer aware of the subtleties and the limitations
of the various semantic approaches, and not to propose a better programming language.

Big-Step SOS

The lack of modularity of big-step semantics will be, again, emphasized here. Let us first add the semantic
definition for the implicit abrupt termination generated by division by zero. Recall that the big-step SOS rule
for division was the following:

〈a1, σ〉 ⇓ 〈i1〉 〈a2, σ〉 ⇓ 〈i2〉
〈a1 / a2, σ〉 ⇓ 〈i1 +Int i2〉 if i2 , 0

181

We keep that unchanged, but we also add the following new rule:

〈a1, σ〉 ⇓ 〈i1〉 〈a2, σ〉 ⇓ 〈0〉
〈a1 / a2, σ〉 ⇓ 〈error〉 (BigStep-Div-By-Zero)

In the above rule, error can be regarded as a special value; alternatively, one can regard 〈error〉 as a special
result configuration.

But what if the evaluation of a1 or of a2 in the above rule generates itself an error? If that is the case, then
one needs to propagate that error through the division construct:

〈a1, σ〉 ⇓ 〈error〉
〈a1 / a2, σ〉 ⇓ 〈error〉 (BigStep-Div-Error-Left)

〈a2, σ〉 ⇓ 〈error〉
〈a1 / a2, σ〉 ⇓ 〈error〉 (BigStep-Div-Error-Right)

Note that in case one of a1 or a2 generates an error, then the other one is not even evaluated anymore, to
faithfully capture the intended meaning of abrupt termination.

Unfortunately, one has to do the same for all the expression language constructs. This way, for each
expression construct, one has to add at least as many error-propagation big-step SOS rules as arguments that
expression construct takes. Moreover, when the evaluation error reaches a statement, one needs to transform
it into a “halting signal”. This can be achieved by introducing a new type of result configuration, namely
〈halting, σ〉, and then adding appropriate halting propagation rules for all the statements. For example, the
assignment statement needs to be added the new rule

〈a, σ〉 ⇓ 〈error〉
〈x = a;, σ〉 ⇓ 〈halting, σ〉 (BigStep-Asgn-Halt)

The halting signal needs to be propagated through statement constructs, collecting the appropriate state. For
example, the following two rules need to be included for sequential composition, in addition to the existing
rule (which stays unchanged):

〈s1, σ〉 ⇓ 〈halting, σ1〉
〈s1 s2, σ〉 ⇓ 〈halting, σ1〉 (BigStep-Seq-Halt-Left)

〈s1, σ〉 ⇓ 〈σ1〉, 〈s2, σ1〉 ⇓ 〈halting, σ2〉
〈s1 s2, σ〉 ⇓ 〈halting, σ2〉 (BigStep-Seq-Halt-Right)

In addition to all the propagation rules, we also have to define the semantics of the explicit halt statement:

〈halt;, σ〉 ⇓ 〈halting, σ〉 (BigStep-Halt)

Therefore, when using big-step SOS, one has to more than double the number of rules in order to support
abrupt termination. Indeed, any argument of any language construct can yield the termination signal, so a
rule is necessary to propagate that signal through the current language construct. It is hard to imagine worse
in a language design framework. An unfortunate language designer choosing big-step semantics as language
definition framework will incrementally become reluctant to add or experiment with any new feature in her
language. For example, imagine that one wants to add exceptions and break/continue of loops to IMP++.

182

Finally, unless one extends the language syntax, there appears to be no way to get rid of the junk result
configurations 〈halting, σ〉 that have been artificially added in order to propagate the error or the halting
signals. For example, one cannot simply add the rule

〈s, σ〉 ⇓ 〈halting, σ′〉
〈s, σ〉 ⇓ 〈σ′〉

because it may interfere with other rules and thus wrongly hide the halting signal; for example, it can be
applied on the second hypothesis of the rule (BigStep-Seq-Halt-Right) above hiding the halting signal and
thus wrongly making the normal rule (BigStep-Seq) applicable. While having junk result configurations
of the form 〈halting, σ〉 may seem acceptable in our scenario here, perhaps even desirable for debugging
reasons, in general one may find it inconvenient to have many types of result configurations; indeed, one
would need similar junk configurations for exceptions, for break/continue of loops, for functions return, etc.

Consequently, the halting signal needs to be caught at the top-level of the derivation. Fortunately, IMP
provides a top-level syntactic category, Pgm, so we can add the following rule which dissolves the potential
junk configuration at the top:

〈s, xl 7→ 0〉 ⇓ 〈halting, σ〉
〈int xl; s〉 ⇓ 〈σ〉 (BigStep-Halt)

Now we have silent abrupt termination, but note that the variable declaration construct now acts as an
exception catching and dissolving the abrupt termination signal generated by “halt;” or by division-by-zero.
If one does not like to use a language construct for something which has not been originally intended, then
one can add an auxiliary top statement or program construct, then reduce the semantics of programs to that
of top , and then give top an exception-handling-like big-step SOS, as we will do for the MSOS definition
of abrupt termination in Section 3.6; see Exercise 93. This latter solution is also more general, because it
does not rely on a fortunate earlier decision to have a top-level language construct.

In addition to the lack of modularity due to having to more than double the number of rules in order to
add abrupt termination, the inclusion of all these rules can also have a significant impact on performance
when one wants to execute the big-step SOS. Indeed, there are now four rules for division, each having the
same left-hand side, 〈a1 / a2, σ〉, and some of these rules even sharing some of the hypotheses. That means
that any general-purpose proof or rewrite system attempting to execute such a definition will unavoidably
face the problem of searching a large space of possibilities in order to find one or all possible reductions.

Type System using Big-Step SOS

The typing policy of abrupt termination is clear: “halt;” types to a statement and division-by-zero is ignored.
Indeed, one cannot expect that a type checker, or any technique, procedure or algorithm, can detect division by
zero in general: division-by-zero, like almost any other runtime property of any Turing-complete programing
language, is an undecidable problem. Consequently, it is common to limit typing division to checking that
the two expressions have the expected type, integer in our case, which our existing type checker for IMP
already does (see Figure 3.10). We therefore only add the following typing rule for “halt;”:

xl ` halt; : stmt (BigStepTypeSystem-Halt)

183

Small-Step SOS

Small-step SOS turns out to be almost as non-modular as big-step SOS when defining control-intensive
constructs like abrupt termination. Like for big-step SOS, we need to invent special configurations to signal
steps corresponding to implicit division by zero or to explicit halt statements. In small-step SOS, a single
type of such special configurations suffices, namely one of the form 〈halting, σ〉, where σ is the state in
which the program was abruptly terminated. However, for uniformity with big-step SOS, we also define two
types of special configurations, one for expressions and one for statements; since we carry the state in the
right-hand-side configuration of all sequents in our small-step SOS definitions, the only difference between
the two configuration types is their tag, namely 〈error, σ〉 for the former versus 〈halting, σ〉 for the latter.

We can then define the small-step SOS of division by zero as follows (recall that the original SmallStep-
Div rule in Figure 3.14 is “〈i1 / i2, σ〉 → 〈i1 /Int i2, σ〉 if i2 , 0”):

〈i1 / 0, σ〉 → 〈error, σ〉 (SmallStep-Div-By-Zero)

Like for the big-step SOS extension above, we have to make sure that the halting signal is correctly propagated.
Here are, for example, the propagation rules through the division construct:

〈a1, σ〉 → 〈error, σ〉
〈a1 / a2, σ〉 → 〈error, σ〉 (SmallStep-Div-Error-Left)

〈a2, σ〉 → 〈error, σ〉
〈a1 / a2, σ〉 → 〈error, σ〉 (SmallStep-Div-Error-Right)

The two rules above are given in such a way that the semantics is faithful to the intended computational
granularity of the defined language feature. Indeed, we want division by zero to take one computational
step to be reported as an error, as opposed to as many steps as the depth of the context in which the error
has been detected; for example, a configuration containing expression (3 / 0) / 3 should reduce to a halting
configurations in one step, not in two. If we added a special error value and replaced the two rules above by

〈error / a2, σ〉 → 〈error, σ〉
〈a1 / error, σ〉 → 〈error, σ〉

then errors would be propagated to the top level of the program in as many small-steps as the depth of the
context in which the error was generated; we do not want that.

Like in the big-step SOS above, the implicit expression errors need to propagate through the statements
and halt the program. One way to do it is to generate an explicit halt;statement and then to propagate
that “halt;” statement through all the statement constructs as if it was a special statement value, until it
reaches the top. However, as discussed in the paragraph above, that would generate as many steps as the
depth of the evaluation contexts in which the “halt;” statement is located, instead of just one step as desired.
Alternatively, we can use the same approach to propagate the halting configuration through the statement
constructs as we used to propagate it through the expression constructs. Specifically, we add transition rules
from expressions to statements, like the one below (a similar one needs to be added for the conditional):

〈a, σ〉 → 〈error, σ〉
〈x = a;, σ〉 → 〈halting, σ〉 (SmallStep-Asgn-Halt)

Once the halting signal due to a division by zero reaches the statement level, it needs to be further propagated
through the sequential composition, that is, we need to add the following rule:

184

〈s1, σ〉 → 〈halting, σ〉
〈s1 s2, σ〉 → 〈halting, σ〉 (SmallStep-Seq-Halt)

Note that we assumed that a halting step does not change the state (we used the same σ in both the left and
the right configurations). One can prove by structural induction that in our simple language scenario that is
indeed the case, so there is no need to propagate state changes when the program halts.

Finally, we can also generate a special halting configuration when a “halt;” statement is reached:

〈halt;, σ〉 → 〈halting, σ〉 (SmallStep-Halt)

Now any abruptly terminated program reduces to a special configuration of the form 〈halting, σ〉.
Recall that our plan, however, was to terminate the computation with a normal configuration of the form
〈{}, σ〉, regardless of whether the program terminates normally or abruptly. Like in the big-step SOS above,
the naive solution to transform a step producing a halting configuration into a normal step using the rule

〈s, σ〉 → 〈halting, σ〉
〈s, σ〉 → 〈{}, σ〉

does not work. Indeed, consider a situation where the rule (SmallStep-Seq-Halt) above could apply. There is
nothing to prevent the naive rule above to interfere and transform the halting premise of (SmallStep-Seq-
Halt) into a normal step producing a {}, which can be further fed to the conventional rule for sequential
composition, (SmallStep-Seq-Arg1) in Figure 3.15, hereby continuing the execution of the program as if no
abrupt termination took place.

