
MatchC: A Matching Logic Reachability
Verifier Using the K Framework

Andrei Stefanescu
University of Illinois at Urbana-Champaign

stefane1@illinois.edu

Abstract

This paper presents MatchC, a matching logic reachability verifier using the K framework. K is a rewriting-
based framework for defining and analyzing programming languages. Matching logic is a logic designed
to state and reason about structural properties over arbitrary program configurations. Matching logic
reachability is a unifying framework for operational and axiomatic semantics of programing languages. The
MatchC verifier (http://matching-logic.org/) checks reachability properties of programs written in a
deterministic fragment of C and is implemented in the K framework. This paper discusses the correctness
of the implementation of the matching logic reachability proof system in MatchC. The main contributions of
this paper are the implementation of the verifier, with emphasis on using K for program verification, and the
evaluation of the tool on a large number of programs, including complex ones, like programs implementing
the AVL trees data structure and the Schorr-Waite graph marking algorithm.

Keywords:
Program Verification, Rewriting-Based Semantics, K, Matching Logic, MatchC

1 Introduction

Matching logic [29] is a new logic designed to state and reason about structural

properties over program configurations. Syntactically, it introduces a new first-

order formula construct, called a pattern, which is a configuration term, possibly

containing variables. Semantically, its models are actually concrete program con-

figurations, where a configuration satisfies a pattern iff it matches it. Matching

logic reachability [28,27,26] proposes a language-independent proof system (shown

in Figure 1) which proves program specifications directly from the operational se-

mantics of a language. MatchC [31,26] is a matching logic reachability verifier for

a deterministic fragment of C implemented in the K framework [30].

In this paper we discuss the architecture of MatchC, with emphasis on the com-

ponents implemented in K. The soundness of this verifier is based on the recently

proposed deduction system of matching logic reachability. We evaluate MatchC on

a large number of programs, including implementations of the most popular sorting

algorithms (bubble sort, insertion sort, merge sort and quicksort), of operations on

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 304 (2014) 183–198

1571-0661/© 2014 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.05.010

stefane1@illinois.edu
http://matching-logic.org/
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.05.010
http://dx.doi.org/10.1016/j.entcs.2014.05.010
http://www.sciencedirect.com

tree data structures (binary search tree, AVL tree), and of the Schorr-Waite graph

marking algorithm.

So far, K has been successfully used for giving operational semantics to complex

programming languages, including Java 1.4 [12], Verilog [23] and C [11]. MatchC

is the first project using K for symbolic execution and logical reasoning.

Generally, a matching logic specification is a reachability rule between matching

logic formulae. The tool accepts specifications in the more restricted format:

〈code ···〉k ∧ πl ∧ ψl ⇒ 〈· ···〉k ∧ πr ∧ ψr

where πl, πr are basic patterns (symbolic program configurations), and ψl, ψr are

existentially quantified first order logic formulae. The rule captures partial correct-

ness: if the program fragment code is executed in a configuration that matches

πl and satisfies ψl, and the execution terminates, then the resulting configuration

matches πr and satisfies ψr.

Currently, three components of MatchC are implemented in K: the semantics

of a C fragment, named KernelC, the matching logic reachability deduction and

the matching logic formulae implication.

• The KernelC language is defined in a straightforward manner.

• The matching logic reachability deduction module makes use of the K modularity

in extending configurations. A formula π ∧ ψ is represented as a task cell

containing a config cell and a form cell. The top configuration is a bag of tasks.

To prove a specification correct, the prover symbolically executes the task for

the left-hand-side of the rule and at the end checks if the resulting configuration

implies the right-hand-side of the rule. The (unmodified) original semantics is

extended with rules for executing annotated functions and loops, for applying

abstraction axioms, and for splitting the state in the case of if with symbolic

condition. Although the original semantics is intended for concrete execution,

due to the nature of K rewriting, it works for symbolic execution as well.

• Thematching logic formulae implication consists of two parts: matching the struc-

ture and checking the constraints. Structure matching is implemented in K as a

set of rules that attempt to match corresponding parts of each cell’s contents and

generate the associated constraints. Context transformation is essential in having

a reasonable size implementation. The formulae implication is implemented as

search for a proof in a rule side condition, a case that does not occur in any other

K definition.

The presentation assumes that the reader is familiar with K, and in particu-

lar with the K notation. The paper is organized as follows. Section 2 presents

background information on K and matching logic reachability. Section 3 presents

a sample program verified by MatchC. Section 4 describes the K-based imple-

mentation of the key components of the verifier. Section 5 describes the overall

implementation and evaluation of MatchC. Section 6 discusses related work. Fi-

nally, Section 7 proposes future work and concludes the paper.

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198184

2 K and Matching Logic Background

2.1 K Framework

The K framework [30] (http://k-framework.org/), is a rewriting-based formalism

for developing and analyzing programming languages. K enables one to modularly

define formal executable semantics to a programming language and then use the

respective semantics as an interpreter in order to test it. The K tools [35] are built

on top of the Maude rewriting engine [7]. Currently, the following semantics-based

tools are part of the K framework: interpreter, model-checker, run-time verifier and

type-checker. Several languages have been given semantics in K, including Java

1.4 [12], Verilog [23] and C [11].

