
CONVENTIONAL

SEMANTIC

APPROACHES

Grigore Rosu

CS522 – Programming Language Semantics

1

Conventional Semantic Approaches

 Big-step structural operational semantics (Big-step SOS)

 Small-step structural operational semantics (Small-step SOS)

 Denotational semantics

 Modular structural operational semantics (Modular SOS)

 Reduction semantics with evaluation contexts

 Abstract Machines

 The chemical abstract machine

 Axiomatic semantics

A language designer should understand the existing design

approaches, techniques and tools, to know what is possible and

how, or to come up with better ones. This part of the course will

cover the major PL semantic approaches, such as:

2

IMP

A simple imperative language

3

IMP – A Simple Imperative Language

 Arithmetic expressions

 Boolean expressions

 Assignment statements

 Conditional statements

 While loop statements

 Blocks

We will exemplify the conventional semantic

approaches by means of IMP, a very simple non-

procedural imperative language, with

4

IMP Syntax

Suppose that, for demonstration

purposes, we want “+” and “/”

to be non-deterministically strict,

“<=“ to be sequentially strict,

and “&&” to be short-circuited

Comma-separated

list of identifiers

5

IMP Syntax in Maude
6

IMP State

 Most semantics need some notion of state. A state holds all the
semantic ingredients to fully define the meaning of a given
program or fragment of program.

 For IMP, a state is a partial finite-domain function from identifiers
to integers (i.e., a function defined only on a finite subset of
identifiers and undefined on the rest), written using a half-arrow:

 We let State denote the set of such functions, and may write it

or

7

Lookup, Update and Initialization

 We may write states by enumerating each identifier binding.

For example, the following state binds x to 8 and y to 0:

 Typical state operations are lookup, update and initialization

 Lookup

 Update

 Initialization

 =

8

IMP State in Maude
9

BIG-STEP SOS

Big-step structural operational semantics

10

Big-Step Structural Operational

Semantics (Big-Step SOS)

 Gilles Kahn (1987), under the name natural semantics. Also

known as relational semantics, or evaluation semantics. We can

regard a big-step SOS as a recursive interpreter, telling for a

fragment of code and state what it evaluates to.

 Configuration: tuple containing code and semantic ingredients

 E.g.,

 Sequent: Pair of configurations, to be derived or proved

 E.g.,

 Rule: Tells how to derive a sequent from others

 E.g.,

11

Read

“evaluates to”
Premises

Conclusion
May omit line

when no premises

Big-Step SOS of IMP - Arithmetic

State

lookup

12

Side condition ensures rule will never

apply when a2 evaluates to 0

Read: “provided that a1 evaluates to i1 in 

and a2 evaluates to i2 in  , then a1 + a2

evaluates to the integer sum of i1 and i2 in 

Big-Step SOS of IMP - Boolean
13

Big-Step SOS of IMP - Statements

State

update

14

Big-Step SOS of IMP - Programs

State

initialization

15

Big-Step Rule Instances

 Rules are schemas, allowing recursively enumerable many

instances; side conditions filter out instances

 E.g., these are correct instances of the rule for division

The second may look suspicious, but it is not. Normally, one should

never be able to apply it, because one cannot prove its hypotheses

 However, the following is not a correct instance (no matter what ? is):

16

Big-Step SOS Derivation

The following is a valid proof derivation, or proof tree, using the

big-step SOS proof system of IMP above.

Suppose that x and y are identifiers and  (x)=8 and  (y)=0.

17

Big-Step SOS for Type Systems

 Big-Step SOS is routinely used to define type systems for
programming languages

 The idea is that a fragment of code c, in a given type environment
, can be assigned a certain type . We typically write

instead of

 Since all variables in IMP have integer type,  can be replaced by
a list of untyped variables in our case. In general, however, a
type environment  contains typed variables, that is, pairs “x :”.

18

Typing Arithmetic Expressions
19

Typing Boolean Expressions
20

Typing Statements

The type of s

can be either

block or stmt

21

Typing Programs
22

Big-Step SOS Type Derivation

Like the big-step rules for the concrete semantics of IMP,

the ones for its type system are also rule schemas. We

next show a proof derivation for the well-typed-ness of an

IMP program that adds all the numbers from 1 to 100:

where

23

Big-Step SOS Type Derivation
24

Big-Step SOS Type Derivation
25

Big-Step SOS in Rewriting Logic

 Any big-step SOS can be associated a rewrite logic theory (or,

equivalently, a Maude module)