If one is willing to waste a computational step in order to explicitly dissolve the halting configuration
replacing it by a normal one, then one can add the following simple small-step SOS rule:

〈halting, σ〉 → 〈{}, σ〉 (SmallStep-Halting)

Although it may look like this rule has the same final effect as the wrong conditional conditional rule above,
in the sense that it reduces the halting statement in two steps instead of one to the empty-block configuration,
note that this difference in the number of steps is actually crucial here! The above works because small-step
SOS performs only one step at a time, both globally and in the rule premises.

Although not perfect, because it wastes one step, we find that the rule above gives us a good trade-off

between elegance and computational intrusiveness (after all, wasting a step in a deterministic manner may be
acceptable in many situations). Supposing that one wants to waste no computational steps as an artifact of
the particular small-step SOS approach chosen, there is no immediate way to terminate the program with
a normal result configuration of the form 〈{}, σ〉 both when the program terminates abruptly and when it
terminates normally. One possibility, also suggested for big-step SOS above and followed in the subsequent
MSOS definition for abrupt termination in Section 3.6, is to add an auxiliary top language construct. With
that, we can change the small-step SOS rule for variable declarations to reduce the top-level program to its
body statement wrapped under this top construct, and then add corresponding rules to propagate normal
steps under the top while catching the halting steps and transforming them into normal steps at the top-level.
Here are four small-step SOS rules which almost achieve this (the first rule replaces the previous one for

185

variable declarations); see also Exercise 96:

〈int xl; s〉 → 〈top s, (xl 7→ 0)〉
〈s, σ〉 → 〈s′, σ′〉

〈top s, σ〉 → 〈top s′, σ′〉

〈top {}, σ〉 → 〈{}, σ〉
〈s, σ〉 → 〈halting, σ〉
〈top s, σ〉 → 〈{}, σ〉

We said the rules above “almost” achieve non-wasteful reduction because the third rule still wastes one step
to eliminate the unnecessary top construct once its statement has been reduced. This rule is easy to avoid
though. All we have to do is to add an additional case for each of the first two rules, namely a case where the
argument statement of the top construct is {}, and in that case to replace top {} with {}; see also Exercise 97.

Denotational Semantics

Since both expressions and statements can abruptly terminate, like in the previous semantics we have to
provide a means for the denotation functions for expressions and statements to flag when abrupt termination
is intended. This way, the denotation of programs can catch the abrupt termination flag and yield the expected
state (recall that we want to see normal termination of programs regardless of whether that happens abruptly
or not). Specifically, we change the previous denotation functions

~ � : AExp→ (State ⇁ Int)
~ � : BExp→ (State ⇁ Bool)
~ � : Stmt→ (State ⇁ State)

into denotation functions of the form

~ � : AExp→ (State ⇁ Int ∪{error})
~ � : BExp→ (State ⇁ Bool ∪{error})
~ � : Stmt→ (State ⇁ State ×{halting, ok})

as described below. Before we proceed, note that the new denotation functions will still associate partial
functions to syntactic categories. While the new semantics will be indeed able now to catch and terminate
when a division by zero takes place, it will still not be able to catch non-termination of programs; the
denotation of those programs will still stay undefined. Strictly technically speaking, the denotations of
expressions will now always be defined, because the only source of expression undefinedness in IMP was
division by zero. However, for the same reason it is good practice in small-step SOS to have the same type of
configurations both to the left and to the right of the transition arrow (→), it is good practice in denotational
semantics to work with domains of partial functions instead of ones of total functions. This way, we wouldn’t
have to change these later on if we add new expression constructs to the language that yield undefinedness
(such as, e.g., recursive functions).

The denotation functions of expressions need to change in order to initiate a “catchable” error when
division by zero takes place, and then to propagate it through all the other expression constructs. We only

186

discuss the denotation of division, the other being simpler. The previous denotation function of division
~a1 / a2� was defined as

~a1 / a2�σ =

{
~a1�σ /Int ~a2�σ if ~a2�σ , 0
⊥ if ~a2�σ = 0

which is not good enough anymore. To catch and propagate the division-by-zero error, we can modify the
denotation of division as follows:

~a1 / a2�σ =

~a1�σ /Int ~a2�σ if ~a1�σ , error and ~a2�σ , error and ~a2�σ , 0
⊥ if ~a1�σ = ⊥
error if ~a1�σ = error or ~a2�σ = error or ~a2�σ = 0

The second case above is necessary, because we want ~a1 / a2�σ to be undefined, and not error, when
~a1�σ = ⊥ and ~a2�σ = 0.

Like in the previous semantics, the implicit expression errors need to propagate through the statements
and halt the program. The denotation function of statements now returns both a state and a flag. The flag tells
whether the state resulted from a normal evaluation or whether it is a halting state that needs to be propagated.
Here is the new denotation of assignment:

~x = a;�σ =

(σ, halting) if ~a�σ = error
⊥ if σ(x) = ⊥ or ~a�σ = ⊥
(σ[~a�σ/x], ok) if otherwise

Above, we chose to halt when ~a�σ = error and σ(x) = ⊥ (the cases are handled in order). The alternative
would be to choose undefined instead of halt (see Exercise 100). Our choice to assume that the expression
being assigned is always evaluated no matter whether the assigned variable is declared or not, is consistent
with the small-step SOS of assignment in IMP: first evaluate the expression being assigned step by step, then
write the resulting value to the assigned variable if declared; if undeclared then get stuck (Section 3.3.2). The
statement sequential composition construct needs to also properly propagate the halting situation:

~s1 s2�σ =

~s1�σ if 2nd(~s1�σ) = halting
~s2�(1st(~s1�σ)) if 2nd(~s1�σ) = ok
⊥ if ~s1�σ = ⊥

We also discuss the denotational semantics of loops while (b) s. It now needs to be the fixed point of a
(total) function of the form

F : (State ⇁ State ×{halting, ok})→ (State ⇁ State ×{halting, ok})
The following defines such an F which has the right type and captures the information that is added by
unrolling the loop once (the cases are handled in order, from top to bottom):

F (α)(σ) =

⊥ if ~b�σ = ⊥
(σ, halting) if ~b�σ = error
(σ, ok) if ~b�σ =false

~s�σ if ~b�σ =true and 2nd(~s�σ) = halting
α(1st(~s�σ)) if ~b�σ =true and 2nd(~s�σ) = ok

After we modify the denotation functions of almost all expression and statement constructs as explained
above (except for the denotations of variable lookup, and of builtin integers and Booleans), we have to also

187

modify the denotation of programs to silently discard the halting signal in case its body statement terminated
abruptly (the type of the denotation of programs does not change):

~int xl; s� = 1st(~s�(xl 7→ 0))

Finally, we can now also give the denotational semantics of “halt;”:

~halt;�σ = (σ, halting)

Like for the other semantic extensions in this section, adding the semantics of abrupt termination was easy;
the tedious part was to modify the existing semantics to make it aware of abrupt termination.

3.5.4 Adding Dynamic Threads

IMP++ adds threads to IMP, which can be dynamically created and terminated. Like with the previous
IMP extensions we keep the syntax and the semantics of threads minimal, and pretend no other features
will be added to the language. Recall that as part of our language design experiment, we first only consider
thread spawning as a statement, without worrying about thread synchronization. Then, once all the features
are put together in the IMP++ language in Section 3.5.6, we will add thread joining synchronization in
Section 3.5.7 and, as part of that, will modify thread spawning to be an expression instead of a statement
construct, evaluating to the unique identifier of the newly created thread. Therefore, for now we only add a
spawn statement construct:

Stmt ::= spawn Block

The semantics of spawn S is that the block statement S executes concurrently with the rest of the program,
sharing and possibly concurrently modifying the same variables, like threads do. The thread corresponding to
S terminates when S terminates and, when that happens, we remove the thread. Like in the previous language
extensions, we want programs to terminate normally, no matter whether they make use of threads or not. For
example, the programs below create 101 and, respectively, 2 new threads during their execution:

int m, n, s ;

n = 100 ;

while (m <= n) {

spawn {s = s + m ;}

m = m + 1 ;

}

int x ;

{

spawn {x = x + 1 ;}

spawn {x = x + 10 ;}

}

x = x + 100 ;

Yet, we want the result configurations at the end of the execution to look like before in IMP, that is, like
< skip, m |-> 101 & n |-> 100 & s |-> 5050 > and < skip, x |-> 111 >, respectively, in the case of
small-step SOS. We grouped the two spawn statements in the second program on purpose, to highlight the
need for structural equivalences (after the block is eliminated; this will be discussed shortly, in the context of
small-step SOS). Recall that the syntax of IMP’s sequential composition in Section 3.1 (see Figure 3.1) was
deliberately left ambiguous, based on the hypothesis that the semantics of IMP will be given in such a way
(left-to-right statement evaluation) that the syntactic ambiguity is irrelevant. Unfortunately, the addition of
threads makes the above hard or impossible to achieve modularly in some of the semantic approaches.

Concurrency often implies non-determinism, which is not always desirable. For example, the first
program above can also evaluate to a result configuration in which s is 0. This happens when the first
spawned thread calculates the sum s + m, which is 0, but postpones writing it to s until all the subsequent
100 new threads complete their execution. Similarly, after the execution of the second program above, x can
have any of the values 1, 10, 11, 100, 101, 110, 111 (see Exercise 101).

188

A language designer or semanticist may find it very useful to execute and analyze programs like above
in their semantics. Indeed, the existence of certain behaviors or their lack of, may suggest changes in the
syntax and the semantics of the language at an early and therefore cheap design stage. For example, one
may decide that one’s language must be race-free on any variable except some special semaphore variables
used specifically for synchronization purposes (this particular decision may be too harsh on implementations,
though, which may end up having to rely on complex static analysis front-ends or even ignoring it). We make
no such difficult decisions in our simple language here, limiting our goal to the bottom of the spectrum of
semantic possibilities: we only aim at giving a semantics that faithfully captures all the program behaviors
due to spawning threads.

We make the simplifying assumptions that we have a sequentially consistent memory and that variable
read and write operations are atomic and thus unaffected by potential races. For example, if x is 0 in a
two-threaded program where one thread is about to write 5 to x and the other is about to read x, then the only
global next steps can be either that the first thread writes 5 to x or that the second thread reads 0 as the value
of x; in other words, we assume that it is impossible for the second thread to read 5 or any other value except
0 as the next small-step step in the program.

