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3.6 Modular Structural Operational Semantics (MSOS)

Modular structural operational semantics (MSOS) was introduced, as its name implies, to address the non-
modularity aspects of (big-step and/or small-step) SOS. As already seen in Section 3.5, there are several
reasons why big-step and small-step SOS are non-modular, as well as several facets of non-modularity in
general. In short, a definitional framework is non-modular when, in order to add a new feature to an existing
language or calculus, one needs to revisit and change some or all of the already defined unrelated features.
For example, recall the IMP extension with input/output in Section 3.5.2. We had to add new semantic
components in the IMP configurations, both in the big-step and in the small-step SOS definitions, to hold the
input/output buffers. That meant, in particular, that all the existing big-step and/or small-step SOS rules of
IMP had to change. That was, at best, very inconvenient.

Before we get into the technicalities of MSOS, one natural question to address is why we need modularity
of language definitions. One may argue that defining a programming language is a major endeavor, done once
and for all, so having to go through the semantic rules many times is, after all, not such a bad idea, because
it gives one the chance to find and fix potential errors in them. Here are several reasons why modularity is
desirable in language definitions, in no particular order:

• Having to modify many or all rules whenever a new rule is added that modifies the structure of the
configuration is actually more error prone than it may seem, because rules become heavier to read
and debug; for example, one can write σ instead of σ′ in a right-hand-side of a rule and a different or
wrong language is defined.

• A modular semantic framework allows us to more easily reuse semantics of existing and probably
already well-tested features in other languages or language extensions, thus increasing our productivity
as language designers and our confidence in the correctness of the resulting language definition.

• When designing a new language, as opposed to an existing language, one needs to experiment with
features and combinations of features; having to do unrelated changes whenever a new feature is added
to or removed from the language burdens the language designer with boring tasks taking considerable
time that could have been otherwise spent on actual interesting language design issues.

• There is an increasing number of domain-specific languages, resulting from the need to abstract
away from low-level programming language details to important, domain-specific application aspects.
Hence, there is a need for language design and experimentation for various domains. Moreover,
domain-specific languages tend to be dynamic, being added or removed features frequently as the
domain knowledge evolves. It would be nice to have the possibility to “drag-and-drop” features in
one’s language, such as functions, exceptions, etc.; however, modularity is crucial for that.

To our knowledge, MSOS was the first framework that explicitly recognizes the importance of modular
language design and provides explicit support to achieve it in the context of SOS. Reduction semantics with
evaluation contexts (see Section 3.7) was actually proposed before MSOS and also offers modularity in
language semantic definitions, but its modularity comes as a consequence of a different way to propagate
reductions through language constructs and not as an explicit goal that it strives to achieve.

There are both big-step and small-step variants of MSOS, but we discuss only small-step MSOS here.
We actually generically call “MSOS” the small-step, implicitly-modular variant of MSOS (see Section 3.6.4).
To bring modularity to SOS, MSOS proposes the following:

• Separate the syntax (i.e., the fragment of program under consideration) from the non-syntactic compo-
nents in configurations, and treat them differently, as explained below;
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• Make the transitions only relate syntax to syntax (as opposed to configurations), and hide the non-
syntactic components in a transition label, as explained below;

• Encode in the transition label all the changes in the non-syntactic components of the configuration that
need to be applied together with the syntactic reduction given by the transition;

• Use specialized notation in transition labels together with a discipline to refer to the various semantic
components and to say that some of them stay unchanged; also, labels can be explicitly or implicitly
shared by the conditions and the conclusion of a rule, elegantly capturing the idea that “changes are
propagated” through desired language constructs.

A transition in MSOS is of the form
P

∆−→ P′

where P and P′ are programs or fragments of programs and ∆ is a label describing the semantic configuration
components both before and after the transition. Specifically, ∆ is a record containing fields denoting the
semantic components of the configuration. The preferred notation in MSOS for stating that in label ∆ the
semantic component associated to the field name field before the transition takes place is α is ∆ = {field =

α, . . .}. Similarly, the preferred notation for stating that the semantic component associated to field field after
the transition takes place is β is ∆ = {field’ = β, . . .} (the field name is primed). For example, the second
MSOS rule for variable assignment (when the assigned arithmetic expression is already evaluated) is (this is
rule (MSOS-Asgn) in Figure 3.24):

x = i;
{state=σ, state’=σ[i/x], ...}−−−−−−−−−−−−−−−−−−−−→ {} if σ(x) , ⊥

It is easy to desugar the rule above into a more familiar SOS rule of the form:

〈x = i;, σ〉 → 〈{}, σ[i/x]〉 if σ(x) , ⊥

The above is precisely the rule (SmallStep-Asgn) in the small-step SOS of IMP (see Figure 3.15). The MSOS
rule is actually more modular than the SOS one, because of the “. . .”, which says that everything else in the
configuration stays unchanged. For example, if we want to extend the language with input/output language
constructs as we did in Section 3.5.2, then new semantic components, namely the input and output buffers,
need to be added to the configuration. Moreover, as seen in Section 3.5.2, the SOS rule above needs to be
changed into a rule of the form

〈x = i;, σ, ωin, ωout〉 → 〈{}, σ[i/x], ωin, ωout〉 if σ(x) , ⊥

where ωin and ωout are the input and output buffers, respectively, which stay unchanged during the variable
assignment operation, while the MSOS rule does not need to be touched.

To impose a better discipline on the use of labels, at the same time making the notation even more
compact, MSOS splits the fields into three categories: read-only, read-write, and write-only. The field state
above was read-write, meaning that the transition label can both read its value before the transition takes
place and write its value after the transition takes place. Unlike the state, which needs to be both read and
written, there are semantic configuration components that only need to be read, as well as ones that only need
to be written. In these cases, it is recommended to use read-only or write-only fields.

Read-only fields are only inspected by the rule, but not modified, so they only appear unprimed in labels.
For example, the following can be one of the MSOS rules for the let binding language construct in a pure
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functional language where expressions yield no side-effects:

e2
{env=ρ[v1/x],... }−−−−−−−−−−−−→ e′2

let x = v1 in e2
{env=ρ,... }−−−−−−−−→ let x = v1 in e′2

Indeed, transitions do not modify the environment in a pure functional language. They only use it in a
read-only fashion to lookup the variable values. A new environment is created in the premise of the rule
above to reduce the body of the let, but neither of the transitions in the premise nor in the conclusion of the
rule change their environment. Note that this was not the case for IMP extended with let in Section 3.5.5,
because there we wanted blocks and local variable declarations to desugar to let statements. Since we
allowed variables to be assigned new values in blocks, like in conventional imperative and object-oriented
languages, we needed an impure variant of let. As seen in Section 3.6.2, our MSOS definition of IMP++’s
let uses a read-write attribute (the state attribute). We do not discuss read-only fields any further here.

Write-only fields are used to record data that is not analyzable during program execution, such as the
output or the trace. Their names are always primed and they have a free monoid semantics—everything
written on them is actually added to the end (see [53] for technical details). Consider, for example, the
extension of IMP with an output (or print) statement in Section 3.5.2, whose MSOS second rule (after the
argument is evaluated, namely rule (MSOS-Print) in Section 3.6.2) is:

print(i);
{output’=i, ...}−−−−−−−−−−→ {}

Compare the rule above with the one below, which uses a read-write attribute instead:

print(i);
{output=ωout , output’=ωout:i, ...}−−−−−−−−−−−−−−−−−−−−−−−→ {}

Indeed, mentioning the ωout like in the second rule above is unnecessary, error-prone (e.g., one may forget to
add it to the primed field or may write i : ωout instead of ωout : i), and non-modular (e.g., one may want to
change the monoid construct, say to write ωout · i instead of ωout : i, etc.).

MSOS achieves modularity in two ways:

1. By making intensive use of the record comprehension notation “. . .”, which, as discussed, indicates
that more fields could follow but that they are not of interest. In particular, if the MSOS rule has no
premises, like in the rules for the assignment and print statements discussed above, than the “. . .” says
that the remaining contents of the label stays unchanged after the application of the transition; and

2. By reusing the same label or portion of label both in the premise and in the conclusion of an MSOS
proof system rule. In particular, if “. . .” is used in the labels of both the premise and the conclusion of
an MSOS rule, then all the occurrences of “. . .” stand for the same portion of label, that is, the same
fields bound to the same semantic components.

For example, the following MSOS rules for first-statement reduction in sequential composition are equivalent
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and say that all the changes generated by reducing s1 to s′1 are propagated when reducing s1 s2 to s′1 s2:

s1
∆−→ s′1

s1 s2
∆−→ s′1 s2

s1
{...}−−→ s′1

s1 s2
{...}−−→ s′1 s2

s1
{state=σ, ...}−−−−−−−−−→ s′1

s1 s2
{state=σ, ...}−−−−−−−−−→ s′1 s2

Indeed, advancing the first statement in a sequential composition of statements one step has the same effect on
the configuration as if the statement was advanced the same one step in isolation, without the other statement
involved; said differently, the side effects are all properly propagated.

MSOS (the implicitly-modular variant of it, see Section 3.6.4) has been refined to actually allow for
dropping such redundant labels like above from rules. In other words, if a label is missing from a transition
then the implicit label is assumed: if the rule is unconditional then the implicit label is the identity label (in
which the primed fields have the same values as the corresponding unprimed ones, etc.), but if the rule is
conditional then the premise and the conclusion transitions share the same label, that is, they perform the
same changes on the semantic components of the configuration. With this new notational convention, the
most elegant and compact way to write the rule above in MSOS is:

s1 −→ s′1
s1 s2 −→ s′1 s2

This is precisely the rule (MSOS-Seq-Arg1) in Figure 3.24, part of the MSOS semantics of IMP.
One of the important merits of MSOS is that it captures formally many of the tricks that language

designers informally use to avoid writing awkward and heavy SOS definitions.
Additional notational shortcuts are welcome in MSOS if properly explained and made locally rigorous,

without having to rely on other rules. For example, the author of MSOS finds the rule

x
{state, ...}−−−−−−−→ state(x) if state(x) , ⊥

to be an acceptable variant of the lookup rule:

x
{state=σ, ...}−−−−−−−−−→ σ(x) if σ(x) , ⊥

despite the fact that, strictly speaking, state(x) does not make sense by itself (recall that state is a field
name, not the state) and that field names are expected to be paired with their semantic components in labels.
Nevertheless, there is only one way to make sense of this rule, namely to replace any use of state by its
semantic contents, which therefore does not need to be mentioned.

A major goal when using MSOS to define languages or calculi is to write on the labels as little information
as possible and to use the implicit conventions for the missing information. That is because everything written
on labels may work against modularity if the language is later on extended or simplified. As an extreme case,
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if one uses only read/write fields in labels and mentions all the fields together with all their semantic contents
on every single label, then MSOS becomes conventional SOS and therefore suffers from the same limitations
as SOS with regards to modularity.

Recall the rules in Figure 3.16 for deriving the transitive closure→? of the small-step SOS relation→. In
order for two consecutive transitions to compose, the source configuration of the second had to be identical to
the target configuration of the first. A similar property must also hold in MSOS, otherwise one may derive
inconsistent computations. This process is explained in MSOS by making use of category theory (see [53]
for technical details on MSOS; see Section 2.7 for details on category theory), associating MSOS labels with
morphisms in a special category and then using the morphism composition mechanism of category theory.

However, category theory is not needed in order to understand how MSOS works in practice. A simple
way to explain its label composition is by translating, or desugaring MSOS definitions into SOS, as we
implicitly suggested when we discussed the MSOS rule for variable assignment above. Indeed, once one
knows all the fields in the labels, which happens once a language definition is complete, one can automatically
associate a standard small-step SOS definition to the MSOS one by replacing each MSOS rule with an SOS
rule over configurations including, besides the syntactic contents, the complete semantic contents extracted
from the notational conventions in the label. The resulting SOS configurations will not have fields anymore,
but will nevertheless contain all the semantic information encoded by them. For example, in the context of a
language containing only a state and an output buffer as semantic components in its configuration (note that
IMP++ contained an input buffer as well), the four rules discussed above for variable assignment, output,
sequential composition, and lookup desugar, respectively, into the following conventional SOS rules:

〈x = i;, σ, ω〉 → 〈{}, σ[i/x], ω〉 if σ(x) , ⊥

〈print(i);, σ, ω〉 → 〈{}, σ, ω : i〉

〈s1, σ, ω〉 → 〈s′1, σ′, ω′〉
〈s1 s2, σ, ω〉 → 〈s′1 s2, σ

′, ω′〉

〈x, σ, ω〉 → 〈σ(x), σ, ω〉 if σ(x) , ⊥

Recall that for unconditional MSOS rules the meaning of the missing label fields is “stay unchanged”,
while in the case of conditional rules the meaning of the missing fields is “same changes in conclusion as
in the premise”. In order for all the changes explicitly or implicitly specified by MSOS rules to apply, one
also needs to provide an initial state for all the attributes, or in terms of SOS, an initial configuration. The
initial configuration is often left unspecified in MSOS or SOS paper language definitions, but it needs to
be explicitly given when one is concerned with executing the semantics. In our SOS definition of IMP
in Section 3.3.2 (see Figure 3.15), we created the appropriate initial configuration in which the top-level
statement was executed using the proof system itself, more precisely the rule (SmallStep-Pgm) created a
configuration holding a statement and a state from a configuration holding only the program. That is not
possible in MSOS, because MSOS assumes that the structure of the label record does not change dynamically
as the rules are applied. Instead, it assumes all the attributes given and fixed. Therefore, one has to explicitly
state the initial values corresponding to each attribute in the initial state. However, in practice those initial
values are understood and, consequently, we do not bother defining them. For example, if an attribute holds a
list or a set, then its initial value is the empty list or set; if it holds a partial function, then its initial value is
the partial function undefined everywhere; etc.

This way of regarding MSOS as a convenient front-end to SOS also supports the introduction of further
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notational conventions in MSOS if desired, like the one discussed above using state(x) instead of σ(x) in the
right-hand-side of the transition, provided that one explains how such conventions are desugared when going
from MSOS to SOS. Finally, the translation of MSOS into SOS also allows MSOS to borrow from SOS the
reflexive/transitive closure→? of the one-step relation.

3.6.1 The MSOS of IMP

Figures 3.23 and 3.24 show the MSOS definition of IMP. There is not much to comment on the MSOS rules
in these figures, except, perhaps, to note how compact and elegant they are compared to the corresponding
SOS definition in Figures 3.14 and 3.15. Except for the three rules (MSOS-Lookup), (MSOS-Asgn), and
(MSOS-Var), which make use of labels, they are as compact as they can be in any SOS-like setting for
any language including the defined constructs. Also, the above-mentioned three rules only mention those
components from the labels that they really need, so they allow for possible extensions of the language, like
the IMP++ extension in Section 3.5.

The rule (MSOS-Var) is somehow different from the other rules that need the information in the label, in
that it uses an attribute which has the type read-write but it only writes it without reading it. This is indeed
possible in MSOS. The type of an attribute cannot be necessarily inferred from the way it is used in some
of the rules, and not all rules must use the same attribute in the same way. One should explicitly clarify the
type of each attribute before one gives the actual MSOS rules, and one is not allowed to change the attribute
types dynamically, during derivations. Indeed, if the type of the output attribute in the MSOS rules for output
above (and also in Section 3.6.2) were read-write, then the rules would wrongly imply that the output buffer
will only store the last value, the previous ones being lost (this could be a desirable semantics in some cases).

Since the MSOS proof system in Figures 3.23 and 3.24 translates, following the informal procedure
described above, in the SOS proof system in Figures 3.14 and 3.15, basically all the small-step SOS intuitions
and discussions for IMP in Section 3.3.2 carry over here almost unchanged. In particular:

Definition 22. We say that C → C′ is derivable with the MSOS proof system in Figures 3.23 and 3.24, written
MSOS(IMP) ` C → C′, iff SmallStep(IMP) ` C → C′ (using the proof system in Figures 3.14 and 3.15).
Similarly, MSOS(IMP) ` C →? C′ iff SmallStep(IMP) ` C →? C′.

Note, however, that MSOS is more syntactic in nature than SOS, in that each of its reduction rules
requires syntactic terms in both sides of the transition relation. In particular, that means that, unlike in SOS
(see Exercise 68), in MSOS one does not have the option to dissolve statements from configurations anymore.
Instead, one needs to reduce them to {} or some similar syntactic constant; if the original language did not
have such a constant then one needs to invent one and add it to the original language or calculus syntax.

3.6.2 The MSOS of IMP++

We next discuss the MSOS of IMP++, playing the same language design scenario as in Section 3.5: we first
add each feature separately to IMP, as if that feature was the final extension of the language, and then we
add all the features together and investigate the modularity of the resulting definition as well as possibly
unexpected feature interactions.

Variable Increment

In MSOS, one can define the increment modularly:

++ x
{state=σ, state’=σ[(σ(x)+Int1)/x], ...}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ(x) +Int 1 (MSOS-Inc)
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x
{state=σ, ...}−−−−−−−−−→ σ(x) if σ(x) , ⊥ (MSOS-Lookup)

a1 → a′1
a1 + a2 → a′1 + a2

(MSOS-Add-Arg1)

a2 → a′2
a1 + a2 → a1 + a′2

(MSOS-Add-Arg2)

i1 + i2 → i1 +Int i2 (MSOS-Add)

a1 → a′1
a1 / a2 → a′1 / a2

(MSOS-Div-Arg1)

a2 → a′2
a1 / a2 → a1 / a′2

(MSOS-Div-Arg2)

i1 / i2 → i1 /Int i2 if i2 , 0 (MSOS-Div)

a1 → a′1
a1 <= a2 → a′1 <= a2

(MSOS-Leq-Arg1)

a2 → a′2
i1 <= a2 → i1 <= a′2

(MSOS-Leq-Arg2)

i1 <= i2 → i1 ≤Int i2 (MSOS-Leq)

b→ b′

! b→ ! b′ (MSOS-Not-Arg)

! true→ false (MSOS-Not-True)

! false→ true (MSOS-Not-False)

b1 → b′1
b1 && b2 → b′1 && b2

(MSOS-And-Arg1)

false && b2 → false (MSOS-And-False)

true && b2 → b2 (MSOS-And-True)

Figure 3.23: MSOS(IMP) — MSOS of IMP Expressions (i1, i2 ∈ Int; x ∈ Id; a1, a′1, a2, a′2 ∈ AExp;
b, b′, b1, b′1, b2 ∈ BExp; σ ∈ State).
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a→ a′

x = a;→ x = a′; (MSOS-Asgn-Arg2)

x = i;
{state=σ, state’=σ[i/x], ...}−−−−−−−−−−−−−−−−−−−−→ {} if σ(x) , ⊥ (MSOS-Asgn)

s1 → s′1
s1 s2 → s′1 s2

(MSOS-Seq-Arg1)

{} s2 → s2 (MSOS-Seq-Skip)

b→ b′

if (b) s1 else s2 → if (b′) s1 else s2
(MSOS-If-Arg1)

if (true) s1 else s2 → s1 (MSOS-If-True)

if (false) s1 else s2 → s2 (MSOS-If-False)

while (b) s→ if (b) { s while (b) s } else {} (MSOS-While)

int xl; s
{state’= xl 7→0, ...}−−−−−−−−−−−−−→ s (MSOS-Var)

Figure 3.24: MSOS(IMP) — MSOS of IMP Statements ( i ∈ Int; x ∈ Id; xl ∈ List{Id }; a, a′ ∈ AExp;
b, b′ ∈ BExp; s, s1, s′1, s2 ∈ Stmt; σ ∈ State).

No other rule needs to be changed, because MSOS already assumes that, unless otherwise specified, each
rule propagates all the configuration changes in its premise(s).

Input/Output

MSOS can modularly support the input/output extension of IMP. We need to add new label attributes holding
the input and the output buffers, say input and output, respectively, and then to add the corresponding rules for
the input/output constructs. Note that the input attribute is read-write, while the output attribute is write-only.
Here are the MSOS rules for input/output:

read()
{input=i:ω, input’=ω, ...}−−−−−−−−−−−−−−−−−−→ i (MSOS-Read)

a −→ a′

print(a); −→ print(a′); (MSOS-Print-Arg)

print(i);
{output’=i, ...}−−−−−−−−−−→ {} (MSOS-Print)

Note that, since output is a write-only attribute, we only need to mention the new value that is added to
the output in the label of the second rule above. If output was declared as a read-write attribute, then the
label of the second rule above would have been {output = ω, output’ = ω : i, . . .}. A major implicit objective
of MSOS is to minimize the amount of information that the user needs to write in each rule. Indeed, anything
written by a user can lead to non-modularity and thus work against the user when changes are performed to
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the language. For example, if for some reason one declared output as a read-write attribute and then later on
one decided to change the list construct for the output integer list from colon “ : ” to something else, say
“ · ”, then one would need to change the label in the second rule above from {output = ω, output’ = ω : i, . . .}
to {output = ω, output’ = (ω · i), . . .}. Therefore, in the spirit of enhanced modularity and clarity, the language
designer using MSOS is strongly encouraged to use write-only (or read-only) attributes instead of read-write
attributes whenever possible.

Notice the lack of expected duality between the rules (MSOS-Read) and (MSOS-Print) for input and for
output above. Indeed, for all the reasons mentioned above, one would like to write the rule (MSOS-Read)
more compactly and modularly as follows:

read()
{input=i, ...}−−−−−−−−−→ i

Unfortunately, this is not possible with the current set of label attributes provided by MSOS. However, there
is no reason why MSOS could not be extended to include more attributes. For example, an attribute called
“consumable” which would behave as the dual of write-only, i.e., it would only have an unprimed variant in
the label holding a monoid (or maybe a group?) structure like the read-only attributes but it would consume
from it whatever is matched by the rule label, would certainly be very useful in our case here. If such an
attribute type were available, then our input attribute would be of that type and our MSOS rule for read()
would be like the one above.

A technical question regarding the execution of the resulting MSOS definition is how to provide input to
programs. Or, put differently, how to initialize configurations. One possibility is to assume that the user is
fully responsible for providing the initial attribute values. This is, however, rather inconvenient, because the
user would then always have to provide an empty state and an empty output buffer in addition to the desired
input buffer in each configuration. A more convenient approach is to invent a special syntax allowing the user
to provide precisely a program and an input to it, and then to automatically initialize all the attributes with
their expected values. Let us pair a program p and an input ω for it using a configuration-like notation of the
form 〈p, ω〉. Then we can replace the rule (MSOS-Var) in Figure 3.24 with the following rule:

〈int xl; s, ω〉 {state’= xl 7→0, input′=ω, ...}−−−−−−−−−−−−−−−−−−−−→ s

Abrupt Termination

MSOS allows for a more modular semantics of abrupt termination than the more conventional semantic
approaches discussed in Section 3.5.3. However, in order to achieve modularity, we need to extend the syntax
of IMP with a top construct, similarly to the small-step SOS variant discussed in Section 3.5.3. The key to
modularity here is to use the labeling mechanism of MSOS to carry the information that a configuration is in
a halting status. Let us assume an additional write-only field in the MSOS labels, called halting, which is true
whenever the program needs to halt, otherwise it is false7. Then we can add the following two MSOS rules
that set the halting field to true:

i1 / 0
{halting′=true, ...}−−−−−−−−−−−−−→ i1 / 0 (MSOS-Div-By-Zero)

halt;
{halting′=true, ...}−−−−−−−−−−−−−→ halt; (MSOS-Halt)

7Strictly speaking, MSOS requires that the write-only attributes take values from a free monoid; if one wants to be faithful to that
MSOS requirement, then one can replace true with some letter word and false with the empty word.
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As desired, it is indeed the case now that a sequent of the form s
{halting′=true, ...}−−−−−−−−−−−−−→ s′ is derivable if and only if

s = s′ and the next executable step in s is either a “halt;” statement or a division-by-zero expression. If one
does not like keeping the syntax unchanged when an abrupt termination takes place, then one can add a new
syntactic construct, say stuck like in [53], and replace the right-hand-side configurations above with stuck;
that does not conceptually change anything in what follows. The setting seems therefore perfect for adding a
rule of the form

s
{halting′=true, ...}−−−−−−−−−−−−−→ s

s
{halting′=false, ...}−−−−−−−−−−−−−→ {}

and declare ourselves done, because now an abruptly terminated statement terminates just like any other
statement, with a {} statement as result and with a label containing a non-halting status. Unfortunately,
that does not work, because such a rule would interfere with other rules taking statement reductions as
preconditions, for example with the first precondition of the (MSOS-Seq) rule, and thus hide the actual
halting status of the precondition. To properly capture the halting status, we define a top level statement
construct like we discussed in the context of big-step and small-step SOS above, say top Stmt, modify the
rule (MSOS-Var) from

int xl; s
{state′= xl 7→0, ...}−−−−−−−−−−−−−→ s

to

int xl; s
{state′= xl 7→0, halting′= false, ...}−−−−−−−−−−−−−−−−−−−−−−−−→ top s

to mark the top level statement, and then finally include the following three rules:

s
{halting′=false, ...}−−−−−−−−−−−−−→ s′

top s
{halting′=false, ...}−−−−−−−−−−−−−→ top s′

(MSOS-Top-Normal)

top {} → {} (MSOS-Top-Skip)

s
{halting′=true, ...}−−−−−−−−−−−−−→ s

top s
{halting′=false, ...}−−−−−−−−−−−−−→ {}

(MSOS-Top-Halting)

The use of a top construct like above seems unavoidable if we want to achieve modularity. Indeed, we
managed to avoid it in the small-step SOS definition of abrupt termination in Section 3.5.3 (paying one
additional small-step to dissolve the halting configuration), because the halting configurations were explicitly,
and thus non-modularly propagated through each of the language constructs, so the entire program reduced to
a halting configuration whenever a division by zero or a “halt;” statement was encountered. Unfortunately,
that same approach does not work with MSOS (unless we want to break its modularity, like in SOS), because
the syntax is not mutilated when an abrupt termination occurs. The halting signal is captured by the label of
the transition. However, the label does not tell us when we are at the top level in order to dissolve the halting
status. Adding a new label to hold the depth of the derivation, or at least whether we are the top or not, would
require one to (non-modularly) change it in each rule. The use of an additional top construct like we did
above appears to be the best trade-off between modularity and elegance here.

Note that, although MSOS can be mechanically translated into SOS by associating to each MSOS attribute
an SOS configuration component, the solution above to support abrupt termination modularly in MSOS is not

222



modular when applied in SOS via the translation. Indeed, adding a new attribute in the label means adding
a new configuration component, which already breaks the modularity of SOS. In other words, the MSOS
technique above cannot be manually used in SOS to obtain a modular definition of abrupt termination in SOS.

Dynamic Threads

The small-step SOS rules for spawning threads in Section 3.5.4 straightforwardly turn into MSOS rules:

s→ s′

spawn s→ spawn s′ (MSOS-Spawn-Arg)

spawn {} → {} (MSOS-Spawn-Skip)

s2 → s′2
(spawn s1) s2 → (spawn s1) s′2

(MSOS-Spawn-Wait)

(s1 s2) s3 ≡ s1 (s2 s3) (MSOS-Seq-Assoc)

Stmt ::= | spawn Stmt

Even though the MSOS rules above are conceptually identical to the original small-step SOS rules, they are
more modular because, unlike the former, they carry over unchanged when the configuration needs to change.
Note that the structural identity stating the associativity of sequential composition, called (MSOS-Seq-Assoc)
above, is still necessary, and so is the syntactic extension of spawn to take statements instead of blocks.

Local Variables

Section 3.5.5 showed how blocks with local variables can be desugared into a uniform let construct, and
also gave the small-step SOS rules defining the semantics of let. Those rules can be immediately adapted
into the following MSOS rules:

a→ a′

let x = a in s→ let x = a′ in s (MSOS-Let-Exp)

s
{state=σ[i/x], state′=σ′, ...}−−−−−−−−−−−−−−−−−−−−−→ s′

let x = i in s
{state=σ, state′=σ′[σ(x)/x], ...}−−−−−−−−−−−−−−−−−−−−−−−−→ let x =σ′(x) in s′

(MSOS-Let-Stmt)

let x = i in {} → {} (MSOS-Let-Done)

Like for the other features, the MSOS rules are more modular than their small-step SOS variants.
Since programs are now just ordinary (closed) expressions and they are now executed in the empty state,

the rule (MSOS-Var), namely

int xl; s
{state’= xl 7→0, ...}−−−−−−−−−−−−−→ s

needs to change into a rule of the from

s
{state’= ·, ...}−−−−−−−−−→?
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Unfortunately, regardless of what we place instead of “?”, such a rule will not work. That is because there is
nothing to prevent it to apply to any statement at any step during the reduction. To enforce it to happen only
at the top of the program and only at the beginning of the reduction, we can wrap the original program (which
is a statement) into a one-element configuration-like term 〈s〉. Then the rule (MSOS-Var) can be replaced
with the following rule:

〈s〉 {state’= ·, ...}−−−−−−−−−→ s

Putting Them All Together

The modularity of MSOS makes it quite easy to put all the features discussed above together and thus define
the MSOS of IMP++. Effectively, we have to do the following:

1. We add the three label attributes used for the semantics of the individual features above, namely the
read-write input attribute and the two write-only attributes output and halting.

2. We add all the MSOS rules of all the features above unchanged (nice!), except for the rule (MSOS-Var)
for programs (which changed several times, anyway).

3. To initialize the label attributes, we add a pairing construct 〈s, ω〉 like we did when we added the
input/output extension of IMP, where s is a statement (programs are ordinary statements now) and ω is
a buffer, and replace the rule (MSOS-Var) in Figure 3.24 with the following:

〈s, ω〉 {state’= xl 7→0, input′=ω, halting′=false, ...}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ top s

It is important to note that the MSOS rules of the individual IMP extensions can be very elegantly combined
into one language (IMP++). The rule (MSOS-Var) had to globally change in order to properly initialize the
attribute values, but nothing had to be done in the MSOS rules of any of the features in order to put it together
with the other MSOS rules of the other features.