2.2 Matching Logic

Matching logic [29] is a logic designed to state and reason about structural properties

over arbitrary program configurations. Syntactically, it introduces a new formula

construct, called a basic pattern, which is a configuration term possibly containing

variables. Semantically, its models are concrete/ground configurations, where a

ground configuration satisfies a basic pattern iff it matches it; that is, the variables

in the basic pattern can be instantiated with ground terms to obtain the ground

configuration. Considering a particular configuration structure with a top-level cell

〈...〉cfg holding, in any order, other cells with semantic data such as the code 〈...〉k,
an environment 〈...〉env, a heap 〈...〉heap, an input buffer 〈...〉in or an output buffer

〈...〉out, configurations then have the structure:

〈··· 〈...〉k 〈...〉env 〈...〉heap 〈...〉in 〈...〉out ···〉cfg

The contents of the cells can be various algebraic data types, such as trees, lists,

sets, maps, etc. Here are two particular configurations (similar to the K notation,

in the interest of space, we use “...” for the irrelevant parts of them):

〈··· 〈x=*y; y=x; ···〉k 〈··· x �→ 7, y �→ 3 ···〉env 〈3 �→ 5〉heap ···〉cfg
〈··· 〈x �→ 3〉env 〈3 �→ 5, 2 �→ 7〉heap 〈1, 2, 3 ···〉in 〈··· 7, 8, 9〉out ···〉cfg

Different languages may have different configuration structures. For example,

languages whose semantics are intended to be purely syntactic and based on substi-

tution, e.g., λ-calculi, may contain only one cell, holding the program itself. Other

languages may contain dozens of cells in their configurations; for example, the C

semantics in [11] has more than 75 nested cells. However, no matter how complex a

language is, its configurations can be defined as ground terms over an algebraic sig-

nature, using conventional algebraic techniques. Matching logic takes an arbitrary

algebraic definition of configurations as parameter and allows configuration terms

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 185

http://k-framework.org/

with variables as particular formulae. For example, the formula

∃c :Cells , e :Env , p :Nat , i :Int , σ :Heap
〈〈x �→ p, e〉env 〈p �→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p 	= i

is satisfied by all configurations where program variable x points to a location p

holding a positive integer i different from p. Variables such as e, σ and c above are

called structural frames. If we want to additionally state that p is the only location

allocated, then we can just remove σ:

∃c :Cells , e :Env , p :Nat , i :Int 〈〈x �→ p, e〉env 〈p �→ i〉heap c〉cfg ∧ i > 0 ∧ p 	= i

Matching logic allows to reason about configurations, for example, to prove that:

|= ∀c :Cells , e :Env , p :Nat
〈〈x �→ p, e〉env 〈p �→ 9〉heap c〉cfg ∧ p > 10

→ ∃i :Int , σ :Heap 〈〈x �→ p, e〉env 〈p �→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p 	= i

Matching logic formulae of the form π ∧ ψ with π a basic pattern and ψ a first-

order logic with equality (FOL=) formula with no patterns are called constrained

patterns, ones of the form ∃Xπ with X ⊂ Var and π a constrained pattern are

called existential patterns, and ones of the form π1∨ ...∨πn with each πi an exis-

tential pattern are called disjunctive patterns. We call all the above generically

patterns.

As shown in [29,31], like separation logic, matching logic can also be used as

a program logic in the context of conventional axiomatic semantics, allowing us to

more easily specify structural properties about the program state. However, this

way of using matching logic comes with a big disadvantage, shared with Hoare

logics in general: the formal semantics of the target language needs to be redefined

axiomatically and the tedious soundness proofs need to be done. Here, we take the

different approach in [28,27,26], which allows us to use the operational semantics of

the language for program verification as well, as shown next.

2.3 Matching Logic Reachability

A (matching logic) reachability rule is a pair ϕ⇒ ϕ′, where ϕ and ϕ′ are matching

logic formulae (not necessarily closed). The semantics of the rule is that any ground

configuration satisfying ϕ transits (in zero or more steps, depending on the context)

into a configuration satisfying ϕ′. A (matching logic) reachability system is a set of

reachability rules. Such reachability systems subsume the main elements of both

operational and axiomatic semantics.

Programming languages can be given operational semantics based on reduction

rules of the form “l ⇒ r if b”, where l and r are configuration terms with variables

constrained by boolean condition b. PLT Redex [13] and K [30] are frameworks for

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198186

Rules of operational nature

Reflexivity:

·
A ϕ⇒ ϕ

Axiom:

ϕ⇒ ϕ′ ∈ A
A ϕ⇒ ϕ′

Substitution:

A ϕ⇒ ϕ′ θ : Var → TΣ(Var)
A θ(ϕ) ⇒ θ(ϕ′)
Transitivity:

A ϕ1 ⇒ ϕ2 A ϕ2 ⇒ ϕ3

A ϕ1 ⇒ ϕ3

Rules of deductive nature

Case analysis:

A ϕ1 ⇒ ϕ A ϕ2 ⇒ ϕ

A ϕ1 ∨ ϕ2 ⇒ ϕ

Logic framing:

A ϕ⇒ ϕ′ ψ is a FOL= formula

A ϕ ∧ ψ ⇒ ϕ′ ∧ ψ
Consequence:

|= ϕ1 → ϕ′
1 A ϕ′

1 ⇒ ϕ′
2 |= ϕ′

2 → ϕ2

A ϕ1 ⇒ ϕ2

Abstraction:

A ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅
A ∃X ϕ⇒ ϕ′

Rule for circular behavior

Circularity:
A ϕ⇒+ ϕ′′ A ∪ {ϕ⇒ ϕ′} ϕ′′ ⇒ ϕ′

A ϕ⇒ ϕ′

Fig. 1. Matching logic rewriting proof system

defining such semantics. These rules can be expressed as matching logic reachability

rules l ∧ b ⇒ r. On the other hand, a Hoare triple of the form {ψ} code {ψ′} can

be regarded as a matching logic reachability rule 〈code〉k ∧ ψ ⇒ 〈〉k ∧ ψ′ between
formulae over minimal configurations holding only the code (〈〉k is the configuration
holding the empty code). Therefore, both operational semantics rules and axiomatic

semantics Hoare triples are instances of matching logic rules.

Figure 1 shows the nine-rule language-independent proof system for matching

logic reachability. Reflexivity and Transitivity are inspired by rewriting logic

[24]. Case analysis, Logic framing, Consequence and Abstraction are in-

spired by Hoare logic [16]. Axiom and Substitution by both. The Circularity

proof rule is new. It deductively and language-independently captures the various

circular behaviors that appear in languages, due to loops, recursion, jumps, etc.

A ϕ ⇒ ϕ′ means that the matching logic rule ϕ ⇒ ϕ′ is derivable from a set of

matching logic rules A using all nine proof rules, while A ϕ ⇒+ ϕ′ means that

ϕ ⇒ ϕ′ is derivable from A using all proof rules but Reflexivity, indicating that at

least one proper semantic step is taking place.

A programming language operational semantics is given as a set of reachability

rules, which is the initial A. Subsequent uses of Circularity enlarge A with addi-

tional reachability rules. Our proof system in Figure 1 can be then used either to

generate such concrete, operational program behaviors (the first eight proof rules),

or to prove program properties specified as matching logic rules. During the proof

derivation, one may add new rules to A by means of Circularity, which are thus

allowed to be used in their own derivation. The correctness of this proof circular-

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 187

Set circularity:

C is the set { ϕ1 ⇒ ϕ′
1, ... , ϕn ⇒ ϕ′

n }
A { ϕ1 ⇒+ ϕ′′

1, ... , ϕn ⇒+ ϕ′′
n }

A ∪ C { ϕ′′
1 ⇒ ϕ′

1, ... , ϕ
′′
n ⇒ ϕ′

n }
A C

Fig. 2. Derived circularity rule schema

ity is given by the fact that progress is required to be made (indicated by ⇒+ in

A ϕ⇒+ ϕ′) before a circular reasoning step is allowed.

For a reachability system A associated to a deterministic programming language

semantics, we define the semantic validity of a rule as follows: A |= ϕ ⇒ ϕ′ iff for

all concrete terminating configurations γ matching ϕ, there exists some concrete

configuration γ′ matching ϕ′. We have the following result:

Theorem 2.1 (generic partial correctness) Let A be a deterministic set of

reachability rules, and A ϕ ⇒ ϕ′ a sequent derived with the proof system in

Figure 1. Then A |= ϕ⇒ ϕ′. (See [28] for details and proof.)

The Circularity proof rule in Figure 1 only allows for circularly deriving one

reachability rule at a time. Figure 2 shows the Set circularity proof rule schema.

It allows to circularly derive several reachability rules at once. Note that it uses sets

of reachability rules in the right-hand sides of the sequents; it actually is syntactic

sugar for saying that each of the rules is derivable. This is practical in verifying,

for example, mutually recursive functions. Set circularity does not increase the

expressiveness of our proof system. We refer the reader to [32] for more details.

3 A MatchC Verification Example

Here we present a sample program which MatchC verifies. First we briefly discuss

some notations MatchC uses for user convenience:

• While all specifications are reachability rules ϕ ⇒ ϕ′ between matching logic

formulae, often ϕ and ϕ′ share configuration context; we only mention the context

once and distribute the “⇒” arrow through the context where the changes take

place.

• To avoid writing existential quantifiers, logical variables starting with “?” are

assumed existentially quantified.

• To avoid writing environment cells containing only bindings of the form x �→ ?x
in almost all specifications, we automatically assume them when not explicitly

mentioned and allow users to write the identifier x (which is a syntactic constant)

instead of the logical variable ?x.

• MatchC desugars invariants inv ϕ loop into matching logic proof obligation

rules ϕ[loop...] ⇒ ϕ[...] ∧ ¬ cond(loop), where ϕ[code] is the pattern obtained

from ϕ by replacing the contents of the 〈...〉k cell with code.

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198188

struct listNode { int val; struct listNode *next; };
struct listNode *readList(int n)

rule 〈$ ⇒ return ?x; ···〉k 〈A ⇒ · ···〉in 〈··· · ⇒ list(?x)(A) ···〉heap if n = len(A)

{
int i; struct listNode *x, *p;
if (n == 0) return NULL;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val)); x->next = NULL;
i = 1; p = x;

inv 〈?C ···〉in 〈··· lseg(x, p)(?B), p �→ [?v, NULL] ···〉heap ∧ i ≤ n ∧ len(?C) = n− i ∧ A = ?B@[?v]@?C

while (i < n) {
p->next = (struct listNode*) malloc(sizeof(struct listNode));
p = p->next; scanf("%d", &(p->val)); p->next = NULL;
i += 1;

}
return x;

}

Fig. 3. C function reading a sequence of integers from the standard input into a singly-linked list.