Big-Step SOS

Big-step SOS and denotational semantics are the semantical approaches which are the most affected by
concurrency extensions of the base language. That is because their holistic view of computation makes it
hard or impossible to capture the fine-grained execution steps and behavior interleavings that are inherent
to concurrent program executions. Consider, for example, a statement of the form (spawn S 1) S 2 in some
program state σ. The only thing we can do in big-step SOS is to evaluate S 1 and S 2 in some appropriate
states and then to combine their resulting states into a result state. We do not have much room for imagination
here: we either evaluate S 1 in state σ and then S 2 in the resulting state, or evaluate S 2 in state σ and then
S 1 in the resulting state. The big-step SOS rule for sequential composition already implies the former case
provided that spawn S can evaluate to whatever state S evaluates to, which is true and needs to be considered
anyway. Thus, we can formalize the above into the following two big-step SOS rules, which can be regarded
as a rather desperate attempt to use big-step SOS for defining concurrency:

〈s, σ〉 ⇓ 〈σ′〉
〈spawn s, σ〉 ⇓ 〈σ′〉 (BigStep-Spawn-Arg)

〈s2, σ〉 ⇓ 〈σ2〉 〈s1, σ2〉 ⇓ 〈σ1〉
〈(spawn s1) s2, σ〉 ⇓ 〈σ1〉 (BigStep-Spawn-Wait)

As expected, the two big-step SOS rules above capture only a limited number of the possible concurrent
behaviors even for small and simple programs like the ones discussed above. One may try to change the entire
big-step SOS definition of IMP to collect in result configurations all possible ways in which the corresponding
fragments of program can evaluate. However, in spite of its non-modularity, there seems to be no easy way to
combine, for example, the behaviors of S 1 and of S 2 into the behaviors of (spawn S 1) S 2.

Type System using Big-Step SOS

From a typing perspective, spawn is nothing but a language construct expecting a statement as argument and
producing a statement as result. To type programs using spawn statements we therefore add the following
typing rule to the already existing typing rules in Figure 3.10:

189

xl ` s : stmt
xl ` spawn s : stmt (BigStepTypeSystem-Spawn)

Small-Step SOS

Small-step semantics are more appropriate for concurrency, because they allow a finer-grain view of computa-
tion. For example, they allow to say that the next computational step of a statement of the form (spawn S 1) S 2
comes either from S 1 or from S 2 (which is different from saying that either S 1 or S 2 is evaluated next all the
way through, like in big-step SOS). Since in this context spawn S 1 is already permitted to advance by the
small-step SOS rule for sequential composition, the following three small-step SOS rules achieve the desired
behavioral non-determinism caused by concurrent threads ... or at least it may look like:

〈s, σ〉 → 〈s′, σ′〉
〈spawn s, σ〉 → 〈spawn s′, σ′〉 (SmallStep-Spawn-Arg)

〈spawn {}, σ〉 → 〈{}, σ〉 (SmallStep-Spawn-Skip)

〈s2, σ〉 → 〈s′2, σ′〉
〈(spawn s1) s2, σ〉 → 〈(spawn s1) s′2, σ

′〉 (SmallStep-Spawn-Wait)

The rule (SmallStep-Spawn-Skip) cleans up terminated threads.
Unfortunately, the three rules above are not sufficient to capture all the intended behaviors. Consider, for

example, the second program at the beginning of Section 3.5.4. That program was intended to have seven
different behaviors with respect to the final value of x. Our current small-step SOS misses two of those
behaviors, namely those in which x results in 1 and 100, respectively.

In order for the program to terminate with x = 1, it needs to start the first new thread, calculate the
sum x + 1 (which is 1), then delay writing it back to x until after the second and the main threads do their
writes of x. However, in order for the main thread to be allowed to execute its assignment statement, the two
grouped spawn statements need to either terminate and become {} so that the rule (SmallStep-Seq-Skip) (see
Figure 3.15) applies, or to reduce to only one spawn statement so that the rule (SmallStep-Spawn-Wait)
above applies. Indeed, these are the only two rules which allow access to the second statement in a sequential
composition. The first case is not possible, because, as explained, the first newly created thread cannot be
terminated. In order for the second case to happen, since the first spawn statement cannot terminate, the
only possibility is for the second spawn statement to be executed all the way through (which is indeed
possible, thanks to the rules (SmallStep-Seq-Arg1) in Figure3.15 and (SmallStep-Spawn-Wait) above) and
then eliminated. To achieve this elimination, we may think of adding a new rule, which appears to be so
natural that one may even wonder “how did we miss it in our list above?”:

〈spawn s {}, σ〉 → 〈spawn s, σ〉

This rule turns out to be insufficient and, once we fix the semantics properly, it will actually become
unnecessary, which is why we did not add it above. Nevertheless, if we add this rule, the resulting small-step
SOS can also produce the behavior in which x = 1 at the end of the execution of the second program at the
beginning of Section 3.5.4. However, it is still insufficient to produce the behavior in which x = 100.

In order to produce a behavior in which x = 100 when executing the second program, the main thread
should first execute its x+100 step (which evaluates to 100), then let the two child threads do their writes to x,
and then write the 100 to x. We have, unfortunately, no rule that allows computations within s2 in a sequential

190

composition s1 s2 where s1 is different from {} or a spawn statement, as it is our case here. What we want is
some generalization of the rule (SmallStep-Spawn-Wait) above which allows computations in s2 whenever it
is preceded by a sequence of spawns, possibly grouped in possibly nested blocks. On paper definitions, one
can do that rather informally by means of some informal side condition saying so. If one needs to be formal,
which is a must when one needs to execute the resulting language definitions as we do here, one can define a
special sequent saying that a statement only spawns new threads and does nothing else (in the same spirit as
the the C

√
sequents in Exercise 64), and then use it to generalize the rule (SmallStep-Spawn-Wait) above.

However, that would be a rather particular and potentially non-modular solution (what if later on we add
agents or other mechanisms for concurrency or grouping?).

Our general solution is to instead enforce the sequential composition of IMP to be structurally associative,
using the following structural identity:

(s1 s2) s3 ≡ s1 (s2 s3) (SmallStep-Seq-Assoc)

That means that the small-step SOS reduction rules now apply modulo the associativity of sequential
composition, that is, that it suffices to find a structurally equivalent representative of a syntactic term which
allows a small-step SOS rule to apply. In our case, the program obtained from the original program after
eliminating the block surrounding the two spawn statements, is structurally equivalent to one whose first
statement is the first spawn and whose second statement is the sequential composition of the second spawn
and the assignment of the main thread, and that structurally equivalent program allows all seven desired
behaviors, so the original program also allows them. It is important to understand that we cannot avoid
enforcing associativity (or, alternatively, the more expensive solution discussed above) by simply parsing
the original program so that we start with a right-associative arrangement of the sequentially composed
statements. The problem is that right-associativity may be destroyed as the program executes, for example
when applying the true/false rules for the if statement, so it needs to be dynamically enforced.

Structural identities are not easy to execute and implement, because they can quickly yield an exponential
explosion in the number of terms that need to be matched by rules. Since in our particular case we only
need the fully right-associative representative of each sequential composition, we can even replace the
structural identity above by a small-step SOS rule. The problem with doing that, though, is that the intended
computational granularity of the language is significantly modified; for example, the application of a true/false
rule for the conditional statement may trigger as many such rearrangement steps as statements in the chosen
branch; such rearrangement steps could dominate the total number of steps seen in some computations.

Unfortunately, there is an important syntactic detail that we purposely left out in order to highlight a
common problem when using syntactic approaches to operational semantics: it may be possible that terms
change their syntactic category during reduction, which may require extending the syntax of some constructs
or otherwise require significant changes in the existing semantics of other language constructs. Consider,
for example, the rule (SmallStep-Spawn-Arg) above. Syntactically, the rule does not parse, because spawn
takes a block, not a statement, as argument. We should reduce its applicability only to blocks (i.e., require s,
s′ range over blocks only) in order to obey the declared syntax, but note that if we do so then the rule can
only be applied in very particular situations. Indeed, if s is a block { s1 }, then the rule (SmallStep-Block) in
Figure 3.15 can be applied to reduce s to s1, but, however, the restricted rule (SmallStep-Spawn-Arg) can
only be applied with this premise if s1 is a also block, so s has the form { { . . . } }, which is unlikely.

One could argue that the culprit for the above is in fact the semantic rule of blocks, (SmallStep-Block) in
Figure 3.15, because it is allowed to change the syntactic category of its code from Block to Stmt. Although
there is no SOS restriction saying that the type of the code cannot be changed during the reduction process
(in fact this happens quite frequently, e.g., expressions reduce to integers, etc.), let us briefly discuss how the

191

semantics of blocks needs to change in order to reduce blocks to blocks, and what additional problems that
generates. First, we would need to propagate the reduction relation through the block construct:

〈s, σ〉 → 〈s′, σ〉
〈{ s }, σ〉 → 〈{ s′ }, σ〉

Then, once the statement within the block reduces completely, the entire block reduces to the empty block:

〈{ {} }, σ〉 → 〈{}, σ〉

While the above may seem a reasonable alternative to the semantics of blocks, it is more involved than
our original semantics, slower when we execute it, non-modular (because in order to fix the semantics of a
language construct we had to significantly modify the semantics of another language construct which worked
fine before), and worse, still does not solve our problem. Indeed, there is no way now to reduce S 2 in a
fragment of the form { spawn S 1 } S 2, because we have to first completely eliminate the block before we
move on to reducing S 2. The rule (SmallStep-Spawn-Wait) above does not work anymore. More involved
changes to the semantics are needed in order to fix the above.

Instead of changing the semantics of existing constructs, let us now investigate more modular approaches
to fix the semantics of spawn. One possibility is to structurally enforce spawn to only take blocks and to only
reduce the statements inside the blocks, which can be achieved by changing the rule (SmallStep-Spawn-Arg)
above as follows (and keeping the rules (SmallStep-Spawn-Skip) and (SmallStep-Spawn-Wait) unchanged):

〈s, σ〉 → 〈s′, σ′〉
〈spawn { s }, σ〉 → 〈spawn { s′ }, σ′〉

We also have to add one rule to eliminate the block once its enclosed statement completely reduces:

〈spawn { {} }, σ〉 → 〈{}, σ〉

The last rule above is somewhat artificial, particularly in combination with the rule (SmallStep-Spawn-Skip),
which is still necessary. Additionally, both rules above make the connection between spawn and blocks
too tight, indicating that the semantics of spawn may need to be revisited if we extend the language with
other constructs for blocks (e.g., blocks with local variable declarations), or if we extend spawn to take other
statements besides blocks are argument (e.g., function calls).