Unfortunately, even though each individual feature has its intended semantics, the resulting IMP++
language does not. We still have the same semantic problems with regards to concurrency that we had in the
context of small-step SOS in Section 3.5.6. For example, the concurrency of spawn statements is limited to
the blocks in which they appear. For example, a statement of the form (let x = i in spawn s1) s2 does not
allow s2 to be evaluated concurrently with s1. The statement s1 has to evaluate completely and then the let
statement dissolved, before any step in s2 can be performed. To fix this problem, we would have to adopt
a different solution, like the one proposed in Section 3.5.7 in the context of small-step SOS. Thanks to its
modularity, MSOS would make such a solution easier to implement than small-step SOS. Particularly, one
can use the label mechanism to pass a spawned thread and its execution environment all the way to the top
modularly, without having to propagate it explicitly through language constructs.

3.6.3 MSOS in Rewrite Logic

Like big-step and small-step SOS, we can also associate a conditional rewrite rule to each MSOS rule and
hereby obtain a rewrite logic theory that faithfully (i.e., step-for-step) captures the MSOS definition. There
could be different ways to do this. One way to do it is to first desugar the MSOS definition into a step-for-step
equivalent small-step SOS definition as discussed above, and then use the faithful embedding of small-step
SOS into rewrite logic discussed in Section 3.3.3. The problem with this approach is that the resulting
small-step SOS definition, and implicitly the resulting rewrite logic definition, lack the modularity of the

224



original MSOS definition. In other words, if one wanted to extend the MSOS definition with rules that would
require global changes to its corresponding SOS definition (e.g., ones adding new semantic components into
the label/configuration), then one would also need to manually incorporate all those global changes in the
resulting rewrite logic definition.

We first show that any MSOS proof system, say MSOS, can be mechanically translated into a rewrite
logic theory, say RMSOS, in such a way that two important aspects of the original MSOS definition are
preserved: 1) the corresponding derivation relations are step-for-step equivalent, that is, MSOS ` C → C′ if
and only if RMSOS ` RC→C′ , where RC→C′ is the corresponding syntactic translation of the MSOS sequent
C → C′ into a rewrite logic sequent; and 2) RMSOS is as modular as MSOS. Second, we apply our generic
translation technique to the MSOS formal system MSOS(IMP) defined in Section 3.6.1 and obtain a rewrite
logic semantics of IMP that is step-for-step equivalent to and as modular as MSOS(IMP). The modularity
of MSOS(IMP) and of RMSOS(IMP) will pay off when we extend IMP in Section 3.5. Finally, we show how
RMSOS(IMP) can be seamlessly defined in Maude, yielding another interpreter for IMP (in addition to those
corresponding to the big-step and small-step SOS definitions of IMP in Sections 3.2.3 and 3.3.3).

Computationally and Modularly Faithful Embedding of MSOS into Rewrite Logic

Our embedding of MSOS into rewrite logic is very similar to that of small-step SOS, with one important
exception: the non-syntactic components of the configuration are all grouped into a record, which is a
multiset of attributes, each attribute being a pair associating appropriate semantic information to a field. This
allows us to use multiset matching (or matching modulo associativity, commutativity, and identity) in the
corresponding rewrite rules to extract the needed semantic information from the record, thus achieving not
only a computationally equivalent embedding of MSOS into rewrite logic, but also one with the same degree
of modularity as MSOS.

Formally, let us assume an arbitrary MSOS formal proof system. Let Attribute be a fresh sort and
let Record be the sort Bag{Attribute} (that means that we assume all the infrastructure needed to define
records as comma-separated bags, or multisets, of attributes). For each field Field holding semantic contents
Contents that appears unprimed or primed in any of the labels on any of the transitions in any of the
rules of the MSOS proof system, let us assume an operation “Field = : Contents → Attribute” (the
name of this postfix unary operation is “Field = ”). Finally, for each syntactic category Syntax used in
any transition that appears anywhere in the MSOS proof system, let us define a configuration construct
“〈 , 〉 : Syntax × Record → Configuration”. We are now ready to define our transformation of an MSOS
rule into a rewrite logic rule:

1. Translate it into an SOS rule, as discussed right above Section 3.6.1; we could also go directly from
MSOS rules to rewrite logic rules, but we would have to repeat most of the steps from MSOS to SOS
that were already discussed;

2. Group all the semantic components in the resulting SOS configurations into a corresponding record,
where each semantic component translates into a corresponding attribute using a corresponding label;

3. Replace those attributes whose semantic components are not used anywhere in the rule by a generic
variable of sort Record;

4. Finally, use the technique in Section 3.3.3 to transform the resulting SOS-like rules into rewrite rules,
tagging the left-hand-side configurations with the ◦ symbol.
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Applying the steps above, the four MSOS rules discussed right above Section 3.6.1 (namely the ones
for variable assignment, printing to the output, sequential composition of statements, and variable lookup)
translate into the following rewrite logic rules:

◦〈X = I;, (state = σ, ρ)〉 → 〈{}, (state = σ[I/X], ρ)〉
◦〈print(I);, (output = ω, ρ)〉 → 〈{}, (output = ω : I, ρ)〉

◦〈S 1 S 2,ρ〉 → 〈S ′1 S 2,ρ′〉 if ◦〈S 1,ρ〉 → 〈S ′1,ρ′〉
◦〈X, (state = σ, ρ)〉 → 〈σ(X), (state = σ, ρ)〉

We use the same mechanism as for small-step SOS to obtain the reflexive and transitive many-step
closure of the MSOS one-step transition relation. This mechanism was discussed in detail in Section 3.3.3; it
essentially consists of adding a configuration marker ? together with a rule “?Cfg→ ?Cfg′ if ◦Cfg→ Cfg′”
iteratively applying the one-step relation.

Theorem 16. (Faithful embedding of MSOS into rewrite logic) For any MSOS definition MSOS, and any
appropriate configurations C and C′, the following equivalences hold:

MSOS ` C → C′ ⇐⇒ RMSOS ` ◦C →1 C′ ⇐⇒ RMSOS ` ◦C → C′

MSOS ` C →? C′ ⇐⇒ RMSOS ` ?C → ?C′

where RMSOS is the rewrite logic semantic definition obtained from MSOS by translating each rule in MSOS
as above. (Recall from Section 2.5 that →1 is the one-step rewriting relation obtained by dropping the
reflexivity and transitivity rules of rewrite logic. Also, as C and C′ are parameter-free—parameters only
appear in rules—, C and C′ are ground terms.)

Like for the previous embeddings of big-step and small-step SOS into rewrite logic, let us elaborate on
the apparent differences between MSOS and RMSOS from a user perspective. The most visible difference is
the SOS-like style of writing the rules, namely using configurations instead of labels, which also led to the
inheritance of the ◦ mechanism from the embedding of SOS into rewrite logic. Therefore, the equivalent
rewrite logic definition is slightly more verbose than the original MSOS definition. On the other hand, it
has the advantage that it is more direct than the MSOS definition, in that it eliminates all the notational
conventions. Indeed, if we strip MSOS out of its notational conventions and go straight to its essence, we
find that that essence is precisely its use of multiset matching to modularly access the semantic components
of the configuration. MSOS chose to do this on the labels, using specialized conventions for read-only/write-
only/read-write components, while our rewrite logic embedding of MSOS does it in the configurations,
uniformly for all semantic components. Where precisely this matching takes place is, in our view, less
relevant. What is relevant and brings MSOS its modularity is that multiset matching does happen. Therefore,
similarly to the big-step and small-step SOS representations in rewrite logic, we conclude that the rewrite
theory RMSOS is MSOS, and not an encoding of it.

Like for the previous embeddings of big-step and small-step SOS into rewriting logic, unfortunately,
RMSOS (and implicitly MSOS) still lacks the main strengths of rewrite logic, namely context-insensitive and
parallel application of rewrite rules. Indeed, the rules of RMSOS can only apply at the top, sequentially, so
these rewrite theories corresponding to the faithful embedding of MSOS follow a rather poor rewrite logic
style. Like for the previous embeddings, this is not surprising though and does not question the quality
of our embeddings. All it says is that MSOS was not meant to have the capabilities of rewrite logic with
regards to context-insensitivity and parallelism; indeed, all MSOS attempts to achieve is to address the lack
of modularity of SOS and we believe that it succeeded in doing so. Unfortunately, SOS has several other
major problems, which are discussed in Section 3.5.
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sorts:
Attribute, Record, Configuration, ExtendedConfiguration

subsorts and aliases:
Record = Bag{Attribute}
Configuration < ExtendedConfiguration

operations:
state = : State→ Attribute // more fields can be added by need
〈 , 〉 : AExp × Record → Configuration
〈 , 〉 : BExp × Record → Configuration
〈 , 〉 : Stmt × Record → Configuration
〈 〉 : Pgm→ Configuration
◦ : Configuration→ ExtendedConfiguration // reduce one step
? : Configuration→ ExtendedConfiguration // reduce all steps

rule:
?Cfg→ ?Cfg′ if ◦ Cfg→ Cfg′ // where Cfg,Cfg′ are variables of sort Configuration

Figure 3.25: Configurations and infrastructure for the rewrite logic embedding of MSOS(IMP).

MSOS of IMP in Rewrite Logic

We here discuss the complete MSOS definition of IMP in rewrite logic, obtained by applying the faithful
embedding technique discussed above to the MSOS definition of IMP in Section 3.6.1. Figure 3.25 gives
an algebraic definition of configurations as well as needed additional record infrastructure; all the sorts,
operations, and rules in Figure 3.25 were already discussed either above or in Section 3.3.3. Figure 3.26
gives the rules of the rewrite logic theory RMSOS(IMP) that is obtained by applying the procedure above to the
MSOS of IMP in Figures 3.23 and 3.24. Like before, we used the rewrite logic convention that variables
start with upper-case letters; if they are greek letters, then we use a similar but larger symbol (e.g.,σ instead
of σ for variables of sort State, or ρ instead of ρ for variables of sort Record). The following corollary of
Theorem 16 establishes the faithfulness of the representation of the MSOS of IMP in rewrite logic:

Corollary 6. MSOS(IMP) ` C → C′ ⇐⇒ RMSOS(IMP) ` ◦C → C′.

Therefore, there is no perceivable computational difference between the IMP-specific proof system
MSOS(IMP) and generic rewrite logic deduction using the IMP-specific rewrite rules in RMSOS(IMP); the two
are faithfully equivalent. Moreover, by the discussion following Theorem 16, RMSOS(IMP) is also as modular
as MSOS(IMP). This will be further emphasized in Section 3.5, where we will extend IMP with several
features, some of which requiring more attributes.

? Maude Definition of IMP MSOS

Figure 3.27 shows a straightforward Maude representation of the rewrite theoryRMSOS(IMP) in Figures 3.26
and 3.25. The Maude module IMP-SEMANTICS-MSOS in Figure 3.27 is executable, so Maude, through its
rewriting capabilities, yields an MSOS interpreter for IMP the same way it yielded big-step and small-step
SOS interpreters in Sections 3.2.3 and 3.3.3, respectively; for example, the Maude rewrite command

rewrite * < sumPgm > .

where sumPgm is the first program defined in the module IMP-PROGRAMS in Figure 3.4, produces a result of
the form (the exact statistics are also irrelevant, so they were replaced by “. . . ”):
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◦〈X, (state = σ,ρ)〉 → 〈σ(X), (state = σ,ρ)〉 if σ(X) , ⊥

◦〈A1 + A2,ρ〉 → 〈A′1 + A2,ρ′〉 if ◦〈A1,ρ〉 → 〈A′1,ρ′〉
◦〈A1 + A2,ρ〉 → 〈A1 + A′2,ρ

′〉 if ◦〈A2,ρ〉 → 〈A′2,ρ′〉
◦〈I1 + I2,ρ〉 → 〈I1 +Int I2,ρ〉

◦〈A1 / A2,ρ〉 → 〈A′1 / A2,ρ′〉 if ◦〈A1,ρ〉 → 〈A′1,ρ′〉
◦〈A1 / A2,ρ〉 → 〈A1 / A′2,ρ

′〉 if ◦〈A2,ρ〉 → 〈A′2,ρ′〉
◦〈I1 / I2,ρ〉 → 〈I1 /Int I2,ρ〉 if I2 , 0

◦〈A1 <= A2,ρ〉 → 〈A′1 <= A2,ρ′〉 if ◦〈A1,ρ〉 → 〈A′1,ρ′〉
◦〈I1 <= A2,ρ〉 → 〈I1 <= A′2,ρ

′〉 if ◦〈A2,ρ〉 → 〈A′2,ρ′〉
◦〈I1 <= I2,ρ〉 → 〈I1 ≤Int I2,ρ〉

◦〈! B,ρ〉 → 〈! B′,ρ′〉 if ◦〈B,ρ〉 → 〈B′,ρ′〉
◦〈! true,ρ〉 → 〈false,ρ〉
◦〈! false,ρ〉 → 〈true,ρ〉

◦〈B1 && B2,ρ〉 → 〈B′1 && B2,ρ′〉 if ◦〈B1,ρ〉 → 〈B′1,ρ′〉
◦〈false && B2,ρ〉 → 〈false,ρ〉

◦〈true && B2,ρ〉 → 〈B2,ρ〉

◦〈{ S },ρ〉 → 〈S ,ρ〉

◦〈X = A;,ρ〉 → 〈X = A′;,ρ′〉 if ◦〈A,ρ〉 → 〈A′,ρ′〉
◦〈X = I;, (state = σ,ρ)〉 → 〈{}, (state = σ[I/X],ρ)〉 if σ(X) , ⊥

◦〈S 1 S 2,ρ〉 → 〈S ′1 S 2,ρ′〉 if ◦〈S 1,ρ〉 → 〈S ′1,ρ′〉
◦〈{} S 2,ρ〉 → 〈S 2,ρ〉

◦〈if (B) S 1 else S 2,ρ〉 → 〈if (B′) S 1 else S 2,ρ′〉 if ◦〈B,ρ〉 → 〈B′,ρ′〉
◦〈if (true) S 1 else S 2,ρ〉 → 〈S 1,ρ〉
◦〈if (false) S 1 else S 2,ρ〉 → 〈S 2,ρ〉

◦〈while (B) S ,ρ〉 → 〈if (B) { S while (B) S } else {},ρ〉

◦〈intXl; S 〉 → 〈S , (state = Xl 7→ 0)〉

Figure 3.26: RMSOS(IMP): the complete MSOS of IMP in rewrite logic.
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mod IMP-CONFIGURATIONS-MSOS is including IMP-SYNTAX + STATE .

sorts Attribute Record Configuration ExtendedConfiguration .

subsort Attribute < Record .

subsort Configuration < ExtendedConfiguration .

op empty : -> Record .

op _,_ : Record Record -> Record [assoc comm id: empty] .

op state‘=_ : State -> Attribute .

op <_,_> : AExp Record -> Configuration .

op <_,_> : BExp Record -> Configuration .

op <_,_> : Stmt Record -> Configuration .

op <_> : Pgm -> Configuration .

op o_ : Configuration -> ExtendedConfiguration [prec 80] . --- one step

op *_ : Configuration -> ExtendedConfiguration [prec 80] . --- all steps

var Cfg Cfg’ : Configuration .

crl * Cfg => * Cfg’ if o Cfg => Cfg’ .

endm

mod IMP-SEMANTICS-MSOS is including IMP-CONFIGURATIONS-MSOS .

var X : Id . var R R’ : Record . var Sigma Sigma’ : State .

var I I1 I2 : Int . var Xl : List{Id} . var S S1 S1’ S2 : Stmt .

var A A’ A1 A1’ A2 A2’ : AExp . var B B’ B1 B1’ B2 B2’ : BExp .

crl o < X,(state = Sigma, R) > => < Sigma(X),(state = Sigma, R) >

if Sigma(X) =/=Bool undefined .

crl o < A1 + A2,R > => < A1’ + A2,R’ > if o < A1,R > => < A1’,R’ > .

crl o < A1 + A2,R > => < A1 + A2’,R’ > if o < A2,R > => < A2’,R’ > .

rl o < I1 + I2,R > => < I1 +Int I2,R > .

crl o < A1 / A2,R > => < A1’ / A2,R’ > if o < A1,R > => < A1’,R’ > .

crl o < A1 / A2,R > => < A1 / A2’,R’ > if o < A2,R > => < A2’,R’ > .

crl o < I1 / I2,R > => < I1 /Int I2,R > if I2 =/=Bool 0 .

crl o < A1 <= A2,R > => < A1’ <= A2,R’ > if o < A1,R > => < A1’,R’ > .

crl o < I1 <= A2,R > => < I1 <= A2’,R’ > if o < A2,R > => < A2’,R’ > .

rl o < I1 <= I2,R > => < I1 <=Int I2,R > .

crl o < ! B,R > => < ! B’,R’ > if o < B,R > => < B’,R’ > .

rl o < ! true,R > => < false,R > .

rl o < ! false,R > => < true,R > .

crl o < B1 && B2,R > => < B1’ && B2,R’ > if o < B1,R > => < B1’,R’ > .

rl o < false && B2,R > => < false,R > .

rl o < true && B2,R > => < B2,R > .

rl o < {S}, R > => < S,R > .

crl o < X = A ;,R > => < X = A’ ;,R’ > if o < A,R > => < A’,R’ > .

crl o < X = I ;,(state = Sigma, R) > => < {},(state = Sigma[I / X], R) >

if Sigma(X) =/=Bool undefined .

crl o < S1 S2,R > => < S1’ S2,R’ > if o < S1,R > => < S1’,R’ > .

rl o < {} S2,R > => < S2,R > .

crl o < if (B) S1 else S2,R > => < if (B’) S1 else S2,R’ > if o < B,R > => < B’,R’ > .

rl o < if (true) S1 else S2,R > => < S1,R > .

rl o < if (false) S1 else S2,R > => < S2,R > .

rl o < while (B) S,R > => < if (B) {S while (B) S} else {},R > .

rl o < int Xl ; S > => < S,(state = Xl |-> 0) > .

endm

c@Fa

Figure 3.27: The MSOS of IMP in Maude, including the definition of configurations.
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rewrites: 7632 in ... cpu (... real) (... rewrites/second)

result ExtendedConfiguration: * < {},state = (n |-> 0 & s |-> 5050) >

Note that the rewrite command above took the same number of rewrite steps as the similar command executed
on the small-step SOS of IMP in Maude discussed in Section 3.3.3, namely 7632. This is not unexpected,
because matching is not counted as rewrite steps, no matter how complex it is.

Like for the big-step and small-step SOS definitions in Maude, one can also use any of the general-purpose
tools provided by Maude on the MSOS definition above. For example, one can exhaustively search for all
possible behaviors of a program using the search command:

search * < sumPgm > =>! Cfg:ExtendedConfiguration .

As expected, only one behavior will be discovered because our IMP language so far is deterministic. The
same number of states as in the case of small-step SOS will be generated by this search command, 1709.

3.6.4 Notes

Modular Structural Operational Semantics (MSOS) was introduced in 1999 by Mosses [51] and since
then mainly developed by himself and his collaborators (e.g., [52, 53, 54]). In this section we used the
implicitly-modular variant of MSOS introduced in [54], which, as acknowledged by the authors of [54],
was partly inspired from discussions with us8 To be more precise, we used a slightly simplified version
of implicitly-modular MSOS here. In MSOS in its full generality, one can also declare some transitions
unobservable; to keep the presentation simpler, we here omitted all the observability aspects of MSOS.

The idea of our representation of MSOS into rewrite logic adopted in this section is taken over from
Serbanuta et al. [74]. At our knowledge, Meseguer and Braga [44] give the first representation of MSOS into
rewrite logic. The representation in [44] also led to the development of the Maude MSOS tool [16], which
was the core of Braga’s doctoral thesis. What is different in the representation of Meseguer and Braga in [44]
from ours is that the former uses two different types of configuration wrappers, one for the left-hand-side of
the transitions and one for the right-hand-side; this was already discussed in Section 3.3.4.

3.6.5 Exercises

Exercise 120. Redo all the exercises in Section 3.3.5 but for the MSOS of IMP discussed in Section 3.6.1
instead of its small-step SOS in Section 3.3.2. Skip Exercises 68, 69 and 76, since the SOS proof system there
drops the syntactic components in the RHS configurations in transitions, making it unsuitable for MSOS. For
the MSOS variant of Exercise 70, just follow the same non-modular approach as in the case of SOS and not
the modular MSOS approach discussed in Section 3.6.2 (Exercise 123 addresses the modular MSOS variant
of abrupt termination).

Exercise 121. Same as Exercise 86, but for MSOS instead of small-step SOS: add variable increment to IMP,
like in Section 3.6.2.

Exercise 122. Same as Exercise 90, but for MSOS instead of small-step SOS: add input/output to IMP, like
in Section 3.6.2.

Exercise 123. Same as Exercise 95, but for MSOS instead of small-step SOS: add abrupt termination to IMP,
like in Section 3.6.2.

8In fact, drafts of this book preceding [54] had already dropped the implicit labels in MSOS rules, for notational simplicity.
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Exercise 124. Same as Exercise 104, but for MSOS instead of small-step SOS: add dynamic threads to IMP,
like in Section 3.6.2.

Exercise 125. Same as Exercise 109, but for MSOS instead of small-step SOS: add local variables using
let to IMP, like in Section 3.6.2.

Exercise 126. This exercise asks to define IMP++ in MSOS, in various ways. Specifically, redo Exercises 114,
115, 116, 117, and 118, but for the MSOS of IMP++ discussed in Section 3.6.2 instead of its small-step SOS
in Section 3.5.6.
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3.7 Reduction Semantics with Evaluation Contexts

The small-step SOS/MSOS approaches discussed in Sections 3.3 and 3.6 define a language semantics as a
proof system whose rules are mostly conditional. The conditions of such rules allow to implicitly capture
the program execution context as a proof context. This shift of focus from the informal notion of execution
context to the formal notion of proof context has a series of advantages and it was, in fact, the actual point of
formalizing language semantics using SOS. However, as the complexity of programming languages increased,
in particular with the adoption of control-intensive statements like call/cc (e.g., Scheme) that can arbitrarily
change the execution context, the need for an explicit representation of the execution context as a first-class
citizen in the language semantics also increased. Reduction semantics with evaluation contexts (RSEC) is a
variant of small-step SOS where the evaluation context may appear explicit in the term being reduced.

Figure 3.28: Decomposition of syntactic term p into
context c and redex e, written p = c[e]: we say p
splits into c and e, or e plugs into c yielding p. These
operations are assumed whenever needed.

In an RSEC language definition one starts by
defining the syntax of evaluation contexts, or simply
just contexts, which is typically done by means of a
context-free grammar (CFG). A context is a program
or a fragment of program with a hole, where the
hole, which is written �, is a placeholder for where
the next computational step can take place. If c is
an evaluation context and e is some well-formed
appropriate fragment (expression, statement, etc.),
then c[e] is the program or fragment obtained by
replacing the hole of c by e. Reduction semantics
with evaluation contexts relies on a tacitly assumed
(but rather advanced) parsing mechanism that takes
a program or a fragment p and decomposes it into a
context c and a subprogram or fragment e, called a redex, such that p = c[e]. This decomposition process is
called splitting (of p into c and e). The inverse process, composing a redex e and a context c into a program or
fragment p, is called plugging (of e into c). These splitting/plugging operations are depicted in Figure 3.28.

Consider a language with arithmetic/Boolean expressions and statements like our IMP language in
Section 3.1. A possible CFG definition of evaluation contexts for such a language may include the following
productions (the complete definition of IMP evaluation contexts is given in Figure 3.30):

Context ::= �
| Context <= AExp
| Int <= Context
| Id = Context;
| Context Stmt
| if (Context) Stmt else Stmt
| . . .

Note how the intended evaluation strategies of the various language constructs are reflected in the definition
of evaluation contexts: <= is sequentially strict (� allowed to go into the first subexpression until evaluated
to an Int, then into the second subexpression), the assignment is strict only in its second argument, while the
sequential composition and the conditional are strict only in their first arguments. If one thinks of language
constructs as operations taking a certain number of arguments of certain types, then note that the operations
appearing in the grammar defining evaluation contexts are different from their corresponding operations
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appearing in the language syntax; for example, “Id = Context;” is different from “Id = AExp;” because the
former takes a context as second argument while the latter takes an arithmetic expression.

Here are some examples of correct evaluation contexts for the grammar above:

�

3 <= �

� <= 3

� x = 5;, where x is any variable.

if (�) s1 else s2, where s1 and s2 are any well-formed statements.

Here are some examples of incorrect evaluation contexts:

� <= �— a context can have only one hole.

x <= 3 — a context must contain a hole.

x <= �— the first argument of <= must be an integer number in order to allow the hole in the
second argument.

x = 5; �— the hole can only appear in the first statement in a sequential composition.

� = 5;— the hole cannot appear as first argument of the assignment construct.

if (x <= 7)� else x = 5;— the hole is only allowed in the condition of a conditional.

Here are some examples of decompositions of syntactic terms into a context and a redex (recall that we
can freely use parentheses for disambiguation; here we enclose evaluation contexts in parentheses for clarity):

7 = (�)[7]

3 <= x = (3 <= �)[x] = (� <= x)[3] = (�)[3 <= x]

3 <= (2 + x) + 7 = (3 <= � + 7)[2 + x] = (� <= (2 + x) + 7)[3] = . . .

For simplicity, we consider only one type of context in this section, but in general one can have various
types, depending upon the types of their holes and of their result.

Reduction semantics with evaluation contexts tends to be a purely syntactic definitional framework
(following the slogan “everything is syntax”). If semantic components are necessary in a particular definition,
then they are typically “swallowed by the syntax”. For example, if one needs a state as part of the configuration
for a particular language definition (like we need for our hypothetical IMP language discussed here), then
one adds a context production of the form

Context ::= 〈Context, State〉

where the State, an inherently semantic entity, becomes part of the evaluation context. Note that once one
adds additional syntax to evaluation contexts that does not correspond to constructs in the syntax of the
original language, such as our pairing of a context and a state above, one needs to also extend the original
syntax with corresponding constructs, so that the parsing-like mechanism decomposing a syntactic term into
a context and a redex can be applied. In our case, the production above suggests that a pairing configuration
construct of the form 〈Stmt, State〉, like for SOS, also needs to be defined. Unlike in SOS, we do not need
configurations pairing other syntactic categories with a state, such as 〈AExp, State〉 and 〈BExp, State〉; the

234



reason is that, unlike in SOS, transitions with left-hand-side configurations 〈Stmt, State〉 are not derived
anymore from transitions with left-hand-side configurations of the form 〈AExp, State〉 or 〈BExp, State〉.

Evaluation contexts are defined in such a way that whenever e is reducible, c[e] is also reducible. For
example, consider the term c[i1 <= i2] stating that expression i1 <= i2 is in a proper evaluation context. Since
i1 <= i2 reduces to i1 ≤Int i2, we can conclude that c[i1 <= i2] reduces to c[i1 ≤Int i2]. Therefore, in reduction
semantics with evaluation contexts we can define the semantics of <= using the following rule:

c[i1 <= i2]→ c[i1 ≤Int i2]

This rule is actually a rule schema, containing one rule instance for each concrete integers i1, i2 and for
each appropriate evaluation context c. For example, here are instances of this rule when the context is �,
if (�) {} else x = 5;, and 〈�, (x 7→ 1, y 7→ 2)〉, respectively:

i1 <= i2 → i1 ≤Int i2
if (i1 <= i2) {} else x = 5;→ if (i1 <= i2) {} else x = 5;
〈i1 <= i2 , (x 7→ 1, y 7→ 2)〉 → 〈i1 ≤Int i2 , (x 7→ 1, y 7→ 2)〉

What is important to note here is that propagation rules, such as (MSOS-Leq-Arg1) and (MSOS-Leq-
Arg2) in Figure 3.23, are not necessary anymore when using evaluation contexts, because the evaluation
contexts already achieve the role of the propagation rules.

To reflect the fact that reductions take place only in appropriate contexts, RSEC typically introduces a
rule schema of the form:

e→ e′

c[e]→ c[e′] (RSEC-Characteristic-Rule)

where e, e′ are well-formed fragments and c is any appropriate evaluation context (i.e., such that c[e] and
c[e′] are well-formed programs or fragments of program). This rule is called the characteristic rule of RSEC.
When this rule is applied, we say that e reduces to e′ in context c. If c is the empty context � then c[e] is e and
thus the characteristic rule is useless; for that reason, the characteristic rule may be encountered with a side
condition “if c , �”. Choosing good strategies to search for splits of terms into contextual representations
can be a key factor in obtaining efficient implementations of RSEC execution engines.