Function readList in Figure 3 reads n integers from standard input and stores

them in a singly-linked list. The matching logic specification in line 3 says that the

function: (1) returns a pointer ?x; (2) reads from the standard input the sequence

of integers A of length n (matches A and replaces it by the empty sequence ·); (3)
allocates a list starting at ?x with contents the read sequence A, represented as

the term lseg(x, p) (replaces the empty heap ·). The rest of the input buffer, the

heap and the configuration stay unchanged (··· stands for the cell frame). The loop

invariant in line 10 states that: the sequence ?C is yet to be read; x points to a

list segment ending at p with contents ?B; p points to a nodeList structure with

the value field ?v and the next field NULL; the loop index i is less than or equal

to n; the length of ?C is n − i; and the initial sequence A is the concatenation of

?B, [?v] and ?C. The list segment lseg(x, p) is the list between x and p, including x

but excluding p. The operation symbol len is axiomatized as part of the sequence

domain. Like in OCaml, @ concatenates sequences. Variables without ?, like A,
are free. Hence, A refers to the same sequence in the function rule and in the loop

invariant, while ?B may refer to different sequences in different loop iterations.

4 Using K for Program Verification

In this section we discuss how to use K in the context of program verification:

Section 4.1 briefly presents the programming language we use for illustration, Sec-

tion 4.2 describes how to use K for symbolic execution, Section 4.3 shows how to

use K in checking matching logic formulae implication, and Section 4.4 presents

abstraction patterns.

4.1 KernelC

We choose a fragment of C, named KernelC. Its features include

• Expressions: assignment, referencing and dereferencing, structure member (->),

arithmetic and logic operators, ternary conditional (_?_:_), function call

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 189

Fig. 5. Symbolic configuration of KernelC

• Statements: semicolon operator (_;), while, if, if/else, return

• Types: integers, pointers to structures, and pointers to pointers

• Standard Library: malloc/free, basic I/O operations

Since our main motivation is to show how to construct a verifier based on a K

definition of a language, we make several simplifying assumptions: the order of

expression evaluation is left to right (no non-determinism), integers have infinite

precision, variable-size arrays and pointers inside structures are not allowed, the

I/O primitives can only read and write integers.

Figure 4 displays the configuration of KernelC. As usually, the 〈...〉k cell holds

the code; 〈...〉env holds the environment as a mapping from program variables di-

rectly into primitive values (integers and addresses); 〈...〉stack holds the call stack as

a list of frames; 〈...〉fname holds the name of the function currently being executed;

〈...〉tenv holds the type environment; 〈...〉struct and 〈...〉fun hold the structures and

the functions declared in the program. The 〈...〉heap cell contains the dynamically

allocated memory as a mapping from addresses to primitive values. The heap en-

tries which are part of structures are labelled with the respective field name. The

〈...〉in and 〈...〉out cells hold the input and output buffers as lists of integers. The

K semantic definition of KernelC consists of 41 syntactic constructs, and of 91

semantic rules.

Fig. 4. Configuration of KernelC

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198190

4.2 Symbolic Execution with K

The K framework is primarily designed for giving concrete executable semantic

definitions to programming languages. In this subsection we show how such a

definition can be smoothly extended to a symbolic execution definition. Our ap-

proach is different from the traditional approaches based on weakest-precondition

or strongest-postcondition generation, as explained below.

First, we notice that while concrete semantics are given over ground configura-

tions, symbolic semantics are given over constrained patterns (configurations with

variables and constraints). As a consequence, we extend the configuration structure

in Figure 4 to the configuration structure in Figure 5. The 〈...〉config cell holds the

basic pattern; 〈...〉form holds the FOL formula constraining the variables appearing

in the basic pattern; 〈...〉subst holds the substitution history for the free variables

along the current execution path; 〈...〉taskType holds the current status (symbolic ex-

ecution, reasoning). Since the execution of a constrained pattern could result in a

disjunctive pattern, we allow multiple 〈...〉task cells at the top level. We notice that

K modularity w.r.t. the extension of the configuration structure makes this step

possible without affecting the existing rules.

Next, since K rewriting does not distinguish between constants and variables,

most rules work as well in the symbolic case as in the concrete case. However, there

are rules that require concrete values to continue the execution. For example, after

the first argument of if/else is evaluated to an integer, the following rules capture

the cases when the concrete integer is zero or non-zero (NzI ∈ Z \ {0}):

rule if(NzI) S1 else S2 ⇒ S1

rule if(0) S1 else S2 ⇒ S2

However, if the first argument evaluates to a symbolic integer (a term containing

at lest one integer variable), the rules above can not apply. As a result, we add the

following rule that makes case analysis:

rule 〈〈〈(if(I) S1 else S2) � K〉k C〉config 〈φ〉form T 〉task
⇒ 〈〈〈S1 � K〉k C〉config 〈φ ∧ I 	= 0〉form T 〉task

〈〈〈S2 � K〉k C〉config 〈φ ∧ I = 0〉form T 〉task
A similar case occurs for the function scanf, which may require case analysis on

whether the symbolic input buffer contains an integer followed by a list or is empty.