Another solution, which we prefer here, is to keep the three small-step SOS rules (SmallStep-Spawn-Arg),
(SmallStep-Spawn-Skip) and (SmallStep-Spawn-Wait) unchanged, but to extend the syntax of spawn to take
any statements as argument, not only blocks:

Stmt ::= | spawn Stmt

This can be done either by replacing the previous spawn Block construct with the above or by simply adding
the construct above to the already existing grammar of IMP and thus overloading the previous spawn Block
construct. In either case, we should make sure that the original program only uses the syntax spawn Block.

Denotational Semantics

As already mentioned when we discussed the big-step SOP of spawn above, big-step SOS and denotational
semantics are the semantic approaches which are the most affected by the addition of concurrency to

192

IMP. While big-step SOS was somewhat able to capture some of the non-determinism due to concurrency,
unfortunately, denotational semantics cannot do even that easily. The notes on denotational semantics in
Section 3.4.3 mention the use of powerdomains and resumptions when giving concurrent semantics to
languages. These are complex denotational semantics topics, which are not easy to use even by experts.
Moreover, they yield semantics which are either non-executable at all or very slow. Since the main emphasis
of this book is on operational semantics, we do not discuss these advanced topics in this book. Instead, we
simply dissolve the spawn statements, so we can still execute IMP++ programs using denotational semantics:

~spawn s� = ~s�

Of course, spawning threads is completely useless with our denotational semantics here.

3.5.5 Adding Local Variables

Blocks with local variable declarations are common to many imperative, object oriented and functional
languages. In IMP++ we follow the common imperative approach where variables can be declared anywhere
inside a block, their scope being the rest of the block (whatever follows the declaration); in other words, a
declared variable is not visible before its declaration or outside the block declaring it. A declaration of a
variable that appears in the scope of another declaration of the same variable is said to shadow the original
one. For example, the values of y and z are 1 and 2, respectively, right before the end of the following two
IMP++ blocks (none of the variables are visible outside the given blocks):

{ int x, y, z ;

x = 1 ;

y = x ;

int x ;

x = 2 ;

z = x ; }

{ int x, y, z ;

x = 1 ;

{ int x ;

x = 2 ;

z = x ; }

y = x ; }

As already explained in the preamble of Section 3.5, the introduction of local variables suggests some
syntactic and semantic simplifications in the already existing definition of IMP. For example, since local
variable declarations generalize the original global variable declarations of IMP, there is no need for the
original global declarations. Thus, programs can be just statements. Therefore, we remove the top-level
variable declaration and add the following new syntax:

Stmt ::= intList{Id};
Pgm ::= Stmt

In each of the semantics, we assume that all the previous rules referring to global variable declarations are
removed. Moreover, for semantic clarity, we assume that variable declarations can only appear in blocks (a
hypothetical parser can reject those programs which do not conform).

An immediate consequence of the language extension and conventions above is that programs now
evaluate to empty states. Indeed, since the initial state in which a program is evaluated is empty and since
variable declarations are local to the blocks in which they occur, the state obtained after evaluating a program
is empty. This makes it somewhat difficult to test this IMP extension. To overcome this problem, one can
either add an output statement to the language like in Section 3.5.2 (we will do this in Section 3.5.6), or
manually initialize the state with some “global” variables and then use them undeclared in the program.

It would be quite tedious to give semantics directly to the syntactic constructs above. Instead, we are
going to propose another construct which is quite common and easy to give semantics to in each of the

193

semantic approaches, and then statically translate the constructs above into the new construct. The new
construct has the following syntax:

Stmt ::= let Id =AExp in Stmt

Its semantics is as expected: the arithmetic expression is first evaluated to an integer, then the declared
variable is bound to that integer possibly shadowing an already existing binding of the same variable, then
the statement is evaluated in the new state, and finally the environment before the execution of the let
is recovered. The latter step is executed by replacing the value of the variable after the execution of the
statement with whatever it was before the let, possibly undefined. All the other side effects generated by the
statement are kept.

Here we propose a simple set of macros which automatically desugar any program using the block and
local variable constructs into a program containing only let and the existing IMP constructs:

(s1 s2) s3 = s1 (s2 s3)
int xl, x; s = int xl; let x = 0 in s
int ·; s = s

s int xl; = s
{ int xl; } = {}

The macros above are expected to be iteratively applied in order, from top to bottom, until no macro can
be applied anymore. When that happens, there will be no variable declaration left; all of these would have
been systematically replaced by theletconstruct. The first macro enforces right-associativity of sequential
composition. This way, any non-terminal variable declaration (i.e., one which is not the last statement in a
block) will be followed, via a sequential composition, by the remainder of the block. The second and the
third macros iteratively replace each non-terminal variable declaration by a correspondinglet statement,
while the fourth and the fifth eliminate the remaining (and useless) terminal variable declarations. From here
on we assume that these syntactic desugaring macros are applied statically, before any of the semantic rules
is applied; this way, the subsequent semantics will only be concerned with giving semantics to let.

Big-Step SOS

The big-step SOS rule ofletfollows quite closely its informal description above:

〈a, σ〉 ⇓ 〈i〉 〈s, σ[i/x]〉 ⇓ 〈σ′〉
〈let x = a in s, σ〉 ⇓ 〈σ′[σ(x)/x]〉 (BigStep-Let)

In words, the arithmetic expression a is first evaluated to some integer i. Then the statement s is evaluated in
state σ[i/x], resulting in a state σ′. Then we return σ′[σ(x)/x] as the result of the let statement, that is, the
state σ′ in which we update the value of x to whatever x was bound to originally in σ. We cannot return σ′

as the result of the let, because σ′ binds x to some value which is likely different from what x was bound to
in σ (note that s is allowed to assign to x, although that is not the main problem here). If x is undefined in σ,
that is, if σ(x) = ⊥, then x is also undefined in σ′[σ(x)/x]: indeed, recall from Section 2.4.6 that σ′[⊥/x]
“undefines” x in σ′.

Since programs are now just statements, their big-step SOS simply reduces to that of statements:

〈s, ·〉 ⇓ 〈σ〉
〈s〉 ⇓ 〈σ〉 (BigStep-Pgm)

194

Hence, programs are regarded as statements that execute in the empty state. However, since variable accesses
in IMP require the variable to be declared and since all variable declarations are translated into let statements,
which recover the state in the variable they bind after their execution, we can conclude that σ will always be
empty whenever a sequent of the form 〈s〉 ⇓ 〈σ〉 is derivable using the big-step SOS above. The rule above is,
therefore, not very useful. All it tells us is that if 〈s〉 ⇓ 〈σ〉 is derivable then s is a well-formed program which
terminates. The idea of reducing the semantics of statement-programs to that of statements in an initial state
is general though, and it becomes practical when we add other features to the language (see Section 3.5.6).

Type System using Big-Step SOS

Following the intuitions above, to type programs using let statements we add the following typing rules to
the already existing typing rules in Figure 3.10:

xl ` a : int xl, x ` s : stmt
xl ` let x = a in s : stmt (BigStepTypeSystem-Let)

· ` s : stmt
` s : pgm (BigStepTypeSystem-Pgm)

Small-Step SOS

The small-step SOS of let x = a in s can be described in words as follows: first evaluate a stepwise, until
it becomes some integer; then evaluate s stepwise in a state originally binding x to the integer to which a
evaluates, but making sure that the value bound to x is properly updated during each step in the evaluation of
s and it is properly recovered after each step to whatever it was in the environment outside the let (so other
potentially interleaved rules taking place outside the let see a consistent state); finally, dissolve the let
when its enclosed statement becomes {}. All these can be achieved with the following three rules, without
having to change anything in the already existing small-step SOS of IMP:

〈a, σ〉 → 〈a′, σ〉
〈let x = a in s, σ〉 → 〈let x = a′ in s, σ〉 (SmallStep-Let-Exp)

〈s, σ[i/x]〉 → 〈s′, σ′〉
〈let x = i in s, σ〉 → 〈let x =σ′(x) in s′, σ′[σ(x)/x]〉 (SmallStep-Let-Stmt)

〈let x = i in {}, σ〉 → 〈{}, σ〉 (SmallStep-Let-Done)

Note that if x was undeclared before the let then so it stays after each application of the rule (SmallStep-
Let-Stmt), because σ′[⊥/x] “undefines” σ′ in x (see Section 2.4.6).

Like in big-step SOS, the semantics of programs (which are now statements) reduces to that of statements.
One simple way to achieve that in small-step SOS is to add a rule 〈s〉 → 〈s, ·〉, in the same spirit as the
small-step SOS of IMP in Section 3.3.2 (Figure 3.15). However, like in Exercise 67, one could argue that this
approach is wasteful, since one does not want to spend a step only to initialize the empty state (this can be
regarded as poor style). For demonstration purposes and for the sake of a semantic variation, we here prefer a
non-wasteful small-step SOS rule of programs:

〈s, ·〉 → 〈s′, σ〉
〈s〉 → 〈s′, σ〉 (SmallStep-Pgm)

195

One could still argue that the rule above is not perfect, because the configuration 〈{}〉 is frozen; thus, while
any other (terminating) program eventually reduces to a configuration of the form 〈{}, ·〉, {} itself does not. To
address this non-uniformity problem, one can add a rule 〈{}〉 → 〈{}, ·〉; this wastes a step, indeed, but this case
when the entire program is just {} is expected to be very uncommon. A conceptually cleaner alternative is
to replace the rule (SmallStep-Pgm) above with a structural identity 〈s〉 ≡ 〈s, ·〉 identifying each program
configuration with a statement configuration holding an empty state. This can be easily achieved in Maude
using an equation, but it can be harder to achieve in other rewrite systems providing support and semantics
only for rewrite rules but not for equations.

Denotational Semantics

The denotational semantics of the let construct is very compact and elegant:

~let x = a in s�σ = (~s�(σ[~a�σ/x]))[σ(x)/x] (Denotational-Let)

Like in the other semantics above, this works because σ′[⊥/x] “undefines” x in σ′ (see Section 2.4.6).