 The idea is to associate to each big-step SOS rule

a rewrite rule

(over-lining means “algebraization”)

26

SMALL-STEP SOS

Small-step structural operational semantics

27

 Gordon Plotkin (1981)

 Also known as transitional semantics, or reduction semantics

 One can regard a small-step SOS as a device capable of

executing a program step-by-step

 Configuration: tuple containing code and semantic ingredients

 E.g.,

 Sequent (transition): Pair of configurations, to be derived (proved)

 E.g.,

 Rule: Tells how to derive a sequent from others

 E.g.,

Small-Step Structural Operational

Semantics (Small-Step SOS)
28

Small-Step SOS of IMP - Arithmetic

State

lookup

29

+ is non-deterministic (its

arguments can evaluate in

any order, and interleaved

Small-Step SOS of IMP - Arithmetic

Side condition ensures

rule will never apply

when denominator is 0

30

/ is also non-deterministic

Small-Step SOS of IMP - Boolean

Ensures

sequential

strictness

31

Small-Step SOS of IMP - Boolean

Short-circuit

semantics

32

Small-Step SOS Derivation

The following is a valid proof derivation, or proof tree, using the

small-step SOS proof system for expressions of IMP above.

Suppose that x and y are identifiers and (x)=1.

33

Small-Step SOS of IMP - Statements

State

update

34

Small-Step SOS of IMP - Statements

State

initialization

35

Small-Step SOS in Rewriting Logic

 Any small-step SOS can be associated a rewrite logic theory

(or, equivalently, a Maude module)

 The idea is to associate to each small-step SOS rule

a rewrite rule

(the circle means “ready for one step”)

36

DENOTATIONAL

Denotational or fixed-point semantics

37

Denotational Semantics

 Christopher Strachey and Dana Scott (1970)

 Associate denotation, or meaning, to (fragments of)

programs into mathematical domains; for example,

 The denotation of an arithmetic expression in IMP is a

partial function from states to integer numbers

 The denotation of a statement in IMP is a partial

function from states to states

38

Denotational Semantics

 Christopher Strachey and Dana Scott (1970)

 Associate denotation, or meaning, to (fragments of)

programs into mathematical domains; for example,

 The denotation of an arithmetic expression in IMP is a

partial function from states to integer numbers

 The denotation of a statement in IMP is a partial

function from states to states

Partial because

some expressions

may be undefined in

some states (e.g.,

division by zero)

Partial because

some expressions

may be undefined in

some states (e.g.,

division by zero)

Partial because some

statements in some

states may use

undefined expressions,

or may not terminate

Partial because some

statements in some

states may use

undefined expressions,

or may not terminate

39

Denotational Semantics - Terminology

Denotation

(function)

Denotation

(function)

Fragment

of program

Fragment

of program

Mathematical

domain

Mathematical

domain

40

Denotational Semantics - Compositional

 Once the right mathematical domains are chosen,
giving a denotational semantics to a language should
be a straightforward and compositional process; e.g.

 The hardest part is to give semantics to recursion.
This is done using fixed-points.

41

Mathematical Domains

 Mathematical domains can be anything; it is common
though that they are organized as complete partial
orders with bottom element

 The partial order structure captures the intuition of
informativeness: a  b means a is less informative than
b. E.g., as a loop is executed, we get more and more
information about its semantics

 Completeness means that chains of more and more
informative elements have a limit

 The bottom element, written , stands for undefined,
or no information at all

42

Partial Orders

 Partial order is set and binary rel. which is

 Reflexive:

 Transitive:

 Anti-symmetric:

 Total order = partial order with

 Important example: domains of partial functions

iff defined everywhere is defined and

whenever is defined

43

(Least) Upper Bounds

 An upper bound (u.b.) of is any element

such that for any

 The least upper bound (l.u.b.) of , written ,

is an upper bound with for any u.b.

 When they exist, least upper bounds are unique

 The domains of partial functions, , admit

upper bounds and least upper bounds if and only if

all the partial functions in the considered set are

compatible: any two agree on any element in which

both are defined

44

Complete Partial Orders (CPO)

 A chain in is an infinite sequence

also written

 Partial order is a complete partial order (CPO) iff

any of its chains admits a least upper bound

 is a bottomed CPO (BCPO) iff  is a minimal

element of , also called its bottom

 The domain of partial functions is a BCPO,

where  is the partial function undefined everywhere

45

Monotone and Continuous Functions

 monotone iff

implies

 Monotone functions preserve chains:

chain implies chain

 However, they do not always preserve l.u.b. of chains

 continuous iff monotone and

preserves l.u.b. of chains:

 , the domain of continuous

functions between two BCPOs, is itself a BCPO

46

Fixed-Point Theorem

 Let be a BCPO and

be a continuous function. Then the l.u.b. of the chain

is the least fixed-point of

 Typically written

 Proof sketch:

47

Applications of Fixed-Point Theorem

 Consider the following “definition” of the factorial:

 This is a recursive definition

 Is it well-defined? Why?