The introduction of the characteristic rule allows us to define reduction semantics of languages or calculi
quite compactly. For example, here are all the rules needed to completely define the semantics of the
comparison, sequential composition and conditional language constructs for which we defined evaluation
contexts above:

i1 <= i2 → i1 ≤Int i2
{} s2 → s2

if (true) s1 else s2 → s1
if (false) s1 else s2 → s2

The characteristic rule tends to be the only conditional rule in an RSEC, in the sense that the remaining
rules take no reduction premises (though they may still have side conditions). Moreover, as already pointed
out, the characteristic rule is actually unnecessary, because one can very well replace each rule l → r by
a rule c[l] → c[r]. The essence of reduction semantics with evaluation contexts is not its characteristic
reduction rule, but its specific approach to defining evaluation contexts as a grammar and then using them as
an explicit part of languages or calculi definitions. The characteristic reduction rule can therefore be regarded
as “syntactic sugar”, or convenience to the designer allowing her to write more compact definitions.
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To give the semantics of certain language constructs, one may need to access specific information that
is stored inside an evaluation context. For example, consider a term 〈x <= 3, (x 7→ 1, y 7→ 2)〉, which can
be split as c[x], where c is the context 〈� <= 3, (x 7→ 1, y 7→ 2)〉. In order to reduce c[x] to c[1] as desired,
we need to look inside c and find out that the value of x in the state held by c is 1. Therefore, following the
purely syntactic style adopted so far in this section, the reduction semantics with evaluation contexts rule for
variable lookup in our case here is the following:

〈c, σ〉[x]→ 〈c, σ〉[σ(x)] if σ(x) , ⊥
Indeed, the same way we add as much structure as needed in ordinary terms, we can add as much structure as
needed in evaluation contexts. Similarly, below is the rule for variable assignment:

〈c, σ〉[x = i;]→ 〈c, σ[i/x]〉[{}] if σ(x) , ⊥
Note that in this case both the context and the redex were changed by the rule. In fact, as discussed in
Section 3.10, one of the major benefits of reduction semantics with evaluation contexts consists in precisely
the fact that one can arbitrarily modify the evaluation context in rules; this is crucial for giving semantics to
control-intensive language constructs such as call/cc.

Splitting of a term into an evaluation context and a redex does not necessarily need to take place at the top
of the left-hand-side of a rule. For example, the following is an alternative way to give reduction semantics
with evaluation contexts to variable lookup and assignment:

〈c[x], σ〉 → 〈c[σ(x)], σ〉 if σ(x) , ⊥
〈c[x = i;], σ〉 → 〈c[{}], σ[i/x]〉 if σ(x) , ⊥

Note that, even if we follow this alternative style, we still need to include the production Context ::=
〈Context, State〉 to the evaluation context CFG if we want to write rules as c[i1 <= i2] → c[i1 ≤Int i2] or to
further take advantage of the characteristic rule and write elegant and compact rules such as i1 <= i2 → i1 ≤Int

i2. If we want to completely drop evaluation context productions that mix syntactic and semantic components,
such as Context ::= 〈Context, State〉, then we may adopt one of the styles discussed in Exercises 127 and 128,
respectively, though one should be aware of the fact that those styles also have their disadvantages.

Figure 3.29 shows a reduction sequence using the evaluation contexts and the rules discussed so far. We
used the following (rather standard) notation for instantiated contexts whenever we applied the characteristic
rule: the redex is placed in a box replacing the hole of the context. For example, the fact that expression
3 <= x is split into contextual representation (3 <= �)[x] is written compactly and intuitively as 3 <= x .
Note that the evaluation context changes almost at each step during the reduction sequence in Figure 3.29.

Like in small-step SOS and MSOS, we can also transitively and reflexively close the one-step transition
relation→. As usual, we let→? denote the resulting multi-step transition relation.

3.7.1 The Reduction Semantics with Evaluation Contexts of IMP

Figure 3.30 shows the definition of evaluation contexts for IMP and Figure 3.31 shows all the reduction
semantics rules of IMP using the evaluation contexts defined in Figure 3.30. The evaluation context
productions capture the intended evaluation strategies of the various language constructs. For example, +
and / are non-deterministically strict, so any one of their arguments can be reduced one step whenever the
sum or the division expression can be reduced one step, respectively, so the hole � can go in any of their two
subexpressions. As previously discussed, in the case of <= one can reduce its second argument only after its
first argument is fully reduced (to an integer). The evaluation strategy of ! is straightforward. For && , note
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〈 x = 1; y = 2; if (x <= y) { x = 0; } else { y = 0; }, (x 7→ 0, y 7→ 0)〉

→ 〈 {} y = 2; if (x <= y) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 0)〉

→ 〈 y = 2; if (x <= y) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 0)〉
→ 〈{} if (x <= y) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 2)〉
→ 〈if ( x <= y) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 2)〉
→ 〈if (1 <= y ) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 2)〉

→ 〈if ( 1 <= 2 ) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 2)〉
→ 〈if (true) { x = 0; } else { y = 0; }, (x 7→ 1, y 7→ 2)〉
→ 〈x = 0;, (x 7→ 1, y 7→ 2)〉
→ 〈{}, (x 7→ 0, y 7→ 2)〉

Figure 3.29: Sample reduction sequence.

IMP evaluation contexts syntax IMP language syntax

Context ::= �
| Context + AExp | AExp + Context
| Context / AExp | AExp / Context

| Context <= AExp | Int <= Context
| !Context
| Context && BExp

| Id = Context;
| Context Stmt
| if (Context) Stmt else Stmt

AExp ::= Int | Id
| AExp + AExp
| AExp / AExp

BExp ::= Bool
| AExp <= AExp
| !BExp
| BExp && BExp

Block ::= {} | { Stmt }
Stmt ::= Block

| Id = AExp;
| Stmt Stmt
| if (BExp)Block elseBlock
| while (BExp)Block

Pgm ::= intList{Id}; Stmt

Figure 3.30: Evaluation contexts for IMP (left column); the syntax of IMP (from Figure 3.1) is recalled in the
right column only for reader’s convenience, to more easily compare the two grammars.
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Context ::= . . . | 〈Context, State〉
e→ e′

c[e]→ c[e′]

〈c, σ〉[x] → 〈c, σ〉[σ(x)] if σ(x) , ⊥
i1 + i2 → i1 +Int i2
i1 / i2 → i1 /Int i2 if i2 , 0

i1 <= i2 → i1 ≤Int i2
! true → false
! false → true

true && b2 → b2
false && b2 → false

{ s } → s
〈c, σ〉[x = i;] → 〈c, σ[i/x]〉[{}] if σ(x) , ⊥

{} s2 → s2
if (true) s1 else s2 → s1
if (false) s1 else s2 → s2

while (b) s → if (b) { s while (b) s } else {}
〈int xl; s〉 → 〈s, (xl 7→ 0)〉

Figure 3.31: RSEC(IMP): The reduction semantics with evaluation contexts of IMP (e, e′ ∈ AExp ∪ BExp ∪
Stmt; c ∈ Context appropriate (that is, the respective terms involving c are well-formed); i, i1, i2 ∈ Int; x ∈ Id;
b, b2 ∈ BExp; s, s1, s2 ∈ Stmt; xl ∈ List{Id }; σ ∈ State).

that only its first argument is reduced. Indeed, recall that && has a short-circuited semantics, so its second
argument is reduced only after the first one is completely reduced (to a Boolean) and only if needed; this is
defined using rules in Figure 3.31. The evaluation contexts for assignment, sequential composition, and the
conditional have already been discussed.

Many of the rules in Figure 3.31 have already been discussed or are trivial. Note that there is no
production Context ::= while (Context) Stmt as a hasty reader may (mistakenly) expect. That is because
such a production would allow the evaluation of the Boolean expression in the while loop’s condition to a
Boolean value in the current context; supposing that value is true, then, unless one modifies the syntax in
some rather awkward way, we cannot recover the original Boolean expression to evaluate it again after the
evaluation of the while loop’s body statement. The solution to handle loops remains the same as in SOS,
namely to explicitly unroll them into conditional statements, as shown in Figure 3.31. Note that the evaluation
contexts allow the loop unrolling to only happen when the while statement is a redex. In particular, after an
unrolling reduction takes place, subsequent unrolling steps are disallowed inside the then branch; to unroll it
again, the loop statement must become again a redex, which can only happen after the conditional statement
is itself reduced. The initial program configuration (containing only the program) is reduced also like in SOS
(last rule in Figure 3.31; note that one cannot instead define a production Context ::= intList{Id}; Context,
because, for example, there is no way to reduce “x = 5;” in 〈int x; x = 5; 〉.
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3.7.2 The Reduction Semantics with Evaluation Contexts of IMP++

We next discuss the reduction semantics of IMP++ using evaluation contexts. Like for the other semantics,
we first add each feature separately to IMP and then we add all of them together and investigate the modularity
and appropriateness of the resulting definition.

Variable Increment

The use of evaluation contexts makes the definition of variable increment quite elegant and modular:

〈c, σ〉[++ x] → 〈c, σ[(σ(x) +Int 1)/x]〉[σ(x) +Int 1]

No other rule needs to change, because: (1) unlike in SOS, all the language-specific rules are unconditional,
each rule matching and modifying only its relevant part of the configuration; and (2) the language-independent
characteristic rule allows reductions to match and modify only their relevant part of the configuration,
propagating everything else in the configuration automatically.

Input/Output

We need to first change the configuration employed by our reduction semantics with evaluation contexts
of IMP from 〈s, σ〉 to 〈s, σ, ωin, ωout〉, to also include the input/output buffers. This change, unfortunately,
generates several other changes in the existing semantics, some of them non-modular in nature. First, we
need to change the syntax of (statement) configurations to include input and output buffers, and the syntax of
contexts from Context ::= . . . | 〈Context, State〉 to Context ::= . . . | 〈Context, State,Buffer,Buffer〉. No matter
what semantic approach one employs, some changes in the configuration (or its equivalent) are unavoidable
when one adds new language features that require new semantic data, like input/output constructs that require
their own buffers (recall that, e.g., in MSOS, we had to add new attributes in transition labels instead). Hence,
this change is acceptable. What is inconvenient (and non-modular), however, is that the rules for variable
lookup and for assignment need the complete configuration, so they have to change from

〈c, σ〉[x] → 〈c, σ〉[σ(x)]
〈c, σ〉[x = i;] → 〈c, σ[i/x]〉[{}]

to
〈c, σ, ωin, ωout〉[x] → 〈c, σ, ωin, ωout〉[σ(x)]

〈c, σ, ωin, ωout〉[x = i;] → 〈c, σ[i/x], ωin, ωout〉[{}]
Also, the initial configuration which previously held only the program, now has to change to hold both the
program and an input buffer, and the rule for programs (the last in Figure 3.31) needs to change as follows:

〈int xl; s, ωin〉 → 〈s, (xl 7→ 0), ωin, ε〉
Once the changes above are applied, we are ready for adding the evaluation context for the print statement

as well as the reduction semantics rules of both input/output constructs:

Context ::= . . . | print(Context);
〈c, σ, i : ωin, ωout〉[read()] → 〈c, σ, ωin, ωout〉[i]
〈c, σ, ωin, ωout〉[print(i);] → 〈c, σ, ωin, ωout : i〉[{}]

Other possibilities to add input/output buffers to the configuration and to give the reduction semantics with
evaluation contexts of the above language features in a way that appears to be more modular (but which
yields other problems) are discussed in Section 3.10.
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Abrupt Termination

For our language, reduction semantics allows very elegant, natural and modular definitions of abrupt
termination, without having to extent the syntax of the original language and without adding any new
reduction steps as an artifact of the approach chosen:

〈c, σ〉[i / o] → 〈{}, σ〉
〈c, σ〉[halt;] → 〈{}, σ〉

Therefore, the particular evaluation context in which the abrupt termination is being generated, c, is simply
discarded. This is not possible in any of the big-step, small-step or MSOS styles above, because in there the
evaluation context c is captured by the proof context, which, like in any logical system, cannot be simply
discarded. The elegance of the two rules above suggests that having the possibility to explicitly match and
change the evaluation context is a very powerful and convenient feature of a language semantic framework.

Dynamic Threads

The rules (SmallStep-Spawn-Arg) (resp. (MSOS-Spawn-Arg)) and (SmallStep-Spawn-Wait) (resp. (MSOS-
Spawn-Wait)) in Section 3.5.4 (resp. Section 3.6.2) are essentially computation propagation rules. In reduction
semantics with evaluation contexts the role of such rules is taken over by the splitting/plugging mechanism,
which in turn relies on parsing and therefore needs productions for evaluation contexts. We can therefore
replace those rules by appropriate productions for evaluation contexts:

Context ::= . . .

| spawn Context
| spawn Stmt Context

The second evaluation context production above involves two language constructs, namely spawn and
sequential composition. The desired non-determinism due to concurrency is captured by deliberate ambiguity
in parsing evaluation contexts and, implicitly, in the splitting/plugging mechanism.

The remaining rule (SmallStep-Spawn-Skip) (resp. (MSOS-Spawn-Skip)) in Section 3.5.4 (resp. Section 3.6.2)
is turned into an equivalent rule here, and the structural identity stating the associativity of sequential compo-
sition and the syntactic extension of spawn to take statements (instead of blocks) are also still necessary:

spawn {} → {}
(s1 s2) s3 ≡ s1 (s2 s3)

Stmt ::= | spawn Stmt

Local Variables

We make use of the procedure presented in Section 3.5.5 for desugaring blocks with local variables into
let constructs, to reduce the problem to only give semantics to let. Recall from Section 3.5.5 that the
semantics of let x = a in s in a state σ is to first evaluate arithmetic expression a in σ to some integer i and
then evaluate statement s in state σ[i/x]; after the evaluation of s, the value of x is recovered to σ(x) (i.e.,
whatever it was before the execution of the block) but all the other state updates produced by the evaluation
of s are kept. These suggest the following:

Context ::= . . . | let Id =Context in Stmt

〈c, σ〉[let x = i in s] → 〈c, σ[i/x]〉[s x = σ(x);]
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Notice that a solution similar to that in small-step SOS and MSOS (see rules (SmallStep-Let-Stmt) and
(MSOS-Let-Stmt) in Sections 3.5.5 and 3.6.2, respectively) does not work here, because rules in reduction
semantics with evaluation contexts are unconditional. In fact, a solution similar to the one we adopted above
was already discussed in Section 3.5.6 in the context of small-step SOS, where we also explained that it
works as shown because of a syntactic trick, namely because we allow assignment statements of the form
“x = ⊥;” (in our case here when σ(x) = ⊥), which have the effect to undefine x in σ (see Section 2.4.6).
Section 3.5.6 also gives suggestions on how to avoid allowing ⊥ to be assigned to x, if one does not like
it. One suggestion was to rename the bound variable into a fresh one, this way relieving us from having to
recover its value after the let:

〈c, σ〉[let x = i in s]→ 〈c, σ[i/x′]〉[s[x′/x]] if x′ is a fresh variable

This approach comes with several problems, though: it requires that we define and maintain a substitution
operation (for s[x′/x]), we have to pay a complexity linear with the size of the let body each time a let
statement is eliminated, and the state may grow indefinitely (since the let can be inside a loop).

Note also that, with the current reduction semantics with evaluation contexts of IMP, we cannot add the
following evaluation context production

Context ::= . . . | let Id = Int in Context

stating that once the binding expression becomes an integer then we can evaluate the let body. We cannot
add it simply because we have to bind the variable to the integer before we evaluate the let body statement.
An evaluation context production like above would result in evaluating the let body statement in the same
state as before the let, which is obviously wrong. However, the existence of a let binder allows us to
possibly rethink the overall reduction semantics of IMP, to make it more syntactic. Indeed, the let binders
can be used in a nested manner and hereby allow us to syntactically mimic a state. For example, a statement
of the form let x = 5 in let y = 7 in s can be thought of as the statement s being executed in a “state” where
x is bound to 5 and where y is bound to 7. We can then drop the configurations of IMP completely and instead
add the evaluation context above allowing reductions inside let body statements. The IMP rules that refer to
configurations, namely those for lookup and assignment, need to change to work with the new “state”, and a
new rule to eliminate unnecessary let statements needs to be added:

let x = i in c[x] → let x = i in c[i]
let x = i in c[x = j;] → let x = j in c[{}]

let x = i in {} → {}

The above works correctly only if one ensures that the evaluation contexts c do not contain other let x = in
evaluation context constructs, with the same x variable name as in the rules (the underscores can be any
integer and context, respectively). One can do this by statically renaming the bound variables to have different
names at parse-time, or by employing a substitution operation to do it dynamically. Note that the static
renaming approach requires extra-care as the language is extended, particularly if new let statements can be
generated dynamically by other language constructs. Another approach to ensure the correct application of
the rules above, which is theoretically more complex and practically more expensive and harder to implement,
is to add a side condition to the first two rules of the form “where c does not contain any evaluation context
production instance of the form let x = in ”.

To conclude, the discussion above suggests that there are various ways to give a reduction semantics
of let using evaluation contexts, none of them absolutely better than the others: some are simpler, others
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are more syntactic but require special external support, others require non-modular changes to the existing
language. The approaches above are by no means exhaustive. For example, we have not even discussed
environment-store based approaches.

Putting Them All Together

It is relatively easy to combine all the reduction semantics with evaluation contexts of all the features above,
although not as modularly as it was for MSOS. Specifically, we have to do the following:

1. Apply all the changes that we applied when we added input/output to IMP above, namely: add
input/output buffers to both configurations and configuration evaluation contexts; change the semantic
rules involving configurations to work with the extended configurations, more precisely the rules for
variable lookup, for variable assignment, and for programs.

2. Add all the evaluation contexts and the rules for the individual features above, making sure we change
those of them using configurations or configuration evaluation contexts (i.e., almost all of them) to
work with the new configurations including input/output buffers.

Unfortunately, the above is not giving us the desired language. Worse, it actually gives us a wrong language,
namely one with a disastrous feature interaction. This problem has already been noted in Section 3.5.6, where
we discussed the effect of a similar semantics to that of let above, but using small-step SOS instead of
evaluation contexts. The problem here is that, if the body of a let statement contains a spawn statement,
then the latter will be allowed, according to its semantics, to be executed in parallel with the statements
following it. In our case, the assignment statement x = σ(x); in the let semantics, originally intended to
recover the value of x, can be now potentially executed before the spawned statement, resulting in a wrong
behavior; in particular, the assignment can even “undefine” x in case σ(x) = ⊥, in which case the spawn
statement can even get stuck.

As already indicated in Section 3.5.6, the correct way to eliminate the let construct is to rename the
bound variable into a fresh variable visible only to let’s body statement, this way eliminating the need to
recover the value of the bound variable to what it was before the let:

〈c, σ, ωin, ωout〉[let x = i in s]→ 〈c, σ[i/x′], ωin, ωout〉[s[x′/x]] if x′ is a fresh variable

We have used configurations already extended with input/output buffers, as needed for IMP++. This solution
completely brakes any (intended or unintended) relationship between the let construct and any other
language constructs that may be used inside its body, although, as discussed in Section 3.5.6, the use of the
substitution comes with a few (relatively acceptable) drawbacks.

3.7.3 Reduction Semantics with Evaluation Contexts in Rewrite Logic

In this section we show how to automatically and faithfully embed reduction semantics with evaluation
contexts into rewrite logic. After discussing how to embed evaluation contexts into rewrite logic, we first give
a straightforward embedding of reduction semantics, which is easy to prove correct but which does not take
advantage of performance-improving techniques currently supported by rewrite engines, so consequently it
is relatively inefficient when executed or formally analyzed. We then discuss simple optimizations which
increase the performance of the resulting rewrite definitions an order of magnitude or more. We only consider
evaluation contexts which can be defined by means of context-free grammars (CFGs). However, the CFG
that we allow for defining evaluation contexts can be non-deterministic, in the sense that a term is allowed to
split many different ways into a context and a redex (like the CFG in Figure 3.30).
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sort:
Syntax // includes all syntactic terms, in contextual representation context[redex] or not

subsorts:
N1,N2, . . . < Syntax // N1, N2, . . . , are sorts whose terms can be regarded as context[redex]

operations:
[ ] : Context × Syntax→ Syntax // constructor for terms in contextual representation

split : Syntax→ Syntax // puts syntactic terms into contextual representation
plug : Syntax→ Syntax // the dual of split

rules and equations:
split(Syn)→ �[Syn] // generic rule; it initiates the splitting process for the rules below
plug(�[Syn]) = Syn // generic equation; it terminates the plugging process
// for each context production Context ::= π(N1, . . . ,Nn,Context) add the following:
split(π(T1, . . . ,Tn,T ))→ π(T1, . . . ,Tn,C)[Syn] if split(T )→ C[Syn]
plug(π(T1, . . . ,Tn,C)[Syn]) = π(T1, . . . ,Tn, plug(C[Syn]))

Figure 3.32: Embedding evaluation contexts into rewrite logic theory R�RSEC. The implicit split/plug
mechanism is replaced by explicit rewrite logic sentences achieving the same task (the involved variables
have the sorts Syn : Syntax, C : Context, T1 : N1, . . . , Tn : Nn, and T : N).

Faithful Embedding of Evaluation Contexts into Rewrite Logic

Our approach to embedding reduction semantics with evaluation contexts in rewrite logic builds on an
embedding of evaluation contexts and their implicit splitting/plugging mechanism in rewrite logic. More
precisely, each evaluation context production is associated with an equation (for plugging) and a conditional
rewrite rule (for splitting). The conditional rewrite rules allow to non-deterministically split a term into a
context and a redex. Moreover, when executing the resulting rewrite logic theory, the conditional rules allow
for finding all splits of a term into a context and a redex, provided that the underlying rewrite engine has
search capabilities (like Maude does).

Figure 3.32 shows a general and automatic procedure to generate a rewrite logic theory from any CFG
defining evaluation contexts for some given language syntax. Recall that, for simplicity, in this section we
assume only one Context syntactic category. What links the CFG of evaluation contexts to the CFG of the
language to be given a semantics, which is also what makes our embedding into rewrite logic discussed here
work, is the assumption that for any context production

Context ::= π(N1, . . . ,Nn,Context)

there are some syntactic categories N,N′ (different or not) in the language CFG (possibly extended with
configurations and semantic components as discussed above) such that π(t1, . . . , tn, t) ∈ N′ for any t1 ∈ N1,
. . . , tn ∈ Nn, t ∈ N. We here used a notation which needs to be explained. The actual production above
is Context ::= π, where π is a string of terminals and non-terminals, but we write π(N1, . . . ,Nn,Context)
instead of π to emphasize that N1, . . . ,Nn,Context are all the non-terminals appearing in π; we listed the
Context last for simplicity. Also, by abuse of notation, we let π(t1, . . . , tn, t) denote the term obtained by
substituting (t1, . . . , tn, t) for (N1, . . . ,Nn,Context) in π, respectively. So our assumption is that π(t1, . . . , tn, t)
is well-formed under the syntax of the language whenever t1, . . . , tn, t are well-defined in the appropriate
syntactic categories, that is, t1 ∈ N1, . . . , tn ∈ Nn, t ∈ T . This is indeed a very natural property of well-defined
evaluation contexts for a given language, so natural that one may even ask how it can be otherwise (it is
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easy to violate this property though, e.g., Context ::= <= Context = AExp;). Without this property, our
embedding of evaluation contexts in rewrite logic in Figure 3.32 would not be well-formed, because the
left-hand-side terms of some of the conditional rule(s) for split would not be well-formed terms.

For simplicity, in Figure 3.32 we prefer to subsort all the syntactic categories whose terms are intended
to be allowed contextual representations context[redex] under one top sort9, Syntax. The implicit notation
context[term] for contextual representations, as well as the implicitly assumed split and plug operations, are
defined explicitly in the corresponding rewrite theory. The split operation is only defined on terms over the
original language syntax, while the plug operation is defined only over terms in contextual representation.
One generic rule and one generic equation are added: split(Syn)→ �[Syn] initiates the process of splitting
a term into a contextual representation and plug(�[Syn]) = Syn terminates the process of plugging a term
into a context. It is important that the first be a rewrite rule (because it can lead to non-determinism; this is
explained below), while the second can safely be an equation.

Each evaluation context production translates into one equation and one conditional rewrite rule. The
equation tells how terms are plugged into contexts formed with that production, while the conditional rule
tells how that production can be used to split a term into a context and a redex. The equations defining
plugging are straightforward: for each production in the original CFG of evaluation contexts, iteratively
plug the subterm in the smaller context; when the hole is reached, replace it by the subterm via the generic
equation. The conditional rules for splitting also look straightforward, but how and why they work is more
subtle. For any context production, if the term to split matches the pattern of the production, then first split
the subterm corresponding to the position of the subcontext and then use that contextual representation of the
subterm to construct the contextual representation of the original term; at any moment, one has the option to
stop splitting thanks to the generic rule split(Syn)→ �[Syn]. For example, for the five Context productions
in the evaluation context CFG in the preamble of this section, namely

Context ::= Context <= AExp
| Int <= Context
| Id = Context;
| Context Stmt
| if (Context) Stmt else Stmt

the general procedure in the rewrite logic embedding of evaluation contexts in Figure 3.32 yields the following
five rules and five equations (variable I1 has sort Int; X has sort Id; A1 and A2 have sort AExp; B has sort

9An alternative, which does not involve subsorting, is to rename all syntactic categories into one, Syntax. Our construction also
works without subsorting and without collapsing of syntactic categories, but it is more technical, requires more operations, rules, and
equations, and it is likely not worth the effort without a real motivation to use it in term rewrite settings without support for subsorting.
We have made experiments with both approaches and found no penalty on performance when collapsing syntactic categories.
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BExp; S 1 and S 2 have sort Stmt; C has sort Context; Syn has sort Syntax):

split(A1 <= A2)→ (C <= A2)[Syn] if split(A1)→ C[Syn]
plug((C <= A2)[Syn]) = plug(C[Syn]) <= A2

split(I1 <= A2)→ (I1 <= C)[Syn] if split(A2)→ C[Syn]
plug((I1 <= C)[Syn]) = I1 <= plug(C[Syn])

split(X = A;)→ (X = C;)[Syn] if split(A)→ C[Syn]
plug((X = C;)[Syn]) = (X = plug(C[Syn]);)

split(S 1 S 2)→ (C S 2)[Syn] if split(S 1)→ C[Syn]
plug((C S 2)[Syn]) = plug(C[Syn]) S 2

split(if (B) S 1 else S 2)→ (if (C) S 1 else S 2)[Syn] if split(B)→ C[Syn]
plug((if (C) S 1 else S 2)[Syn]) = if (plug(C[Syn])) S 1 else S 2

The reason for which we used rules instead of equations for splitting in our embedding in Figure 3.32
is that splitting, unlike plugging, can be non-deterministic. Recall that the use of an arrow/transition in
the condition of a rule has an existential nature (Sections 2.5). In particular, rewrite logic engines should
execute conditional rules by performing an exhaustive search, or reachability analysis of all the zero-, one- or
more-step rewrites of the condition left-hand-side term (split(T ) in our case) into the condition right-hand-side
term (C[Syn] in our case). Such an exhaustive search explores all possible splits, or parsings, of a term into a
contextual representation.

Theorem 17. (Embedding splitting/plugging into rewrite logic) Given an evaluation context CFG as dis-
cussed above, say as part of some reduction semantics with evaluation contexts definition RSEC, let R�RSEC
be the rewrite logic theory associated to it as in Figure 3.32. Then the following are equivalent for any
t, r ∈ Syntax and c ∈ Context:

• t can be split as c[r] using the evaluation context CFG of RSEC;

• R�RSEC ` split(t)→ c[r];

• R�RSEC ` plug(c[r]) = t.

The theorem above says that the process of splitting a term t into a context and a redex in reduction
semantics with evaluation contexts, which can be non-deterministic, reduces to reachability in the correspon-
ding rewrite logic theory of a contextual representation pattern c[r] of the original term marked for splitting,
split(t). Rewrite engines such as Maude provide a search command that does precisely that. We will shortly
see how Maude’s search command can find all splits of a term.

Faithful Embedding of RSEC in Rewriting Logic

In this section we discuss three faithful rewrite logic embeddings of reduction semantics with evaluation
contexts. The first two assume that the embedded reduction semantics has no characteristic rule, in that all
reductions take place at the top of the original term to reduce (e.g., a configuration in the case of our IMP
language); this is not a limitation because, as already discussed, the characteristic rule can be regarded as
syntactic sugar anyway, its role being to allow one to write reduction semantics definitions more compactly
and elegantly. The first embedding is the simplest and easiest to prove correct, but it is the heaviest in notation
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rules:
// for each reduction semantics rule l(c1[l1], . . . , cn[ln])→ r(c′1[r1], . . . , c′n′[rn′])
// add the following conditional semantic rewrite rule:

◦ l(T1, . . . ,Tn)→ r(plug(c′1[r1]), . . . , plug(c′n[rn′])) if split(T1)→ c1[l1] ∧ . . . ∧ split(Tn)→ cn[ln]

Figure 3.33: First embedding of RSEC into rewrite logic (RSEC{ R1
RSEC).

and the resulting rewrite theories tend to be inefficient when executed because most of the left-hand-side terms
of rules end up being identical, thus making the task of matching and selecting a rule to apply rather complex
for rewrite engines. The second embedding results in rewrite rules whose left-hand-sides are mostly distinct,
thus taking advantage of current strengths of rewrite engines to index terms so that rules to be applied can be
searched for quickly. Our third embedding is as close to the original reduction semantics in form and shape
as one can hope it to be in a rewriting setting; in particular, it also defines a characteristic rule, which can be
used to write a more compact semantics. The third embedding yields rewrite theories which are as efficient
as those produced by the second embedding. The reason we did not define directly the third embedding is
because we believe that the transition from the first to the second and then to the third is instructive.

Since reduction semantics with evaluation contexts is an inherently small-step semantical approach, we
use the same mechanism to control the rewriting as for small-step SOS (Section 3.3) and MSOS (Section 3.6).
This mechanism was discussed in detail in Section 3.3.3. It essentially consists of: (1) tagging each left-hand-
side term appearing in a rule transition with a ◦, to capture the desired notion of a one-step reduction of that
term; and (2) tagging with a ? the terms to be multi-step (zero, one or more steps) reduced, where ? can be
easily defined with a conditional rule as the transitive and reflexive closure of ◦ (see Section 3.3.3).