3.5.6 Putting Them All Together: First Attempt

In this section and the next we analyze the modularity of the various semantic approaches discussed so far
by defining the IMP++ language, which puts together all the language features discussed so far plus more.
Recall from the preamble of Section 3.5 that, as part of our language design experiment, we first consider
spawn to be a statement construct with no explicit thread synchronization constructs. This is also what we did
in Section 3.5.4. Our objective in this section is therefore to “make everything work” under this assumption,
and then, in Section 3.5.7, we change spawn into an expression construct that evaluates to a unique thread
identifier, and add join thread synchronization. Therefore, the IMP++ language discussed in this section
removes from IMP the global variable declarations and adds the following constructs:

AExp ::= ++ Id
| read()

Stmt ::= print(AExp);
| halt;

| spawn Block
| intList{Id};

Pgm ::= Stmt

We consider the semantics of these constructs adopted in the previous sections.
To make the design of IMP++ more permissive in what regards its possible implementations, we shall

opt for maximum non-determinism whenever such design choices can be made. For example, in the case of
division expressions a1/a2, we want to capture all possible behaviors (recall that division is non-deterministic)
due to the possibly interleaved evaluations of a1 and a2, including all possible abruptly terminated behaviors
generated when a2 evaluates to 0. In particular, we want to also capture those behaviors where a1 is not
completely evaluated. The rationale for this language design decision is that we want to allow maximum
flexibility to implementations of IMP++; for example, some implementations may choose to evaluate a1 and
a2 in two concurrent threads and to stop with abrupt termination as soon as the thread evaluating a2 yields 0.

Somewhat surprisingly, when adding several new features together to a language, it is not always
sufficient to simply apply all the global, non-modular changes that are required for each feature in isolation.
We sometimes have to additionally consider the semantic implications of the various combinations of features.

196

For example, the addition of side-effects in combination with division-by-zero abrupt termination requires
the addition of new rules to catch specific new behaviors due to this particular combination. Indeed, the
evaluation of a1/a2, for example, may abruptly terminate with the current state precisely when a2 is evaluated
to zero, but it can also terminate with the state obtained after evaluating a1 or parts of a1, as discussed above.

Also, a language design decision needs to be made in what regards the state of abruptly terminated
programs. One option is to simply enclose the local state when the abrupt termination flag was issued. This
option is particularly useful for debugging. However, as argued in Section 3.5.3, we want abruptly terminated
programs to behave the same way as the normally terminated programs. Since normally terminated programs
now empty the state after their execution, we will give the semantics of abruptly terminated programs to also
empty the state. Whenever easily possible, we will give the semantics of abruptly terminated statements to
return after their evaluation a state binding precisely the same variables as before their evaluation.

A design decision also needs to be made in what regards the interaction between abrupt termination and
threads. We choose that abrupt termination applies to the entire program, no matter whether it is issued by
the main program or by a spawned thread. An alternative would be that abrupt termination only applies to the
spawned thread if issued by a spawned thread, or to the entire program if issued by the main program. Yet
another alternative is to consider the main program as an ordinary thread, and an abrupt termination issued by
the main program to only stop that thread, allowing the other spawned threads to continue their executions.

Finally, there is an interesting aspect regarding the interaction between blocks and threads. In conventional
programming languages, spawned threads continue to execute concurrently with the rest of the program
regardless of whether the language construct which generated them completed its execution or not. For
example, if function f () spawns a thread and then immediately returns 1, then the expression f () + f ()
evaluates to 2 and the two spawned threads continue to execute concurrently with the rest of the program. We
do not have functions in IMP++, but we still want the spawned threads to continue to execute concurrently
with the rest of the program even after the completion of the block within which the spawn statements were
executed. For example, we would like the IMP++ program (its let-desugared variant is shown to the right)

{

int x ;

{

int y ;

spawn { x := x + 1 ; }

}

spawn { x := x + 10 ; }

print(x) ;

}

{

let x = 0 in (

{

let y = 0 in

spawn { x := x + 1 ; }

}

spawn { x := x + 10 ; }

print(x) ;)

}

to manifest four behaviors, where x is 0, 1, 10, and 11, and not only two (where x is 1, 11) as it would be the
case if the first spawn statement were not allowed to transcend its surrounding block.

Below we discuss, for each semantic approach, the changes that we have to apply to the semantics of IMP
in order to extend it to IMP++, highlighting changes that cannot be mechanically derived from the changes
required by each of IMP++’s features when considered in isolation.

Big-Step SOS

To accommodate the side effects generated by variable increment on the state and by read() on the
input buffer, and the possible abrupt termination generated by division-by-zero, the arithmetic expression
sequents need to change from 〈a, σ〉 ⇓ 〈i〉 to 〈a, σ, ω〉 ⇓ 〈i, σ′, ω′〉 for normal termination and to 〈a, σ, ω〉 ⇓
〈error, σ′, ω′〉 for abrupt termination, and similarly for Boolean expressions, where σ, ω and σ′,ω′ are the
states and input buffers before and after the evaluation of a, respectively. Also, the original elegant big-step

197

SOS rules for expressions need to change to take into account the new configurations, the various side effects,
and the abrupt termination due to division-by-zero. For example, the IMP big-step SOS rule for division in
Section 3.2.2, namely

〈a1, σ〉 ⇓ 〈i1〉 〈a2, σ〉 ⇓ 〈i2〉
〈a1 / a2, σ〉 ⇓ 〈i1 +Int i2〉 if i2 , 0

changes into the following six rules:

〈a1, σ, ω〉 ⇓ 〈i1, σ1, ω1〉 〈a2, σ1, ω1〉 ⇓ 〈i2, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈i1 /Int i2, σ2, ω2〉 if i2 , 0

〈a1, σ, ω〉 ⇓ 〈i1, σ1, ω1〉 〈a2, σ1, ω1〉 ⇓ 〈error, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ2, ω2〉

〈a1, σ, ω〉 ⇓ 〈error, σ1, ω1〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ1, ω1〉

〈a1, σ2, ω2〉 ⇓ 〈i1, σ1, ω1〉 〈a2, σ, ω〉 ⇓ 〈i2, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈i1 /Int i2, σ1, ω1〉 if i2 , 0

〈a1, σ2, ω2〉 ⇓ 〈error, σ1, ω1〉 〈a2, σ, ω〉 ⇓ 〈i2, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ1, ω1〉

〈a2, σ, ω〉 ⇓ 〈error, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ2, ω2〉

Like for the individual features, rules like the above attempt to capture the intended nondeterministic
evaluation strategy of the arithmetic operators, but they end up capturing only the non-deterministic choice
semantics. In the case of division, we also have to add the rule for abrupt termination in the case of a
division-by-zero, like the rule (BigStep-Div-By-Zero) in Section 3.5.3. However, since we want to capture all
the non-deterministic behaviors that big-step SOS can detect, we actually need three such rules:

〈a1, σ, ω〉 ⇓ 〈i1, σ1, ω1〉 〈a2, σ1, ω1〉 ⇓ 〈0, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ2, ω2〉

〈a1, σ2, ω2〉 ⇓ 〈i1, σ1, ω1〉 〈a2, σ, ω〉 ⇓ 〈0, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ1, ω1〉

〈a2, σ, ω〉 ⇓ 〈0, σ2, ω2〉
〈a1 / a2, σ, ω〉 ⇓ 〈error, σ2, ω2〉

The big-step SOS sequents for statements 〈s, σ〉 ⇓ 〈σ′〉 also need to change, to hold both the input/output
buffers and the termination flag. We use sequents of the form 〈s, σ, ωin〉 ⇓ 〈σ′, ω′in, ωout〉 for the case when
s terminates normally and sequents of the form 〈s, σ, ωin〉 ⇓ 〈halting, σ′, ω′in, ωout〉 for the case when s

198

terminates abruptly; here ωin, ω
′
in ∈ Buffer are the input buffers before and, respectively, after the evaluation

of statement s, and ωout ∈ Buffer is the output produced during the evaluation of s. All the big-step SOS rules
for statements need to change to accommodate the new sequents, making sure that side effects and abrupt
termination are properly propagated, like we did in Sections 3.5.1 and 3.5.3 (but for the new configurations).
We also have to include big-step SOS rules for input/output like those in Section 3.5.2, for local variable
declarations like those in Section 3.5.5, and for dynamic threads like those in Section 3.5.4, but also modified
to work with the new configurations and to propagate abrupt termination. Recall from the preamble of this
section that we want abruptly terminated programs to terminate similarly to the normal programs, that is,
with an empty state in the configuration. This can be easily achieved in the rule for programs by simply
emptying the state when the program statement terminates abruptly. However, in the case of big-step SOS it
is relatively easy to ensure a stronger property, namely that each statement leaves the state in a consistent
shape after its evaluation, no matter whether that is abruptly terminated or not. All we have to do is to also
clean up the state when the halting signal is propagated through the let construct. For clarity, we show both
big-step SOS rules for let:

〈a, σ, ωin〉 ⇓ 〈i, σ′, ω′in〉 〈s, σ′[i/x], ω′in〉 ⇓ 〈σ′′, ω′′in, ωout〉
〈let x = a in s, σ, ωin〉 ⇓ 〈σ′′[σ′(x)/x], ω′′in, ωout〉

〈a, σ, ωin〉 ⇓ 〈i, σ′, ω′in〉 〈s, σ′[i/x], ω′in〉 ⇓ 〈halting, σ′′, ω′′in, ωout〉
〈let x = a in s, σ, ωin〉 ⇓ 〈halting, σ′′[σ′(x)/x], ω′′in, ωout〉

Recall from Section 2.4.6 that σ′′[⊥/x] “undefines” x in σ′′.
Finally, the big-step SOS sequents and rules for programs also have to change, to take into account the

fact that programs are now just statements like in Section 3.5.5, that they take an input and that they yield both
the unconsumed input and an output like in Section 3.5.2, and that programs manifest normal termination
behavior no matter whether their corresponding statement terminates normally or not:

〈s, xl 7→ 0, ωin〉 ⇓ 〈σ,ω′in, ωout〉
〈s, ωin〉 ⇓ 〈σ,ω′in, ωout〉

〈s, xl 7→ 0, ωin〉 ⇓ 〈halting, σ, ω′in, ωout〉
〈s, ωin〉 ⇓ 〈σ,ω′in, ωout〉

Unfortunately, as seen above, all the configurations, sequents and rules of IMP extended with any one of
the features of IMP++ had to change again when we added all the features together. This highlights, again,
the poor modularity of big-step SOS. But, even accepting the poor modularity of big-step SOS, do we at least
get all the behaviors expressible in a big-step SOS style by simply putting together and adjusting accordingly
all the rules of the individual features? Unfortunately, not. Recall from the preamble of Section 3.5.6 that
we want spawned threads to execute concurrently with the rest of the program also after their surrounding
blocks complete. In other words, we would like to also capture behaviors of, e.g., (let x = a in s1) s2, where
a is first evaluated, then s2, and then s1. We can easily add a big-step SOS rule to capture this particular
situation, but is that enough? Of course not, because there are many other similar patters in which we would
like to allow the evaluation of s2 before the preceding statement completes its evaluation. For example, one
can replace spawn s1 above by another let holding a spawn statement, or by spawn s′1 spawn s′2, or by
combinations of such patterns. A tenacious reader could probably find some complicated way to allow all
these behaviors. However, it is fair to say that big-step SOS has simply not been conceived to deal with
concurrent languages, and can only partially deal with non-determinism.

