
1

CS522 - Programming Language Semantics

Some Category Theory

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign



2

Category theory appeared for at least two important reasons:

1. to capture general concepts and principles from various
particular instances of mathematics; and

2. to eliminate some of the foundational concerns, especially those
related to set theory.

While the usefulness of category theory is still debatable in
mathematics, there is no doubt that category theory is a very
powerful language to express and handle complex computer science
concepts. In what follows, we shall use category theory as a means
to define some very intuitive models of λ -calculus. But first, let us
introduce some basic notions of category theory.
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Category

A category C consists of:

• A class of objects written |C|, or Ob(C). It is called a “class” to
reflect the fact that it does not need to obey the constraints of
set theory; one can think of a class as something “potentially
larger than a set”;

• A set of morphisms, or arrows, for any two objects A,B ∈ |C|,
written C(A,B). The fact that f ∈ C(A,B) is often expressed
using the more familiar notation f : A → B. The object A is
called the domain of f , or its source, and B is called the
codomain, or the target of f ;

• A special identity morphism 1A : A → A for any object A ∈ |C|;

• A composition operator _ ;_ : C(A,B)× C(B,C) → C(A,C) for
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any (not necessarily distinct) objects A,B,C ∈ |C|, with the
following properties:
– (identity) 1A; f = f ; 1B = f for any A,B ∈ |C| and any

f : A → B, and
– (associativity) (f ; g);h = (f ; g);h for any f : A → B,

g : B → C, and h : C → D.

Categories are everywhere. For example:

• Set is the category whose objects are sets and whose
morphisms are the usual functions;

• Setinj is the category whose objects are sets and whose
morphisms are the injective functions;

• Setsurj is the category whose objects are sets and whose
morphisms are the surjective functions.

Exercise 1 Prove that the above are indeed categories.
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Note that it may be the case that there are no morphisms between
some given objects. For example, there is no morphism in
Setinj({1, 2}, {1}). Let us discuss several other categories:

• Mon is the category of monoids, i.e., structures
(M,_ · _ : M ×M → M, e ∈ M) with _ · _ associative and
identity e, with structure preserving functions, i.e., functions
f : M → N such that f(a ·M b) = f(a) ·N f(b) and f(eM ) = eN ,
as morphisms;

• Grp is the category of groups and morphisms of groups;

• Poset is the category of partially ordered sets and monotone
functions between them;

• Real≤ is the category whose objects are the real numbers and
whose morphisms are given by the “≤” relation: p → q iff p ≤ q.

Exercise 2 Show that the above are categories.
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Let us continue the discussion on categorical concepts. Given
morphisms f : A → B and g : B → A, one can obtain the
morphisms f ; g : A → A and g; f : B → B. If these morphisms are
the identities on A and B, respectively, the morphisms f and g are
called isomorphisms and the objects A and B are said to be
isomorphic. The notation A ≃ B is often used to denote that A

and B are isomorphic objects.
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Diagrams

A diagram in a category C is a directed graph whose nodes are
objects and whose arrows are morphisms in C. Formally, a diagram
consists of a pair of mappings d : Nodes → |C| and d : Arrows → C,
written compactly d : (Nodes,Arrows) → C, where
(Nodes,Arrows) is some (not necessarily finite) labeled digraph
(i.e., directed, or oriented, graph), such that for any α : i → j in
Arrows, d(α) is a morphism d(i) → d(j) in C.

To simplify writing, we draw diagrams directly as digraphs and do
not specify the mapping explicitly. For example, the following nine
figures represent are diagrams:
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A diagram is said to commute, or is a commutative diagram, iff any
two paths between any two nodes correspond to equal morphisms,
where path concatenation is interpreted as morphism composition.
For example, the top-left diagram commutes iff f ; g = h; the
top-right diagram commutes iff f ; g = u; v; the middle diagram
commutes iff f = g; the bottom-right diagram commutes iff
fi; gi = fj ; gj for all numbers 1 ≤ i, j ≤ n.

An interesting diagram in the category Real≤ is that of positive
numbers, with an arrow p → q iff p ≤ q.

Unless explicitly stated differently, from now on we assume all the
diagrams that we draw to be commutative.
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Cones and Limits

Given a diagram d : (Nodes,Arrows) → C, a cone of d is a pair
(C, {γi}i∈Nodes, where C is an object in |C| and γi : C → d(i) are
morphisms in C with the property that γi; d(α) = γj for any
α : i → j in Arrows:

d(i)

d(α)

��
C

γi ==zzzz

γi
!!D

DDD

d(j)

In other words, all the diagrams formed by the cone with any edge
in the diagram commute. The terminology of “cone” probably
comes from graphical resemblance with the 3D figure obtained
when one regards the diagram as a disc and C as a point above the
plane of the disc, which is connected to every point in the diagram.
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But, of course, there can be all types of diagrams of all kinds of
different “shapes”.