 Yes. Because it is the least fixed-point of the following

continuous (prove it!) function from to itself

48

Denotational Semantics of IMP

Arithmetic Expressions
49

Denotational Semantics of IMP

Boolean Expressions
50

Denotational Semantics of IMP

Statements (without loops)
51

Denotational Semantics of IMP

While

 We first define a continuous function as follows

 Then we define the denotational semantics of while

52

Formalizing Denotational Semantics

 A denotational semantics is like a “compiler” of the
defined programming language into mathematics

 Formalizing denotational semantics in RL reduces to
formalizing the needed mathematical domains:

 Integers, Booleans, etc.

 Functions (with cases) and function applications

 Fixed-points

 Such mathematics is already available in functional
programming languages, which makes them
excellent candidates for denotational semantics!

53

Denotational Semantics in Rewriting Logic

 Rewriting/equational logics do not have builtin

functions and fixed-points, so they need be defined

 They are, however, easy to define using rewriting

 In fact, we do not need rewrite rules, all we need is

equations to define these simple domains

 See next slide

54

Functional CPO Domain
55

Denotational Semantics of IMP in RL

Signature
56

Denotational Semantics of IMP in RL

Arithmetic Expressions
57

Denotational Semantics of IMP in RL

Boolean Expressions
58

Denotational Semantics of IMP in RL

Statements and Programs
59

MSOS

Modular structural operational semantics

60

Modular Structural Operational

Semantics (Modular SOS, or MSOS)

 Peter Mosses (1999)

 Addresses the non-modularity aspects of SOS

 A definitional framework is non-modular when, in order to add a new

feature to an existing language, one needs to revisit and change

some of the already defined, unrelated language features

 The non-modularity of SOS becomes clear when we define IMP++

 Why modularity is important

 Modifying existing rules when new rules are added is error prone

 When experimenting with language design, one needs to make

changes quickly; having to do unrelated changes slows us down

 Rapid language development, e.g., domain-specific languages

61

Philosophy of MSOS

 Separate the syntax from configurations and treat it differently

 Transitions go from syntax to syntax, hiding the other

configuration components into transition labels

 Labels encode all the non-syntactic configuration changes

 Specialized notation in transition labels, to

 Say that certain configuration components stay unchanged

 Say that certain configuration changes are propagated from the

premise to the conclusion of a rule

62

MSOS Transitions

 An MSOS transition has the form

 P and P’ are programs or fragments of program

  is a label describing the changes in the configuration components,
defined as a record; primed fields stay for “after” the transition

 Example:

 This rule can be automatically “desugared” into the SOS rule

But also into (if the configuration contains more components, like in IMP++)

63

MSOS Labels

 Labels are field assignments, or records, and can use “…” for

“and so on”, called record comprehension

 Fields can be primed or not.

 Unprimed = configuration component before the transition is applied

 Primed = configuration component after the transition is applied

 Some fields appear both unprimed and primed (called read-

write), while others appear only primed (called write-only) or

only unprimed (called read-only)

64

MSOS Labels

 Field types

 Read/write = fields which appear both unprimed and unprimed

 Write-only = fields which appear only primed

 Read –only = fields which appear only unprimed

65

MSOS Rules

 Like in SOS, but using MSOS transitions as sequents

 Same labels or parts of them can be used multiple times in a rule

 Example:

 Same  means that changes propagate from premise to conclusion

 The author of MSOS now promotes a simplifying notation

 If the premise and the conclusion repeat the same label or part of it,

simply drop that label or part of it. For example:

66

MSOS of IMP - Arithmetic

State

lookup

67

MSOS of IMP - Arithmetic
68

MSOS of IMP - Boolean
69

MSOS of IMP - Boolean
70

MSOS of IMP - Statements
71

MSOS of IMP - Statements
72

MSOS in Rewriting Logic

 Any MSOS can be associated a rewrite logic theory (or,

equivalently, a Maude module)

 Idea:

 Desugar MSOS into SOS

 Apply the SOS-to-rewriting-logic representation, but

 Hold the non-syntactic configuration components in an ACI-data-

structure, so that we can use ACI matching to retrieve only the fields

of interest (which need to be read or written to)

73

MSOS of IMP in Maude

 See file

 imp-semantics-msos.maude

74

RSEC

Reduction semantics with evaluation contexts

75

Reduction Semantics with Evaluation

Contexts (RSEC)

 Matthias Felleisen and collaborators (1992)

 Previous operational approaches encoded the program
execution context as a proof context, by means of rule
conditions or premises

 This has a series of advantages, but makes it hard to define control
intensive features, such as abrupt termination, exceptions, call/cc, etc.