199

Type System using Big-Step SOS

The IMP++ type system is quite simple and modular. We simply put together all the typing rules of the
individual language features discussed in Sections 3.5.1, 3.5.2, 3.5.3, 3.5.4, and 3.5.5.

Small-Step SOS

It is conceptually easy, though not entirely mechanical, to combine the ideas and changes to the original IMP
small-step SOS discussed in Sections 3.5.1, 3.5.2, and 3.5.3, to obtain the small-step SOS rules of IMP++.

The arithmetic expression sequents need to change from 〈a, σ〉 → 〈a′, σ′〉 to 〈a, σ, ω〉 → 〈a′, σ′, ω′〉 for
normal steps and to 〈a, σ, ω〉 → 〈error, σ′, ω′〉 for halting steps, and similarly for Boolean expressions,
where σ, ω and σ′,ω′ are the states and input buffers before and after the small-step applied to a, respec-
tively. Also, the original small-step SOS rules for expressions need to change to take into account the new
configurations, the various side effects, and the abrupt termination due to division-by-zero. For example, here
are the new rules for division:

〈a1, σ, ωin〉 → 〈a′1, σ′, ω′in〉
〈a1 / a2, σ, ωin〉 → 〈a′1 / a2, σ

′, ω′in〉

〈a1, σ, ωin〉 → 〈error, σ′, ω′in〉
〈a1 / a2, σ, ωin〉 → 〈error, σ′, ω′in〉

〈a2, σ, ωin〉 → 〈a′2, σ′, ω′in〉
〈a1 / a2, σ, ωin〉 → 〈a1 / a′2, σ

′, ω′in〉

〈a2, σ, ωin〉 → 〈error, σ′, ω′in〉
〈a1 / a2, σ, ωin〉 → 〈error, σ′, ω′in〉

〈i1 / i2, σ, ωin〉 → 〈i1 /Int i2, σ′, ω′in〉 if i2 , 0

〈a1 / 0, σ, ωin〉 → 〈error, σ, ωin〉

Note that the last rule above does not require the full evaluation of a1 in order to flag abrupt termination.
This aspect was irrelevant when we added abrupt termination in isolation to IMP in Section 3.5.3, because
expressions did not have side effects there. However, since expressions can now modify both the state (via
variable increment) and the input buffer (via read()), the rule above captures more behaviors than a rule
replacing a1 by an integer i1, which would be obtained by mechanically translating the corresponding rule
from Section 3.5.3.

The small-step SOS rules of statements and programs result from those of the individual features
discussed in Sections 3.5.1, 3.5.2, and 3.5.3, by modifying the configurations to include all the new semantic
components. Sequents 〈s, σ〉 → 〈s′, σ′〉 change into sequents 〈s, σ, ωin, ωout〉 → 〈s′, σ′, ω′in, ω′out〉 and
〈s, σ, ωin, ωout〉 → 〈halting, σ′, ω′in, ω′out〉 for normal and for halting steps, respectively, where σ, ωin, ωout

and σ′, ω′in, ω′out are the states, input buffers and output buffers before and after the small-step applied to s,
respectively. The only rule that deviates from the expected pattern is the rule that propagates the halting signal
through the let construct. Like in the case of big-step SOS discussed above, we can do it in such a way
that the state is consistently cleaned up after each let, regardless of whether its body statement terminated

200

abruptly or not. Here are all three small-step SOS rules for let:

〈s, σ[i/x], ωin, ωout〉 → 〈s′, σ′, ω′in, ω′out〉
〈let x = i in s, σ, ωin, ωout〉 → 〈let x =σ′(x) in s′, σ′[σ(x)/x], ω′in, ω

′
out〉

〈let x = i in {}, σ, ωin, ωout〉 → 〈{}, σ, ωin, ωout〉

〈s, σ[i/x], ωin, ωout〉 → 〈halting, σ′, ω′in, ω′out〉
〈let x = i in s, σ, ωin, ωout〉 → 〈halting, σ′[σ(x)/x], ω′in, ω

′
out〉

Recall again from Section 2.4.6 that σ′[⊥/x] “undefines” x in σ′.
Even though strictly speaking all the small-step SOS rules above are different from their corresponding

rules in the IMP extension introducing only the feature they define, they are somewhat mechanically derivable.
In fact, MSOS (see Section 3.6) formalizes and mechanizes this process. The main question is then whether
these new small-step SOS rules indeed capture the intended semantics of IMP++. Unfortunately, like in the
case of big-step SOS, they fail to capture the intended semantics of spawn . Indeed, since the let construct
does not dissolve itself until its body statement becomes {}, statements of the form (let x = i in spawn s1) s2
will never allow reductions in s2, thus limiting the concurrency of spawn statements to their defining blocks.

There are several ways to address the problem above, each with its advantages and limitations. One
possibility is to attempt to syntactically detect all situations in which a statement allows a subsequent
statement to execute, that is, all situations in which the former can only perform spawn steps. Like in
Section 3.3.2 where we introduced special configurations of the form C

√
(following Hennessy [32]) called

“terminated configurations”, we can introduce special “parallel configurations” C|| stating that C can only
spawn statements or discard terminated spawned statements, that is, C’s statement can be executed in parallel
with subsequent statements. Assuming such C|| special configurations, we can remove the existing small-step
SOS rule corresponding to rule (SmallStep-Spawn-Wait) in Section 3.5.4 and add instead the following rule:

〈s1, σ, ωin, ωout〉|| 〈s2, σ, ωin, ωout〉 → 〈s′2, σ′, ω′in, ω′out〉
〈s1 s2, σ, ωin, ωout〉 → 〈s1 s′2, σ

′, ω′in, ω
′
out〉

Alternatively, one can define || as a predicate only taking a statement instead of a configuration, and then move
the || sequent out from the rule premise into a side condition. Nevertheless, the || configurations or predicates
need to be defined such that they include only statements of the form spawn s and spawn s spawn s′ and
let x = i in spawn s and combinations of such statements. The idea is that such statements can safely be
executed in parallel with what follows them. For example, a statement of the form let x = a in spawn s
where a is not a value does not fall into this pattern. Exercise 116 further explores this approach.

One problem with the approach above is that it is quite non-modular. Indeed, the definition of || is strictly
dependent upon the current language syntax. Adding or removing syntax to the language will require us to
also revisit the definition of ||. Another and bigger problem with this approach is that it does not seem to work
for other concurrent language constructs. For example, in many languages including our extension of IMP++
in Section 3.5.7, the creation of a thread is an expression (and not a statement) construct, returning to the
calling context the new thread identifier as a value. The calling context can continue its execution using the
returned value in parallel with the spawned thread. In our context, for example, if spawn s returned an integer
value, we would have to allow expressions of the form spawn { x = x + 1; } <= spawn { x = x + 10; } + x and
be able to execute the two threads concurrently with the lookup for x and the evaluation of the <= Boolean
expression. It would be quite hard to adapt the approach above to work with such common concurrent
constructs which both return a value to the calling context and execute their code in parallel with the context.

201

Another way to address the loss of concurrent behaviors due to the syntactic constraints imposed by let
on the spawn statements in its body, is to eliminate the let as soon as it is semantically unnecessary. Indeed,
once the expression a is evaluated in a construct let x = a in s, the let is semantically unnecessary. The
only reason we kept it was because it offered us an elegant syntactic means to keep track of the execution
contexts both for its body statement and for the outside environment. Unfortunately, it is now precisely
this “elegant syntactic means” that inhibits the intended concurrency of the spawn statement. One way to
eliminate the semantically unnecessary let statements is to try to add a small-step SOS rule of the form:

〈let x = i in s, σ, ωin, ωout〉 → 〈s x = σ(x);, σ[i/x], ωin, ωout〉

The idea here is to reduce the let statement to its body statement in a properly updated state, making sure
that the state is recovered after the execution of the body statement. The infusion of the assignment statement
“x = σ(x);” is a bit unorthodox, because σ(x) can also be undefined; it works in our case here because we
allow state updates of the form σ[⊥/x], which have the effect to undefine x in σ (see Section 2.4.6), and the
assignment rule generates such a state update. This trick is not crucial for our point here; if one does not like
it, then one can split the rule above in two cases, one where σ(x) is defined and one where is it undefined,
and then add a special syntactic statement construct to undefine x in the second case. The real problem
with this let-elimination approach is that it is simply wrong when we also have spawn statements in the
language. For example, if s is a spawn statement then the let reduces to the spawn statement followed by
the assignment to x; the small-step SOS rule for spawn allowing the spawned statement to be executed in
parallel with its subsequent statement then kicks in and allows the assignment to x to be possibly evaluated
before the spawned statement, thus resulting in a wrong behavior: the spawned statement should only see
the x bound by its let construct, not the outside x (possibly undefined). A correct way to eliminate the let
construct is to rename the bound variable into a fresh variable visible only to let’s body:

〈let x = i in s, σ, ωin, ωout〉 → 〈s[x′/x], σ[i/x′], ωin, ωout〉 if x′ is a fresh variable

Besides having to provide and maintain (as the language changes) a substitution6 operation and then having
to pay linear or worse complexity each time a let is eliminated, and besides creating potentially unbounded
garbage bindings in the state (e.g., the let statement can be inside a loop), the solution above appears to only
solve our particular problem with our particular combination of let and spawn . It still does not seem to
offer us a general solution for dealing with arbitrary constructs for concurrency, in particular with spawn
constructs that evaluate to a value which is immediately returned to the calling context, as described a few
paragraphs above. For example, while it allows for renaming the variable x into a fresh variable when the
expression spawn { x = x + 1; } <= spawn { x = x + 10; } + x appears inside a let x = i in ... construct, we
still have no clear way to evaluate both spawn expressions and the expression containing them concurrently.

