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Conventional Semantic Approaches

 Big-step structural operational semantics (Big-step SOS)

 Small-step structural operational semantics (Small-step SOS)

 Denotational semantics

 Modular structural operational semantics (Modular SOS)

 Reduction semantics with evaluation contexts

 Abstract Machines

 The chemical abstract machine

 Axiomatic semantics

A language designer should understand the existing design 

approaches, techniques and tools, to know what is possible and 

how, or to come up with better ones. This part of the course will 

cover the major PL semantic approaches, such as:
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IMP

A simple imperative language
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IMP – A Simple Imperative Language

 Arithmetic expressions

 Boolean expressions

 Assignment statements

 Conditional statements

 While loop statements

 Blocks

We will exemplify the conventional semantic 

approaches by means of IMP, a very simple non-

procedural imperative language, with
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IMP Syntax

Suppose that, for demonstration

purposes, we want “+” and “/”

to be non-deterministically strict,

“<=“ to be sequentially strict,

and “&&” to be short-circuited

Comma-separated 

list of identifiers
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IMP Syntax in Maude
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IMP State

 Most semantics need some notion of state.  A state holds all the 
semantic ingredients to fully define the meaning of a given 
program or fragment of program.

 For IMP, a state is a partial finite-domain function from identifiers 
to integers (i.e., a function defined only on a finite subset of 
identifiers and undefined on the rest), written using a half-arrow:

 We let State denote the set of such functions, and may write it

or
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Lookup, Update and Initialization

 We may write states by enumerating each identifier binding.  

For example, the following state binds x to 8 and y to 0:

 Typical state operations are lookup, update and initialization

 Lookup

 Update

 Initialization

 =
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IMP State in Maude
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BIG-STEP SOS

Big-step structural operational semantics
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Big-Step Structural Operational 

Semantics (Big-Step SOS)

 Gilles Kahn (1987), under the name natural semantics.  Also 

known as relational semantics, or evaluation semantics.  We can 

regard a big-step SOS as a recursive interpreter, telling for a 

fragment of code and state what it evaluates to.

 Configuration: tuple containing code and semantic ingredients

 E.g., 

 Sequent: Pair of configurations, to be derived or proved

 E.g.,  

 Rule: Tells how to derive a sequent from others

 E.g., 

11

Read 

“evaluates to”
Premises

Conclusion
May omit line 

when no premises



Big-Step SOS of IMP - Arithmetic

State 

lookup

12

Side condition ensures rule will never 

apply when a2 evaluates to 0

Read: “provided that a1 evaluates to i1 in 

and a2 evaluates to i2 in  , then a1  + a2

evaluates to the integer sum of i1 and i2 in 



Big-Step SOS of IMP - Boolean
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Big-Step SOS of IMP - Statements

State 

update
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Big-Step SOS of IMP - Programs

State 

initialization
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Big-Step Rule Instances

 Rules are schemas, allowing recursively enumerable many 

instances; side conditions filter out instances

 E.g., these are correct instances of the rule for division 

The second may look suspicious, but it is not.  Normally, one should 

never be able to apply it, because one cannot prove its hypotheses

 However, the following is not a correct instance (no matter what ? is):
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Big-Step SOS Derivation

The following is a valid proof derivation, or proof tree, using the

big-step SOS proof system of IMP above.

Suppose that x and y are identifiers and  (x)=8 and  (y)=0.
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Big-Step SOS for Type Systems

 Big-Step SOS is routinely used to define type systems for 
programming languages

 The idea is that a fragment of code c, in a given type environment 
, can be assigned a certain type . We typically write 

instead of

 Since all variables in IMP have integer type,  can be replaced by 
a list of untyped variables in our case.  In general, however, a 
type environment  contains typed variables, that is, pairs “x :”.
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Typing Arithmetic Expressions
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Typing Boolean Expressions
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Typing Statements

The type of s

can be either 

block or stmt
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Typing Programs
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Big-Step SOS Type Derivation

Like the big-step rules for the concrete semantics of IMP, 

the ones for its type system are also rule schemas.  We 

next show a proof derivation for the well-typed-ness of an 

IMP program that adds all the numbers from 1 to 100:

where
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Big-Step SOS Type Derivation
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Big-Step SOS Type Derivation
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Big-Step SOS in Rewriting Logic

 Any big-step SOS can be associated a rewrite logic theory (or, 

equivalently, a Maude module)

 The idea is to associate to each big-step SOS rule

a rewrite rule

(over-lining means “algebraization”)
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SMALL-STEP SOS