Figure 3.33 shows our first embedding of reduction semantics with evaluation contexts into rewrite logic,
which assumes that the characteristic rule, if any, has already been desugared. Each reduction semantics
rule translates into one conditional rewrite rule. We allow the reduction rules to have in their left-hand-
side and right-hand-side terms an arbitrary number of subterms that are in contextual representation. For
example, if the left-hand-side l of a reduction rule has n such subterms, say c1[l1], . . . , cn[ln], then we
write it l(c1[l1], . . . , cn[ln]) (this is similar with our previous notation π(N1, . . . ,Nn,N) in the section above
on embedding of evaluation contexts into rewrite logic, except that we now single out all the subterms
in contextual representation instead of all the non-terminals). In particular, a rule l → r in which l and r
contain no subterms in contextual representation (like the last rule in Figure 3.31) is translated exactly like in
small-step SOS, that is, into l→ r. Also, note that we allow evaluation contexts to have any pattern (since
we overline them, like any other terms); we do not restrict them to only be context variables. Consider, for
example, the six reduction rules discussed in the preamble of Section 3.7, which after the desugaring of the
characteristic rule are as follows:

c[i1 <= i2]→ c[i1 ≤Int i2]
c[{} s2]→ c[s2]

c[if (true) s1 else s2]→ c[s1]
c[if (false) s1 else s2]→ c[s2]

〈c, σ〉[x]→ 〈c, σ〉[σ(x)] if σ(x) , ⊥
〈c, σ〉[x = i;]→ 〈c, σ[i/x]〉[{}] if σ(x) , ⊥

Since all these rules have left-hand-side terms already in contextual representation, their corresponding l in
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Figure 3.33 is just a non-terminal (Configuration), which means that l is just a variable (of sort Configuration).
Therefore, the rewrite logic rules associated to these RSEC rules are:

◦Cfg→ plug(C[I1 ≤Int I2]) if split(Cfg)→ C[I1 <= I2]
◦Cfg→ plug(C[S 2]) if split(Cfg)→ C[{} S 2]
◦Cfg→ plug(C[S 1]) if split(Cfg)→ C[if (true) S 1 else S 2]
◦Cfg→ plug(C[S 2]) if split(Cfg)→ C[if (false) S 1 else S 2]
◦Cfg→ plug(〈C,σ〉[σ(X)]) if split(Cfg)→ 〈C,σ〉[X] ∧ σ(X) , ⊥
◦Cfg→ plug(〈C,σ[I/X]〉[{}]) if split(Cfg)→ 〈C,σ〉[X = I;] ∧ σ(X) , ⊥

Recall from the preamble of Section 3.7 that the RSEC rules for variable lookup and assignment can also
be given as follows, so that their left-hand-side terms are not in contextual representation:

〈c[x], σ〉 → 〈c[σ(x)], σ〉 if σ(x) , ⊥
〈c[x = i;], σ〉 → 〈c[{}], σ[i/x]〉 if σ(x) , ⊥

In these cases, the string l in Figure 3.33 has the form 〈Stmt, σ〉, which means that l is the term 〈S ,σ〉, where
S is a variable of sort Stmt. Then their corresponding rewrite logic rules are:

◦ 〈S ,σ〉 → 〈plug(C[σ(X)]),σ〉 if split(S )→ C[X] ∧ σ(X) , ⊥
◦ 〈S ,σ〉 → 〈plug(C[{}]),σ[I/X]〉 if split(S )→ C[X = I;] ∧ σ(X) , ⊥

Once the characteristic rule is desugared as explained in the preamble of Section 3.7, an RSEC rule
operates as follows: (1) attempt to match the left-hand-side pattern of the rule at the top of the term to reduce,
making sure that each of the subterms corresponding to subpatterns in contextual representation form can
indeed be split as indicated; and (2) if the matching step above succeeds, then reduce the original term
to the right-hand-side pattern instantiated accordingly, plugging all the subterms appearing in contextual
representations in the right-hand-side. Note that the conditional rewrite rule associated to an RSEC rule as
indicated in Figure 3.33 achieves precisely the desired steps above: the ◦ in the left-hand-side term guarantees
that the rewrite step takes place at the top of the original term, the condition exhaustively searches for the
desired splits of the subterms in question into contextual representations, and the right-hand-side plugs back
all the contextual representations into terms over the original syntax. The only difference between the original
RSEC rule and its corresponding rewriting logic conditional rule is that the rewrite logic rule makes explicit
the splits and plugs that are implicit in the RSEC rule.

Theorem 18. (First faithful embedding of reduction semantics into rewrite logic) Let RSEC be any re-
duction semantics with evaluation contexts definition and let R1

RSEC be the rewrite logic theory associated to
RSEC using the embedding procedures in Figures 3.32 and 3.33. Then

1. (step-for-step correspondence) RSEC ` t → t′ using a reduction semantics with evaluation contexts
rule iff R1

RSEC ` ◦ t →1 t′ using the corresponding conditional rewrite rule obtained like in Figure 3.33;
moreover, the reduction rule and the corresponding rewrite rule apply similarly (same contexts, same
substitution; all modulo the correspondence in Theorem 17);

2. (computational correspondence) RSEC ` t →? t′ iff R1
RSEC ` ? t → ? t′.

The first item in Theorem 18 says that the resulting rewriting logic theory captures faithfully the small-step
reduction relation of the original reduction semantics with evaluation contexts definition. The faithfulness
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of this embedding (i.e., there is precisely one top-level application of a rewrite rule that corresponds to an
application of a reduction semantics rule), comes from the fact that the consistent use of the ◦ tag inhibits
any other application of any other rule on the tagged term. Therefore, like in small-step SOS and MSOS,
a small-step in a reduction semantics definition also reduces to reachability analysis in the corresponding
rewrite theory; one can also use the search capability of a system like Maude to find all the next terms that
a given term evaluates to (Maude provides the capability to search for the first n terms that match a given
pattern using up to m rule applications, where n and m are user-provided parameters).

The step-for-step correspondence above is stronger (and better) than the strong bisimilarity of the two
definitions; for example, if a reduction semantics rule in RSEC can be applied in two different ways on a
term to reduce, then its corresponding rewrite rule in R1

RSEC can also be applied in two different ways on the
tagged term. The second item in Theorem 18 says that the resulting rewrite theory can be used to perform any
computation possible in the original RSEC, and vice versa (the step-for-step correspondence is guaranteed in
combination with the first item). Therefore, there is absolutely no difference between computations using
RSEC and computations using R1

RSEC, except for irrelevant syntactic conventions/notations. This strong

correspondence between reductions in RSEC and rewrites in R1
RSEC tells that R1

RSEC is precisely RSEC, not
an encoding of it. In other words, RSEC can be faithfully regarded as a methodological fragment of rewrite
logic, same like big-step SOS, small-step SOS, and MSOS.

The discussion above implies that, from a theoretical perspective, the rewrite logic embedding of reduction
semantics in Figure 3.33 is as good as one can hope. However, its simplicity comes at a price in performance,
which unfortunately tends to be at its worst precisely in the most common cases. Consider, for example, the
six rewrite rules used before Theorem 18 to exemplify the embedding in Figure 3.33 (consider the variant
for lookup and assignment rules where the contextual representation in the left-hand-side appears at the
top—first variant). They all have the form:

◦Cfg→ . . . if split(Cfg)→ . . .

In fact, as seen in Figure 3.38, all the rewrite rules in the rewrite logic theory corresponding to the RSEC of
IMP have the same form. The reason the left-hand-side terms of these rewrite rules are the same and lack any
structure is because the contextual representations in the left-hand-side terms of the RSEC rules appear at the
top, with no structure above them, which is the most common type of RSEC rule encountered.

To apply a conditional rewrite rule, a rewrite engine first matches the left-hand-side and then performs the
(exhaustive) search in the condition. In other words, the structure of the left-hand-side acts as a cheap guard
for the expensive search. Unfortunately, since the left-hand-side of the conditional rewrite rules above has no
structure, it will always match. That means that the searches in the conditions of all the rewrite rules will be,
in the worst case, executed one after another until a split is eventually found (if any). If one thinks in terms of
implementing RSEC in general, then this is what a naive implementation would do. If one thinks in terms of
executing term rewrite systems, then this fails to take advantage of some important performance-increasing
advances in term rewriting, such as indexing [72, 73, 2]. In short, indexing techniques use the structure of the
left-hand-sides to augment the term structure with information about which rule can potentially be applied at
which places. This information is dynamically updated, as the term is rewritten. If the rules’ left-hand-sides
do not significantly overlap, it is generally assumed that it takes constant time to find a matching rewrite
rule. This is similar in spirit to hashing, where the access time into a hash table is generally assumed to take
constant time when there are no or few key collisions. Thinking intuitively in terms of hashing, from an
indexing perspective a rewrite system with rules having the same left-hand-sides is as bad as a hash table in
which all accesses are collisions.

Ideally, in an efficient implementation of RSEC one would like to adapt/modify indexing techniques,
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rules:
// for each term l that appears as left-hand-side of a reduction rule
// l(c1[l1], . . . , cn[ln])→ . . . with n > 0, add the following
// conditional rewrite rule (there could be one l for many reduction rules):

◦ l(T1, . . . ,Tn)→ T if ◦ l(split(T1), . . . , split(Tn))→ T

// for each reduction semantics rule l(c1[l1], . . . , cn[ln])→ r(c′1[r1], . . . , c′n′[rn′])
// add the following (unconditional) semantic rewrite rule:

◦ l(c1[l1], . . . , cn[ln])→ r(plug(c′1[r1]), . . . , plug(c′n[rn′]))

Figure 3.34: Second embedding of RSEC into rewrite logic (RSEC{ R2
RSEC).

which currently work for context-insensitive term rewriting, or to invent new techniques serving the same
purpose. This seems highly non-trivial and tedious, though. An alternative is to device embedding transfor-
mations of RSEC into rewrite logic that take better or full advantage of existing, context-insensitive indexing.
Without context-sensitive indexing or other bookkeeping mechanisms hardwired in the reduction engine,
due to the inherent non-determinism in parsing/splitting syntax into contextual representations, in the worst
case one needs to search the entire term to find a legal position where a reduction can take place. While
there does not seem that we can do much to avoid such an exhaustive search in the worst case, note that
our first embedding in Figure 3.33 initiates such a search in the condition of every rewrite rule: since in
practice many/most of the rewrite rules generated by the procedure in Figure 3.33 end up having the same
left-hand-side, the expensive search for appropriate splittings is potentially invoked many times. What we’d
like to achieve is: (1) activate the expensive search for splitting only once; and (2) for each found split,
quickly test which rule applies and apply it. Such a quick test as desired in (2) can be achieved for free on
existing rewrite systems that use indexing, such as Maude, if one slightly modifies the embedding translation
of RSEC into rewrite logic as shown in Figure 3.34.

The main idea is to keep the structure of the left-hand-side of the RSEC rules in the left-hand-side of
the corresponding rewrite rules. This structure is crucial for indexing. To allow it, one needs to do the
necessary splitting as a separate step. The first type of rewrite rules in Figure 3.34, one per term appearing as
a left-hand-side in any of the conditional rules generated following the first embedding in Figure 3.33, enables
the splitting process on the corresponding contextual representations in the left-hand-side of the original
RSEC rule. We only define such rules for left-hand-side terms having at least one subterm in contextual
representation, because if the left-hand-side l has no such terms then the rule would be ◦ l→ T if ◦ l→ T ,
which is useless and does not terminate.

The second type of rules in Figure 3.34, one per RSEC rule, have almost the same left-hand-sides as
the original RSEC rules; the only difference is the algebraic notation (as reflected by the overlining). Their
right-hand-sides plug the context representations, so that they always yield terms which are well-formed over
the original syntax (possibly extended with auxiliary syntax for semantics components—configurations, states,
etc.). Consider, for example, the six RSEC rules discussed in the preamble of Section 3.7, whose translation
into rewrite rules following our first embedding in Figure 3.33 was discussed right above Theorem 18. Let us
first consider the variant for lookup and assignment rules where the contextual representation in the left-hand
side appears at the top. Since in all these rules the contextual representation appears at the top of their
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left-hand-side, which in terms of the first embedding in Figure 3.33 means that their corresponding rewrite
rules (in the first embedding) had the form ◦Cfg→ . . . if split(Cfg)→ . . ., we only need to add one rule of
the first type in Figure 3.34 for them, namely (l is the identity pattern, i.e., l is a variable):

◦Cfg→ Cfg′ if ◦ split(Cfg)→ Cfg′

With this, the six rewrite rules of the second type in Figure 3.34 corresponding to the six RSEC rules under
discussion are the following:

◦C[I1 <= I2]→ plug(C[I1 ≤Int I2])
◦C[{} S 2]→ plug(C[S 2])

◦C[if (true) S 1 else S 2]→ plug(C[S 1])
◦C[if (false) S 1 else S 2]→ plug(C[S 2])

◦ 〈C, σ〉[X]→ plug(〈C,σ〉[σ(X)]) if σ(X) , ⊥
◦ 〈C, σ〉[X = I;]→ plug(〈C,σ[I/X]〉[{}]) if σ(X) , ⊥

If one prefers the second variant for the reduction rules of lookup and assignment, namely

〈c[x], σ〉 → 〈c[σ(x)], σ〉 if σ(x) , ⊥
〈c[x = i;], σ〉 → 〈c[{}], σ[i/x]〉 if σ(x) , ⊥

then, since the left-hand-side of these rules is a pattern of the form 〈Stmt, σ〉 which in algebraic form (over-
lined) becomes a term of the form 〈S ,σ〉, we need to add one more rewrite rule of the first type in Figure 3.34,
namely

◦ 〈S ,σ〉 → Cfg′ if ◦ 〈split(S ),σ〉 → Cfg′,

and to replace the rewrite rules for lookup and assignment above with the following two rules:

◦ 〈C[X], σ〉 → 〈plug(C[σ(X)]),σ〉 if σ(X) , ⊥
◦ 〈C[X = I;], σ〉 → 〈plug(C[{}]),σ[I/X]〉 if σ(X) , ⊥

Theorem 19. (Second faithful embedding of reduction semantics in rewrite logic) Let RSEC be any
reduction semantics with evaluation contexts definition and let R2

RSEC be the rewrite logic theory associated
to RSEC using the embedding procedures in Figures 3.32 and 3.34. Then

1. (step-for-step correspondence) RSEC ` t → t′ using a reduction semantics with evaluation contexts
rule iff R2

RSEC ` ◦ t →1 t′ using the corresponding rewrite rules obtained like in Figure 3.34 (first
a conditional rule of the first type whose left-hand-side matches t, then a rule of the second type
which solves, in one rewrite step, the condition of the first rule); moreover, the reduction rule and
the corresponding rewrite rules apply similarly (same contexts, same substitution; all modulo the
correspondence in Theorem 17);

2. (computational correspondence) RSEC ` t →? t′ iff R2
RSEC ` ? t → ? t′.

Theorem 19 tells us that we can use our second rewriting logic embedding transformation in Figure 3.34
to seamlessly execute RSEC definitions on context-insensitive rewrite engines, such as Maude. This was also
the case for our first embedding (Figure 3.33 and its corresponding Theorem 18). However, as explained
above, in our second embedding the left-hand-side terms of the rewrite rules corresponding to the actual
reduction semantics rules (the second type of rule in Figure 3.34) preserve the structure of the left-hand-side
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rules:
// for each term l that appears as the left-hand-side of a reduction rule
// l(c1[l1], . . . , cn[ln])→ . . ., add the following conditional
// rewrite rule (there could be one l for many reduction rules):

◦ l(T1, . . . ,Tn)→ T if plug(◦ l(split(T1), . . . , split(Tn)))→ T

// for each non-identity term r appearing as right-hand-side in a reduction rule
// . . .→ r(c1[r1], . . . , cn[rn]), add the following equation
// (there could be one r for many reduction rules):

plug(r(Syn1, . . . , Synn)) = r(plug(Syn1), . . . , plug(Synn))

// for each reduction semantics rule l(c1[l1], . . . , cn[ln])→ r(c′1[r1], . . . , c′n′[rn′])
// add the following semantic rewrite rule:

◦ l(c1[l1], . . . , cn[ln])→ r(c′1[r1], . . . , c′n[rn′])

Figure 3.35: Third embedding of RSEC in rewrite logic (RSEC{ R3
RSEC).

terms of the original corresponding reduction rules. This important fact has two benefits. On the one hand,
the underlying rewrite engines can use that structure to enhance the efficiency of rewriting by means of
indexing, as already discussed above. On the other hand, the resulting rewrite rules resemble the original
reduction rules, so the language designer who wants to use our embedding feels more comfortable. Indeed,
since the algebraic representation of terms (the overline) should not change the way they are perceived by a
user, the only difference between the left-hand-side of the original reduction rule and the left-hand-side of
the resulting rewrite rule is the ◦ symbol: l(c1[l1], . . . , cn[ln]) versus ◦ l(c1[l1], . . . , cn[ln]), e.g., 〈c[x = i;], σ〉
versus ◦ 〈C[X = I;],σ〉, where c, σ, x, i are reduction rule parameters while C,σ, X, I are corresponding
variables of appropriate sorts.

Even though the representational distance between the left-hand-side terms in the original reduction
rules and the left-hand-side terms in the resulting rewrite rules is minimal (one cannot eliminate the ◦,
as extensively discussed in Section 3.3.3), unfortunately, the same does not hold true for the right-hand-
side terms. Indeed, a right-hand-side r(c′1[r1], . . . , c′n[rn′]) of a reduction rule becomes the right-hand-side
r(plug(c′1[r1]), . . . , plug(c′n[rn′])) of its corresponding rewrite rule, e.g., 〈c[{}], σ〉 becomes 〈plug(C[{}]),σ〉.

Figure 3.35 shows our third and final embedding of RSEC in rewrite logic, which has the advantage that
it completely isolates the uses of split/plug from the semantic rewrite rules. Indeed, the rewrite rule associated
to a reduction rule has the same left-hand-side as in the second embedding, but now the right-hand-side is
actually the algebraic variant of the right-hand-side of the original reduction rule. This is possible because of
two simple adjustments of the second embedding:

1. To avoid having to explicitly use the plug operation in the semantic rewrite rules, we replace the first
type of conditional rewrite rules in the second embedding, namely

◦ l(T1, . . . ,Tn)→ T if ◦ l(split(T1), . . . , split(Tn))→ T,
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with slightly modified conditional rewrite rules of the form

◦ l(T1, . . . ,Tn)→ T if plug(◦ l(split(T1), . . . , split(Tn)))→ T.

Therefore, the left-hand-side term of the condition is wrapped with the plug operation. Since rewriting
is context-insensitive, the plug wrapper does not affect the rewrites that happen underneath in the ◦ l(. . .)
term. Like in the second embedding, the only way for ◦ to disappear from the condition left-hand-side
is for a semantic rule to apply. When that happens, the left-hand-side of the condition is rewritten to a
term of the form plug(t), where t matches the right-hand-side of some reduction semantics rule, which
may potentially contain some subterms in contextual representation.

2. To automatically plug all the subterms in contextual representation that appear in t after the left-hand-
side term of the condition in the rule above rewrites to plug(t), we add equations of the form

plug(r(Syn1, . . . , Synn)) = r(plug(Syn1), . . . , plug(Synn)),

one for each non-identity pattern r appearing as a right-hand side of an RSEC rule; if r is an identity
pattern then the equation becomes plug(Syn) = plug(Syn), so we omit it.

Let us exemplify our third rewrite logic embedding transformation of reduction semantics with evaluation
contexts using the same six reduction rules used so far in this section, but, to make it more interesting,
considering the second variant of reduction rules for variable lookup and assignment. We have two left-hand-
side patterns in these reduction rules, namely Configuration and 〈Stmt, σ〉, so we have the following two
rules of the first type in Figure 3.35:

◦Cfg→ Cfg′ if plug(◦ split(Cfg))→ Cfg′

◦ 〈S ,σ〉 → Cfg′ if plug(◦ 〈split(S ),σ〉)→ Cfg′

We also have two right-hand-side patterns in these reduction rules, the same two as above, but the first one is
an identity pattern so we only add one equation of the second type in Figure 3.35:

plug(〈C[Syn],σ〉) = 〈plug(C[Syn]),σ〉
We can now give the six rewrite rules corresponding to the six reduction rules in discussion:

◦C[I1 <= I2]→ C[I1 ≤Int I2]
◦C[{} S 2]→ C[S 2]

◦C[if (true) S 1 else S 2]→ C[S 1]
◦C[if (false) S 1 else S 2]→ C[S 2]

◦ 〈C[X], σ〉 → 〈C[σ(X)],σ〉 if σ(X) , ⊥
◦ 〈C[X = I;], σ〉 → 〈C[{}],σ[I/X]〉 if σ(X) , ⊥

The six rewrite rules above are as close to the original reduction semantics rules as one can hope them to
be in a rewriting setting. Note that, for simplicity, we preferred to desugar the characteristic rule of reduction
semantics with evaluation contexts in all our examples in this subsection. At this moment we have all the
infrastructure needed to also include a rewrite equivalent of it:

◦C[Syn]→ C[Syn′] if C , � ∧ ◦ Syn→ Syn′

Note that we first check whether the context is proper in the condition of the characteristic rewrite rule above,
and then we initiate a (small-step) reduction of the redex (by tagging it with the symbol ◦). The condition
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is well-defined in rewrite logic because, as explained in Figure 3.32, we subsorted all the syntactic sorts
together with the configuration under the top sort Syntax, so all these sorts belong to the same kind (see
Section 2.5), which means that the operation ◦ can apply to any of them, including to Syntax, despite the fact
that it was declared to take a Configuration to an ExtendedConfiguration (like in Section 3.3.3). With this
characteristic rewrite rule, we can now restate the six rewrite rules corresponding to the six reduction rules
above as follows:

◦ I1 <= I2 → I1 ≤Int I2
◦ {} S 2 → S 2

◦ if (true) S 1 else S 2 → S 1
◦ if (false) S 1 else S 2 → S 2

◦ 〈C[X], σ〉 → 〈C[σ(X)],σ〉 if σ(X) , ⊥
◦ 〈C[X = I;], σ〉 → 〈C[{}],σ[I/X]〉 if σ(X) , ⊥

Note, again, that ◦ is applied on arguments of various sorts in the same kind with Configuration.
The need for ◦ in the left-hand-side terms of rules like above is now even more imperative than before.

In addition to all the reasons discussed so far, there are additional reasons now for which the dropping of
◦ would depart us from the intended faithful capturing of reduction semantics in rewrite logic. Indeed, if
we drop ◦ then there is nothing to stop the applications of rewrite rules at any places in the term to rewrite,
potentially including places which are not allowed to be evaluated yet, such as, for example, in the branches
of a conditional. Moreover, such applications of rules could happen concurrently, which is strictly disallowed
by reduction semantics with or without evaluation contexts. The role of ◦ is precisely to inhibit the otherwise
unrestricted potential to apply rewrite rules everywhere and concurrently: rules are now applied sequentially
and only at the top of the original term, exactly like in reduction semantics.

Theorem 20. (Third faithful embedding of reduction semantics into rewrite logic) Let RSEC be any
reduction semantics with evaluation contexts definition (with or without a characteristic reduction rule) and
let R3

RSEC be the rewrite logic theory associated to RSEC using the embedding procedures in Figures 3.32
and 3.35 (plus the characteristic rewrite rule above in case RSEC comes with a characteristic reduction
rule). Then

1. (step-for-step correspondence) RSEC ` t → t′ using a reduction semantics with evaluation contexts
rule iff R3

RSEC ` ◦ t →1 t′;

2. (computational correspondence) RSEC ` t →? t′ iff R3
RSEC ` ? t → ? t′.

We can therefore safely conclude that RSEC has been captured as a methodological fragment of rewrite
logic. The faithful embeddings of reduction semantics into rewrite logic above can be used in at least
two different ways. On the one hand, they can be used as compilation steps transforming a context-
sensitive reduction system into an equivalent context-insensitive rewrite system, which can be further
executed/compiled/analyzed using conventional rewrite techniques and existing rewrite engines. On the other
hand, the embeddings above are so simple, that one can simply use them manually and thus “think reduction
semantics” in rewrite logic.

Reduction Semantics with Evaluation Contexts of IMP in Rewrite Logic

We here discuss the complete reduction semantics with evaluation contexts definition of IMP in rewrite logic,
obtained by applying the faithful embedding techniques discussed above to the reduction semantics definition
of IMP in Figure 3.31 in Section 3.7.1. We start by defining the needed configurations, then we give all the
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sorts:
Configuration, ExtendedConfiguration

subsort:
Configuration < ExtendedConfiguration

operations:
〈 , 〉 : Stmt × State→ Configuration
〈 〉 : Pgm→ Configuration
◦ : Configuration→ ExtendedConfiguration // reduce one step
? : Configuration→ ExtendedConfiguration // reduce all steps

rule:
?Cfg→ ?Cfg′ if ◦ Cfg→ Cfg′ // where Cfg,Cfg′ are variables of sort Configuration

Figure 3.36: Configurations and infrastructure for the rewrite logic embedding of RSEC(IMP).

rewrite rules and equations embedding the evaluation contexts and their splitting/plugging mechanism in
rewrite logic, and then we finally give three rewrite theories corresponding to the three embeddings discussed
above, each including the (same) configurations definition and embedding of evaluation contexts.

Figure 3.36 gives an algebraic definition of IMP configurations as needed for reduction semantics with
evaluation contexts, together with the additional infrastructure needed to represent the one-step and multi-step
transition relations. Everything defined in Figure 3.36 has already been discussed in the context of small-step
SOS (see Figures 3.13 and 3.17 in Section 3.3.3). Note, however, that we only defined a subset of the
configurations needed for small-step SOS, more precisely only the top-level configurations (ones holding a
program and ones holding a statement and a state). The intermediate configurations holding expressions and
a state in small-step SOS are not needed here because reduction semantics with evaluation contexts does not
need to explicitly decompose bigger reduction tasks into smaller ones until a redex is eventually found, like
small-step SOS does; instead, the redex is found atomically by splitting the top level configuration into a
context and the redex.

Figure 3.37 shows the rewrite logic theory R�RSEC(IMP) associated to the evaluation contexts of IMP in
RSEC(IMP) (Figure 3.30) following the procedure described in Section 3.7.3 and summarized in Figure 3.32.
Recall that all language syntactic categories and configurations are sunk into a top sort Syntax, and that one
rule for splitting and one equation for plugging are generated for each context production. In general, the
embedding of evaluation contexts tends to be the largest and the most boring portion of the rewrite logic
embedding of a reduction semantics language definition. However, fortunately, this can be generated fully
automatically. An implementation of the rewrite logic embedding techniques discussed in this section may
even completely hide this portion from the user. We show it in Figure 3.37 only for the sake of completeness.

Figure 3.38 shows the rewrite logic theoryR1
RSEC(IMP) corresponding to the rules in the reduction semantics

with evaluation contexts of IMP in Section 3.7.1, following our first embedding transformation depicted in
Figure 3.33. Like before, we used the rewrite logic convention that variables start with upper-case letters;
if they are Greek letters, then we use a similar but larger symbol (e.g., σ instead of σ for variables of
sort State). These rules are added, of course, to those corresponding to evaluation contexts in Figure 3.37
(which are common to all three embeddings). Note that there is precisely one conditional rewrite rule in
Figure 3.38 corresponding to each reduction semantics rule of IMP in Figure 3.31. Also, note that if a rule
does not make use of evaluation contexts, then its corresponding rewrite rule is identical to the rewrite rule
corresponding to the small-step SOS embedding discussed in Section 3.3.3. For example, the last reduction
rule in Figure 3.31 results in the last rewrite rule in Figure 3.38, which is identical to the last rewrite rule
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sorts:
Syntax, Context

subsorts:
AExp,BExp, Stmt,Configuration < Syntax

operations:
� :→ Context [ ] : Context × Syntax→ Syntax
split : Syntax→ Syntax plug : Syntax→ Syntax
〈 , 〉 : Context × State→ Context
+ : Context × AExp→ Context + : AExp × Context→ Context
/ : Context × AExp→ Context / : AExp × Context→ Context
<= : Context × AExp→ Context <= : Int × Context→ Context
! : Context→ Context
&& : Context × BExp→ Context
= ; : Id × Context→ Context

: Context × Stmt→ Context
if ( ) else : Context × Stmt × Stmt→ Context

rules and equations:
split(Syn)→ �[Syn] plug(�[Syn]) = Syn
split(〈S ,σ〉)→ 〈C,σ〉[Syn] if split(S )→ C[Syn]
plug(〈C,σ〉[Syn]) = 〈plug(C[Syn]),σ〉
split(A1 + A2)→ (C + A2)[Syn] if split(A1)→ C[Syn]
plug((C + A2)[Syn]) = plug(C[Syn]) + A2
split(A1 + A2)→ (A1 +C)[Syn] if split(A2)→ C[Syn]
plug((A1 +C)[Syn]) = A1 + plug(C[Syn])
split(A1 / A2)→ (C / A2)[Syn] if split(A1)→ C[Syn]
plug((C / A2)[Syn]) = plug(C[Syn]) / A2
split(A1 / A2)→ (A1 /C)[Syn] if split(A2)→ C[Syn]
plug((A1 /C)[Syn]) = A1 / plug(C[Syn])
split(A1 <= A2)→ (C <= A2)[Syn] if split(A1)→ C[Syn]
plug((C <= A2)[Syn]) = plug(C[Syn]) <= A2
split(I1 <= A2)→ (I1 <= C)[Syn] if split(A2)→ C[Syn]
plug((I1 <= C)[Syn]) = I1 <= plug(C[Syn])
split(! B)→ (!C)[Syn] if split(B)→ C[Syn]
plug((!C)[Syn]) = ! plug(C[Syn])
split(B1 && B2)→ (C && B2)[Syn] if split(B1)→ C[Syn]
plug((C && B2)[Syn]) = plug(C[Syn]) && B2
split(X = A;)→ (X = C;)[Syn] if split(A)→ C[Syn]
plug((X = C;)[Syn]) = X = plug(C[Syn]);
split(S 1 S 2)→ (C S 2)[Syn] if split(S 1)→ C[Syn]
plug((C S 2)[Syn]) = plug(C[Syn]) S 2
split(if (B) S 1 else S 2)→ (if (C) S 1 else S 2)[Syn] if split(B)→ C[Syn]
plug((if (C) S 1 else S 2)[Syn]) = if (plug(C[Syn])) S 1 else S 2

Figure 3.37: R�RSEC(IMP): Rewrite logic embedding of IMP evaluation contexts. The implicit split/plug
reduction semantics mechanism is replaced by explicit rewrite logic sentences.
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◦Cfg→ plug(〈C,σ〉[σ(X)]) if split(Cfg)→ 〈C,σ〉[X] ∧ σ(X) , ⊥
◦Cfg→ plug(C[I1 +Int I2]) if split(Cfg)→ C[I1 + I2]
◦Cfg→ plug(C[I1 /Int I2]) if split(Cfg)→ C[I1 / I2] ∧ I2 , 0
◦Cfg→ plug(C[I1 ≤Int I2]) if split(Cfg)→ C[I1 <= I2]
◦Cfg→ plug(C[false]) if split(Cfg)→ C[! true]
◦Cfg→ plug(C[true]) if split(Cfg)→ C[! false]
◦Cfg→ plug(C[B2]) if split(Cfg)→ C[true && B2]
◦Cfg→ plug(C[false]) if split(Cfg)→ C[false && B2]
◦Cfg→ plug(〈C,σ[I/X]〉[{}]) if split(Cfg)→ 〈C,σ〉[X = I;] ∧ σ(X) , ⊥
◦Cfg→ plug(C[S 2]) if split(Cfg)→ C[{} S 2]
◦Cfg→ plug(C[S 1]) if split(Cfg)→ C[if (true) S 1 else S 2]
◦Cfg→ plug(C[S 2]) if split(Cfg)→ C[if (false) S 1 else S 2]
◦Cfg→ plug(C[if (B) { S while (B) S } else {}]) if split(Cfg)→ C[while (B) S ]
◦ 〈intXl; S 〉 → 〈S , (Xl 7→ 0)〉

Figure 3.38: R1
RSEC(IMP) — rewrite logic theory corresponding to the first embedding of the reduction

semantics with evaluation contexts of IMP.

corresponding to the small-step SOS of IMP in Figure 3.18. The rules that make use of evaluation contexts
perform explicit splitting (in the left-hand-side of the condition) and plugging (in the right-hand-side of the
conclusion) operations. As already discussed but worth reemphasizing, the main drawbacks of this type of
rewrite logic embedding are: (1) the expensive, non-deterministic search involving splitting of the original
term is performed for any rule, and (2) it does not take advantage of one of the major optimizations of
rewrite engines, indexing, which allows for quick detection of matching rules based on the structure of their
left-hand-side terms.