The correct solution to deal with concurrency in small-step SOS is to place all the concurrent threads
or processes in a syntactic “soup” where any particular thread or process, as well as any communicating
subgroups of them, can be picked and advanced one step. Since in our IMP++ language we want all threads
to execute concurrently without any syntactic restrictions, we have to place all of them in some top-level
“soup”, making sure that each of them is unambiguously provided its correct execution environment. For
example, if a thread was spawned from inside a let statement, then it should correctly see precisely the
execution environment available at the place where it was spawned, possibly interacting with other threads
seeing the same environment; it should not wrongly interfere with other threads happening to have had
variables with the same names in their creation environments. This can be done either by using a substitution

6See Section 4.5.3.

202

like above to guarantee that each bound variable is distinct, or by splitting the current state mapping variable
identifiers to values into an environment mapping identifiers to memory locations and a store (or memory, or
heap) mapping locations to values. In the latter case, each spawned thread would be packed together with its
creation environment and all threads would share the store. The environment-store approach is the one that
we will follow shortly in Section 3.5.7, so we do not insist on it here.

The morale of the discussion above is that putting features together in a language defined using small-step
SOS is a highly non-trivial matter even when the language is trivial, like our IMP++. On the one hand, one
has to non-modularly modify the configurations to hold all the required semantic data of all the features and
then to modify all the rules to make sure that all these data are propagated and updated appropriately by
each language construct. Addressing this problem is the main motivation of the MSOS approach discussed
in Section 3.6. One the other hand, the desired feature interactions can require quite subtle changes to the
semantics, which are sometimes hard to achieve purely syntactically. One cannot avoid the feeling that syntax
is sometimes just too rigid, particularly when concurrency is concerned. This is actually one of the major
motivations for the chemical abstract machine computational and semantic model discussed in Section 3.8.

Denotational Semantics

In order to accommodate all the semantic data needed by all the features, the denotation functions will now
have the following types:

~ � : AExp→ (State × Buffer ⇁ Int ∪{error} × State × Buffer)
~ � : BExp→ (State × Buffer ⇁ Bool ∪{error} × State × Buffer)
~ � : Stmt→ (State × Buffer ⇁ State × Buffer × Buffer ×{halting, ok})

Moreover, since programs are now statements and since we want their denotation to only take an input buffer
and to return a state, the remainder of the input buffer and the output buffer (recall that we deliberately discard
the halting status), we replace the original denotation function of programs with the following (we use a
different name, to distinguish it from the last denotation function above):

~ �pgm : Pgm→ (Buffer ⇁ State × Buffer × Buffer)

For example, the denotation of division becomes

~a1 / a2�π =

(1st(arg1) +Int 1st(arg2), 2nd(arg2), 3rd(arg2)) if 1st(arg1) , error
and 1st(arg2) , error
and 1st(arg2) , 0

arg1 if 1st(arg1) = error
(error, 2nd(arg2), 3rd(arg2)) if 1st(arg2) = error

or 1st(arg2) = 0

where arg1 = ~a1�π and arg2 = ~a2�(2nd(arg1), 3rd(arg1)), the denotation of sequential composition becomes

~s1 s2�π =

{
(1st(arg2), 2nd(arg2), 3rd(arg1) : 3rd(arg2), 4th(arg2)) if 4th(arg1) = ok
arg1 if 4th(arg1) = halting

where arg1 = ~s1�π and arg2 = ~s2�(1st(arg1), 2nd(arg1)), the denotational semantics of while loops
while (b) s become the fixed-points of total functions

F : (State × Buffer ⇁ State × Buffer × Buffer ×{halting, ok})
→ (State × Buffer ⇁ State × Buffer × Buffer ×{halting, ok})

203

defined as

F (α)(π) =

(1st(arg3), 2nd(arg3), 3rd(arg2) : 3rd(arg3), 4th(arg3)) if 1st(arg1) =true

and 4th(arg2) = ok
arg2 if 1st(arg1) =true

and 4th(arg2) = halting
(2nd(arg1), 3rd(arg1), ε, ok) if 1st(arg1) =false

(2nd(arg1), 3rd(arg1), ε, halting) if 1st(arg1) = error

where arg1 = ~b�π, arg2 = ~s�(2nd(arg1), 3rd(arg1)), and arg3 = α(1st(arg2), 2nd(arg2)), and the denotation
of programs is defined as the function

~s�pgmω = (1st(arg), 2nd(arg), 3rd(arg))

where arg = ~s�(·, ω), that is, the program statement s with input buffer ω is evaluated in the empty state “·”
and the input buffer ω, and the resulting halting flag is discarded.

Once all the changes above are applied to correctly handle the semantic requirements of the various
features of IMP++, the denotational semantics of those features is relatively easy, basically a simple adaptation
of their individual denotational semantics in Sections 3.5.1, 3.5.2, 3.5.3, 3.5.4, and 3.5.5. We let their precise
definitions as an exercise to the reader (see Exercise 119). Note, however, that the resulting denotational
semantics of IMP++ is still non-deterministic and non-concurrent. Because of this accepted limitation, we
do not worry about the loss of concurrent behaviors due to the interaction between spawn and let.

3.5.7 Putting Them All Together: Second Attempt

...

3.5.8 Notes

The first to pinpoint the limitations of plain SOS and denotational semantics when defining non-trivial
languages were the inventors of alternative semantic frameworks, such as Berry and Boudol [8, 9] who
proposed the chemical abstract machine model (see Section 3.8), Felleisen and his collaborators [25, 88] who
proposed evaluation contexts (see Section 3.7), and Mosses and his collaborators [51, 52, 53] who proposed
the modular SOS approach (see Section 3.6). Among these, Mosses is perhaps the one who most vehemently
criticized the lack of modularity of plain SOS, bringing as evidence natural features like the ones we proposed
for IMP++, which require the structure of configurations and implicitly the existing rules to change no matter
whether there is any semantic interaction or not between the new and the old features.

The lack of modularity of SOS was visible even in Plotkin’s original notes [60, 61], where he had to
modify the definition of simple arithmetic expressions several times as his initial language evolved. Hennessy
also makes it even more visible in his book [32]. Each time he adds a new feature, he also has to change
the configurations and the entire existing semantics, similarly to each of our IMP extensions in this section.
However, the lack of modularity of language definitional frameworks was not perceived as a major problem
until late 1990es, partly because there were few attempts to give complete and rigorous semantics to real
programming languages. Hennessy actually used each language extension as a pedagogical opportunity to
teach the reader what new semantic components the feature needs and how and where those are located in each
sequent. Note also that Hennessy’s languages were rather simple and pure. His imperative language, called
WhileL, was actually simpler even than our IMP (WhileL had no global variable declarations). Hennessy’s

204

approach was somewhat different from ours, namely he defined a series of different paradigmatic languages,
each highlighting certain semantic aspects in a pure form, without including features that lead to complex
semantic interactions (like the side effects, blocks with local variables, and threads as in our IMP++).

Wadler [86] proposes a language design experiment similar in spirit to our extensions of IMP. His
core language is purely functional, but some of its added features overlap with those of IMP and IMP++:
state and side effects, output, non-determinism. Wadler’s objective in [86] was to emphasize the elegance
and usefulness of monads in implementing interpreters in pure functional languages like Haskell, but his
motivations for doing so are similar to ours: the existing approaches for programming language design are not
modular enough. Monads can also be used to add modularity to denotational semantics, to avoid having to
modify the mathematical domains into products of domains as we did in this section. The monadic approach
to denotational semantics will be further discussed in Section 3.9. However, as also discussed in Section 3.4.3,
the denotational approach to non-determinism and concurrency is to collect all possible behaviors, hereby
programs evaluating to sets or lists of values. The same holds true in Wadler’s monadic approach to implement
interpreters in [86]. The problem with this is that the resulting interpreters or executable semantics are quite
inefficient. Contrast that with the small-step SOS approach in Section 3.3 which allows us, for example
using our implementation of it in Maude, to both execute programs non-deterministically, making a possibly
non-deterministic choice at each step, and search for all possible behaviors of programs.

3.5.9 Exercises

Variable Increment

The exercises below refer to the IMP extension with variable increment discussed in Section 3.5.1.

Exercise 84. Add variable increment to IMP, using big-step SOS:

1. Write the complete big-step SOS as a proof system;

2. Translate the proof system at 1 above into a rewrite logic theory, like in Figure 3.8;

3. ? Implement in Maude the rewrite logic theory at 2 above, like in Figure 3.9. To test it, add to the
IMP programs in Figure 3.4 the following two:

op sum++Pgm : -> Pgm .

eq sum++Pgm = (

int m, n, s ;

n = 100 ;

while (++ m <= n) {

s = s + m ;

}) .

op nondet++Pgm : -> Pgm .

eq nondet++Pgm = (

int x ;

x = 1 ;

x = ++ x / (++ x / x) ;

) .

The first program should have only one behavior, so, for example, both Maude commands below

rewrite < sum++Pgm > .

search < sum++Pgm > =>! Cfg:Configuration .

should show the same result configuration, < m |-> 101 & n |-> 100 & s |-> 5050 >. The second
program should have (only) three different behaviors under big-step semantics; the first command
below will show one of the three behaviors, but the second will show all three of them:

rewrite < nondet++Pgm > .

search < nondet++Pgm > =>! Cfg:Configuration .

205

The three behaviors captured by the big-step SOS discussed in Section 3.5.1 result in configurations
< x |-> 1 >, < x |-> 2 >, and < x |-> 3 >. As explained in Section 3.5.1, this big-step SOS should
not be not able to expose the behaviors in which x is 0 and in which a division by zero takes place.

Exercise 85. Type IMP extended with variable increment:

1. Translate the big-step rule above into a rewrite logic rule that can be added to those in Figure 3.11
corresponding to the type system of IMP;

2. ? Implement the above in Maude, extending the implementation in Figure 3.12. Test it on the two
additional programs in Example 84.

Exercise 86. Same as Exercise 84, but for small-step SOS instead of big-step SOS.
? Make sure that the small-step definition in Maude exhibits all five behaviors of program nondet++Pgm
defined in Exercise 84 (the three behaviors exposed by the big-step definition in Maude in Exercise 84, plus
one where x is 0 and one where the program gets stuck right before a division by zero).