Another case is memory access, which is discussed in Section 4.4. The addition of

these rules is sound according to the Case Analysis proof rule in Figure 1.

Finally, in the case of annotated while loops and functions, we use the specifi-

cation instead of the code. Let π ∧ ψ be the current constrained pattern, and let

πl ∧ ψl ⇒ πr ∧ ψr be the rule capturing the behaviour of the code. Then we check

whether there exists a substitution θ such that π∧ψ → θ(πl ∧ψl) (see Section 4.3).

If the answer is affirmative, we transit into the constrained pattern θ(πr ∧ ψr) ∧ ψ.

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 191

This process is implemented with K rules. It is sound because it corresponds to the

application of Circularity (to prove the specification correct), Axiom, Substitu-

tion, Logic Framing, and Consequence proof rules in Figure 1.

The soundness of one step of symbolic execution is given by Axiom and Substi-

tution (apply the semantic rule) and Logic Framing (propagate the constrains).

The soundness of multiple steps is given by Transitivity.

4.3 Checking Implication

To enable the application of the Consequence proof rule in Figure 1, we need to

check implication of matching logic formulae. In practice, given two constrained

patterns ϕ1 and ϕ2, we need to decide whether there exists a substitution θ such

that ϕ1 → θ(ϕ2). This question is in general undecidable, so our procedure is in-

complete. Checking implication consists of two parts: matching the configurations

and checking the constraints. We implement the first with K rules. Each such rule

matches and eliminates corresponding subterms in the two configurations, and may

generate new constraints. The process ends when all the contents of all the cells

are eliminated. We represent the implication with two top-level 〈...〉task cells (see

Figure 5), one for the left-hand-side and one for the right-hand-side. For example,

the following rule eliminates the entry for address X from both heaps and adds the

constraint that the values stored at address X must be equal:

rule 〈··· 〈Hypothesis〉taskType〈··· X �→ V1 ⇒ · ···〉heap ···〉task
〈··· 〈Conclusion〉taskType〈··· X �→ V2 ⇒ · ···〉heap〈φ⇒ (φ ∧ V1 = V2)〉form ···〉task

4.4 Abstraction Patterns

In order to express properties and reason about arbitrary cell contents, we need an

abstraction mechanism. There is a large body of literature on heap abstraction (for

example, see [33,25]). Our approach is different in that it applies abstraction at

the term level rather than at the predicate level. For example, a heap abstraction

pattern heap abs(x1, . . . , xn)(α1, . . . , αm) is a term representing the portion of the

heap delimited in some way by the pointers x1, . . . , xn and storing the elements of

mathematical domains α1, . . . , αm (can be integers, sequences, sets, . . .). Similar

abstractions can be defined for any cell in the configuration. An abstraction pattern

is not defined, it is axiomatized. For that reason, one would have to check that all

the axioms are consistent; currently, we do not perform this check in MatchC.

For clarity, we present below the list heap abstraction pattern for a singly-linked

list which is part of the library of MatchC:

〈〈list(p)(α), σ〉heap c〉config
↔ 〈〈σ〉heap c〉config ∧ p = 0 ∧ α = []

∨ ∃a, q, β (〈〈p �→ [a, q], list(q)(β), σ〉heap c〉config ∧ α = [a]@β)

It abstracts heap subterms into list terms and captures two cases, one in which the

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198192

list is empty and the other in which the list has at least one element. We use p

to denote the pointer that is the head of list and α the sequence of integers stored

in the list. The notation p �→ [a, q] stands for a heap subterm with two locations,

namely “p �→ a, p+ 1 �→ q”.

We generate K rules based on this axiom. The first rule applies the axiom from

left to right and generates more concrete heaps from more abstract ones

rule 〈〈Run〉taskType〈〈access(P ′) � K〉k〈list(P)(α), H〉heap C〉config 〈φ〉form T 〉task
⇒ 〈〈Run〉taskType〈〈access(P ′) � K〉k〈H〉heap C〉config 〈φ ∧ P = 0 ∧ α = []〉form T 〉task

〈〈Run〉taskType〈〈K〉k〈P �→ [A,Q], list(Q)(β), H〉heap C〉config 〈φ ∧ α = [A]@β〉form T 〉task
if φ→ P ′ = P ∨ P ′ = P + 1

where A, Q and α are fresh variables (implemented with a counter which is not

shown here for brevity). The Abstraction proof rule allows us to make A, Q and

α free instead of existential. Notice the presence of the 〈Run〉taskType cell; it means

this rule can only be applied during symbolic execution, and not while checking

an implication. To prevent the infinite application of the axiom, the rule uses a

memory access on the head of the list as a trigger. The following two rules cover

the two cases when orienting the axiom from right to left:

rule 〈Hypothesis〉taskType〈··· P �→ [A, 0] ⇒ list(P)([A]) ···〉heap
rule 〈Hypothesis〉taskType〈··· P �→ [A,Q], list(Q)(β) ⇒ list(P)([A]@β) ···〉heap

For efficiency, these rules only apply during the implication checking on the hypoth-

esis. There are similar rules for the conclusion.

Currently, MatchC has axioms for the following heap abstraction patterns:

single-linked and doubly-linked lists, single-linked and doubly-linked list segments,

queues, binary trees and points-to graphs. Also, it has axioms for a call stack

abstraction pattern. The rules are manually generated from the axioms.