Figure 3.39 shows the rewrite logic theory R2
RSEC(IMP) that follows our second embedding transformation

depicted in Figure 3.34. These rules are also added to those corresponding to evaluation contexts in
Figure 3.37. Note that now there is precisely one unconditional rewrite rule corresponding to each reduction
semantics rule of IMP in Figure 3.31 and that, unlike in the first embedding in Figure 3.38, the left-hand-side
of each rule preserves the exact structure of the left-hand-side of the original reduction rule (after desugaring
of the characteristic rule), so this embedding takes advantage of indexing optimizations in rewrite engines.
Like in the first embedding, if a reduction rule does not make use of evaluation contexts, then its corresponding
rewrite rule is identical to the rewrite rule corresponding to the small-step SOS embedding discussed in
Section 3.3.3 (e.g., the last rule). Unlike in the first embedding, we also need to add a generic conditional
rule, the first one in Figure 3.39, which initiates the splitting. We need only one rule of this type because
all the left-hand-side terms of reduction rules of IMP in Figure 3.31 that contain a subterm in contextual
representation contain that term at the top. As already discussed, if one preferred to write, e.g., the lookup
RSEC rule as 〈c[x], σ〉 → 〈c[σ(x)], σ〉 if σ(x) , ⊥, then one would need an additional generic rule, namely
◦ 〈S ,σ〉 → Cfg′ if ◦ 〈split(S ),σ〉 → Cfg′. While these generic rules take care of splitting and can be
generated relatively automatically, the remaining rewrite rules that correspond to the reduction rules still
make explicit use of the internal (to the embedding) plug operation, which can arguably be perceived by
language designers as an inconvenience.

Figure 3.40 shows the rewrite logic theory R3
RSEC(IMP) obtained by applying our third embedding (shown

in Figure 3.35). These rules are also added to those corresponding to evaluation contexts in Figure 3.37 and,
like in the second embedding, there is precisely one unconditional rewrite rule corresponding to each RSEC
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◦Cfg→ Cfg′ if ◦ split(Cfg)→ Cfg′

◦ 〈C, σ〉[X]→ plug(〈C,σ〉[σ(X)]) if σ(X) , ⊥
◦C[I1 + I2]→ plug(C[I1 +Int I2])
◦C[I1 / I2]→ plug(C[I1 /Int I2]) if I2 , 0
◦C[I1 <= I2]→ plug(C[I1 ≤Int I2])
◦C[! true]→ plug(C[false])
◦C[! false]→ plug(C[true])

◦C[true && B2]→ plug(C[B2])
◦C[false && B2]→ plug(C[false])
◦ 〈C, σ〉[X = I;]→ plug(〈C,σ[I/X]〉[{}]) if σ(X) , ⊥

◦C[{} S 2]→ plug(C[S 2])
◦C[if (true) S 1 else S 2]→ plug(C[S 1])
◦C[if (false) S 1 else S 2]→ plug(C[S 2])

◦C[while (B) S ]→ plug(C[if (B) { S while (B) S } else {}])
◦ 〈intXl; S 〉 → 〈S , (Xl 7→ 0)〉

Figure 3.39: R2
RSEC(IMP) — rewrite logic theory corresponding to the second embedding of the reduction

semantics with evaluation contexts of IMP.

◦Cfg→ Cfg′ if ◦ plug(split(Cfg))→ Cfg′

◦C[Syn]→ C[Syn′] if C , � ∧ ◦ Syn→ Syn′

◦ 〈C, σ〉[X]→ 〈C,σ〉[σ(X)] if σ(X) , ⊥
◦ I1 + I2 → I1 +Int I2
◦ I1 / I2 → I1 /Int I2] if I2 , 0
◦ I1 <= I2 → I1 ≤Int I2
◦ ! true→ false
◦ ! false→ true

◦ true && B2→ B2
◦ false && B2→ false
◦ 〈C, σ〉[X = I;]→ 〈C,σ[I/X]〉[{}] if σ(X) , ⊥

◦ {} S 2 → S 2
◦ if (true) S 1 else S 2 → S 1
◦ if (false) S 1 else S 2 → S 2

◦ while (B) S → if (B) { S while (B) S } else {}
◦ 〈intXl; S 〉 → 〈S , (Xl 7→ 0)〉

Figure 3.40: R3
RSEC(IMP) — rewrite logic theory corresponding to the third embedding of the reduction

semantics with evaluation contexts of IMP.
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rule of IMP. We also need to add a generic conditional rule, the first one, which completely encapsulates the
rewrite logic representation of the splitting/plugging mechanism, so that the language designer can next focus
exclusively on the semantic rules rather than on their representation in rewrite logic. The second rewrite rule
in Figure 3.40 corresponds to the characteristic rule of reduction semantics with evaluation contexts and, as
discussed, it is optional; if one includes it, as we did, we think that its definition in Figure 3.40 is as simple
and natural as it can be. In what regards the remaining rewrite rules, the only perceivable difference between
them and their corresponding reduction rules is that they are preceded by ◦.

All the above suggest that, in spite of its apparently advanced context-sensitivity and splitting/plugging
mechanism, reduction semantics with evaluation contexts can be safely regarded as a methodological fragment
of rewrite logic. Or, put differently, while context-sensitive reduction seems crucial for programming language
semantics, it is in fact unnecessary. A conditional rewrite framework can methodologically achieve the same
results, and as discussed in this chapter, so can do for the other conventional language semantics approaches.

The following corollary of Theorems 18, 19, and 20 establishes the faithfulness of the representations of
the reduction semantics with evaluation contexts of IMP in rewrite logic:

Corollary 7. For any IMP configurations C and C′, the following equivalences hold:

RSEC(IMP) ` C → C′ ⇐⇒ R1
RSEC(IMP) ` ◦C → C′

⇐⇒ R2
RSEC(IMP) ` ◦C → C′

⇐⇒ R3
RSEC(IMP) ` ◦C → C′

and
RSEC(IMP) ` C →? C′ ⇐⇒ R1

RSEC(IMP) ` ?C → ?C′

⇐⇒ R2
RSEC(IMP) ` ?C → ?C′

⇐⇒ R3
RSEC(IMP) ` ?C → ?C′

Therefore, there is no perceivable computational difference between the reduction semantics with evalua-
tion contexts RSEC(IMP) and its corresponding rewrite logic theories.

? Reduction Semantics with Evaluation Contexts of IMP in Maude

Figure 3.41 shows a Maude representation of the rewrite theory R�RSEC(IMP) in Figure 3.37 that embeds
IMP’s evaluation contexts by making explicit the split/plug mechanism which is implicit in RSEC. Figure 3.41
also includes the Maude definition of configurations (see Figure 3.36).

We took the freedom to implement a simple optimization which works well in Maude, but which
may not work as well in other engines or systems (which is why we did not incorporate it as part of the
general procedure to represent reduction semantics with evaluation contexts in rewrite logic): we defined
the contextual representation operation [ ] to have as result the kind (see Section 2.5) [Syntax] instead
of the sort Syntax. This allows us to include the equation plug(Syn) = Syn, where Syn is a variable
of sort Syntax, which gives us the possibility to also use terms which do not make use of contexts in the
right-hand-sides of rewrite rules. To test the rules for splitting, one can write Maude commands such as the
one below, asking Maude to search for all splits of a given term:

search split(3 <= (2 + X) / 7) =>! Syn:[Syntax] .

The ! tag on the arrow => in the command above tells Maude to only report the normal forms, in this case the
completed splits. As expected, Maude finds all seven splits and outputs the following:
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mod IMP-CONFIGURATIONS-EVALUATION-CONTEXTS is including IMP-SYNTAX + STATE .

sorts Configuration ExtendedConfiguration .

subsort Configuration < ExtendedConfiguration .

op <_,_> : Stmt State -> Configuration .

op <_> : Pgm -> Configuration .

ops (o_) (*_) : Configuration -> ExtendedConfiguration [prec 80] . --- one step

var Cfg Cfg’ : Configuration .

--- crl * Cfg => * Cfg’ if o Cfg => Cfg’ .

endm

mod IMP-SPLIT-PLUG-EVALUATION-CONTEXTS is including IMP-CONFIGURATIONS-EVALUATION-CONTEXTS .

sorts Syntax Context . subsorts AExp BExp Stmt Configuration Context < Syntax .

op [] : -> Context . op _[_] : Context Syntax -> [Syntax] [prec 1] .

ops split plug : Syntax -> Syntax . --- to split Syntax into context[redex]

var X : Id . var A A1 A2 : AExp . var B B1 B2 : BExp . var S S1 S2 : Stmt .

var Sigma : State . var I1 : Int . var Syn Syn1 Syn2 : Syntax . var C : Context .

rl split(Syn) => [][Syn] . eq plug([][Syn]) = Syn . eq plug(Syn) = Syn .

op <_,_> : Context State -> Context [ditto] . eq plug(< C, Sigma > [Syn]) = < plug(C[Syn]), Sigma > .

crl split(< Syn1, Sigma >) => < C, Sigma > [Syn] if split(Syn1) => C[Syn] .

op _+_ : Context AExp -> Context [ditto] . eq plug((C + A2)[Syn]) = plug(C[Syn]) + A2 .

crl split(Syn1 + A2) => (C + A2)[Syn] if split(Syn1) => C[Syn] .

op _+_ : AExp Context -> Context [ditto] . eq plug((A1 + C)[Syn]) = A1 + plug(C[Syn]) .

crl split(A1 + Syn2) => (A1 + C)[Syn] if split(Syn2) => C[Syn] .

op _/_ : Context AExp -> Context [ditto] . eq plug((C / A2)[Syn]) = plug(C[Syn]) / A2 .

crl split(Syn1 / A2) => (C / A2)[Syn] if split(Syn1) => C[Syn] .

op _/_ : AExp Context -> Context [ditto] . eq plug((A1 / C)[Syn]) = A1 / plug(C[Syn]) .

crl split(A1 / Syn2) => (A1 / C)[Syn] if split(Syn2) => C[Syn] .

op _<=_ : Context AExp -> Context [ditto] . eq plug((C <= A2)[Syn]) = plug(C[Syn]) <= A2 .

crl split(Syn1 <= A2) => (C <= A2)[Syn] if split(Syn1) => C[Syn] .

op _<=_ : Int Context -> Context [ditto] . eq plug((I1 <= C)[Syn]) = I1 <= plug(C[Syn]) .

crl split(I1 <= Syn2) => (I1 <= C)[Syn] if split(Syn2) => C[Syn] .

op !_ : Context -> Context [ditto] . eq plug((! C)[Syn]) = ! plug(C[Syn]) .

crl split(! Syn1) => (! C)[Syn] if split(Syn1) => C[Syn] .

op _&&_ : Context BExp -> Context [ditto] . eq plug((C && B2)[Syn]) = plug(C[Syn]) && B2 .

crl split(Syn1 && B2) => (C && B2)[Syn] if split(Syn1) => C[Syn] .

op _=_; : Id Context -> Context [ditto] . eq plug((X = C ;)[Syn]) = X = plug(C[Syn]) ; .

crl split(X = Syn1 ;) => (X = C ;)[Syn] if split(Syn1) => C[Syn] .

op __ : Context Stmt -> Context [ditto] . eq plug((C S2)[Syn]) = plug(C[Syn]) S2 .

crl split(Syn1 S2) => (C S2)[Syn] if split(Syn1) => C[Syn] .

op if(_)_else_ : Context Stmt Stmt -> Context [ditto] .

eq plug((if (C) S1 else S2)[Syn]) = if (plug(C[Syn])) S1 else S2 .

crl split(if (Syn1) S1 else S2) => (if (C) S1 else S2)[Syn] if split(Syn1) => C[Syn] .

endm

c@Fa

Figure 3.41: The configuration and evaluation contexts of IMP in Maude, as needed for the three variants of
reduction semantics with evaluation contexts of IMP in Maude.
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Solution 1 (state 1)

states: 8 rewrites: 19 in ... cpu (... real) (0 rewrites/second)

Syn --> [][3 <= (2 + X) / 7]

Solution 2 (state 2)

states: 8 rewrites: 19 in ... cpu (. real) (0 rewrites/second)

Syn --> ([] <= (2 + X) / 7)[3]

Solution 3 (state 3)

states: 8 rewrites: 19 in ... cpu (... real) (0 rewrites/second)

Syn --> (3 <= [])[(2 + X) / 7]

Solution 4 (state 4)

states: 8 rewrites: 19 in ... cpu (... real) (0 rewrites/second)

Syn --> (3 <= ([] / 7))[2 + X]

Solution 5 (state 5)

states: 8 rewrites: 19 in ... cpu (... real) (0 rewrites/second)

Syn --> (3 <= (([] + X) / 7))[2]

Solution 6 (state 6)

states: 8 rewrites: 19 in ... cpu (... real) (0 rewrites/second)

Syn --> (3 <= ((2 + []) / 7))[X]

Solution 7 (state 7)

states: 8 rewrites: 19 in ... cpu (... real) (0 rewrites/second)

Syn --> (3 <= 2 + X / [])[7]

If, however, we replace any of the rules for splitting with equations, then, as expected, one looses some of
the splitting behaviors. For example, if we replace the generic rule for splitting rl split(Syn) => [][Syn]
by an apparently equivalent equation eq split(Syn) = [][Syn], then Maude will be able to detect no
other splitting of a term t except for �[t] (because Maude executes the equations before the rules; see
Section 2.5.6).

Figure 3.42 shows two Maude modules implementing the first two rewrite logic theories R1
RSEC(IMP)

(Figure 3.38) and R2
RSEC(IMP) (Figure 3.39), and Figure 3.43 shows the Maude module implementing the third

rewrite theory R3
RSEC(IMP) (Figure 3.40), respectively. Each of these three Maude modules imports the module

IMP-CONFIGURATION-EVALUATION-CONTEXTS defined in Figure 3.41 and is executable. Maude, through
its rewriting capabilities, therefore yields an IMP reduction semantics with evaluation contexts interpreter for
each of the three modules in Figures 3.42 and 3.43. For any of them, the Maude rewrite command

rewrite * < sumPgm > .

where sumPgm is the first program defined in the module IMP-PROGRAMS in Figure 3.4, produces a result of
the form (the exact statistics are also irrelevant, so they were replaced by “. . . ”):

rewrites: 42056 in ... cpu (... real) (... rewrites/second)

result ExtendedConfiguration: * < skip, n |-> 0 & s |-> 5050 >

The reason for this is . . .
One can use any of the general-purpose tools provided by Maude on the reduction semantics with

evaluation contexts definitions above. For example, one can exhaustively search for all possible behaviors of
a program using the search command:
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mod IMP-SEMANTICS-EVALUATION-CONTEXTS is including IMP-SPLIT-PLUG-EVALUATION-CONTEXTS .

var X : Id . var I I1 I2 : Int . var B B2 : BExp . var S S1 S2 : Stmt .

var Xl : List{Id} . var Sigma : State . var Cfg : Configuration . var C : Context .

crl o Cfg => plug(< C,Sigma >[Sigma(X)]) if split(Cfg) => < C,Sigma >[X]

/\ Sigma(X) =/=Bool undefined .

crl o Cfg => plug(C[I1 +Int I2]) if split(Cfg) => C[I1 + I2] .

crl o Cfg => plug(C[I1 /Int I2]) if split(Cfg) => C[I1 / I2]

/\ I2 =/=Bool 0 .

crl o Cfg => plug(C[I1 <=Int I2]) if split(Cfg) => C[I1 <= I2] .

crl o Cfg => plug(C[false]) if split(Cfg) => C[! true] .

crl o Cfg => plug(C[true]) if split(Cfg) => C[! false] .

crl o Cfg => plug(C[B2]) if split(Cfg) => C[true && B2] .

crl o Cfg => plug(C[false]) if split(Cfg) => C[false && B2] .

crl o Cfg => plug(C[S]) if split(Cfg) => C[{S}] .

crl o Cfg => plug(< C,Sigma[I / X] >[{}]) if split(Cfg) => < C,Sigma >[X = I ;]

/\ Sigma(X) =/=Bool undefined .

crl o Cfg => plug(C[S2]) if split(Cfg) => C[{} S2] .

crl o Cfg => plug(C[S1]) if split(Cfg) => C[if (true) S1 else S2] .

crl o Cfg => plug(C[S2]) if split(Cfg) => C[if (false) S1 else S2] .

crl o Cfg => plug(C[if (B) {S while (B) S} else {}]) if split(Cfg) => C[while (B) S] .

rl o < int Xl ; S > => < S,(Xl |-> 0) > .

endm

c@Fa

mod IMP-SEMANTICS-EVALUATION-CONTEXTS is including IMP-SPLIT-PLUG-EVALUATION-CONTEXTS .

var X : Id . var I I1 I2 : Int . var B B2 : BExp . var S S1 S2 : Stmt .

var Xl : List{Id} . var Sigma : State . var Cfg Cfg’ : Configuration . var C : Context .

crl o Cfg => Cfg’ if o split(Cfg) => Cfg’ . --- generic rule enabling splitting

crl o < C,Sigma >[X] => plug(< C,Sigma >[Sigma(X)])

if Sigma(X) =/=Bool undefined .

rl o C[I1 + I2] => plug(C[I1 +Int I2]) .

crl o C[I1 / I2] => plug(C[I1 /Int I2])

if I2 =/=Bool 0 .

rl o C[I1 <= I2] => plug(C[I1 <=Int I2]) .

rl o C[! true] => plug(C[false]) .

rl o C[! false] => plug(C[ true]) .

rl o C[true && B2] => plug(C[B2]) .

rl o C[false && B2] => plug(C[false]) .

rl o C[{S}] => plug(C[S]) .

crl o < C,Sigma >[X = I ;] => plug(< C,Sigma[I / X] >[{}])

if Sigma(X) =/=Bool undefined .

rl o C[{} S2] => plug(C[S2]) .

rl o C[if (true) S1 else S2] => plug(C[S1]) .

rl o C[if (false) S1 else S2] => plug(C[S2]) .

rl o C[while (B) S] => plug(C[if (B) {S while (B) S} else {}]) .

rl o < int Xl ; S > => < S,(Xl |-> 0) > .

endm

c@Fa

Figure 3.42: The first two reduction semantics with evaluation contexts of IMP in Maude.
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mod IMP-SEMANTICS-EVALUATION-CONTEXTS is including IMP-SPLIT-PLUG-EVALUATION-CONTEXTS .

var X : Id . var I I1 I2 : Int . var B B2 : BExp . var S S1 S2 : Stmt . var Xl : List{Id} .

var Sigma : State . var Cfg Cfg’ : Configuration . var Syn Syn’ : Syntax . var C : Context .

crl o Cfg => Cfg’ if plug(o split(Cfg)) => Cfg’ . --- generic rule enabling splitting

crl o C[Syn] => C[Syn’] if C =/=Bool [] /\ o Syn => Syn’ . --- characteristic rule

crl * Cfg => * Cfg’ if plug(o Cfg) => Cfg’ .

crl o < C,Sigma >[X] => < C,Sigma >[Sigma(X)]

if Sigma(X) =/=Bool undefined .

rl o I1 + I2 => I1 +Int I2 .

crl o I1 / I2 => I1 /Int I2

if I2 =/=Bool 0 .

rl o I1 <= I2 => I1 <=Int I2 .

rl o ! true => false .

rl o ! false => true .

rl o true && B2 => B2 .

rl o false && B2 => false .

rl o {S} => S .

crl o < C,Sigma >[X = I ;] => < C,Sigma[I / X] >[{}]

if Sigma(X) =/=Bool undefined .

rl o {} S2 => S2 .

rl o if (true) S1 else S2 => S1 .

rl o if (false) S1 else S2 => S2 .

rl o while (B) S => if (B) {S while (B) S} else {} .

rl o < int Xl ; S > => < S,(Xl |-> 0) > .

endm

c@Fa

Figure 3.43: The third reduction semantics with evaluation contexts of IMP in Maude.
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search * < sumPgm > =>! Cfg:ExtendedConfiguration .

As expected, only one behavior will be discovered because our IMP language so far is deterministic. Not
unexpectedly, the same number of states as in the case of small-step SOS and MSOS will be discovered by
this search command, namely 1709. Indeed, the splitting/cooling mechanism of RSEC is just another way
to find where the next reduction step should take place; it does not generate any different reductions of the
original configuration.

3.7.4 Notes

Reduction semantics with evaluation contexts was introduced by Felleisen and his collaborators (see, e.g., [25,
88]) as a variant small-step structural operational semantics. By making the evaluation context explicit
and modifiable, reduction semantics with evaluation contexts is considered by many to be a significant
improvement over small-step SOS. Like small-step SOS, reduction semantics with evaluation contexts has
been broadly used to give semantics to programming languages and to various calculi. We here only briefly
mention some strictly related work.

How expensive is the splitting of a term into an evaluation context and a redex? Unfortunately, it cannot
be more efficient than testing the membership of a word to a context-free grammar and the latter is expected
to be cubic in the size of the original term (folklore). Indeed, consider G an arbitrary CFG whose start
symbol is S and let GC be the “evaluation context” CFG grammar adding a fresh “context” nonterminal C,
a fresh terminal #, and productions C → � | CS #. Then it is easy to see that a word α is in the language
of G if and only if #α# can be split as a contextual representation (can only be (�α#)[#]). Thus, we should
expect, in the worst case, a cubic complexity to split a term into an evaluation context and a redex. An
additional exponent needs to be added, thus making splitting expected to be a quadratic operation in the worst
case, when nested contexts are allowed in rules (i.e., when the redex is itself a contextual representation).
Unfortunately, this terrible complexity needs to be paid at each step of reduction, not to mention that the size
of the program to reduce can also grow as it is reduced. One possibility to decrease this complexity is to
attempt to incrementally compute at each step the evaluation context that is needed at the next step (like in
refocusing; see below); however, in the worst case the right-hand-sides of rules may contain no contexts, in
which case a fresh split is necessary at each step.

Besides our own efforts, we are aware of three other attempts to develop executable engines for reduction
semantics with evaluation contexts, which we discuss here in chronological order:

1. A specification language for syntactic theories with evaluation contexts is proposed by Xiao et al. [90,
89], together with a system which generates Ocaml interpreters from specifications. Although the
compiler in [90, 89] is carefully engineered, as rightfully noticed by Danvy and Nielsen in [20] it cannot
avoid the quadratic overhead due to the context-decomposition step. This is consistent with our own
observations expressed at several places in this section, namely that the advanced parsing underlying
reduction semantics with evaluation contexts is the most expensive part when one is concerned with
execution. Fortunately, the splitting of syntax into context and redex can be and typically is taken for
granted in theoretical developments, making abstraction of the complexity of its implementation.

2. A technique called refocusing is proposed by Danvy and Nielsen in [20, 19]. The idea underlying
refocusing is to keep the program decomposed at all times (in a first-order continuation-like form) and
to perform minimal changes to the resulting structure to find the next redex. Unfortunately, refocusing
appears to work well only with restricted RSEC definitions, namely ones whose evaluation contexts
grammar has the property of unique decomposition of a term into a context and a redex (so constructs
like the non-deterministic addition of IMP are disallowed), and whose reduction rules are deterministic.
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3. PLT-Redex, which is implemented in Scheme by Findler and his collaborators [38, 24], is perhaps the
most advanced tool developed specifically to execute reduction semantics with evaluation contexts.
PLT-Redex builds upon a direct implementation of context-sensitive reduction, so it cannot avoid the
worst-case quadratic complexity of context decomposition, same as the interpreters generated by the
system in [90, 89] discussed above. Several large language semantics engineering case studies using
PLT-Redex are discussed in [24].

Our embeddings of reduction semantics with evaluation contexts into rewrite logic are inspired from a
related embedding by S, erbănut, ă et al. in [74]. The embedding in [74] was similar to our third embedding
here, but it included splitting rules also for terms in reducible form, e.g., split(I1<=I2)→ �[I1<=I2]. Instead,
we preferred to include a generic rule split(Syn)→ �[Syn] here, which allows us to more mechanically derive
the rewrite rules for splitting from the CFG of evaluation contexts. Calculating the exact complexity of our
approach seems to be hard, mainly because of optimizations employed by rewrite engines, e.g., indexing.
Since at each step we still search for all the relevant splits of the term into an evaluation context and a redex,
in the worst case we still pay the quadratic complexity. However, as suggested by the performance numbers
in [74] comparing Maude running the resulting rewrite theory against PLT-Redex, which favor the former by
a large margin, our embeddings may serve as alternative means to getting more efficient implementations
of reduction semantics engines. There are strong reasons to believe that our third embedding can easily be
automated in a way that the user never sees the split/plug operations.

3.7.5 Exercises

Exercise 127. Suppose that one does not like mixing semantic components with syntactic evaluation contexts
as we did above (by including the production Context ::= 〈Context, State〉). Instead, suppose that one prefers
to work with configuration tuples like in SOS, holding the various components needed for the language
semantics, the program or fragment of program being just one of them. In other words, suppose that one
wants to make use of the contextual representation notation only on the syntactic component of configurations.
In this case, the characteristic rule becomes

〈e, γ〉 → 〈e′, γ′〉
〈c[e], γ〉 → 〈c[e′], γ′〉

where γ and γ′ consist of configuration semantic components that are necessary to evaluate e and e′,
respectively, such as states, outputs, stacks, etc. Modify accordingly the six reduction semantics with
evaluation contexts rules discussed at the beginning of Section 3.7.

The advantage of this approach is that it allows the evaluation contexts to be defined exclusively over the
syntax of the language. However, configurations holding code and state still need to be defined. Moreover,
many rules which looked compact before, such as i1 <= i2 → i1 ≤Int i2, will now look heavier, e.g.,
〈i1 <= i2, σ〉 → 〈i1 ≤Int i2, σ〉.
Exercise 128. Like in Exercise 127, suppose that one does not like to mix syntactic and semantic compo-
nents in evaluation contexts, but that, instead, one is willing to accept to slightly enrich the syntax of the
programming language with a special statement construct “Stmt ::= int Id = AExp;” which both declares
and initializes a variable10. Then

1. Write structural identities that desugar the current top-level program variable declarations int x1, ..., xn; s
into statements of the form int x1 = 0; . . . int xn = 0; s.

10Similar language constructs exist in many programming language (C, Java, etc.).
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2. Add a new context production that allows evaluation after the new variable declarations.

3. Modify the variable lookup and assignment rules discussed above so that one uses the new declarations
instead of a state. Hint: the context should have the form “int x = i; c”.

The advantage of this approach is that one does not need an explicit state anymore, so the resulting definition
is purely syntactic. In fact, the state is there anyway, but encoded syntactically as a sequence of variable
initializations preceding any other statement. This trick works in this case, but it cannot be used as a general
principle to eliminate configurations in complex languages.

Exercise? 129. Exercise 127 suggests that one can combine MSOS (Section 3.6) and evaluation contexts, in
that one can use MSOS’s labels to obtain modularity at the configuration level and one can use the evaluation
contexts idea to detect and modify the contexts/redexes in the syntactic component of a configuration. Rewrite
the six rules discussed at the beginning of Section 3.7 as they would appear in a hypothetical framework
merging MSOS and evaluation contexts.