Exercise 87. Same as Exercise 84, but for denotational semantics instead of big-step SOS.
? The definition in Maude should lack any non-determinism, so only one behavior should be observed for
any program, including nondet++Pgm in Exercise 84.

Input/Output

The exercises below refer to the IMP extension with input/output discussed in Section 3.5.2.

Exercise 88. Add input/output to IMP, using big-step SOS:

1. Write the complete big-step SOS as a proof system;

2. Translate the above into a rewrite logic theory, like in Figure 3.8;

3. ? Implement the resulting rewrite logic theory in Maude, like in Figure 3.9. To test it, add to the IMP
programs in Figure 3.4 the following three:

op sumIOPgm : -> Pgm .

eq sumIOPgm = (

int m, n, s ;

n = read() ;

while (m <= n) {

print(m) ;

s = s + m ;

m = m + 1 ;

}

print(s) ;) .

op whileIOPgm : -> Pgm .

eq whileIOPgm = (

int s ;

s = 0 ;

while (!(read() <= 0)) {

s = s + read() ;

}

print(s) ;) .

op nondetIOStmt : -> Stmt .

eq nondetIOStmt = (

print(read()

/ (read()

/ read())) ;) .

The first two programs are deterministic, so both the rewrite and the search commands should only show
one solution. The initial configuration in which the first program is executed should contain at least
one integer in the input buffer, otherwise it does not evaluate; for example, the initial configuration
< sumIOPgm, 100 > yields a result configuration whose input buffer is empty and whose output
buffer contains the numbers 0,1,2,...,100,5050. The initial configuration in which the second program
is executed should eventually contain some 0 on an odd position in the input buffer; for example,
< whileIOPgm,10:1:17:2:21:3:0:5:8:-2:-5:10 > yields a result configuration whose input

buffer still contains the remaining input 5:8:-2:-5:10 and whose output buffer contains only the

206

integer 6. The third program, which is actually a statement, is non-deterministic. Unfortunately,
big-step SOS misses behaviors because, as explained, it only achieves a non-deterministic choice
semantics. For example, the commands

rewrite < nondetIOStmt, .State, 10 : 20 : 30 > .

search < nondetIOStmt, .State, 10 : 20 : 30 > =>! Cfg:Configuration .

yield configurations < .State,epsilon,10 > and, respectively, < .State,epsilon,10 > and
< .State,epsilon,15 >. The configuration whose output is 6 (i.e., 20/Int(30/Int10)) and the three
undefined configurations due to division by zero are not detected.

Exercise 89. Type IMP extended with input/output:

1. Translate the discussed big-step SOS typing rules for input/output into corresponding rewrite logic
rules that can be added to the already existing rewrite theory in Figure 3.11 corresponding to the type
system of IMP;

2. ? Implement the above in Maude, extending the implementation in Figure 3.12. Test it on the additional
programs in Example 88.

Exercise 90. Same as Exercise 88, but for small-step SOS instead of big-step SOS. Make sure that the
resulting small-step SOS definition detects all six behaviors of nondetIOStmt when executed with the input
buffer 10:20:30

Exercise 91. Same as Exercise 88, but for denotational semantics instead of big-step SOS. Since our
denotational semantics is not nondeterministic, only one behavior of nondetIOStmt is detected. Interestingly,
since our denotational semantics of division was chosen to evaluate the two expressions in order, it turns
out that the detected behavior is undefined (due to a division by zero). Note that although it also misses
non-deterministic behaviors, big-step SOS can still detect (and even search for) valid behaviors of non-
deterministic programs (see Exercise 88, where it generated a valid behavior by rewriting and found one
additional behavior by searching).

Abrupt Termination

The exercises below refer to the IMP extension with abrupt termination discussed in Section 3.5.3.

Exercise 92. Add abrupt termination to IMP, using big-step SOS:

1. Write the complete big-step SOS as a proof system;

2. Translate the above into a rewrite logic theory, like in Figure 3.8;

3. ? Implement the resulting rewrite logic theory in Maude, like in Figure 3.9. To test it, execute the two
programs at the beginning of Section 3.5.3. The resulting big-step SOS definition may be very slow
when executed in Maude, even for small values of n (such as 2,3,4 instead of 100), which is normal
(the search space is now much larger).

Exercise 93. Same as Exercise 92, but using a specific top construct as explained in Section 3.5.3 to catch
the halting signal instead of the existing var which has a different purpose in the language.

Exercise 94. Type IMP extended with abrupt termination:

207

1. Translate the big-step SOS typing rule of halt into a corresponding rewrite logic rule that can be
added to the already existing rewrite logic theory in Figure 3.11;

2. ? Implement the above in Maude, extending the implementation in Figure 3.12. Test it on the additional
programs in Example 92.

Exercise 95. Same as Exercise 92, but for the small-step SOS instead of big-step SOS.

Exercise 96. Same as Exercise 92, but use the top construct approach instead of the rule (SmallStep-
Halting) as discussed right after the rule (SmallStep-Halting) is introduced.

Exercise 97. Same as Exercise 93, but eliminate the third rule of the top construct to avoid wasting any
computational step.

Exercise 98. One could argue that the introduction of the halting configurations 〈halting, σ〉 was unneces-
sary, because we could have instead used the already existing configurations of the form 〈halt, σ〉. Give an
alternative small-step SOS definition of abrupt termination which does not add special halting configurations.
Can we avoid the introduction of the top construct discussed above? Comment on the disadvantages of this
approach.

Exercise 99. Same as Exercise 92, but for denotational semantics instead of big-step SOS.

Exercise 100. Same as Exercise 99, but modifying the denotation of assignment so that it is always undefined
when the assigned variable has not been declared.

Dynamic Threads

The exercises below refer to the IMP extension with dynamic threads discussed in Section 3.5.4.

Exercise 101. Consider the two programs at the beginning of Section 3.5.4. Propose hypothetical executions
of the second program corresponding to any of the seven possible values of x. What is the maximum value
that s can have when the first program, as well as all its dynamically created threads, terminate? Is there
some execution of the first program corresponding to each smaller value of s (but larger than or equal to 0)?

Exercise 102. Add dynamic threads to IMP, using big-step SOS:

1. Write the complete big-step SOS as a proof system;

2. Translate the above into a rewrite logic theory, like in Figure 3.8;

3. ? Implement the resulting rewrite logic theory in Maude, like in Figure 3.9. To test it, execute the two
programs at the beginning of Section 3.5.4. The resulting Maude big-step SOS definition may be slow
on the first program for large initial values for n: even though it does not capture all possible behaviors,
it still comprises many of them. For example, searching for all the result configurations when n = 10
gives 12 possible values for s, namely 55,56,. . . ,66. On the other hand, the second program only shows
one out of the seven behaviors, namely the one where x results in 111.

Exercise 103. Same as Exercise 102, but for the type system instead of big-step SOS.

208

Exercise 104. Same as Exercise 102, but for small-step SOS instead of big-step SOS. When representing
the resulting small-step SOS into rewrite logic, the structural identity can be expressed as a rewrite logic
equation, this way capturing faithfully the intended computational granularity of the small-step SOS. ?
When implementing the resulting rewrite logic theory into Maude, this equation can either be added as a
normal equation (using eq) or as an assoc attribute to the sequential composition construct. The former
will only be applied from left-to-right when executed using Maude rewriting and search commands, but that
is sufficient in our particular case here.

Exercise 105. Same as Exercise 102, but for denotational semantics instead of big-step SOS.

Local Variables

The exercises below refer to the IMP extension with blocks and local variables discussed in Section 3.5.5.

Exercise 106. ? Implement in Maude the seven macros in the preamble of Section 3.5.5, which desugar
blocks with local variable declarations into let constructs.
Hint: In Maude, equations are applied in order. One should typically not rely on that, but in this case it may
give us a simpler and more compact implementation.

Exercise 107. Add blocks with local variables to IMP, using big-step SOS:

1. Write the complete big-step SOS as a proof system;

2. Translate the above into a rewrite logic theory, like in Figure 3.8;

3. ? Implement the resulting rewrite logic theory in Maude, like in Figure 3.9. To test it, modify the
IMP programs in Figure 3.4 to use local variables and also add the two programs at the beginning of
Section 3.5.5. To check whether the programs evaluate as expected, you can let some relevant variables
purposely undeclared and bind them manually (to 0) in the initial state. When the programs terminate,
you will see the new values of those variables. If you execute closed programs (i.e., programs declaring
all the variables they use) then the resulting states will be empty, because our semantics of let recovers
the state, so it will be difficult or impossible to know whether they executed correctly.

Exercise 108. Same as Exercise 107, but for the type system instead of big-step SOS.

Exercise 109. Same as Exercise 107, but for small-step SOS instead of big-step SOS.

Exercise 110. Same as Exercise 107, but for denotational semantics instead of big-step SOS.

Putting Them All Together

The exercises below refer to the IMP extension with blocks and local variables discussed in Section 3.5.6.

Exercise 111. Define IMP++ using big-step SOS, assuming that abrupt termination applies to the entire
program, no matter whether the abrupt termination signal has been issued from inside a spawned thread
or from the main program, and assuming that nothing special is done to enhance the parallelism of spawn
within let blocks:

1. Write the complete big-step SOS as a proof system;

2. Translate the above into a rewrite logic theory, like in Figure 3.8;

209

3. ? Implement the resulting rewrite logic theory in Maude, like in Figure 3.9. To test it, propose five
tricky IMP++ programs. You programs will be added to our test-suite before grading this exercise.
You get extra-points if your programs reveal limitations in the number of behaviors captured by other
students’ definitions.

Exercise 112. Same as Exercise 111, but assume that abrupt termination applies to the issuing thread only,
letting the rest of the threads continue. The main program is considered to be a thread itself.

Exercise 113. Same as Exercise 111, but for the type system instead of big-step SOS.

Exercise 114. Same as Exercise 111, but for small-step SOS instead of big-step SOS.

Exercise 115. Same as Exercise 112, but for small-step SOS instead of big-step SOS.

Exercise? 116. Same as Exercise 114, but define and use “parallel configurations” of the form C|| in order
to enhance the parallelism of spawn statements from inside let blocks.

Exercise? 117. Same as Exercise 116, but eliminate the let construct when semantically unnecessary using
a substitution operation (which needs to also be defined).

Exercise? 118. Same as Exercise 117, but use an environment-store approach to the state instead of
substitution.

Exercise 119. Same as Exercise 111, but for denotational semantics instead of big-step SOS.

210