 We would like to have the execution context explicit, so that we
can easily save it, change it, or even delete it

 Reduction semantics with evaluation contexts does precisely that

 It allows to formally define evaluation contexts

 Rules become mostly unconditional

 Reductions can only happen “in context”

76

Splitting and Plugging

 RSEC relies on reversible implicit mechanisms to

 Split syntax into an evaluation context and a redex

 Plug a redex into an evaluation contexts and obtain syntax again

77

Evaluation Contexts

 Evaluation contexts are typically defined by the same means

that we use to define the language syntax, that is, grammars

 The hole  represents the place where redex is to be plugged

 Example:

78

Correct Evaluation Contexts
79

Wrong Evaluation Contexts
80

Splitting/Plugging of Syntax
81

Characteristic Rule of RSEC

 The characteristic rule of RSEC allows us to only define

semantic rules stating how redexes are reduced

 This significantly reduces the number of rules

 The semantic rules are mostly unconditional (no premises)

 The overall result is a semantics which is compact and easy to read

and understand

82

RSEC of IMP – Evaluation Contexts
83

RSEC of IMP – Rules
84

RSEC Derivation
85

RSEC in Rewriting Logic

 Like with the other styles, RSEC can also be faithfully

represented in rewriting logic and, implicitly, in Maude

 However, RSEC is context sensitive, while rewriting logic is not

(rewriting logic allows rewriting strategies, but one can still not

match and modify the context, as we can do in RSEC)

 We therefore need

 A mechanism to achieve context sensitivity (the splitting/plugging) in

rewriting logic

 Use that mechanism to represent the characteristic rule of RSEC

86

Evaluation Contexts in Rewriting Logic

 An evaluation context CFG production in RSEC has the form

 Associate to each such production one rule and one equation:

 Plus, we add one generic rule and one generic equation:

87

IMP Examples:

 For productions

we add the following rewrite logic rules and equations:

88

RSEC Reduction Rules in Rewriting Logic
89

IMP Examples

 One rule of first kind

 No need for equations of second kind

 Characteristic rule of RSEC:

 The remaining rules are as natural as can be:

90

RSEC of IMP in Maude

 See file

 imp-split-plug.maude

 See files

 imp-semantics-evaluation-contexts-1.maude

 imp-semantics-evaluation-contexts-2.maude

 imp-semantics-evaluation-contexts-3.maude

91

CHAM

The chemical abstract machine

92

The Chemical Abstract Machine (CHAM)

 Berry and Boudol (1992)

 Both a model of concurrency and a specific semantic style

 Chemical metaphor

 States regarded as chemical solutions containing floating molecules

 Molecules can interact with each other by means of reactions

 Reactions take place concurrently, unrestricted by context

 Solutions are encapsulated within new molecules, using membranes

 The following is a solution containing k molecules:

93

CHAM Syntax and Rules

Airlock

94

CHAM Rules

 Ordinary rewrite rules between solution terms:

 Rewriting takes place only within solutions

 Three (metaphoric) kinds of rules

 Heating rules using : structurally rearrange solution

 Cooling rules using : clean up solution after reactions

 Reaction rules using : change solution irreversibly

95

CHAM Airlock

 Allows to extract molecules from encapsulated solutions

 Governed by two rules coming in a heating/cooling pair:

96

CHAM Molecule Configuration for IMP

 A top-level solution containing two subsolution molecules

 One for holding the syntax

 Another for holding the state

 Example:

Syntax State

97

Airlock can be Problematic

 Airlock cannot be used to encode evaluation strategies;

heating/cooling rules of the form

are problematic, because they yield ambiguity, e.g.,

98

Correct Representation of Syntax

 Other attempts fail, too (see the lecture notes)

 We need some mechanism which is not based on airlocks

 We borrow the representation approach of K

 Term represented as

 Can be achieved using heating/cooling rules of the form

99

CHAM Heating-Cooling Rules for IMP
100

Examples of Syntax Heating/Cooling

 The following is correct heating/cooling of syntax:

 The following is incorrect heating/cooling of syntax:

101

CHAM Reaction Rules for IMP
102

Sample CHAM Rewriting
103

CHAM in Rewriting Logic

 CHAM rules cannot be used unchanged as rewrite rules

 They need to only apply in solutions, not anywhere they match

 We represent each CHAM rule

into a rewrite logic rule

where Ms is a fresh bag-of-molecule variable and the overlined

molecules are the algebraic variants of the original ones,

replacing in particular their meta-variables by variables

104

CHAM of IMP in Maude

 See file

 imp-heating-cooling.maude

 See file

 imp-semantics-cham.maude

105

COMPARING

CONVENTIONAL

EXECUTABLE

SEMANTICS

How good are the various semantic approaches?

106

IMP++: A Language Design Experiment

 We next discuss the conventional executable semantics approaches

in depth, aiming at understanding their pros and cons

 Our approach is to extend each semantics of IMP with various

common features (we call the resulting language IMP++)

 Variable increment – this will add side effects to expressions

 Input/Output – this will require changes in the configuration

 Abrupt termination – this requires explicit handling of control

 Dynamic threads – this requires handling concurrency and sharing

 Local variables – this requires handling environments

 We will first treat each extension of IMP independently, i.e., we do

not pro-actively take semantic decisions when defining a feature

that will help the definition of other features later on. Then, we will

put all features together into our IMP++ final language.

107

IMP++ Variable Increment

 Syntax:

 Variable increment is very common (C, C++, Java, etc.)

 We only consider pre-increment (first increment, then return value)

 The problem with increment in some semantic approaches is

that it adds side effects to expressions. Therefore, if one did

not pro-actively account for that then one needs to change

many existing and unrelated semantics rules, if not all.

108

IMP++ Variable Increment

Big-Step SOS

 Previous big-step SOS rules had the form:

 Big-step SOS is the most affected by side effects

 Needs to change its sequents from to

 And all the existing rules accordingly, e.g.:

109

IMP++ Variable Increment

Big-Step SOS

 Recall IMP operators like / were non-deterministically strict.

Here is an attempt to achieve that with big-step SOS

 All we got is “non-deterministic choice” strictness: choose an order,

then evaluate the arguments in that order

 Some behaviors are thus lost, but this is relatively acceptable in practice since

programmers should not rely on those behaviors in their programs anyway

(the loss of behaviors when we add threads is going to be much worse)

110

IMP++ Variable Increment

Big-Step SOS

 We are now ready to add the big-step SOS for variable

increment (this is easy now, the hard part was to get here):

 Example:

 How many values can the following expression possibly evaluate to

under the big-step SOS of IMP++ above (assume x is initially 1)?

 Can it evaluate to 0 or even be undefined under a fully non-

deterministic evaluation strategy?

111

IMP++ Variable Increment

Small-Step SOS

 Previous small-step SOS rules had the form:

 Small-step SOS less affected than big-step SOS, but still

requires many rule changes to account for the side effects:

112

IMP++ Variable Increment

Small-Step SOS

 Since small-step SOS “gets back to the top” at each step, it

actually does not lose any non-deterministic behaviors

 We get fully non-deterministic evaluation strategies for all the IMP constructs

instead of “non-deterministic choice” ones

 The semantics of variable increment almost the same as in big-

step SOS (indeed, variable increment is an atomic operation):

113

IMP++ Variable Increment

MSOS

 Previous MSOS rules had the form:

 All semantic changes are hidden within labels, which are

implicitly propagated through the general MSOS mechanism

 Consequently, the MSOS of IMP only needs the following rule

to accommodate variable updates; nothing else changes!

114

IMP++ Variable Increment

Reduction Semantics with Eval. Contexts

 Previous RSEC evaluation contexts and rules had the form:

 Evaluation contexts, together with the characteristic rule of

RSEC, allows for compact unconditional rules, mentioning only

what is needed from the entire configuration

 Consequently, the RSED of IMP only needs the following rule to

accommodate variable updates; nothing else changes!

115

IMP++ Variable Increment

CHAM

 Previous CHAM heating/cooling/reaction rules had the form:

 Since the heating/cooling rules achieve the role of the evaluation

contexts and since one can only mention the necessary molecules

in each rule, one does not need to change anything either!

 All one needs to do is to add the following rule:

116

Where is the rest?

 We discussed the remaining features in class, using

the whiteboard and colors.

 The lecture notes contain the complete information,

even more than we discussed in class.

117