5 Implementation and Evaluation

Here we discuss the implementation and evaluation of the MatchC verifier.

The front end of MatchC is implemented in Java and Python. The mathemat-

ical domains, as well as checking constraints over them (as part of checking pattern

implication), are specified in Maude [7]. Currently, the library of MatchC con-

tains the following domains: integers, sequences, trees, sets, multisets and graphs.

If a constraint does not simplify to true, it is passed to SMT solvers CVC3 [2] and

Z3 [9].

The user provides a set of program properties using the notation in Section 3

(properties that one wants to verify). The tool only supports annotations for func-

tions and while loops. Let S be the K semantic definition of KernelC, and let C
be the set of specifications (both given as sets of reachability rules). Then MatchC

derives the sequent S C using the proof system in Figures 1 and 2. Note that C

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 193

Program Cells Time(s) C4 C5

1. Undefined programs

uninitialized memory — 0.01 1 no

division by zero — 0.01 1 no

uninitialized variable — 0.01 1 no

unallocated location — 0.01 1 no

2. Simple programs that need only the
environment cell

average — 0.02 1 no

min — 0.04 2 no

max — 0.04 2 no

mul by add — 0.13 3 yes

sum (recursive) — 0.06 2 yes

sum (iterative) — 0.08 2 yes

assoc comm — 0.03 1 no

3. Lists

list head heap 0.02 2 no

list tail heap 0.02 1 no

list add heap 0.02 1 no

list swap heap 0.03 3 no

list deallocate heap 0.04 2 no

list length (recursive) heap 0.05 2 no

list length (iterative) heap 0.07 2 no

list sum (recursive) heap 0.05 2 no

list sum (iterative) heap 0.07 2 no

list reverse heap 0.06 2 no

list append heap 0.1 3 no

list copy heap 0.13 3 no

list filter heap 0.22 5 no

4. Input and output

read write in, out 0.12 4 no

list read in, heap 0.14 7 no

list write heap, out 0.06 2 no

list read write heap, in, out 0.15 5 no

Program Cells Time (s) C4 C5

5. Trees

tree height heap 0.1 4 no

tree size heap 0.07 3 no

tree find heap 0.12 5 no

tree mirror heap 0.7 3 no

tree in-order heap 0.7 3 no

tree pre-order heap 0.7 3 no

tree post-order heap 0.7 3 no

tree deallocate heap 0.14 7 no

tree to list (recursive) heap, out 0.1 4 no

tree to list (iterative) heap, out 0.24 11 no

6. Call stack

only g calls f call stack 0.04 2 no

h in stack when f call stack 0.04 2 no

stack inspection call stack 0.24 8 no

7. Sorting algorithms

insert heap 0.35 5 no

insertion sort heap 0.41 6 no

bubble sort heap 0.30 6 no

quicksort heap 0.47 8 no

merge sort heap 1.97 16 yes

8. Search trees

BST find heap 0.15 5 yes

BST insert heap 0.13 4 yes

BST delete heap 0.38 10 yes

AVL find heap 0.15 5 yes

AVL insert heap 43.5 23 yes

AVL delete heap 133.58 36 yes

9. Schorr-Waite

tree Schorr Waite heap 0.28 6 no

graph Schorr Waite heap 1.73 8 no

C4=# paths (number of paths)

C5=SMT? (need for SMT support)

Fig. 6. Results of MatchC program verification

contains one candidate rule for each function and one candidate rule for each loop.

Currently, we require all the rules in C to be of the form 〈code ···〉k∧π ⇒ 〈 ···〉k∧π′,
with π and π′ patterns.

To derive the sequent S C, MatchC begins by applying Set Circularity

for C and reduces the task to deriving individual sequents of the form S ∪ C
π ⇒ π′, with π and π′ patterns. To prove each such rule, the tool rewrites π to

π′′ using rules in S ∪ C as described in Section 4.2, with π′′ such that the code of

π′′ and π′ is the same. The verification fails if the execution “gets stuck” before

reaching such a π′′. ThenMatchC checks the implication π′′ → π′. The verification
succeeds if the check succeeds and fails otherwise. Notice that MatchC is sound

but incomplete w.r.t. the proof system in Figure 1. As an optimisation, when a

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198194

pattern can be rewritten with rules from both S and C, the verifier only uses the

rules from C. In particular, only a loop without a specification is unrolled, and only

a function without a specification is called. Also, if the current pattern implies that

the application of an abstraction axiom would result into a more concrete pattern,

the tool applies the respective axiom (for instance, knowing the head of a linked list

is not null results in an automatic list unrolling).

Figure 6 summarises the results of our experiments. Two factors guided us in

our selection: (1) proving functional correctness, not just memory safety; and (2)

doing so automatically, requiring only the user provided specifications.

Brief explanations on the examples follow.

1. Undefined programs: MatchC detects undefined behaviour, like read of

uninitialized memory, division by zero, read of an uninitialized variable or access of

unallocated memory.

2. Simple programs: MatchC verifies several programs performing basic arith-

metic operations.

3 & 5. Lists and trees: MatchC proves the full correctness of various list

and tree manipulating programs. For each function, it checks the expected mem-

ory safety and heap shape properties, and also the functional behaviour, which is

algebraically axiomatized.