Small-step structural operational semantics
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 Gordon Plotkin (1981)

 Also known as transitional semantics, or reduction semantics

 One can regard a small-step SOS as a device capable of 

executing a program step-by-step

 Configuration: tuple containing code and semantic ingredients

 E.g., 

 Sequent (transition): Pair of configurations, to be derived (proved)

 E.g.,  

 Rule: Tells how to derive a sequent from others

 E.g., 

Small-Step Structural Operational 

Semantics (Small-Step SOS)
28



Small-Step SOS of IMP - Arithmetic

State 

lookup
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+ is non-deterministic (its 

arguments can evaluate in 

any order, and interleaved



Small-Step SOS of IMP - Arithmetic

Side condition ensures 

rule will never apply 

when denominator is 0
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/ is also non-deterministic



Small-Step SOS of IMP - Boolean

Ensures 

sequential 

strictness
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Small-Step SOS of IMP - Boolean

Short-circuit

semantics
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Small-Step SOS Derivation

The following is a valid proof derivation, or proof tree, using the

small-step SOS proof system for expressions of IMP above.

Suppose that x and y are identifiers and (x)=1.
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Small-Step SOS of IMP - Statements

State 

update

34



Small-Step SOS of IMP - Statements

State 

initialization
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Small-Step SOS in Rewriting Logic

 Any small-step SOS can be associated a rewrite logic theory 

(or, equivalently, a Maude module)

 The idea is to associate to each small-step SOS rule

a rewrite rule

(the circle means “ready for one step”)
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DENOTATIONAL

Denotational or fixed-point semantics

37



Denotational Semantics

 Christopher Strachey and Dana Scott (1970)

 Associate denotation, or meaning, to (fragments of) 

programs into mathematical domains; for example,

 The denotation of an arithmetic expression in IMP is a 

partial function from states to integer numbers

 The denotation of a statement in IMP is a partial 

function from states to states
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Denotational Semantics

 Christopher Strachey and Dana Scott (1970)

 Associate denotation, or meaning, to (fragments of) 

programs into mathematical domains; for example,

 The denotation of an arithmetic expression in IMP is a 

partial function from states to integer numbers

 The denotation of a statement in IMP is a partial 

function from states to states

Partial because 

some expressions 

may be undefined in 

some states (e.g., 

division by zero)

Partial because 

some expressions 

may be undefined in 

some states (e.g., 

division by zero)

Partial because some 

statements in some 

states may use 

undefined expressions, 

or may not terminate

Partial because some 

statements in some 

states may use 

undefined expressions, 

or may not terminate
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Denotational Semantics - Terminology

Denotation

(function)

Denotation

(function)

Fragment 

of program

Fragment 

of program

Mathematical 

domain

Mathematical 

domain
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Denotational Semantics - Compositional

 Once the right mathematical domains are chosen, 
giving a denotational semantics to a language should 
be a straightforward and compositional process; e.g.

 The hardest part is to give semantics to recursion.  
This is done using fixed-points.
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Mathematical Domains

 Mathematical domains can be anything; it is common 
though that they are organized as complete partial 
orders with bottom element

 The partial order structure captures the intuition of 
informativeness: a  b means a is less informative than 
b.  E.g., as a loop is executed, we get more and more 
information about its semantics

 Completeness means that chains of more and more 
informative elements have a limit

 The bottom element, written , stands for undefined, 
or no information at all
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Partial Orders

 Partial order          is set    and binary rel.    which is

 Reflexive: 

 Transitive:

 Anti-symmetric:

 Total order = partial order with

 Important example: domains of partial functions

iff defined everywhere     is defined and

whenever          is defined
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(Least) Upper Bounds

 An upper bound (u.b.) of            is any element            

such that           for any  

 The least upper bound (l.u.b.) of            , written       , 

is an upper bound with              for any u.b.  

 When they exist, least upper bounds are unique

 The domains of partial functions,                  , admit 

upper bounds and least upper bounds if and only if 

all the partial functions in the considered set are 

compatible: any two agree on any element in which 

both are defined
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Complete Partial Orders (CPO)

 A chain in           is an infinite sequence

also written

 Partial order          is a complete partial order (CPO) iff

any of its chains admits a least upper bound

 is a bottomed CPO (BCPO) iff  is a minimal 

element of     , also called its bottom

 The domain of partial functions                    is a BCPO, 

where  is the partial function undefined everywhere
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Monotone and Continuous Functions

 monotone iff

implies     

 Monotone functions preserve chains:

chain implies                        chain

 However, they do not always preserve l.u.b. of chains

 continuous iff monotone and 

preserves l.u.b. of chains:

 , the domain of continuous 

functions between two BCPOs, is itself a BCPO
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Fixed-Point Theorem

 Let               be a BCPO and 

be a continuous function.  Then the l.u.b. of the chain

is the least fixed-point of     

 Typically written

 Proof sketch:
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Applications of Fixed-Point Theorem

 Consider the following “definition” of the factorial:

 This is a recursive definition

 Is it well-defined?  Why?