Exercise 130. Modify the reduction semantics with evaluation contexts of IMP in Figures 3.30 and 3.31 so
that / short-circuits when its numerator evaluates to 0.
Hint: Make / strict in only the first argument, then use a rule to reduce 0 / a2 to 0 and a rule to reduce
i1 / a2 to i1 /’ a2 when i1 , 0, where /’ is strict in its second argument, and finally a rule to reduce i1 /’ i2
to i1 /Int i2 when i2 , 0.

Exercise 131. Modify the reduction semantics with evaluation contexts of IMP in Figures 3.30 and 3.31
so that conjunction is not short-circuited anymore but, instead, is non-deterministically strict in both its
arguments.

Exercise 132. Give an alternative reduction semantics of IMP with evaluation contexts following the
approach in Exercise 127 (that is, use evaluation contexts only for the IMP language syntax, and handle the
semantic components using configurations, like in SOS).

Exercise 133. Give an alternative reduction semantics of IMP with evaluation contexts following the
approach in Exercise 128.

Exercise? 134. Give a semantics of IMP using the hypothetical framework combining reduction semantics
with evaluation contexts and MSOS proposed in Exercise 129.

Exercise 135. Modify the rewrite theory R�RSEC(IMP) in Figure 3.37 so that later on one can define the
reduction semantics of / to short-circuit when the numerator evaluates to 0 (as required in Exercises 137,
143, and 149).

Exercise 136. Modify the rewrite theory R�RSEC(IMP) in Figure 3.37 so that one can later on define the
reduction semantics of conjunction to be non-deterministically strict in both its arguments (as required in
Exercises 138, 144, and 150).

Exercise 137. Modify the rewrite theory R1
RSEC(IMP) in Figure 3.38 to account for the reduction semantics of

/ that short-circuits when the numerator evaluates to 0 (see also Exercise 135).

Exercise 138. Modify the rewrite theory R1
RSEC(IMP) in Figure 3.38 to account for the reduction semantics of

conjunction that defines it as non-deterministically strict in both its arguments (see also Exercise 136).
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Exercise 139. As discussed in several places so far in Section 3.7, the reduction semantics rules for variable
lookup and assignment can also be given in a way in which their left-hand-side terms are not in contextual
representation (i.e., 〈c[x], σ〉 instead of 〈c, σ〉[x], etc.). Modify the corresponding rewrite rules of R1

RSEC(IMP)
in Figure 3.38 to account for this alternative reduction semantics.

Exercise 140. Modify the rewrite logic theory R1
RSEC(IMP) in Figure 3.38 to account for the alternative

reduction semantics with evaluation contexts of IMP in Exercise 132.

Exercise 141. Modify the rewrite logic theory R1
RSEC(IMP) in Figure 3.38 to account for the alternative

reduction semantics with evaluation contexts of IMP in Exercise 133.

Exercise? 142. Combining the underlying ideas of the embedding of MSOS in rewrite logic discussed in
Section 3.6.3 and the embedding of reduction semantics with evaluation contexts in Figure 3.33, give a
rewrite logic semantics of IMP corresponding to the semantics of IMP in Exercise 134.

Exercise 143. Same as Exercise 137, but for R2
RSEC(IMP) in Figure 3.39 (instead of R1

RSEC(IMP)).

Exercise 144. Same as Exercise 138, but for R2
RSEC(IMP) in Figure 3.39 (instead of R1

RSEC(IMP)).

Exercise 145. Same as Exercise 139, but for R2
RSEC(IMP) in Figure 3.39 (instead of R1

RSEC(IMP)).

Exercise 146. Same as Exercise 140, but for R2
RSEC(IMP) in Figure 3.39 (instead of R1

RSEC(IMP)).

Exercise 147. Same as Exercise 141, but for R2
RSEC(IMP) in Figure 3.39 (instead of R1

RSEC(IMP)).

Exercise? 148. Same as Exercise 142, but for Figure 3.39 (instead of Figure 3.38).

Exercise 149. Same as Exercise 137, but for R3
RSEC(IMP) in Figure 3.40 (instead of R1

RSEC(IMP)).

Exercise 150. Same as Exercise 138, but for R3
RSEC(IMP) in Figure 3.40 (instead of R1

RSEC(IMP)).

Exercise 151. Same as Exercise 139, but for R3
RSEC(IMP) in Figure 3.40 (instead of R1

RSEC(IMP)).

Exercise 152. Same as Exercise 140, but for R3
RSEC(IMP) in Figure 3.40 (instead of R1

RSEC(IMP)).

Exercise 153. Same as Exercise 141, but for R3
RSEC(IMP) in Figure 3.40 (instead of R1

RSEC(IMP)).

Exercise? 154. Same as Exercise 142, but for Figure 3.40 (instead of Figure 3.38).

Exercise 155. Modify the Maude code in Figures 3.41 and 3.42, 3.43 so that / short-circuits when its
numerator evaluates to 0 (see also Exercises 130, 135, 137, 143, and 149).

Exercise 156. Modify the Maude code in Figures 3.41 and 3.42, 3.43 so that conjunction is not short-circuited
anymore but, instead, is non-deterministically strict in both its arguments (see also Exercises 131, 136, 138,
144, and 150).

Exercise 157. Modify the Maude code in Figures 3.41 and 3.42, 3.43 to account for the alternative reduction
semantics in Exercises 139, 145, and 151.
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Exercise 158. Modify the Maude code in Figures 3.41 and 3.42, 3.43 to account for the alternative reduction
semantics in Exercises 140, 146, and 152.

Exercise 159. Modify the Maude code in Figures 3.41 and 3.42, 3.43 to account for the alternative reduction
semantics in Exercises 141, 147, and 153.

Exercise? 160. Modify the Maude code in Figures 3.41 and 3.42, 3.43 to account for the semantics in
Exercises 142, 148, and 154.

Exercise 161. Same as Exercise 86, but for reduction semantics with evaluation contexts instead of small-step
SOS: add variable increment to IMP, like in Section 3.7.2.

Exercise 162. Same as Exercise 90, but for reduction semantics with evaluation contexts instead of small-step
SOS: add input/output to IMP, like in Section 3.7.2.

Exercise? 163. Consider the hypothetical framework combining MSOS with reduction semantics with
evaluation contexts proposed in Exercise 129, and in particular the IMP semantics in such a framework in
Exercise 134, its rewrite logic embeddings in Exercises 142, 148, and 154, and their Maude implementation
in Exercise 160. Define the semantics of the input/output constructs above modularly first in the framework in
discussion, then using the rewrite logic embeddings, and finally in Maude.

Exercise 164. Same as Exercise 95, but for reduction semantics with evaluation contexts instead of small-step
SOS: add abrupt termination to IMP, like in Section 3.7.2.

Exercise 165. Same as Exercise 104, but for reduction semantics with evaluation contexts instead of small-
step SOS: add dynamic threads to IMP, like in Section 3.7.2.

Exercise 166. Same as Exercise 109, but for reduction semantics with evaluation contexts instead of small-
step SOS: add local variables using let to IMP, like in Section 3.7.2.

Exercise? 167. This exercise asks to define IMP++ in reduction semantics, in various ways. Specifically,
redo Exercises 114, 115, 116, 117, and 118, but for the reduction semantics with evaluation contexts of
IMP++ discussed in Section 3.7.2 instead of its small-step SOS in Section 3.5.6.

267



3.8 The Chemical Abstract Machine (CHAM)

The chemical abstract machine, or the CHAM, is both a model of concurrency and a specific operational
semantics style. The states of a CHAM are metaphorically regarded as chemical solutions formed with
floating molecules. Molecules can interact with each other by means of reactions. A reaction can involve
several molecules and can change them, delete them, and/or create new molecules. One of the most appealing
aspects of the chemical abstract machine is that its reactions can take place concurrently, unrestricted by
context. To facilitate local computation and to represent complex data-structures, molecules can be nested
by encapsulating groups of molecules as sub-solutions. The chemical abstract machine was proposed as an
alternative to SOS and its variants, including reduction semantics with evaluation contexts, in an attempt to
circumvent their limitations, particularly their lack of support for true concurrency.

CHAM Syntax

The basic molecules of a CHAM are ordinary algebraic terms over a user-defined syntax. Several molecules
wrapped within a membrane form a solution, which is also a molecule. The CHAM uses the symbols {| and |}
to denote membranes. For example, {|m1 m2 . . . mk|} is a solution formed with the molecules m1, m2, . . . , mk.
The order of molecules in a solution is irrelevant, so a solution can be regarded as a multi-set (or bag) of
molecules wrapped within a membrane. Since solutions are themselves molecules, we can have arbitrarily
nested molecules. This nesting mechanism is generic for all CHAMs and has the following (algebraic) syntax:

Molecule ::= Solution | Molecule / Solution
Solution ::= {|Bag{Molecule}|}

The operator / is called the airlock operator and will be discussed shortly (under general CHAM laws),
after we discuss the CHAM rules. When defining a CHAM, one is only allowed to extend the syntax of
molecules, which implicitly also extends the syntax that the solution terms can use. However, one is not
allowed to explicitly extend the syntax of solutions. In other words, solutions can only be built using the
generic syntax above, on top of user-defined syntactic extensions of molecules. Even though we do not
formalize it here (and we are not aware of other formulations elsewhere either), it is understood that one can
have multiple types of molecules in a CHAM.

Specific CHAM Rules

In addition to extending the syntax of molecules, a CHAM typically also defines a set of rules, each rule
being a rule schemata but called a rule for simplicity. A CHAM rule has the form

m1 m2 . . . mk → m′1 m′2 . . .m′l

where m1,m2, . . . ,mk and m′1,m
′
2, . . . ,m

′
l are not necessarily distinct molecules (since CHAM rules are

schemata, these molecule terms may contain meta-variables). Molecules appearing in a rule are restricted
to contain only subsolution terms which are either solution meta-variables or otherwise have the form {|m|},
where m is some molecule term. For example, a CHAM rule cannot contain subsolution terms of the form
{|m s|}, {|m1 m2|}, or {|m1 m2 s|}, with m, m1, m2 molecule terms and s solution term, but it can contain ones
of the form {|m|}, {|m1 / {|m2|}|}, {|m / s|}, etc. This restriction is justified by chemical intuitions, namely that
matching inside a solution is a rather complex operation which needs special handling (the airlock operator
/ is used for this purpose). Note that CHAM rules are unconditional, that is, they have no premises.
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General CHAM Laws

Any chemical abstract machine obeys the four laws below. Let CHAM be11 a chemical abstract machine.
Below we assume that mol, mol′, mol1, etc., are arbitrary concrete molecules of CHAM (i.e., no meta-
variables) and that sol, sol′, etc., are concrete solutions of it. If sol is the solution {|mol1 mol2 . . . molk|} and sol′

is the solution {|mol′1 mol′2 . . . mol′l |}, then sol] sol′ is the solution {|mol1 mol2 . . . molk mol′1 mol′2 . . . mol′l |}.

1. The Reaction Law. Given a CHAM rule

m1 m2 . . . mk → m′1 m′2 . . .m′l ∈ CHAM

if mol1,mol2, . . . ,molk and mol′1,mol′2, . . . ,mol′l are (concrete) instances of m1 m2 . . . mk and of
m′1 m′2 . . .m′l by a common substitution, respectively, then

CHAM ` {|mol1 mol2 . . . molk|} → {|mol′1 mol′2 . . .mol′l |}

2. The Chemical Law. Reactions can be performed freely within any solution:

CHAM ` sol→ sol′

CHAM ` sol ] sol′′ → sol′ ] sol′′

3. The Membrane Law. A subsolution can evolve freely in any solution context {|cxt[�]|}:
CHAM ` sol→ sol′

CHAM ` {|cxt[sol]|} → {|cxt[sol′]|}

4. The Airlock Law.
CHAM ` {|mol|} ] sol↔ {|mol / sol|}

Note the unusual fact that m1 m2 . . . mk → m′1 m′2 . . .m′l being a rule in CHAM does not imply that
CHAM ` m1 m2 . . . mk → m′1 m′2 . . .m

′
l . Indeed, the CHAM rules are regarded as descriptors of changes that

can take place in solutions and only in solutions, while CHAM sequents are incarnations of those otherwise
purely abstract rules. What may be confusing is that the same applies also when k and l (the numbers of
molecules in the left-hand and right-hand-sides of the CHAM rule) happen to be 1 and m1 and m′1 happen to
be solutions that contain no meta-variables. The two→ arrows, namely the one in CHAM rules and the one
in CHAM sequents, ought to be different symbols; however, we adhere to the conventional CHAM notation
which uses the same symbol for both. Moreover, when the CHAM is clear from context, we also follow the
conventional notation and drop it from sequents, that is, we write sol→ sol′ instead of CHAM ` sol→ sol′.
While we admit that these conventions may sometimes be confusing, in that sol → sol′ can be a rule or a
sequent or even both, we hope that the context makes it clear which one is meant.

The Reaction Law says that CHAM rules can only apply in solutions (wrapped by a membrane), and not
arbitrarily wherever they match. The Chemical Law says that once a reaction take place in a certain solution,
it can take place in any other larger solution. In other words, the fact that a solution has more molecules than
required by the rule does not prohibit the rule from applying. The Reaction and the Chemical laws together
say that CHAM rules can apply inside any solutions having some molecules that match the left-had side

11To avoid inventing new names, it is common to use CHAM both as an abbreviation for “the chemical abstract machine” and as a
name of an arbitrary but fixed chemical abstract machine.
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of the CHAM rule. An interesting case is when the left-hand-side term of the CHAM rule has only one
molecule, i.e., when k = 1, because the CHAM rule is still allowed to only apply within a solution; it cannot
apply in other places where the left-hand-side happens to match.

The Membrane Law says that reactions can take place in any solution context. Indeed, {|cxt[sol]|} says
that the solution sol (which is wrapped in a membrane) appears somewhere, anywhere, inside a solution
context {|cxt[�]|}. Here cxt can be any bag-of-molecule context, and we write cxt[�] to highlight the fact
that it is a context with a hole �. By wrapping cxt[�] in a membrane we enforce a solution context. This
rule also suggests that, at any given moment, the global term to rewrite using the CHAM rules should be a
solution. Indeed, the CHAM rewriting process gets stuck as soon as the term becomes a proper molecule (not
a solution), because the Membrane Law cannot apply.

The Airlock Law is reversible (i.e., it comprises two rewrite rules, one from left-to-right and one from right-
to-left) and it allows to extract a molecule from a solution, putting the rest of the solution within a membrane.
Using this law one can, for example, rewrite a solution {|mol1 mol2 . . . ,molk|} into {|mol1 / {|mol2 . . . molk|}|}.
The advantage of doing so is that one can now match the molecule mol1 within other rules. Indeed, recall
that sub-solutions that appear in rules cannot specify any particular molecule term among the rest of the
solution, unless the solution contains precisely that molecule. Since mol1 / {|mol2 . . . molk|} is a molecule,
{|mol1 / {|mol2 . . . molk|}|} can match molecule terms of the form {|m / s|} appearing in CHAM rules, this way
one effectively matching (and possibly modifying) the molecule mol1 via the specific CHAM rules. The
Airlock Law is the only means provided by the CHAM to extract or put molecules in a solution.

The four laws above do not completely define the CHAM rewriting; they are only properties that the
CHAM rewriting should satisfy. In particular, they do not capture the concurrency potential of the CHAM.

Definition 23. The four laws above give us a proof system for CHAM sequents. As usual, CHAM ` sol→ sol′

in isolation means mean that it is derivable. Also, let→∗ denote the reflexive and transitive closure of→,
that is, CHAM ` sol →∗ sol′ iff sol = sol′ or there is some sol′′ such that CHAM ` sol → sol′′ and
CHAM ` sol′′ →∗ sol′. Finally, CHAM ` sol ↔ sol′ is a shorthand for the seqents CHAM ` sol → sol′

and CHAM ` sol′ → sol, and we say that it is derivable iff the two sequents are derivable.

None of the two sequents in Definition 23 captures the underlying concurrent computation of the CHAM.
Indeed, CHAM ` sol → sol′ says that one and only one reaction takes place somewhere in sol, while
CHAM ` sol →∗ sol′ says that arbitrarily many steps take place, including ones which can be done
concurrently but also ones which can only take place sequentially. Therefore, we can think of the four
laws above, and implicitly of the sequents CHAM ` sol → sol′ and CHAM ` sol →∗ sol′, as expressing
the descriptive capability of the CHAM: what is possible and what is not possible to compute using the
CHAM, and not how it operates. Nevertheless, it is recommended to think of CHAM reactions as taking
place concurrently whenever they do not involve the same molecules, even though this “concurrent reaction”
notion is not formalized here. We are actually not aware of any works that formalize the CHAM concurrency.

A common source of misunderstanding the CHAM is to wrongly think of CHAM rules as ordinary
rewriting rules modulo the associativity, commutativity and identity of the molecule grouping (inside a
solution) operation. The major distinction between CHAM rules and such rewrite rules is that the former
only apply within solutions (i.e., wrapped by membranes) no matter whether the rule contains one or more
molecules in its left-hand or right-hand terms, while the latter apply anywhere they match. For example,
supposing that we extend the syntax of molecules with the syntax of IMP in Section 3.1.1 and add a CHAM
rule m + 0 → m, then we can rewrite the solution {|(3 + 0) 7|} to solution {|3 7|}, but we cannot rewrite the
molecule 5 / (3 + 0) to molecule 5 / 3 regardless of what context it is in, because 3 / 0 is not in a solution. We
cannot even rewrite the isolated (i.e., not in a solution context) term 3 + 0 to 3 in CHAM, for the same reason.
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Classification of CHAM Rules

The rules of a CHAM are typically partitioned into three intuitive categories, namely heating, cooling and
reaction rules, although there are no formal requirements imposing a rule to be into one category or another.
Moreover, the same laws discussed above apply the same way to all categories of rules, and the same
restrictions preventing multiset matching apply to all of them.

• Heating rules, distinguished by using the relation symbol ⇀ instead of →, are used to structurally
rearrange the solution so that reactions can take place.

• Cooling rules, distinguished by using the relation symbol ⇁ instead of→, are used after reactions take
place to structurally rearrange the solution back into a convenient form, including to remove useless
molecules or parts of them.

• Reaction rules, which capture the intended computational steps and use the conventional rewrite symbol
→, are used to evolve the solution in an irreversible way.

The heating and cooling rules can typically be paired, with each heating rule l ⇀ r having a symmetric
cooling rule l ↽ r, so that we can view them as a single bidirectional heating/cooling rule. The CHAM
notation for writing such heating/cooling rules is the following:

l
 r

In particular, it makes sense to regard the airlock axiom as an example of such a heating/cooling bidirectional
rule, that is,

{|m1 m2 . . . mk|}
 {|m1 / {|m2 . . . mk|}|}
where m1, m2, . . . , mk are molecule meta-variables. The intuition here is that we can heat the solution to
extract m1 in an airlock, or we can cool it down so that the airlock m1 is diffused within the solution. However,
we need to assume one such rule for each k > 0.

As one may expect, the reaction rules are the heart of the CHAM and properly correspond to state
transitions. The heating and cooling rules express structural rearrangements, so that the reaction rules
can match and apply. In other words, we can view the reaction rules as being applied modulo the heating
and cooling rules. We are going to suggestively use the notation CHAM ` sol ⇀ sol′, respectively
CHAM ` sol ⇁ sol′ whenever the rewrite step taking sol to sol′ is a heating rule, respectively a cooling rule.
Similarly, we may use the notations CHAM ` sol ⇀∗ sol′ and CHAM ` sol ⇁∗ sol′ for the corresponding
reflexive/transitive closures. Also, to emphasize the fact that there is only one reaction rule applied, we take the
freedom to (admittedly ambiguously) write CHAM ` sol→ sol′ instead of CHAM ` sol(→ ∪⇀ ∪⇁)∗sol′

whenever all the involved rules but one are heating or cooling rules.

3.8.1 The CHAM of IMP

We next show how to give IMP a CHAM semantics. CHAM is particularly well-suited to giving semantics to
concurrent distributed calculi and languages, yielding considerably simpler definitions than those afforded by
SOS. Since IMP is sequential, it cannot take full advantage of the CHAM’s true concurrency capabilities;
the multi-threaded IMP++ language discussed in Section 3.5 will make better use of CHAM’s capabilities.
Nevertheless, some of CHAM’s capabilities turn out to be useful even in this sequential language application,
others turn out to be deceiving. Our CHAM semantics for IMP below follows in principle the reduction
semantics with evaluation contexts definition discussed in Section 3.7.1. One can formally show that a step
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performed using reduction under evaluation contexts is equivalent to a suite of heating steps, followed by one
reaction step, followed by a suite of cooling steps.

The CHAM defined below is just one possible way to give IMP a CHAM semantics. CHAM, like
rewriting, is a general framework which does not impose upon its users any particular definitional style. In
our case, we chose to conceptually distinguish two types of molecules; we say “conceptually” because, for
simplicity, we prefer to define only one Molecule syntactic category in our CHAM:

• Syntactic molecules, which include all the syntax of IMP in Section 3.1.1, plus all the syntax of its
evaluation contexts in Section 3.7.1, plus a mechanism to flatten evaluation contexts; for simplicity, we
prefer to not include a distinct type of molecule for each distinct syntactic category of IMP.

• State molecules, which are pairs x 7→ i, where x ∈ Id and i ∈ Int.

For clarity, we prefer to keep the syntactic and the state molecules in separate solutions. More precisely, we
work with top-level configurations which are solutions of the form

{|{|Syntax|} {|State|}|}

Syntax and State are solutions containing syntactic and state molecules, respectively. For example,

{|{|x = 3 / (x + 2);|} {|x 7→ 1 y 7→ 0|}|}

is a CHAM configuration containing the statement “x = 3 / (x + 2);” and state “x 7→ 1, y 7→ 0”.
The state molecules and implicitly the state solution are straightforward. State molecules are not nested

and state solutions are simply multisets of molecules of the form x 7→ i. The CHAM does not allow us to
impose constraints on solutions, such as that the molecules inside the state solution indeed define a partial
function and not some arbitrary relation (i.e., there is at most one molecule x 7→ i for each x ∈ Id). Instead,
the state solution will be used in such a way that the original state solution will embed a proper partial
function and each rule will preserve this property. For example, the CHAM rule for variable assignment, say
when assigning integer i to variable x, will rewrite the state molecule from {|x 7→ j / σ|} to {|x 7→ i / σ|}.

The top level syntactic solution holds the current program or fragment of program that is still left to be
processed. It is not immediately clear how the syntactic solution should be represented in order to be able
to give IMP a CHAM semantics. The challenge here is that the IMP language constructs have evaluation
strategies and the subterms that need to be next processed can be arbitrarily deep into the program or fragment
of program, such as the framed x in “x = 3 / ( x + 2);”. If the CHAM allowed conditional rules, then we
could have followed an approach similar to that of SOS described in Section 3.3, reducing the semantics
of each language construct to that of its subexpressions or substatements. Similarly, if the CHAM allowed
matching using evaluation contexts, then we could have followed a reduction semantics with evaluation
contexts approach like the one in Section 3.7.1 which uses only unconditional rules. Unfortunately, the
CHAM allows neither conditional rules nor evaluation contexts in matching, so a different approach is needed.

Failed attempts to represent syntax. A natural approach to represent the syntax of a programming language
in CHAM may be to try to use CHAM’s heating/cooling and molecule/solution nesting mechanisms to
decompose syntax unambiguously in such a way that the redex (i.e., the subterm which can be potentially
reduced next; see Section 3.7) appears as a molecule in the top syntactic solution. That is, if p = c[t] is a
program or fragment of program which can be decomposed in evaluation context c and redex t, then one
may attempt to represent it as a solution of the form {|t γc|}, where γc is some CHAM representation of the
evaluation context c. If this worked, then we could use an airlock operation to isolate that redex from the
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rest of the syntactic solution, i.e. {|p|}
 {|t γc|}
 {|t / {|γc|}|}, and thus have it at the same level with the state
solution in the configuration solution; this would allow to have rules that match both a syntactic molecule
and a state molecule (after an airlock operation is applied on the state solution as well) in the same rule, as
needed for the semantics of lookup and assignment. In our example above, we would obtain

{|{|x = 3 / (x + 2);|} {|x 7→ 1 y 7→ 0|}|}
 {|{|x / {|γx=3/(�+2);|}|} {|x 7→ 1 / {|y 7→ 0|}|}|}
and the latter could be rewritten with a natural CHAM reaction rule for variable lookup such as

{|x / c|} {|x 7→ i / σ|} → {|i / c|} {|x 7→ i / σ|}
Unfortunately, there seems to be no way to achieve such a desirable CHAM representation of syntax. We
next attempt and fail to do it in two different ways, and then give an argument why such a representation is
actually impossible.

Consider, again, the statement “x = 3 / (x + 2);”. A naive approach to represent this statement term as a
syntactic solution (by means of appropriate heating/cooling rules) is to flatten it into its redex, namely x, and
into all its atomic evaluation subcontexts, that is, to represent it as the following solution:

{|x (� + 2) (3 / �) (x = �;)|}
Such a representation can be relatively easily achieved by adding heating/cooling pair rules that correspond
to the evaluation strategies (or contexts) of the various language constructs. For example, we can add the
following rules corresponding to the evaluation strategies of the assignment and the addition constructs (and
two similar ones for the division construct):

x = a; 
 a / {|x = �;|}
a1 + a2 
 a1 / {|� + a2|}
a1 + a2 
 a2 / {|a1 + �|}

With such rules, one can now heat or cool syntax as desired, for example:

{|x = 3 / (x + 2);|} 
 {|(3 / (x + 2)) / {|x = �;|}|} (Reaction)

 {|(3 / (x + 2)) (x = �;)|} (Airlock)

 {|(x + 2) (3 / �) (x = �;)|} (Reaction, Chemical, Airlock)

 {|x (� + 2) (3 / �) (x = �;)|} (Reaction, Chemical, Airlock)

Unfortunately this naive approach is ambiguous, because it cannot distinguish the above from the
representation of, say, x = (3 / x) + 2;. The problem here is that the precise structure of the evaluation context
is “lost in translation”, so the approach above does not work.

Let us attempt a second approach, namely to guarantee that there is precisely one hole � molecule in
each syntactic subsolution by using the molecule/solution nesting mechanism available in CHAM. More
precisely, let us try to unambiguously represent the statements “x = 3 / (x + 2);” and “x = (3 / x) + 2;” as
the following two distinct syntactic solutions:

{|x {|(� + 2) {|(3 / �) {|(x = �;)|}|}|}|}
{|x {|(3 / �) {|(� + 2) {|(x = �;)|}|}|}|}

To achieve this, we modify the heating/cooling rules above as follows:

(x = a;) / c 
 a / {|{|(x = �;) / c|}|}
(a1 + a2) / c 
 a1 / {|{|(� + a2) / c|}|}
(a1 + a2) / c 
 a2 / {|{|(a1 + �) / c|}|}

275



With these modified rules, one may now think that one can heat and cool syntax unambiguously:

{|x = 3 / (x + 2);|} 
 {|(x = 3 / (x + 2);) / {| · |}|} (Airlock)

 {|(3 / (x + 2)) / {|{|(x = �;) / {| · |}|}|}|} (Reaction)

 {|(3 / (x + 2)) / {|{|x = �;|}|}|} (Airlock, Membrane)

 {|(x + 2) / {|{|(3 / �) / {|{|x = �;|}|}|}|}|} (Reaction)

 {|(x + 2) / {|{|(3 / �) {|x = �;|}|}|}|} (Airlock, Membrane)

 {|x / {|{|(� + 2) / {|{|(3 / �) {|x = �;|}|}|}|}|}|} (Reaction)

 {|x / {|{|(� + 2) {|(3 / �) {|x = �;|}|}|}|}|} (Airlock, Membrane)

 {|x {|(� + 2) {|(3 / �) {|x = �;|}|}|}|} (Airlock)

Unfortunately, the above is not the only way one can heat the solution in question. For example, the following
is also a possible derivation, showing that these heating/cooling rules are still problematic:

{|x = 3 / (x + 2);|} 
 {|(x = 3 / (x + 2);) / {| · |}|} (Airlock)

 {|(3 / (x + 2)) / {|{|(x = �;) / {| · |}|}|}|} (Reaction)

 {|(3 / (x + 2)) / {|{|x = �;|}|}|} (Airlock, Membrane)

 {|(3 / (x + 2)) {|x = �;|}|} (Airlock)

 {|(x + 2) {|3 / �|} {|x = �;|}|} (All four laws)

 {|x {|� + 2|} {|3 / �|} {|x = �;|}|} (All four laws)

Indeed, one can similarly show that

{|x = (3 / x) + 2;|} 
 {|x {|� + 2|} {|3 / �|} {|x = �;|}|}
Therefore, this second syntax representation attempt is also ambiguous.

We claim that it is impossible to devise heating/cooling rules in CHAM and representations γ of
evaluation contexts with the property that

{|c[t]|}
 {|t γc|} or, equivalently, {|c[t]|}
 {|t / {|γc|}|}
for any term t and any appropriate evaluation context c. Indeed, if that was possible, then the following
derivation could be possible:

{|x = 3 / (x + 2);|} 
 {|(3 / (x + 2)) γx=�;|} (hypothesis)

 {|(x + 2) γ3/� γx=�;|} (hypothesis, Chemical)

 {|x γ�+2 γ3/� γx=�;|} (hypothesis, Chemical)

 {|(3 / x) γ�+2 γx=�;|} (hypothesis, Chemical)

 {|((3 / x) + 2) γx=�;|} (hypothesis, Chemical)

 {|x = (3 / x) + 2;|} (hypothesis)

This general impossibility result explains why both our representation attempts above failed, as well as why
many other similar attempts are also expected to fail.