4. I/O: MatchC verifies several programs manipulating I/O. Similar to the

readList example in Figure 3, for each function, it proves that the content of the

heap, as well as the I/O buffers, is as expected.

6. Call stack: MatchC certifies several function call policies, like only the

function g calls f or h must be in the call stack when f is called.

7. Sorting algorithms: MatchC verifies the most common sorting algorithms.

For each sorting function, it proves that the returned sequence is indeed sorted and

it consists of exactly the same elements as the original sequence.

5. Trees: MatchC proves the full correctness of binary search tree and AVL

tree data structures. For each function, the tool checks that it maintains the data

structure invariant and that the multiset of elements is as expected. We mention

that the AVL insert and delete programs take approximately 3 minutes together

because some of the auxiliary functions (like balance) are not given specifications

and thus their bodies are being executed, resulting in a larger number of paths to

analyze.

9. Schorr-Waite: The Schorr-Waite graph marking algorithm [34] computes all

the nodes in a graph that are reachable from a set of starting nodes. To achieve

that, it visits the graph nodes in depth-first search order, by reversing pointers on

the way down, and then restoring them on the way up. Its main application is in

garbage collection. The Schorr-Waite algorithm presents considerable verification

challenges [17,21]. We analyzed the algorithm itself, and a simplified version in

which the graph is in fact a tree. For both cases we proved that a node is marked

if and only if it is reachable from the set of initial nodes, and that the set of nodes

does not change.

Most of these examples are proved in milliseconds and do not require SMT

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 195

support. The experiments were conducted on a quad-core, 2.2GHz, 4GB ma-

chine running Linux. The source code of MatchC, as well as an online inter-

face allowing one to verify and experiment with all C programs discussed here,

or to introduce new ones, is publicly available on the matching logic web page

at http://matching-logic.org/.

6 Related Work

In this section we discuss several of the existing verification tools and frameworks.

Bedrock [6] is a framework which uses computational higher-order separation

logic and supports mostly-automated proofs about low-level programs. Unlike

MatchC, Bedrock requires the user to annotate the source code with hints for

lemma applications (like list rolling and unrolling). Specifications use operators de-

fined in a pure functional language, similarly to the operators defined algebraically

in matching logic. It is likely that the tactics employed by Bedrock could be adapted

for higher-order matching logic.

Shape analysis [33] allows one to examine and verify properties of heap struc-

tures. It has been shown to be quite powerful when reasoning about heaps. The

ideas of shape analysis have also been combined with those of separation logic [10]

to quickly infer invariants for programs operating on lists. They can likely be also

combined with matching logic in order to infer patterns.

There are many Hoare-logic-based verification frameworks, such as ESC/-

Java [15], VCC [8], Spec# [1], HAVOC [19] and Dafny [20]. Frama-C/Why [14,17]

proved many properties related to the Schorr-Waite algorithm. However, their

proofs were not entirely automated. The weakness of traditional Hoare-like ap-

proaches is that reasoning about non-inductively defined data-types and about

heap structures tend to be difficult, requiring extensive manual intervention in the

proof process. Jahob [36] is another verification framework that mixes automated

and interactive reasoning. Among the separation-logic-based tools, we mention

SLAyer [4], Xisa [5] and Thor [22], which automatically check memory safety, shape

and/or arithmetic properties, and Smallfoot [3], Hip [25] and Verifast [18], which

can prove functional correctness.

7 Conclusion and Future Work

In this paper we have presented MatchC, a matching logic verifier for a determinis-

tic fragment of C based on the K framework. We have described the implementation

of the key components of the verifier, and have argued their soundness based on the

matching logic reachability proof system. We have evaluated MatchC on a large

number of programs, some quite challenging from a verification point of view.

We chooseKernelC as the case study programing language as it is simpler than

full C, yet complex enough for verification purposes. While building this prototype,

the emphasis has been on quick development, expressiveness and efficiency.

We plan the develop a language-parametric matching logic verification system.

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198196

http://matching-logic.org/

In such a system, one would plug in a K semantic definition of a programming lan-

guage to obtain a verifier. One would only have to extend the front-end with lan-

guage specific-syntactic sugar, to specify the syntactic constructs that require case

analysis, and to axiomatize the language-specific abstraction patterns and mathe-

matical domains. We also want to allow specification around any fragment of code,

not just functions and loops.

References

[1] Barnett, M., M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte and H. Venter, Specification and
verification: the Spec# experience, Commun. ACM 54 (2011), pp. 81–91.

[2] Barrett, C. and C. Tinelli, CVC3, in: CAV, 2007, pp. 298–302.

[3] Berdine, J., C. Calcagno and P. W. O’Hearn, Smallfoot: Modular automatic assertion checking with
separation logic, in: FMCO, 2005, pp. 115–137.

[4] Berdine, J., B. Cook and S. Ishtiaq, Slayer: Memory safety for systems-level code, in: CAV, 2011, pp.
178–183.

[5] Chang, B.-Y. E. and X. Rival, Relational inductive shape analysis, in: POPL, 2008, pp. 247–260.

[6] Chlipala, A., Mostly-automated verification of low-level programs in computational separation logic, in:
PLDI, 2011, pp. 234–245.

[7] Clavel, M., F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet and C. Talcott, “All About
Maude,” LNCS 4350, 2007.