 Yes. Because it is the least fixed-point of the following 

continuous (prove it!) function from              to itself 
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Denotational Semantics of IMP 

Arithmetic Expressions
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Denotational Semantics of IMP 

Boolean Expressions
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Denotational Semantics of IMP

Statements (without loops)
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Denotational Semantics of IMP

While

 We first define a continuous function as follows

 Then we define the denotational semantics of while
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Formalizing Denotational Semantics

 A denotational semantics is like a “compiler” of the 
defined programming language into mathematics

 Formalizing denotational semantics in RL reduces to 
formalizing the needed mathematical domains:

 Integers, Booleans, etc.

 Functions (with cases) and function applications

 Fixed-points

 Such mathematics is already available in functional 
programming languages, which makes them 
excellent candidates for denotational semantics!
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Denotational Semantics in Rewriting Logic 

 Rewriting/equational logics do not have builtin

functions and fixed-points, so they need be defined

 They are, however, easy to define using rewriting

 In fact, we do not need rewrite rules, all we need is 

equations to define these simple domains

 See next slide
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Functional CPO Domain
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Denotational Semantics of IMP in RL

Signature
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Denotational Semantics of IMP in RL

Arithmetic Expressions
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Denotational Semantics of IMP in RL

Boolean Expressions
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Denotational Semantics of IMP in RL

Statements and Programs
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MSOS

Modular structural operational semantics
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Modular Structural Operational 

Semantics (Modular SOS, or MSOS)

 Peter Mosses (1999)

 Addresses the non-modularity aspects of SOS

 A definitional framework is non-modular when, in order to add a new 

feature to an existing language, one needs to revisit and change 

some of the already defined, unrelated language features

 The non-modularity of SOS becomes clear when we define IMP++

 Why modularity is important

 Modifying existing rules when new rules are added is error prone

 When experimenting with language design, one needs to make 

changes quickly; having to do unrelated changes slows us down

 Rapid language development, e.g., domain-specific languages
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Philosophy of MSOS

 Separate the syntax from configurations and treat it differently

 Transitions go from syntax to syntax, hiding the other 

configuration components into transition labels

 Labels encode all the non-syntactic configuration changes

 Specialized notation in transition labels, to

 Say that certain configuration components stay unchanged

 Say that certain configuration changes are propagated from the 

premise to the conclusion of a rule
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MSOS Transitions

 An MSOS transition has the form

 P and P’ are programs or fragments of program

  is a label describing the changes in the configuration components, 
defined as a record; primed fields stay for “after” the transition

 Example:

 This rule can be automatically “desugared” into the SOS rule

But also into (if the configuration contains more components, like in IMP++)

63



MSOS Labels

 Labels are field assignments, or records, and can use “…” for 

“and so on”, called record comprehension

 Fields can be primed or not.

 Unprimed = configuration component before the transition is applied

 Primed = configuration component after the transition is applied

 Some fields appear both unprimed and primed (called read-

write), while others appear only primed (called write-only) or 

only unprimed (called read-only)
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MSOS Labels

 Field types

 Read/write = fields which appear both unprimed and unprimed

 Write-only = fields which appear only primed

 Read –only = fields which appear only unprimed
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MSOS Rules

 Like in SOS, but using MSOS transitions as sequents

 Same labels or parts of them can be used multiple times in a rule

 Example:

 Same  means that changes propagate from premise to conclusion

 The author of MSOS now promotes a simplifying notation

 If the premise and the conclusion repeat the same label or part of it, 

simply drop that label or part of it.  For example:
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MSOS of IMP - Arithmetic 

State

lookup
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MSOS of IMP - Arithmetic 
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MSOS of IMP - Boolean
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MSOS of IMP - Boolean
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MSOS of IMP - Statements
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MSOS of IMP - Statements
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MSOS in Rewriting Logic

 Any MSOS can be associated a rewrite logic theory (or, 

equivalently, a Maude module)

 Idea:

 Desugar MSOS into SOS

 Apply the SOS-to-rewriting-logic representation, but

 Hold the non-syntactic configuration components in an ACI-data-

structure, so that we can use ACI matching to retrieve only the fields 

of interest (which need to be read or written to)
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MSOS of IMP in Maude

 See file

 imp-semantics-msos.maude
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RSEC

Reduction semantics with evaluation contexts
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Reduction Semantics with Evaluation 

Contexts (RSEC)

 Matthias Felleisen and collaborators (1992)

 Previous operational approaches encoded the program 
execution context as a proof context, by means of rule 
conditions or premises

 This has a series of advantages, but makes it hard to define control 
intensive features, such as abrupt termination, exceptions, call/cc, etc.