The morale of the exercise above is that one should be very careful when using CHAM’s airlock, because
in combination with the other CHAM laws it can yield unexpected behaviors. In particular, the Chemical
Law makes it impossible to state that a term matches the entire contents of a solution molecule, so one should
not rely on the fact that all the remaining contents of a solution is in the membrane following the airlock. In
our heating/cooling rules above, for example

(x = a;) / c 
 a / {|{|(x = �;) / c|}|}
(a1 + a2) / c 
 a1 / {|{|(� + a2) / c|}|}
(a1 + a2) / c 
 a2 / {|{|(a1 + �) / c|}|}
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a1 + a2 y c 
 a1 y � + a2 y c
a1 + a2 y c 
 a2 y a1 + �y c
a1 / a2 y c 
 a1 y � / a2 y c
a1 / a2 y c 
 a2 y a1 / �y c

a1 <= a2 y c 
 a1 y � <= a2 y c
i1 <= a2 y c 
 a2 y i1 <= �y c

! b y c 
 b y !�y c
b1 && b2 y c 
 b1 y � && b2 y c

x = a;y c 
 a y x = �;y c
s1 s2 y c 
 s1 y � s2 y c

s 
 s y �
if (b) s1 else s2 y c 
 b y if (�) s1 else s2 y c

Figure 3.44: CHAM heating-cooling rules for IMP.

our intuition that c matches all the evaluation context solution representation was wrong precisely for that
reason. Indeed, it can just as well match a solution representation of a subcontext, which is why we got the
unexpected derivation.

Correct representation of syntax. We next discuss an approach to representing syntax which is not based
on CHAM’s existing solution/membrane mechanism. We borrow from K (see Section 3.12) the idea of
flattening syntax in an explicit list of computational tasks. Like in K, we use the symbol y, read “then” or
“followed by”, to separate such computational tasks; to avoid writing parentheses, we here assume that y
is right-associative and binds less tightly than any other construct. For example, the term “x = 3 / (x + 2);”
gets represented as the list term

x y � + 2 y 3 / �y x = �;y �

which reads “process x, followed by adding 2 to it, followed by dividing 3 by the result, followed by
assigning the obtained result to x, which is the final task”. Figure 3.44 shows all the heating/cooling rules
that we associate to the various evaluation strategies of the IMP language constructs. These rules allow us to
structurally rearrange any well-formed syntactic term so that the next computational task is at the top (left
side) of the computation list.

The only rule in Figure 3.44 which does not correspond to the evaluation strategy of some evaluation
construct is s
 s y �. Its role is to initiate the decomposition process whenever an unheated statement is
detected in the syntax solution. According to CHAM’s laws, these rules can only apply in solutions, so we
can derive

{|x = 1; x = 3 / (x + 2);|}
∗ {|x = 1;y � x = 3 / (x + 2);y �|}
but there is no way to derive, for example,

{|x = 1; x = 3 / (x + 2);|}
∗ {|x = 1; (x y �+2 y 3 / �y x = �;y �)|}
The syntactic solution will contain only one syntactic molecule at any given moment, with no subsolutions,
which is the reason why the heating/cooling rules in Figure 3.44 that correspond to language construct
evaluation strategies need to mention the remaining of the list of computational tasks in the syntactic
molecule, c, instead of just the interesting part (e.g., a1 + a2 
 a1 y � + a2, etc.), as we do in K (see
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{|x y c |} {|x 7→ i B σ|} → {|i y c |} {|x 7→ i B σ|}
i1 + i2 y c → i1 +Int i2 y c
i1 / i2 y c → i1 /Int i2 y c when i2 , 0

i1 <= i2 y c → i1 ≤Int i2 y c
! truey c → falsey c
! falsey c → truey c

true && b2 y c → b2 y c
false && b2 y c → falsey c

{ s }y c → s y c
{|x = i;y c |} {|x 7→ j B σ|} → {|{}y c |} {|x 7→ i B σ|}

{} s2 y c → s2 y c
if (true) s1 else s2 y c → s1 y c
if (false) s1 else s2 y c → s2 y c

while (b) s y c → if (b) { s while (b) s } else {}y c
int xl; s → {|s|} {|xl 7→ 0|}

(x, xl) 7→ i ⇀ x 7→ i B {|xl 7→ i|}

Figure 3.45: CHAM(IMP): The CHAM of IMP, obtained by adding to the heating/cooling rules in Figure
3.44 the semantic rules for IMP plus the heating rule for state initialization above.

Section 3.12). The heating/cooling rules in Figure 3.44 decompose the syntactic term into any of its possible
splits into a redex (the top of the resulting list of computational tasks) and an evaluation context (represented
flattened as the rest of the list). In fact, these heating/cooling rules have been almost mechanically derived
from the syntax of evaluation contexts for the IMP language constructs in Section 3.7.1 (see Figure 3.30).

Figure 3.45 shows the remaining CHAM rules of IMP, giving the actual semantics of each language
construct. Like the heating/cooling rules in Figure 3.44, these rules are also almost mechanically derived
from the rules of the reduction semantics with evaluation contexts of IMP in Section 3.7.1 (see Figure 3.31),
with the following notable differences:

• Each rule needs to mention the remaining list of computational tasks, c, for the same reason the
heating/cooling rules in Figure 3.44 need to mention it (which is explained above).

• There is no equivalent of the characteristic rule of reduction semantics with evaluation contexts. The
Membrane Law looks somehow similar, but we cannot take advantage of that because we were not
able to use the inherent airlock mechanism of the CHAM to represent syntax (see the failed attempts to
represent syntax above).

• The state is organized as a solution using CHAM’s airlock mechanism, instead of just imported as an
external data-structure as we did in our previous semantics. We did so because the state data-structure
that we used in our previous semantics was a finite-domain partial function (see Section 3.1.2), which
was represented as a set of pairs (Section 2.1.2), and it is quite natural to replace any set structures by
the inherent CHAM solution mechanism.

Figure 3.46 shows a possible execution of IMP’s CHAM defined above, mentioning at each step which
of CHAM’s laws have been applied. Note that the final configuration contains two subsolutions, one for the
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{|int x, y; x = 1; x = 3 / (x + 2);|} → (Reaction)
{|{|x = 1; x = 3 / (x + 2);|} {|x, y 7→ 0|}|} ⇀ (Heating, Membrane)

{|{|x = 1; x = 3 / (x + 2);y �|} {|x, y 7→ 0|}|} ⇀∗ (Heating, Membrane, Airlock)
{|{|x = 1; x = 3 / (x + 2);y �|} {|x 7→ 0 y 7→ 0|}|} ⇀ (Heating, Membrane)

{|{|x = 1;y � x = 3 / (x + 2);y �|} {|x 7→ 0 y 7→ 0|}|} ⇀ (Airlock, Membrane)
{|{|x = 1;y � x = 3 / (x + 2);y �|} {|x 7→ 0 B {|y 7→ 0|}|}|} → (Reaction)

{|{|{}y � x = 3 / (x + 2);y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} ⇁ (Cooling, Membrane)
{|{|{} x = 3 / (x + 2);y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} ⇁ (Reaction, Membrane)
{|{|x = 3 / (x + 2);y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} ⇀∗ (Heating, Membrane)

{|{|x y � + 2 y 3 / �y x = �;y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} → (Reaction)
{|{|1 y � + 2 y 3 / �y x = �;y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} ⇁ (Cooling)

{|{|1 + 2 y 3 / �y x = �;y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} → (Reaction, Membrane)
{|{|3 y 3 / �y x = �;y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} →∗ (Reaction, Cooling, Membrane)

{|{|x = 1;y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} → (Reaction)
{|{|{}y �|} {|x 7→ 1 B {|y 7→ 0|}|}|} → (Cooling, Membrane)

{|{|{}|} {|x 7→ 1 B {|y 7→ 0|}|}|}

Figure 3.46: An execution of IMP’s CHAM.

syntax and one for the state. Since the syntactic subsolution in the final configuration solution is expected to
always contain only {}, one can safely eliminated it.

3.8.2 The CHAM of IMP++

We next discuss the CHAM of IMP++, discussing like in the other semantics each feature separately first
and then putting all of them together. When putting them together, we also investigate the modularity and
appropriateness of the resulting definition.

Variable Increment

The chemical abstract machine can also define the increment modularly:

{|++ x y c|} {|x 7→ i B σ|} → {|i +Int 1 y c|} {|x 7→ i +Int 1 B σ|} (CHAM-Inc)

Input/Output

All we have to do is to add new molecules in the top-level solution that hold the input and the output buffers,
then define the evaluation strategy of print by means of a heating/cooling pair like we did for other strict
constructs, and finally add the reaction rules corresponding to the input/output constructs. Since solutions
are not typed, to distinguish the solution holding the input buffer from the one holding the output buffer,
we introduce two artificial molecules, called input and output, respectively, and place them upfront in their
corresponding solutions. Since the input buffer needs to also be provided within the initial solution, we
modify the reaction rule for programs to take program and input molecules and initialize the output and state
molecules accordingly:

279



print(a);y c
 a y print(�);y c
{|read()y c|} {|input i : w|} → {|i y c|} {|input w|} (CHAM-Read)
{|print(i);y c|} {|output w|} → {|{}y c|} {|output w : i|} (CHAM-Print)
{|int xl; s|} {|w|} → {|s|} {|xl 7→ 0|} {|input w|} {|output ε|} (CHAM-Pgm)

Abrupt Termination

The CHAM semantics of abrupt termination is even more elegant and modular than that using evaluation
contexts above, because the other components of the configuration need not be mentioned:

i / 0 y c → {} (CHAM-Div-By-Zero)

halt;y c → {} (CHAM-Halt)

Dynamic Threads

As stated in Section 3.8, the CHAM has been specifically proposed as a model of concurrent computation,
based on the chemical metaphor that molecules in solutions can get together and react, with possibly many
reactions taking place concurrently. Since there was no concurrency so far in our language, the actual strength
of the CHAM has not been seen yet. Recall that the configuration of the existing CHAM semantics of
IMP consists of one top-level solution, which contains two subsolutions: a syntactic subsolution holding
the remainder of the program organized as a molecule sequentializing computation tasks using the special
construct y; and a state subsolution containing binding molecules, each binding a different program variable
to a value. As seen in Figures 3.44 and 3.45, most of the CHAM rules involve only the syntactic molecule.
The state subsolution is only mentioned when the language construct involves program variables.

The above suggests that all a spawn statement needs to do is to create an additional syntactic subsolution
holding the spawned statement, letting the newly created subsolution molecule to float together with the
original syntactic molecule in the same top-level solution. Minimalistically, this can be achieved with the
following CHAM rule (which does not consider thread termination yet):

{|spawn s y c|} → {|{}y c|} {|s|}
Since the order of molecules in a solution is irrelevant, the newly created syntactic molecule has the same
rights as the original molecule in reactions involving the state molecule. We can (correctly) think of each
syntactic subsolution as an independently running execution thread. The same CHAM rules we had before
(see Figures 3.44 and 3.45) can now also apply to the newly created threads. Moreover, reactions taking
place only in the syntactic molecules, which are a majority by a large number, can apply truly concurrently.
For example, a thread may execute a loop unrolling step while another thread may concurrently perform an
addition. The only restriction regarding concurrency is that rule instances must involve disjoint molecules
in order to proceed concurrently. That means that it is also possible for a thread to read or write the state
while another thread, truly concurrently, performs a local computation. This degree of concurrency was not
possible within the other semantic approaches discussed so far in this chapter.

The rule above only creates threads. It does not collect threads when they complete their computation.
One could do that with the simple solution-dissolving rule

{|{}|} → ·
but the problem is that such a rule cannot distinguish between the original thread and the others, so it would
also dissolve the original thread when it completes. This could be considered correct behavior, but, however,
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we prefer to distinguish the original thread created statically from the others, which are created dynamically.
Specifically, we collect only the terminated threads which were created dynamically. To achieve that, we can
flag the newly created threads for collection as below. Here is our complete CHAM semantics of spawn:

Molecule ::= . . . | die
{|spawn s y c|} → {|{}y c|} {|s y die|} (CHAM-Spawn)

{|{}y die|} → · (CHAM-Die)

We conclude this section with a discussion on the concurrency of the CHAM above. As already argued,
it allows for truly concurrent computations to take place, provided that their corresponding CHAM rule
instances do not overlap. While this already goes far beyond the other semantical approaches in terms of
concurrency, it still enforces interleaving where it should not.

Consider, for example, a global configuration in which two threads are about to lookup two different
variables in the state cell. Even though there are good reasons to allow the two threads to proceed concurrently,
the CHAM above will not, because the two rule instances (of the same CHAM lookup rule) overlap on the
state molecule. This problem can be ameliorated, to some extent, by changing the structure of the top-level
configuration to allow all the variable binding molecules currently in the state subsolution to instead float in
the top-level solution at the same level with the threads: this way, each thread can independently grab the
binding it is interested in without blocking the state anymore. Unfortunately, this still does not completely
solve the true concurrency problem, because one could argue that different threads should also be allowed
to concurrently read the same variable. Thus, no matter where the binding of that variable is located, the
two rule instances cannot proceed concurrently. Moreover, flattening all the syntactic and the semantic
ingredients in a top level solution, as the above “fix” suggests, does not scale. Real-life languages can have
many configuration items of various kinds, such as, environments, heaps, function/exception/loop stacks,
locks held, and so on. Collapsing the contents of all these items in one flat solution would not only go against
the CHAM philosophy, but it would also make it hard to understand and control. The K framework (see
Section 3.12) solves this problem by allowing its rules to state which parts of the matched subterm are shared
with and which can be concurrently modified by other rules.

Local Variables

The simplest approach to adding blocks with local variables to IMP is to follow an idea similar to the one for
reduction semantics with evaluation contexts discussed in Section 3.7.2, assuming the procedure presented in
Section 3.5.5 for desugaring blocks with local variables into let constructs:

let x = a in s y c
 a y let x =� in s y c
{|let x = i in s y c|} {|σ|} → {|s x = σ(x);y c|} {|σ[i/x]|} (CHAM-Let)

As it was the case in Section 3.7.2, the above is going to be problematic when we add spawn to the language,
too. However, recall that in this language experiment we pretend each language extension is final, in order to
understand the modularity and flexibility to change of each semantic approach.

The approach above is very syntactic in nature, following the intuitions of evaluation contexts. In some
sense, the above worked because we happened to have an assignment statement in our language, which we
used for recovering the value of the bound variable. Note, however, that several computational steps were was-
ted because of the syntactic translations. What we would have really liked to say is “let Id = Int in Context
is a special evaluation context where the current state is updated with the binding whenever let is passed
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through top-down, and where the state is recovered whenever let is passed through bottom-up”. This was
not possible to say with evaluation contexts. When using the CHAM, we are free to disobey the syntax. For
example, the alternative definition below captures the essence of the problem and wastes no steps (although it
is still problematic when combined with spawn):

let x = a in s y c
 a y let x =� in s y c
{|let x = i in s y c|} {|σ|}⇀ {|s y let x =σ(x) in �y c|} {|σ[i/x]|}
{|{}y let x = v in �y c|} {|σ|}⇁ {|{}y c|} {|σ[v/x]|}

In words, the let is first heated/cooled in the binding expression. Once that becomes an integer, the let is
then only heated in its body statement, at the same time updating the state molecule with the binding and
storing the return value in the residual let construct. Once the let body statement becomes {}, the solution
is cooled down by discarding the residual let construct and recovering the state appropriately (we used a
“value” v instead of an integer i in the latter rule to indicate the fact that v can also be ⊥).

Of course, the substitution-based approach discussed in detail in Sections 3.5.6 and 3.7.2 can also be
adopted here if one is willing to pay the price for using it:

let x = a in s y c
 a y let x =� in s y c
{|let x = i in s y c|} {|σ|} → {|s[x′/x] y c|} {|σ[i/x′]|} if x′ is a fresh variable

Putting Them All Together

Putting together all the language features defined in CHAM above is a bit simpler and more modular than in
MSOS (see Section 3.6.2): all we have to do is to take the union of all the syntax and semantics of all the
features, removing the original rule for the initialization of the solution (that rule was already removed as part
of the addition of input/output to IMP); in MSOS, we also had to add the halting attribute to the labels, which
we do not have to do in the case of the CHAM.

Unfortunately, like in the case of the reduction semantics with evaluation contexts of IMP++ in
Section 3.7.2, the resulting language is flawed. Indeed, a thread spawned from inside a let would be
created its own molecule in the top-level solution, which would execute concurrently with all the other
execution threads, including its parent. Thus, there is the possibility that the parent will advance to the
assignment recovering the value of the let-bound variable before the spawned thread terminates, in which
case the bound variable would be changed in the state by the parent thread, “unexpectedly” for the spawned
thread. One way to address this problem is to rename the bound variable into a fresh variable within the
let body statement, like we did above, using a substitution operation. Another is to split the state into an
environment mapping variables to locations and a store mapping locations to values, and to have each thread
consist of a solution holding both its code and its environment. Both these solutions were also suggested
in Section 3.5.6, when we discussed how to make small-step SOS correctly capture all the behaviors of the
resulting IMP++.

3.8.3 CHAM in Rewrite Logic

As explained above, CHAM rewriting cannot be immediately captured as ordinary rewriting modulo solution
multiset axioms such as associativity, commutativity and identity. The distinction between the two arises
essentially when a CHAM rule involves only one top-level molecule which is not a solution, because the
CHAM laws restrict the applications of such a rule only in solutions while ordinary rewriting allows such
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rules to apply everywhere. To solve this problem, we wrap each rule in a solution context, that is, we translate
CHAM rules of the form

m1 m2 . . . mk → m′1 m′2 . . . m′l

into corresponding rewrite logic rules of the form

{|m1 m2 . . . mk Ms|} → {|m′1 m′2 . . . m′l Ms|}

where the only difference between the original CHAM terms m1, m2, . . . , mk, m′1, m′2, . . . , m′l and their
algebraic variants m1, m2, . . . , mk, m′1, m′2, . . . , m′l is that the meta-variables appearing in the former (recall
that CHAM rules are schemata) are turned into variables of corresponding sorts in the latter, and where Ms is
a variable of sort Bag{Molecule} that does not appear anywhere else in m1, m2, . . . , mk, m′1, m′2, . . . , m′l .

With this representation of CHAM rules into rewrite logic rules, it is obvious that rewrite logic’s rewriting
captures both the Reaction Law and the Chemical Law of the CHAM. What is less obvious is that it also
captures the Membrane Law. Indeed, note that the Membrane Law allows rewrites to take place only when
the global term is a solution, while rewriting logic allows rewrites to take place anywhere. However, the
rewrite logic rule representation above generates only rules that rewrite solutions into solutions. Thus, if
the original term to rewrite is a solution, then so it will stay during the entire rewriting process, and so the
Membrane Law is also naturally captured by rewrite logic derivations. However, if the original term to
rewrite is a proper molecule (which is not a solution), then so it will stay during the entire rewrite logic’s
rewriting while the CHAM will not reduce it at all. Still it is important to understand that in this case the
corresponding rewrite logic theory can perform rewrite steps (in subsolutions of the original term) which
are not possible under the CHAM, in particular that it may lead to non-termination in situations where the
CHAM is essentially stuck. To reconcile this inherent difference between the CHAM and rewrite logic, we
make the reasonable assumption that the original terms to rewrite can only be solutions. Note that the CHAM
sequents in Definition 23 already assume that one only derives solution terms.

The only CHAM law which has not been addressed above is the Airlock Law. Rewrite logic has no builtin
construct resembling CHAM’s airlock, but its multiset matching is powerful enough to allow us to capture
the airlock’s behavior through rewrite rules. One possibility is to regard the airlock operation like any other
molecular construct. Indeed, from a rewrite logic perspective, the Airlock Law says that any molecule inside
a solution can be matched and put into an airlock next to the remaining solution wrapped into a membrane,
and this process is reversible. This behavior can be achieved through the following two (opposite) rewrite
logic rules, where M is a molecule variable and Ms is a bag-of-molecules variable:

{|M Ms|} → {|M B {|Ms|}|}
{|M B {|Ms|}|} → {|M Ms|}

Another possibility to capture airlock’s behavior in rewrite logic is to attempt to eliminate it completely
and replace it with matching modulo multiset axioms. While this appears to be possible in many concrete
situations, we are however not aware of any general solution to do so systematically for any CHAM. The
question is whether the elimination of the airlock is indeed safe, in the sense that the resulting rewrite logic
theory does not lose any of the original CHAM’s behaviors. One may think that thanks to the restricted
form of CHAM’s rules, the answer is immediately positive. Indeed, since the CHAM disallows any other
constructs for solutions except its builtin membrane operation (a CHAM can only add new syntactic constructs
for molecules, but not for solutions) and since solution subterms can either contain only one molecule or
otherwise be meta-variables (to avoid multiset matching), we can conclude that in any CHAM rule, a subterm
containing an airlock operation at its top can only be of the form m B {|m′|} or of the form m B s with s a
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sorts:
Molecule, S olution, Bag{Molecule}

subsorts:
Solution < Molecule
// One may also need to subsort to Molecule specific syntactic categories (Int, Bool, etc.)

operations:
{| |} : Bag{Molecule}→ Solution // membrane operator
B : Molecule × Solution→ Molecule // airlock operator

// One may also need to define specific syntactic constructs for Molecule ( + , 7→ , etc.)
rules:

// Add the following two generic (i.e., same for all CHAMs) airlock rewrite logic rules:
{|M Ms|} ↔ {|M B {|Ms|}|} // M, Ms variables of sorts Molecule, Bag{Molecule}, resp.
// For each specific CHAM rule m1 m2 . . .mk → m′1 m′2 . . .m′l add a rewrite logic rule
{|m1 m2 . . . mk Ms|} → {|m′1 m′2 . . . m′l Ms|} // Ms variable of sort Bag{Molecule}
// where m replaces each meta-variable in m by a variable of corresponding sort.

Figure 3.47: Embedding of a chemical abstract machine into rewrite logic (cham{ Rcham).

meta-variable. Both these cases can be uniformly captured as subterms of the form m B {|ms|} with ms a term
of sort Bag{Molecule} in rewrite logic, the former by taking k = 1 and ms = m′ and the latter by replacing
the metavariable s with a term of the form {|Ms|} everywhere in the rule, where Ms is a fresh variable of sort
Bag{Molecule}. Unfortunately, it is not clear how we can eliminate the airlock from subterms of the form
m B {|ms|}. If such terms appear in a solution or at the top of the rule, then one can replace them by their
corresponding bag-of-molecule terms m ms. However, if they appear in a proper molecule context (i.e., not in
a solution context), then they cannot be replaced by m ms (first, we would get a parsing error by placing a
bag-of-molecule term in a molecule place; second, reactions cannot take place in ms anymore, because it is
not surrounded by a membrane). We cannot replace m B {|ms|} by {|m ms|} either, because that would cause a
double membrane when the thus modified airlock reaches a solution context. Therefore, we keep the airlock.

Putting all the above together, we can associate a rewrite logic theory to any CHAM as shown in Figure
3.47; for simplicity, we assumed that the CHAM has only one Molecule syntactic category and, implicitly,
only one corresponding Solution syntactic category. In Figure 3.47 and elsewhere in this section, we use
the notation left ↔ right as a shorthand for two opposite rewrite rules, namely for both left → right and
right → left. The discussion above implies the following result:

Theorem 21. (Embedding of the chemical abstract machine into rewrite logic) If CHAM is a chemical
abstract machine, sol and sol′ are two solutions, and Rcham is the rewrite logic theory associated to CHAM
as in Figure 3.47, then the following hold:

1. CHAM ` sol→ sol′ if and only if Rcham ` sol→1 sol′;

2. CHAM ` sol→∗ sol′ if and only if Rcham ` sol→ sol′.

Therefore, one-step solution rewriting in Rcham corresponds precisely to one-step solution rewriting in
the original CHAM and thus, one can use Rcham as a replacement for CHAM for any reduction purpose.
Unfortunately, this translation of CHAM into rewrite logic does not allow us to borrow the latter’s concurrency
to obtain the desired concurrent rewriting computational mechanism of the former. Indeed, the desired CHAM
concurrency says that “different rule instances can apply concurrently in the same solution as far as they act on
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different molecules”. Unfortunately, the corresponding rewrite logic rule instances cannot apply concurrently
according to rewrite logic’s semantics because both instances would match the entire solution, including the
membrane (and rule instances which overlap cannot proceed concurrently in rewrite logic—see Section 2.5).

The CHAM of IMP in Rewrite Logic

Figure 3.48 shows the rewrite theory RCHAM(IMP) obtained by applying the generic transformation procedure
in Figure 3.47 to the CHAM of IMP discussed in this section and summarized in Figures 3.44 and 3.45. In
addition to the generic CHAM syntax, as indicated in the comment under subsorts in Figure 3.47 we also
subsort the builtin sorts of IMP, namely Int, Bool and Id, to Molecule. The “followed by” y construct
for molecules is necessary for defining the evaluation strategies of the various IMP language constructs
as explained above; we believe that some similar operator is necessary when defining any programming
language whose constructs have evaluation strategies because, as explained above, it appears that the CHAM
airlock operator is not suitable for this task. For notational simplicity, we stick to our previous convention that
y is right associative and binds less tight than any other molecular construct. Finally, we add molecular

constructs corresponding to all the syntax that we need in order to define the IMP semantics, which includes
syntax for language constructs, for evaluation contexts, and for the state and state initialization.

The rewrite rules in Figure 3.48 are straightforward, following the transformation described in Figure 3.47.
We grouped them in four categories: (1) the airlock rule is reversible and precisely captures the CHAM
Airlock Law; (2) the heating/cooling rules, also reversible, capture the evaluation strategies of IMP’s language
constructs (see Figure 3.44); (3) the semantic rules are irreversible and capture the computational steps of the
IMP semantics (see Figure 3.45); (4) the state initialization rule corresponds to the heating rule in Figure 3.45.

Our CHAM-based rewrite logic semantics of IMP in Figure 3.48 follows blindly the CHAM of IMP
in Figures 3.44 and 3.45. All it does is to mechanically apply the transformation in Figure 3.47, without
making any attempts to optimize the resulting rewrite logic theory. For example, it is easy to see that the
syntactic molecules will always contain only one molecule. Also, it is easy to see that the state molecule can
be initialized in such a way that at any moment during the initialization rewriting sequence any subsolution
containing a molecule of the form xl 7→ i, with xl a proper list, will contain no other molecule. Finally, one
can also notice that the top level solution will always contain only two molecules, namely what we called a
syntactic solution and a state solution. All these observations suggest that we can optimize the rewrite logic
theory in Figure 3.48 by deleting the variable Ms from every rule except the airlock ones. While one can do
that for our simple IMP language here, one has to be careful with such optimizations in general. For example,
we later on add threads to IMP (see Section 3.5), which implies that the top level solution will contain a
dynamic number of syntactic subsolutions, one per thread; if we remove the Ms variable from the lookup and
assignment rules in Figure 3.48, then those rules will not work whenever there are more than two threads
running concurrently. On the other hand, the Ms variable in the rule for variable declarations can still be
eliminated. The point is that one needs to exercise care when one attempts to hand-optimize the rewrite logic
theories resulting from mechanical semantic translations.

? The CHAM of IMP in Maude

Like for the previous semantics, it is relatively straightforward to mechanically translate the corresponding
rewrite theories into Maude modules. However, unlike in the previous semantics, the resulting Maude modules
are not immediately executable. The main problem is that, in spite of its elegant chemical metaphor, the
CHAM was not conceived to be blindly executable. For example, most of the heating and cooling rules
tend to be reversible, leading to non-termination of the underlying rewrite relation. Non-termination is not a
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sorts:
Molecule, Solution, Bag{Molecule} // generic CHAM sorts

subsorts:
Solution < Molecule // generic CHAM subsort
Int, Bool, Id < Molecule // additional IMP-specific syntactic categories

operations:
{| |} : Bag{Molecule}→ Solution // generic membrane
B : Molecule × Solution→ Molecule // generic airlock
y : Molecule ×Molecule→ Molecule// “followed by” operator, for evaluation strategies

// Plus all the IMP language constructs and evaluation contexts (all listed in Figure 3.30),
// collapsing all syntactic categories different from Int, Bool and Id into Molecule

rules:
// Airlock:
{|M Ms|} ↔ {|M B {|Ms|}|}
// Heating/cooling rules corresponding to the evaluation strategies of IMP’s constructs:
{|(A1 + A2 y C) Ms|} ↔ {|(A1 y � + A2 y C) Ms|}
{|(A1 + A2 y C) Ms|} ↔ {|(A2 y A1 + �y C) Ms|}
{|(A1 / A2 y C) Ms|} ↔ {|(A1 y � / A2 y C) Ms|}
{|(A1 / A2 y C) Ms|} ↔ {|(A2 y A1 / �y C) Ms|}
{|(A1 <= A2 y C) Ms|} ↔ {|(A1 y � <= A2 y C) Ms|}
{|(I1 <= A2 y C) Ms|} ↔ {|(A2 y I1 <= �y C) Ms|}
{|(! B y C) Ms|} ↔ {|(B y !�y C) Ms|}
{|(B1 && B2 y C) Ms|} ↔ {|(B1 y � && B2 y C) Ms|}
{|(X = A;y C) Ms|} ↔ {|(A = �;y C) Ms|}
{|(S 1 S 2 y C) Ms|} ↔ {|(S 1 y � S 2 y C) Ms|}
{|S Ms|} ↔ {|(S y �) Ms|}
{|(if (B) S 1 else S 2 y C) Ms|} ↔ {|(B y if (�) S 1 else S 2 y C) Ms|}
// Semantic rewrite rules corresponding to reaction computational steps
{|{|X y C |} {|X 7→ I Bσ|} Ms|} → {|{|I y C |} {|X 7→ I Bσ|} Ms|}
{|(I1 + I2 y C) Ms|} → {|(I1 +Int I2 y C) Ms|}
{|(I1 / I2 y C) Ms|} → {|(I1 /Int I2 y C) Ms|} if I2 , 0
{|(I1 <= I2 y C) Ms|} → {|(I1 ≤Int I2 y C) Ms|}
{|(! truey C) Ms|} → {|(falsey C) Ms|}
{|(! falsey C) Ms|} → {|(truey C) Ms|}
{|(true && B2 y C) Ms|} → {|(B2 y C) Ms|}
{|(false && B2 y C) Ms|} → {|(falsey C) Ms|}
{|({ S }y C) Ms|} → {|(S y C) Ms|}
{|{|X = I;y C|} {|X 7→ J Bσ|} Ms|} → {|{|{}y C|} {|X 7→ I Bσ|} Ms|}
{|({} S 2 y C) Ms|} → {|(S 2 y C) Ms|}
{|(if (true) S 1 else S 2 y C) Ms|} → {|(S 1 y C) Ms|}
{|(if (false) S 1 else S 2 y C) Ms|} → {|(S 2 y C) Ms|}
{|(while (B) S y C) Ms|} → {|(if (B) { S while (B) S } else {}y C) Ms|}
{|(int xl; s) Ms|} → {|{|s|} {|xl 7→ 0|} Ms|}
// State initialization:
{|(X,Xl 7→ I) Ms|} → {|(X 7→ I B {|Xl 7→ I|}) Ms|}

Figure 3.48: RCHAM(IMP): The CHAM of IMP in rewrite logic.
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mod CHAM is

sorts Molecule Solution Bag{Molecule} .

subsort Solution < Molecule < Bag{Molecule} .

op empty : -> Bag{Molecule} .

op _#_ : Bag{Molecule} Bag{Molecule} -> Bag{Molecule} [assoc comm id: empty] .

op {|_|} : Bag{Molecule} -> Solution .

op _<|_ : Molecule Solution -> Molecule [prec 110] .

var M : Molecule . var Ms : Bag{Molecule} .

rl {| M # Ms |} => {| M <| {| Ms |} |} .

rl {| M <| {| Ms |} |} => {| M # Ms |} .

endm

c@Fa

mod IMP-CHAM-SYNTAX is including PL-INT + CHAM .

subsort Int < Molecule .