[8] Cohen, E., M. Moskal, W. Schulte and S. Tobies, A practical verification methodology for concurrent
programs, Technical Report MSR-TR-2009-15, Microsoft Research (2009).

[9] de Moura, L. M. and N. Bjørner, Z3: An efficient SMT solver, in: TACAS, 2008, pp. 337–340.

[10] Distefano, D., P. W. O’Hearn and H. Yang, A local shape analysis based on separation logic, in: TACAS,
2006, pp. 287–302.

[11] Ellison, C. and G. Roşu, An executable formal semantics of C with applications, in: POPL, 2012, pp.
533–544.

[12] Farzan, A., F. Chen, J. Meseguer and G. Roşu, Formal analysis of Java programs in JavaFAN, in:
CAV’04, LNCS 3114, 2004, pp. 501–505.

[13] Felleisen, M., R. B. Findler and M. Flatt, “Semantics Engineering with PLT Redex,” MIT Press, 2009,
I-XII, 1-502 pp.

[14] Filliâtre, J.-C. and C. Marché, The Why/Krakatoa/Caduceus platform for deductive program
verification, in: CAV, 2007, pp. 173–177.

[15] Flanagan, C., K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata, Extended static
checking for Java, in: PLDI, 2002, pp. 234–245.

[16] Hoare, C. A. R., An axiomatic basis for computer programming, Commun. ACM 12 (1969), pp. 576–
580.

[17] Hubert, T. and C. Marché, A case study of C source code verification: the Schorr-Waite algorithm, in:
SEFM, 2005, pp. 190–199.

[18] Jacobs, B., J. Smans, P. Philippaerts, F. Vogels, W. Penninckx and F. Piessens, Verifast: A powerful,
sound, predictable, fast verifier for c and java, in: NASA Formal Methods, 2011, pp. 41–55.

[19] Lahiri, S. K. and S. Qadeer, Verifying properties of well-founded linked lists, in: POPL, 2006, pp.
115–126.

[20] Leino, K. R. M., Dafny: An automatic program verifier for functional correctness, in: LPAR, 2010, pp.
348–370.

[21] Loginov, A., T. W. Reps and M. Sagiv, Automated verification of the Deutsch-Schorr-Waite tree-
traversal algorithm, in: SAS, 2006.

[22] Magill, S., M.-H. Tsai, P. Lee and Y.-K. Tsay, Automatic numeric abstractions for heap-manipulating
programs, in: POPL, 2010, pp. 211–222.

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198 197

[23] Meredith, P. O., M. Katelman, J. Meseguer and G. Roşu, A formal executable semantics of Verilog,
in: Eighth ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE’10) (2010), pp. 179–188.

[24] Meseguer, J., Conditional rewriting logic as a united model of concurrency, Theor. Comput. Sci. 96
(1992), pp. 73–155.

[25] Nguyen, H. H., C. David, S. Qin and W.-N. Chin, Automated verification of shape and size properties
via separation logic, in: VMCAI, 2007, pp. 251–266.

[26] Roşu, G. and A. Ştefănescu, Checking reachability using matching logic, in: OOPSLA (2012), pp. 555–
574.

[27] Roşu, G. and A. Ştefănescu, From hoare logic to matching logic reachability, in: FM’12, LNCS 7436
(2012), pp. 387–402.

[28] Roşu, G. and A. Ştefănescu, Towards a unified theory of operational and axiomatic semantics, in:
ICALP’12, LNCS 7392 (2012), pp. 351–363.

[29] Rosu, G., C. Ellison and W. Schulte, Matching logic: An alternative to Hoare/Floyd logic, in: AMAST,
2010, pp. 142–162.

[30] Rosu, G. and T.-F. Serbanuta, An overview of the K semantic framework, J. Log. Algebr. Program.
79 (2010), pp. 397–434.

[31] Rosu, G. and A. Stefanescu, Matching logic: a new program verification approach (NIER track), in:
ICSE, 2011, pp. 868–871.

[32] Rosu, G. and A. Stefanescu, Matching logic rewriting: Unifying operational and axiomatic semantics
in a practical and generic framework, Technical Report http://hdl.handle.net/2142/28357, University
of Illinois (2011).

[33] Sagiv, S., T. W. Reps and R. Wilhelm, Parametric shape analysis via 3-valued logic, ACM Trans. Prog.
Lang. Syst. 24 (2002), pp. 217–298.

[34] Schorr, H. and W. M. Waite, An efficient machine-independent procedure for garbage collection in
various list structures, Commun. ACM 10 (1967), pp. 501–506.

[35] Şerbănuţă, T. F. and G. Roşu, K-Maude: A rewriting based tool for semantics of programming
languages, in: 8th International Workshop on Rewriting Logic and its Applications (WRLA’09), LNCS
6381, 2010, pp. 104–122.

[36] Zee, K., V. Kuncak and M. C. Rinard, An integrated proof language for imperative programs, in: PLDI,
2009, pp. 338–351.

A. Stefanescu / Electronic Notes in Theoretical Computer Science 304 (2014) 183–198198

	Introduction
	K and Matching Logic Background
	K Framework
	Matching Logic
	Matching Logic Reachability

	A MatchC Verification Example
	Using K for Program Verification
	KernelC
	Symbolic Execution with K
	Checking Implication
	Abstraction Patterns

	Implementation and Evaluation
	Related Work
	Conclusion and Future Work
	References