 We would like to have the execution context explicit, so that we 
can easily save it, change it, or even delete it

 Reduction semantics with evaluation contexts does precisely that

 It allows to formally define evaluation contexts

 Rules become mostly unconditional

 Reductions can only happen “in context”
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Splitting and Plugging

 RSEC relies on reversible implicit mechanisms to

 Split syntax into an evaluation context and a redex

 Plug a redex into an evaluation contexts and obtain syntax again
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Evaluation Contexts

 Evaluation contexts are typically defined by the same means 

that we use to define the language syntax, that is, grammars

 The hole  represents the place where redex is to be plugged

 Example:
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Correct Evaluation Contexts
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Wrong Evaluation Contexts
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Splitting/Plugging of Syntax
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Characteristic Rule of RSEC

 The characteristic rule of RSEC allows us to only define 

semantic rules stating how redexes are reduced

 This significantly reduces the number of rules

 The semantic rules are mostly unconditional (no premises)

 The overall result is a semantics which is compact and easy to read 

and understand
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RSEC of IMP – Evaluation Contexts
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RSEC of IMP – Rules
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RSEC Derivation
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RSEC in Rewriting Logic

 Like with the other styles, RSEC can also be faithfully 

represented in rewriting logic and, implicitly, in Maude

 However, RSEC is context sensitive, while rewriting logic is not 

(rewriting logic allows rewriting strategies, but one can still not 

match and modify the context, as we can do in RSEC)

 We therefore need

 A mechanism to achieve context sensitivity (the splitting/plugging) in 

rewriting logic

 Use that mechanism to represent the characteristic rule of RSEC

86



Evaluation Contexts in Rewriting Logic

 An evaluation context CFG production in RSEC has the form

 Associate to each such production one rule and one equation:

 Plus, we add one generic rule and one generic equation:
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IMP Examples:

 For productions

we add the following rewrite logic rules and equations:  
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RSEC Reduction Rules in Rewriting Logic
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IMP Examples

 One rule of first kind

 No need for equations of second kind

 Characteristic rule of RSEC:

 The remaining rules are as natural as can be:
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RSEC of IMP in Maude

 See file

 imp-split-plug.maude

 See files

 imp-semantics-evaluation-contexts-1.maude

 imp-semantics-evaluation-contexts-2.maude

 imp-semantics-evaluation-contexts-3.maude
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CHAM

The chemical abstract machine
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The Chemical Abstract Machine (CHAM)

 Berry and Boudol (1992)

 Both a model of concurrency and a specific semantic style

 Chemical metaphor

 States regarded as chemical solutions containing floating molecules

 Molecules can interact with each other by means of reactions

 Reactions take place concurrently, unrestricted by context

 Solutions are encapsulated within new molecules, using membranes

 The following is a solution containing k molecules:
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CHAM Syntax and Rules

Airlock
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CHAM Rules

 Ordinary rewrite rules between solution terms:

 Rewriting takes place only within solutions

 Three (metaphoric) kinds of rules

 Heating rules using         : structurally rearrange solution

 Cooling rules using         : clean up solution after reactions

 Reaction rules using         : change solution irreversibly
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CHAM Airlock

 Allows to extract molecules from encapsulated solutions

 Governed by two rules coming in a heating/cooling pair:
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CHAM Molecule Configuration for IMP

 A top-level solution containing two subsolution molecules

 One for holding the syntax

 Another for holding the state

 Example:

Syntax State
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Airlock can be Problematic

 Airlock cannot be used to encode evaluation strategies; 

heating/cooling rules of the form

are problematic, because they yield ambiguity, e.g., 
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Correct Representation of Syntax

 Other attempts fail, too (see the lecture notes)

 We need some mechanism which is not based on airlocks

 We borrow the representation approach of K

 Term                           represented as

 Can be achieved using heating/cooling rules of the form
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CHAM Heating-Cooling Rules for IMP
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Examples of Syntax Heating/Cooling 

 The following is correct heating/cooling of syntax:

 The following is incorrect heating/cooling of syntax:
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CHAM Reaction Rules for IMP
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Sample CHAM Rewriting
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CHAM in Rewriting Logic

 CHAM rules cannot be used unchanged as rewrite rules

 They need to only apply in solutions, not anywhere they match

 We represent each CHAM rule

into a rewrite logic rule

where Ms is a fresh bag-of-molecule variable and the overlined

molecules are the algebraic variants of the original ones,

replacing in particular their meta-variables by variables
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CHAM of IMP in Maude

 See file

 imp-heating-cooling.maude

 See file

 imp-semantics-cham.maude
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COMPARING 

CONVENTIONAL 

EXECUTABLE 

SEMANTICS

How good are the various semantic approaches?
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IMP++: A Language Design Experiment

 We next discuss the conventional executable semantics approaches 

in depth, aiming at understanding their pros and cons

 Our approach is to extend each semantics of IMP with various 

common features (we call the resulting language IMP++)

 Variable increment – this will add side effects to expressions

 Input/Output – this will require changes in the configuration

 Abrupt termination – this requires explicit handling of control

 Dynamic threads – this requires handling concurrency and sharing

 Local variables – this requires handling environments

 We will first treat each extension of IMP independently, i.e., we do 

not pro-actively take semantic decisions when defining a feature 

that will help the definition of other features later on.  Then, we will 

put all features together into our IMP++ final language.
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IMP++ Variable Increment

 Syntax:

 Variable increment is very common (C, C++, Java, etc.)

 We only consider pre-increment (first increment, then return value)

 The problem with increment in some semantic approaches is 

that it adds side effects to expressions.  Therefore, if one did 

not pro-actively account for that then one needs to change 

many existing and unrelated semantics rules, if not all.
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IMP++ Variable Increment

Big-Step SOS 

 Previous big-step SOS rules had the form:

 Big-step SOS is the most affected by side effects

 Needs to change its sequents from                        to

 And all the existing rules accordingly, e.g.:
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IMP++ Variable Increment

Big-Step SOS 

 Recall IMP operators like / were non-deterministically strict. 

Here is an attempt to achieve that with big-step SOS

 All we got is “non-deterministic choice” strictness: choose an order, 

then evaluate the arguments in that order

 Some behaviors are thus lost, but this is relatively acceptable in practice since 

programmers should not rely on those behaviors in their programs anyway 

(the loss of behaviors when we add threads is going to be much worse)
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IMP++ Variable Increment

Big-Step SOS 

 We are now ready to add the big-step SOS for variable 

increment (this is easy now, the hard part was to get here):

 Example:

 How many values can the following expression possibly evaluate to 

under the big-step SOS of IMP++ above (assume x is initially 1)?

 Can it evaluate to 0 or even be undefined under a fully non-

deterministic evaluation strategy?
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IMP++ Variable Increment

Small-Step SOS 

 Previous small-step SOS rules had the form:

 Small-step SOS less affected than big-step SOS, but still 

requires many rule changes to account for the side effects:
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IMP++ Variable Increment

Small-Step SOS 

 Since small-step SOS “gets back to the top” at each step, it 

actually does not lose any non-deterministic behaviors 

 We get fully non-deterministic evaluation strategies for all the IMP constructs 

instead of “non-deterministic choice” ones

 The semantics of variable increment almost the same as in big-

step SOS (indeed, variable increment is an atomic operation):
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IMP++ Variable Increment

MSOS 

 Previous MSOS rules had the form:

 All semantic changes are hidden within labels, which are 

implicitly propagated through the general MSOS mechanism

 Consequently, the MSOS of IMP only needs the following rule 

to accommodate variable updates; nothing else changes!
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IMP++ Variable Increment

Reduction Semantics with Eval. Contexts 

 Previous RSEC evaluation contexts and rules had the form:

 Evaluation contexts, together with the characteristic rule of 

RSEC, allows for compact unconditional rules, mentioning only 

what is needed from the entire configuration

 Consequently, the RSED of IMP only needs the following rule to 

accommodate variable updates; nothing else changes!
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IMP++ Variable Increment

CHAM 

 Previous CHAM heating/cooling/reaction rules had the form:

 Since the heating/cooling rules achieve the role of the evaluation 

contexts and since one can only mention the necessary molecules 

in each rule, one does not need to change anything either!

 All one needs to do is to add the following rule:
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Where is the rest?

 We discussed the remaining features in class, using 

the whiteboard and colors.

 The lecture notes contain the complete information, 

even more than we discussed in class.
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