Let us next discuss some examples of cones:

• a cone of a diagram containing just one object A and no
morphism is any object C together with some morphism
C → A (hence there is a one-to-one correspondence between
morphisms of target A and cones of A);

• a cone of a diagram containing two disconnected objects A,B is
any object C together with morphisms f : C → A, g : C → B;

• a cone of an empty diagram is any object C (the existence of a
morphism from C to any object in the diagram is vacuously
fulfilled);

• a cone of a diagram consisting of just a morphism f : A → B is
an object C together with a morphism g : C → A (the other
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morphism of the cone, say h : C → B, is uniquely determined
as g; f);

• a cone of the diagram of positive real numbers in Real≤ is
uniquely determined by any negative number or zero (because
these numbers are smaller than or equal to any positive real
number); moreover, diagrams in Real≤ admitting cones are
precisely those subsets of real numbers which have lower
bounds.

A limit of a diagram d : (Nodes,Arrows) → C is a “maximal” cone
d. Formally, a limit of d is a cone (L, {δi}i∈Nodes) such that for any
other cone (C, {γi}i∈Nodes) of d, there is a unique morphism from
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C to L, say h : C → L, such that h; δi = γi for all i ∈ Nodes:
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Exercise 3 Any two limits of a diagram are isomorphic.

Because of this, we say that limits are taken “up-to-isomorphism”.

Let us next discuss some examples of limits:

• a limit of a diagram containing just one object A and no
morphism is any object L that is isomorphic to A (the
isomorphism is part of the limit);
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• a limit of a diagram containing two disconnected objects A,B

is called a product of A and B, and is usually written
(A×B, πA, πB), or even more simply just A×B and the two
projections πA and πB are understood - the product A×B has
therefore the property that for any object C and morphisms
f : C → A and g : C → B, there is a unique morphism, usually
written ⟨f, g⟩ : C → A×B, such that ⟨f, g⟩;πA = f and
⟨f, g⟩;πB = g:
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• A limit of an empty diagram is called a final object of the
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category C, usually denoted ⋆. Recall that a cone of an empty
diagram was any object in C ∈ |C|. Therefore, final objects ⋆

have the property that for any object C ∈ C there is a unique
morphism from C to ⋆, usually denoted by !C : C → ⋆;

• A limit of a diagram consisting of just a morphism f : A → B

is an object isomorphic to A;

• The limit of the diagram of positive real numbers in Real≤ is
the number 0, together with the corresponding “less than”
morphisms to any positive number. Moreover, any diagram in
Real≤ consisting of a bounded set of numbers admits a limit,
which is the infimum of the family; if the diagram is a
(countable) decreasing sequence, then this limit is precisely the
limit from mathematical analysis (this is perhaps where the
name “limit” comes from).
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Products

Products will play an important role in our subsequent
developments. Therefore, we investigate them in slightly more
depth here.

Note first that in particular instances of C, for example sets and
functions, products are nothing but the usual cartesian products,
consisting of pairs of elements, one in the first component and one
in the second. Also, the final objects are typically one-element
structures.

Exercise 4 Explain why in Set, the product of an empty set of
sets is a one-element set.

Given two morphisms f1 : A1 → B1 and f2 : A2 → B2, note that
there is a unique morphism, written f1 × f2 : A1 ×A2 → B1 ×B2,
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such that the following diagram commutes:

A1
f1 // B1

A1 ×A2
f1×f2 //
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Exercise 5 Show that A×B ≃ B ×A for any A,B ∈ |C|.

Exercise 6 Why the morphism f1 × f2 exists and is unique?

Exercise 7 Show that A ≃ ⋆×A for any A ∈ |C|.
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Exponentials

From now on we assume that our categories admit finite products,
i.e., limits of finite diagrams of disconnected objects. In particular,
the categories are assumed to have final objects.

Given two objects B,C ∈ |C|, an exponential of B and C is an
object denoted CB together with a morphism
appB,C : CB ×B → C such that for any f : A×B → C, there is a
unique g : A → CB such that (g × 1B); appB,C = f :

A×B
f //
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Proposition 1 If an exponential CB of B and C exists in C, then
there is a one-to-one correspondence between the sets of morphisms
C(A×B,C) and C(A,CB). The two components of this bijection,
inverse to each other, are written:

C(A×B,C)

curry
-- C(A,CB)

uncurry
mm

Proof. Let us first define the functions curry and uncurry. For any
f : A×B → C, let curry(f) be the unique morphism g : A → CB

given by the definition of the exponential, with the property that
(g × 1B); appB,C = f . Conversely, for any g : A → CB , let
uncurry(g) be the morphism (g × 1B); appB,C : A×B → C. All we
need to prove is that for any f : A×B → C and g : A → CB , it is
the case that uncurry(curry(f)) = f and curry(uncurry(g)) = g.
The first is equivalent to (curry(f)× 1B); appB,C = f , which is
immediate by the definition of curry, while the second follows by
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the unicity of g with the property that (g × 1B); appB,C = f , where
f is uncurry(g). �

Exercise 8 Prove that C(A,B) ≃ C(⋆,BA) whenever the
exponential of A and B exists in C.

A category C which admits finite products and exponentials for any
two objects is called cartesian closed. For notational simplicity, a
cartesian closed category is called a CCC.