--- Define all the IMP constructs as molecule constructs

op _+_ : Molecule Molecule -> Molecule [prec 33 gather (E e) format (d b o d)] .

op _/_ : Molecule Molecule -> Molecule [prec 31 gather (E e) format (d b o d)] .

--- ... and so on

--- Add the hole as basic molecular construct, to allow for building contexts as molecules

op [] : -> Molecule .

endm

c@Fa

mod IMP-HEATING-COOLING-CHAM-FAILED-1 is including IMP-CHAM-SYNTAX .

var A1 A2 : Molecule . var Ms : Bag{Molecule} .

--- + strict in its first argument

rl {| (A1 + A2) # Ms |} => {| (A1 <| {| [] + A2 |}) # Ms |} .

rl {| (A1 <| {| [] + A2 |}) # Ms |} => {| (A1 + A2) # Ms |} .

--- / strict in its second argument

rl {| (A1 / A2) # Ms |} => {| (A2 <| {| A1 / [] |}) # Ms |} .

rl {| (A2 <| {| A1 / [] |}) # Ms |} => {| (A1 / A2) # Ms |} .

--- ... and so on

endm

c@Fa

mod IMP-HEATING-COOLING-CHAM-FAILED-2 is including IMP-CHAM-SYNTAX .

var A1 A2 : Molecule . var Ms : Bag{Molecule} . var C : Solution .

--- + strict in its first argument

rl {| (A1 + A2 <| C) # Ms |} => {| (A1 <| {| {| [] + A2 <| C |} |}) # Ms |} .

rl {| (A1 <| {| {| [] + A2 <| C |} |}) # Ms |} => {| (A1 + A2 <| C) # Ms |} .

--- / strict in its second argument

rl {| (A1 / A2 <| C) # Ms |} => {| (A2 <| {| {| A1 / [] <| C |} |}) # Ms |} .

rl {| (A2 <| {| {| A1 / [] <| C |} |}) # Ms |} => {| (A1 / A2 <| C) # Ms |} .

--- ... and so on

endm

c@Fa

Figure 3.49: Failed attempts to represent the CHAM of IMP in Maude using the airlock mechanism to define
evaluation strategies. This figure also highlights the inconvenience of redefining IMP’s syntax (the module
IMP-CHAM-SYNTAX needs to redefine the IMP syntax as molecule constructs).
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problem per se in rewrite logic and in Maude, because one can still use other formal analysis capabilities of
these such as search and model checking, but from a purely pragmatic perspective it is rather inconvenient
not to be able to execute an operational semantics of a language, particularly of a simple one like our IMP.
Moreover, since the state space of a CHAM can very quickly grow to unmanageable sizes even when the
state space of the represented program is quite small, a direct representation of a CHAM in Maude can easily
end up having only a theoretical relevance.

Before addressing the non-termination issue, it is instructive to discuss how a tool like Maude can help
us pinpoint and highlight potential problems in our definitions. For example, we have previously seen how
we failed, in two different ways, to use CHAM’s airlock operator to define the evaluation strategies of the
various IMP language constructs. We have noticed those problems with using the airlock for evaluation
strategies by actually experimenting with CHAM definitions in Maude, more precisely by using Maude’s
search command to explore different behaviors of a program. We next discuss how one can use Maude
to find out that both our attempts to use airlock for evaluation strategies fail. Figure 3.49 shows all the
needed modules. CHAM defines the generic syntax of the chemical abstract machine together with its airlock
rules in Maude, assuming only one type of molecule. IMP-CHAM-SYNTAX defines the syntax of IMP as
well as the syntax of IMP’s evaluation contexts as a syntax for molecules; since there is only one syntactic
category for syntax now, namely Molecule, adding � as a Molecule constant allows for Molecule to also
include all the IMP evaluation contexts, as well as many other garbage terms (e.g., � + �, etc.). The module
IMP-HEATING-COOLING-CHAM-FAILED-1 represents in Maude, using the general translation of CHAM
rules into rewrite logic rules shown in Figure 3.47, heating/cooling rules of the form

a1 + a2 
 a1 / {|� + a2|}
Only two such groups of rules are shown, which is enough to show that we have a problem. Indeed, all four
Maude search commands below succeed:

search[1] {| 3 / (1 + 2) |} =>* {| 1 ([] + 2) (3 / []) |} .

search[1] {| 1 ([] + 2) (3 / []) |} =>* {| 3 / (1 + 2) |} .

search[1] {| (3 / 1) + 2 |} =>* {| 1 ([] + 2) (3 / []) |} .

search[1] {| 1 ([] + 2) (3 / []) |} =>* {| (3 / 1) + 2 |} .

That means that the Maude solution terms {| 3 / (1 + 2) |} and {| (3 / 1) + 2 |} can rewrite
into each other, which is clearly wrong. Similarly, IMP-HEATING-COOLING-CHAM-FAILED-2 represents in
Maude heating/cooling rules of the form

(a1 + a2) / c 
 a1 / {|{|(� + a2) / c|}|}
One can now check that this second approach gives us what we wanted, that is, a chemical representation of
syntax where each subsolution directly contains no more than one �:

search[1] {| 3 / (1 + 2) |} =>* {| 1 {| ([] + 2) {| 3 / [] |} |} |} .

search[1] {| (3 / 1) + 2 |} =>* {| 1 {| (3 / []) {| [] + 2 |} |} |} .

Indeed, both Maude search commands above succeed. Unfortunately, the following commands

search[1] {| 3 / (1 + 2) |} =>* {| 1 {| [] + 2 |} {| 3 / [] |} |} .

search[1] {| 1 {| [] + 2 |} {| 3 / [] |} |} =>* {| 3 / (1 + 2) |} .

search[1] {| (3 / 1) + 2 |} =>* {| 1 {| [] + 2 |} {| 3 / [] |} |} .

search[1] {| 1 {| [] + 2 |} {| 3 / [] |} |} =>* {| (3 / 1) + 2 |} .

also succeed, showing that our second attempt to use the airlock for evaluation strategies fails, too.
One could also try the following, which should also succeed (proof is the searches above):
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mod CHAM is

sorts Molecule Solution Bag{Molecule} .

subsort Solution < Molecule < Bag{Molecule} .

op empty : -> Bag{Molecule} .

op _#_ : Bag{Molecule} Bag{Molecule} -> Bag{Molecule} [assoc comm id: empty] .

op {|_|} : Bag{Molecule} -> Solution .

op _<|_ : Molecule Solution -> Molecule [prec 110] .

--- The airlock is unnecessary in this particular example.

--- We keep it, though, just in case will be needed as we extend the language.

--- We comment the two airlock rules below out to avoid non-termination.

--- Otherwise we would have to use slower search commands instead of rewrite.

--- var M : Molecule . var Ms : Bag{Molecule} .

--- rl {| M # Ms |} => {| M <| {| Ms |} |} .

--- rl {| M <| {| Ms |} |} => {| M # Ms |} .

endm

c@Fa

Figure 3.50: Generic representation of the CHAM in Maude.

search[1] {| 3 / (1 + 2) |} =>* {| (3 / 1) + 2 |} .

search[1] {| (3 / 1) + 2 |} =>* {| 3 / (1 + 2) |} .

However, on our machine (Linux, 2.4GHz, 8GB memory) Maude 2 ran out of memory after several minutes
when asked to execute any of the two search commands above.

Figures 3.50, 3.51 and 3.52 give a correct Maude representation of CHAM(IMP), based on the rewrite
logic theory RCHAM(IMP) in Figure 3.48. Three important observations were the guiding factors of our Maude
semantics of CHAM(IMP):

1. While the approach to syntax in Figure 3.49 elegantly allows to include the syntax of evaluation
contexts into the syntax of molecules by simply defining � as a molecular construct, unfortunately
it still requires us to redefine the entire syntax of IMP into specific constructs for molecules. This is
inconvenient at best. We can do better by simply subsorting to Molecule all those syntactic categories
that the approach in Figure 3.49 would collapse into Molecule. This way, any fragment of IMP code
parses to a subsort of Molecule, so in particular to Molecule. Unfortunately, evaluation contexts are
now ill-formed; for example, � + 2 attempts to sum a molecule with an integer, which does not parse.
To fix this, we define a new sort for the � constant, say Hole, and declare it as a subsort of each IMP
syntactic category that is subsorted to Molecule. In particular, Hole is a subsort of AExp, so � + 2
parses to AExp.

2. As discussed above, most of CHAM’s heating/cooling rules are reversible and thus, when regarded as
rewrite rules, lead to non-termination. To avoid non-termination, we restrict the heating/cooling rules
so that heating only applies when the heated subterm has computational contents (i.e., it is not a result)
while cooling only applies when the cooled term is completely processed (i.e., it is a result). This way,
the heating and the cooling rules are applied in complementary situations, in particular they are not
reversible anymore, thus avoiding non-termination. To achieve this, we introduce a subsort Result
of Molecule, together with subsorts of it corresponding to each syntactic category of IMP as well as
with an explicit declaration of IMP’s results as appropriate terms of corresponding result sort.

3. The CHAM’s philosophy is to represent data, in particular program states, using its builtin support
for solutions as multisets of molecules, and to use airlock operations to extract pieces of data from
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mod IMP-HEATING-COOLING-CHAM is including IMP-SYNTAX + CHAM .

*** Distinguishing empty from non-empty blocks; empty ones are results

sort EmptyBlock . subsort EmptyBlock < Block . op {} : -> EmptyBlock [ditto] .

*** Defining results

sort Result .

subsorts Bool Int EmptyBlock < Result .

sort Hole . subsorts Hole < AExp BExp Stmt < Molecule . subsort Result < Molecule .

op [] : -> Hole .

op _˜>_ : Molecule Molecule -> Molecule [gather(e E) prec 120] .

var X : Id . var C : [Molecule] . var A A1 A2 : AExp . var R R1 R2 : Result .

var B B1 B2 : BExp . var I I1 I2 : Int . var S S1 S2 : Stmt . var Ms : Bag{Molecule} .

crl {| (A1 + A2 ˜> C) # Ms |} => {| (A1 ˜> [] + A2 ˜> C) # Ms |} if notBool(A1 :: Result) .

rl {| (R1 ˜> [] + A2 ˜> C) # Ms |} => {| (R1 + A2 ˜> C) # Ms |} .

crl {| (A1 + A2 ˜> C) # Ms |} => {| (A2 ˜> A1 + [] ˜> C) # Ms |} if notBool(A2 :: Result) .

rl {| (R2 ˜> A1 + [] ˜> C) # Ms |} => {| (A1 + R2 ˜> C) # Ms |} .

crl {| (A1 / A2 ˜> C) # Ms |} => {| (A1 ˜> [] / A2 ˜> C) # Ms |} if notBool(A1 :: Result) .

rl {| (R1 ˜> [] / A2 ˜> C) # Ms |} => {| (R1 / A2 ˜> C) # Ms |} .

crl {| (A1 / A2 ˜> C) # Ms |} => {| (A2 ˜> A1 / [] ˜> C) # Ms |} if notBool(A2 :: Result) .

rl {| (R2 ˜> A1 / [] ˜> C) # Ms |} => {| (A1 / R2 ˜> C) # Ms |} .

crl {| (A1 <= A2 ˜> C) # Ms |} => {| (A1 ˜> [] <= A2 ˜> C) # Ms |} if notBool(A1 :: Result) .

rl {| (R1 ˜> [] <= A2 ˜> C) # Ms |} => {| (R1 <= A2 ˜> C) # Ms |} .

crl {| (R1 <= A2 ˜> C) # Ms |} => {| (A2 ˜> R1 <= [] ˜> C) # Ms |} if notBool(A2 :: Result) .

rl {| (R2 ˜> R1 <= [] ˜> C) # Ms |} => {| (R1 <= R2 ˜> C) # Ms |} .

crl {| (! B ˜> C) # Ms |} => {| (B ˜> ! [] ˜> C) # Ms |} if notBool(B :: Result) .

rl {| (R ˜> ! [] ˜> C) # Ms |} => {| (! R ˜> C) # Ms |} .

crl {| (B1 && B2 ˜> C) # Ms |} => {| (B1 ˜> [] && B2 ˜> C) # Ms |} if notBool(B1 :: Result) .

rl {| (R1 ˜> [] && B2 ˜> C) # Ms |} => {| (R1 && B2 ˜> C) # Ms |} .

crl {| (X = A ; ˜> C) # Ms |} => {| (A ˜> X = [] ; ˜> C) # Ms |} if notBool(A :: Result) .

rl {| (R ˜> X = [] ; ˜> C) # Ms |} => {| (X = R ; ˜> C) # Ms |} .

crl {| (S1 S2 ˜> C) # Ms |} => {| (S1 ˜> [] S2 ˜> C) # Ms |} if notBool(S1 :: Result) .

rl {| (R1 ˜> [] S2 ˜> C) # Ms |} => {| (R1 S2 ˜> C) # Ms |} .

crl {| S # Ms |} => {| (S ˜> []) # Ms |} if notBool(S :: Result) .

rl {| (R ˜> []) # Ms |} => {| R # Ms |} .

crl {| (if (B) S1 else S2 ˜> C) # Ms |} => {| (B ˜> if ([]) S1 else S2 ˜> C) # Ms |}

if notBool(B :: Result) .

rl {| (R ˜> if ([]) S1 else S2 ˜> C) # Ms |} => {| (if (R) S1 else S2 ˜> C) # Ms |} .

endm

c@Fa

Figure 3.51: Efficient heating-cooling rules for IMP in Maude.
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mod IMP-SEMANTICS-CHAM is including IMP-HEATING-COOLING-CHAM + STATE .

subsort Pgm State < Molecule .

var X : Id . var Xl : List{Id} . var C : Molecule . var Ms : Bag{Molecule} .

var Sigma : State . var B B2 : BExp . var I J I1 I2 : Int . var S S1 S2 : Stmt .

rl {| {| X ˜> C |} # {| X |-> I & Sigma |} # Ms |}

=> {| {| I ˜> C |} # {| X |-> I & Sigma |} # Ms |} .

rl {| (I1 + I2 ˜> C) # Ms |} => {| (I1 +Int I2 ˜> C) # Ms |} .

crl {| (I1 / I2 ˜> C) # Ms |} => {| (I1 /Int I2 ˜> C) # Ms |} if I2 =/=Bool 0 .

rl {| (I1 <= I2 ˜> C) # Ms |} => {| (I1 <=Int I2 ˜> C) # Ms |} .

rl {| (! true ˜> C) # Ms |} => {| (false ˜> C) # Ms |} .

rl {| (! false ˜> C) # Ms |} => {| (true ˜> C) # Ms |} .

rl {| (true && B2 ˜> C) # Ms |} => {| (B2 ˜> C) # Ms |} .

rl {| (false && B2 ˜> C) # Ms |} => {| (false ˜> C) # Ms |} .

rl {| ({S} ˜> C) # Ms |} => {| (S ˜> C) # Ms |} .

rl {| {| X = I ; ˜> C |} # {| X |-> J & Sigma |} # Ms |}

=> {| {| {} ˜> C |} # {| X |-> I & Sigma |} # Ms |} .

rl {| ({} S2 ˜> C) # Ms |} => {| (S2 ˜> C) # Ms |} .

rl {| (if (true) S1 else S2 ˜> C) # Ms |} => {| (S1 ˜> C) # Ms |} .

rl {| (if (false) S1 else S2 ˜> C) # Ms |} => {| (S2 ˜> C) # Ms |} .

rl {| (while (B) S ˜> C) # Ms |} => {| (if (B) {S while (B) S} else {} ˜> C) # Ms |} .

rl {| (int Xl ; S) # Ms |} => {| {| S |} # {| Xl |-> 0 |} # Ms |} .

endm

c@Fa

Figure 3.52: The CHAM of IMP in Maude.

such solutions whenever needed. This philosophy is justified both by chemical and by mathematical
intuitions, namely that one needs an additional step to observe inside a solution and, respectively, that
multiset matching is a complex operation (it is actually an intractable problem) whose complexity
cannot be simply “swept under the carpet”. While we agree with these justifications for the airlock
operator, one should also note that impressive progress has been made in the last two decades, after the
proposal of the chemical abstract machine, in terms of multiset matching. For example, languages like
Maude build upon very well-engineered multiset matching techniques. We believe that these recent
developments justify us, at least in practical language definitions, to replace the expensive airlock
operation of the CHAM with the more available and efficient multiset matching of Maude.

Figure 3.50 shows the generic CHAM syntax that we extend in order to define CHAM(IMP). Since we use
Maude’s multiset matching instead of state airlock and since we cannot use the airlock for evaluation strategies
either, there is effectively no need for the airlock in our Maude definition of CHAM(IMP). Moreover, since
the airlock rules are reversible, their introduction would yield non-termination. Consequently, we have plenty
of reasons to eliminate them, which is reflected in our CHAM module in Figure 3.50. The Maude module
in Figure 3.51 defines the evaluation strategies of IMP’s constructs and should be now clear: in addition
to the syntactic details discussed above, it simply gives the Maude representation of the heating/cooling
rules in Figure 3.48. Finally, the Maude module in Figure 3.52 implements the semantic rules and the state
initialization heating rule in Figure 3.48, replacing the state airlock operation by multiset matching.

To test the heating/cooling rules, one can write Maude commands such as the two search commands
below, asking Maude to search for all heatings of a given syntactic molecule (the sort of X, Id, is already
declared in the last module):

search {| X = 3 / (X + 2) ; |} =>! Sol:Solution .

search {| X = (Y:Id + Z:Id) / (X + 2) ; |} =>! Sol:Solution .
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The former gives only one solution, because heating can only take place on non-result subexpressions

Solution 1 (state 4)

states: 5 rewrites: 22 in ... cpu (... real) (... rewrites/second)

Sol:Solution --> {| X ˜> [] + 2 ˜> 3 / [] ˜> X = [] ; ˜> [] |}

but the latter gives three solutions:

Solution 1 (state 5)

states: 8 rewrites: 31 in ... cpu (... real) (... rewrites/second)

Sol:Solution --> {| Y:Id ˜> [] + Z:Id ˜> [] / (X + 2) ˜> X = [] ; ˜> [] |}

Solution 2 (state 6)

states: 8 rewrites: 31 in ... cpu (... real) (... rewrites/second)

Sol:Solution --> {| Z:Id ˜> Y:Id + [] ˜> [] / (X + 2) ˜> X = [] ; ˜> [] |}

Solution 3 (state 7)

states: 8 rewrites: 31 in ... cpu (... real) (˜ rewrites/second)

Sol:Solution --> {| X ˜> [] + 2 ˜> (Y:Id + Z:Id) / [] ˜> X = [] ; ˜> [] |}

Each of the solutions represents a completely heated term (we used =>! in the search commands) and
corresponds to a particular order of evaluation of the subexpression in question. The three solutions of the
second search command above reflect all possible orders of evaluation allowed by our Maude semantics
of CHAM(IMP). Interestingly, there is no order in which X is looked up in between Y and Z. This is not
a problem for IMP, but it may result in loss of behaviors for IMP++ programs. Indeed, it may be that
other threads modify the values of X, Y , and Z while the expression above is evaluated by another thread
in such a way that behaviors are lost if X is not allowed to be looked up between Y and Z. Consequently,
our orientation of the heating/cooling rules came at a price: we lost the fully non-deterministic order of
evaluation of the arguments of strict operators; what we obtained is a non-deterministic choice evaluation
strategy (an order of evaluation is non-deterministically chosen and cannot be changed during the evaluation
of the expression—this is discussed in more depth in Section 3.5).

Maude can now act as an execution engine for CHAM(IMP). For example, the Maude command

rewrite {| sumPgm |} .

where sumPgm is the first program defined in the module IMP-PROGRAMS in Figure 3.4, produces a result of
the form:

rewrite in TEST : {| sumPgm |} .

rewrites: 7543 in ... cpu (... real) (... rewrites/second)

result Solution: {| {| {} |} # {| n |-> 0 & s |-> 5050 |} |}

Like in the previous Maude semantics, one can also search for all possible behaviors of a program using
search commands such as

search {| sumPgm |} =>! Sol:Solution .

Like before, only one behavior will be discovered (IMP is deterministic so far). However, an unexpectedly
large number of states is generated, 4119 versus the 1709 states generated by the previous small-step
semantics), mainly due to the multiple ways to apply the heating/cooling rules:

Solution 1 (state 4118)

states: 4119 rewrites: 12658 in ... cpu (... real) (... rewrites/second)

Sol:Solution --> {| {| {} |} # {| n |-> 0 & s |-> 5050 |} |}
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3.8.4 Notes

The chemical abstract machine, abbreviated CHAM, was introduced by Berry and Boudol in 1990 [8, 9]. In
spite of its operational feel, the CHAM should not be mistakenly taken for a variant of (small-step) SOS. In
fact, Berry and Boudol presented the CHAM as an alternative to SOS, to address a number of limitations
inherent to SOS, particularly its lack of true concurrency and what they called SOS’ “rigidity to syntax”.
The basic metaphor giving its name to the CHAM was inspired by Banâtre and Le Mètayer’s GAMMA
language [4, 5, 6], which was the first to view a distributed state as a solution in which many molecules
float, and the first to understand concurrent transitions as reactions that can occur simultaneously in many
points of the solution. GAMMA was proposed as a highly-parallel programming language, together with a
stepwise program derivation approach that allows to develop provably correct GAMMA programs. However,
following the stepwise derivation approach to writing GAMMA programs is not as straightforward as writing
CHAM rules. Moreover, CHAM’s nesting of solutions allows for structurally more elaborate encodings of
data and in particular for more computational locality than GAMMA. Also, the CHAM appears to be more
suitable as a framework for defining semantics of programming languages than the GAMMA language; the
latter was mainly conceived as a programming language itself, suitable for executing parallel programs on
parallel machines [3], rather than as a semantic framework.

The distinction between heating, cooling and reaction rules in CHAM is in general left to the user. There
are no well-accepted criteria and/or principles stating when a rule should be in one category or another. For
example, should a rule that cleans up a solution by removing residue molecules be a heating or a colling rule?
We prefer to think of it as a cooling rule, because it falls under the broad category of rules which “structurally
rearrange the solution after reactions take place” which we methodologically decided to call cooling rules.
However, the authors of the CHAM prefer to consider such rules to be heating rules, with the intuition that
“the residue molecules evaporate when heated” [9]. While the distinction between heating and cooling rules
may have a flavor of subjectivity, the distinction between actual reaction rules and heating/cooling rules is
more important because it gives the computational granularity of one’s CHAM. Indeed, it is common to
abstract away the heating/cooling steps in a CHAM rewriting sequence as internal steps and then define
various relations of interest on the remaining reaction steps possibly relating different CHAMS, such as
behavioral equivalence, simulation and/or bisimulation relations [8, 9].

The technique we used in this section to reversibly and possibly non-deterministically sequentialize the
program syntax by heating/cooling it into a list of computational tasks was borrowed from the K framework
[68, 66, 45, 64] (also Section 3.12). This mechanism is also reminiscent of Danvy and Nielsen’s refocusing
technique [19, 20], used to execute reduction semantics with evaluation contexts by decomposing evaluation
contexts into stacks and then only incrementally modifying these stacks during the reduction process. Our
representation of the CHAM into rewrite logic was inspired from related representations by S, erbănut, ă et al.
[74] and by Meseguer12 [42]. However, our representation differs in that it enforces the CHAM rewriting
to only take place in solutions, this way being completely faithful to the intended meaning of the CHAM
reactions, while the representations in [74, 42] are slightly more permissive, allowing rewrites to take place
everywhere rules match; as explained, this is relevant only when the left-hand-side of the rule contains
precisely one molecule.

We conclude this section with a note on the concurrency of CHAM rewriting. As already explained,
we are not aware of any formal definition of a CHAM rewriting relation that captures the truly concurrent
computation advocated by the CHAM. This is unfortunate, because its concurrency potential is one of the
most appealing aspects of the CHAM. Moreover, as already discussed (after Theorem 21), our rewrite logic

12Meseguer [42] was published in the same volume of the Journal of Theoretical Computer Science as the CHAM extended paper
[9] (the first CHAM paper [8] was published two years before, in 1990, same as the first papers on rewrite logic [40, 39, 41]).
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representation of the CHAM is faithful only with respect to one non-concurrent step and interleaves steps
taking place within the same solutions no matter whether they involve common molecules or not, so we
cannot borrow rewrite logic’s concurrency to obtain a concurrent semantics for the CHAM. What can be done,
however, is to attempt a different representation of the CHAM into rewrite logic based on ideas proposed
by Meseguer in [43] to capture (a limited form of) graph rewriting by means of equational encodings. The
encoding in [43] is theoretically important, but, unfortunately, yields rewrite logic theories which are not
feasible in practice using the current implementation of Maude.

3.8.5 Exercises

Exercise 168. For any CHAM, any molecules mol1, . . . , molk, and any 1 ≤ i ≤ k, the sequents

CHAM ` {|mol1 . . . molk|} ↔ {|mol1 B {|mol2 . . .moli|} moli+1 . . .molk|}
are derivable, where if i = 1 then the bag mol2 . . .moli is the empty bag.

Exercise 169. Modify the CHAM semantics of IMP in Figure 3.45 to use a state data-structure as we did in
the previous semantics instead of representing the state as a solution of binding molecules.

Exercise 170. Add a cleanup (cooling) rule to the CHAM semantics of IMP in Figure 3.45 to remove the
useless syntactic subsolution when the computation is terminated. The resulting solution should only contain
a state (i.e., it should have the form {|σ|}, and not {|{|σ|}|} or {|{| · |} {|σ|}|}).
Exercise 171. Modify the CHAM semantics of IMP in Figures 3.44 and 3.45 so that / short-circuits when
the numerator evaluates to 0.
Hint: One may need to make one of the heating/cooling rules for / conditional.

Exercise 172. Modify the CHAM semantics of IMP in Figures 3.44 and 3.45 so that conjunction is non-
deterministically strict in both its arguments.

Exercise 173. Same as Exercise 84, but for CHAM instead of big-step SOS: add variable increment to IMP,
like in Section 3.8.2
? Like for the Maude definition of big-step SOS and unlike for the Maude definitions of small-step SOS,
MSOS and reduction semantics with evaluation contexts above, the resulting Maude definition can only
exhibit three behaviors (instead of five) of the program nondet++Pgm in Exercise 84. This limitation is due
to our decision (in Section 3.8) to only heat on non-results and cool on results when implementing CHAMs
into Maude. This way, the resulting Maude specifications are executable at the expense at losing some of the
behaviors due to non-deterministic evaluation strategies.

Exercise 174. Same as Exercise 88, but for the CHAM instead of big-step SOS: add input/output to IMP, like
in Section 3.8.2.

Exercise 175. Same as Exercise 92, but for the CHAM instead of big-step SOS: add abrupt termination to
IMP, like in Section 3.8.2.

Exercise 176. Same as Exercise 104, but for the CHAM instead of small-step SOS: add dynamic threads to
IMP, like in Section 3.8.2.

Exercise? 177. This exercise asks to define IMP++ in CHAM, in various ways. Specifically, redo Exer-
cises 114, 115, 116, 117, and 118, but for the CHAM of IMP++ discussed in Section 3.8.2 instead of its
small-step SOS in Section 3.5.6.
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[4] Jean-Pierre Banâtre and Daniel Le Métayer. A new computational model and its discipline of pro-
gramming. Technical Report INRIA-RR–566, Institut National de Recherche en Informatique et en
Automatique (INRIA), 35 - Rennes (France), 1986.
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[41] José Meseguer. Rewriting as a unified model of concurrency. In Theories of Concurrency: Unification
and Extension (CONCUR’90), volume 458 of Lecture Notes in Computer Science, pages 384–400.
Springer, 1990.
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