
K-Maude: A Rewriting Based Tool for Semantics
of Programming Languages
Traian Florin S, erbănut,ă and Grigore Ros,u
University of Illinois at Urbana-Champaign

Abstract. K is a rewriting-based framework for defining programming
languages. K-Maude is a tool implementing K on top of Maude. K-Maude
provides an interface accepting K modules along with regular Maude
modules and a collection of tools for transforming K language definitions
into Maude rewrite theories for execution or analysis, or into LaTeX for
documentation purposes. The current K-Maude prototype was successfully
used in defining several languages and language analysis tools, both for
research and for teaching purposes. This paper describes the K-Maude
tool, both from a user and from an implementer perspective.

1 Introduction

There is overwhelming evidence by now that rewriting logic [4] is a powerful
framework for programming language design, semantics and analysis (there are
too many papers on these topics to cite; we recommend the interested reader
to consult the rewriting logic semantics project [5, 9] and the references there).
There are two major reasons for that: (1) on the one hand, existing language
definitional approaches such as structural operational semantics (with [11] or
without [7] evaluation contexts, modular [6] or not) and natural semantics [3]
can be faithfully captured by rewriting logic, so one can use rewriting logic and
Maude [2] to define and analyze languages using these formalisms, and (2) on the
other hand, rewriting logic, thanks to its generality and powerful tool support,
encourages the development of new language definitional approaches.

The K framework [8] is a semantic definitional framework inspired from
rewriting logic but specialized and optimized for programming languages. It
consists of three components: a concurrent rewrite abstract machine, a language
definitional technique, and a specialized notation. The aim of the concurrent
rewrite abstract machine is to increase the potential for concurrency of a rewrite
theory by allowing rules which overlap but do not change the overlapped sub-term
(e.g., two threads writing in different locations in the store) to apply concurrently;
the concurrency aspect of K is beyond the scope of this paper, so we do not
discuss it here. We will briefly recall the K language definitional technique in
Section 2, but this paper is essentially related to the K specialized notation.

The K technique has been manually (without automated tool support) used
in the context of rewriting logic and Maude for more than five years, for teaching
programming language and program verification courses as well as for several
research projects. Such manual uses of K in Maude turned our to be verbose and
error prone, because Maude is a general purpose rewrite engine not specifically
optimized for programming languages. Thus, the idea of developing a K specialized
layer on top of Maude came naturally. The resulting integrated toolkit is called

WRLA'10, LNCS. 2010 (to appear)

K modules

Maude modules
k-prelude.maude

Meta-data annotated

Maude modules

Executable
Maude modules

Latex

K-Maude
interface

Intermediate
representation

Fig. 1. K-Maude overview. Grayed arrows correspond to translating tools.

K-Maude and is the subject of this paper. Figure 1 shows the architecture of
K-Maude. The gray arrows represent translators implemented as part of the
K-Maude toolkit. A file k-prelude.maude contains several Maude modules that
a handy in most language definitions, such as ones for defining computations,
configurations, environments, stores, etc. It is highly recommended that this
file is included in all K definitions, with or without using K-Maude. The K-
Maude interface is what the user typically sees: besides usual Maude modules
(K-Maude fully extends Maude), one can also include K modules comprising
syntax, semantics or configuration definitions using the K specialized notation.

A first component of K-Maude translates K modules to Maude modules. The
resulting Maude modules serve as an intermediate representation of K-Maude
definitions and are not intended to be executable. However, they are heavily
annotated with meta-data attributes. Skilled Maude users may write K language
definitions directly in this Maude intermediate representation. This intermediate
representation can be further translated to different back-ends. We provide two
such translators, one to executable/analyzable Maude and one to Latex. The
former yields actual executable language definitions in Maude which can serve as
interpreters for the defined languages or as a basis for formal analysis, while the
latter is useful for documentation purposes. Indeed, we believe that K can be
used by ordinary language designers as a formal notation for rigorously specifying
the semantics of their languages, the same way context-free grammars are used
for formally specifying syntax, so a user-friendly latex notation may be preferred.

Section 2 briefly discusses the K definitional framework. Section 3 gives a
user perspective of K-Maude, both wrt its builtin features and how it can be
used. Section 4 briefly discusses the intermediate representation of K modules
as Maude modules. Section 5 describes how K-Maude is translated to Maude,
so that language designers can execute and formally analyze their K language
definitions using Maude, and Section 6 describes how K-Maude is translated to
Latex, so that language designers can visualize their language definitions.

2 K: A Rewriting-Based Framework for Computations

K [?] is a rewriting-based language definitional framework based on intuitions
from the chemical abstract machine (CHAM) [1], evaluation contexts [11] and
continuations [10]. The idea underlying language semantics in K is to represent
the program configuration as a “nested soup” structure, which contains the context
needed for the computation, with elements of the context represented as multisets
or lists each stored inside a corresponding cell; a cell may also contain other cells.

2

WRLA'10, LNCS. 2010 (to appear)

Cells generally include standard items such as environments, stores, etc, as well as
items specific to the given semantics, and are written using the notation 〈...〉env ,
etc.; when written in ascii, such as in K-Maude, we prefer to use the XML-like
notation <env> ... </env>. One regularly used cell, referred to as k, represents
the current computation structure of sort K, or simply the computation, which is
a y-separated list of tasks, such as t1 y t2 y ...y tn. Another, >, represents the
entire configuration structure.

A K definition consists of two types of sentences: structural rules (often
reversible, like equations) and computational rules (typically non-reversible).
Structural rules carry no computational meaning; instead, borrowing a concept
from CHAMs, structural rules can heat and cool computations. When a compu-
tation is heated, it breaks into smaller pieces, exposing subexpressions of more
complex expressions for evaluation. Cooling reverses this process, reassembling
the (potentially modified) pieces into a computation with the same “shape”. The
following are examples of structural rules:

a1 + a2
 a1 y � + a2

if b then s1 else s2
 b y if � then s1 else s2
Language syntax is completely abstract in K, in the sense that each language

construct is a KLabel which is applied to other computations, i.e., terms of sort
K; for convenience, we continue to use the mix-fix notation for syntax, like above.
Unlike in evaluation contexts, � is not a “hole,” but rather part of a KLabel,
carrying the obvious “plug” intuition; e.g., the KLabels involving � above are
� + _ (in the first equation) and if � then_ else_ (in the second).

Many structural rules can be automatically generated by annotating constructs
in the language syntax with strict attributes: a strict attribute generates the
appropriate structural rules for each strict argument. If an operator is intended to
be strict in only some of its arguments, then the positions of the strict arguments
are listed as arguments of the strict attribute; for example, the two equations
directly above correspond to the attributes strict for _ + _ (i.e., strict in all
arguments, with the heating/cooling rules for the second operand not shown)
and strict(1) for if_ then_ else_. Once can also define evaluation contexts in K,
by stating that they are strict in certain variables; for example, assuming a C-like
language, an attribute strict(L) associated to the term ∗L = E says that (the
l-value) L needs to be first evaluated (before the assignment can be defined).

Computational rules represent actual steps of computation. The following are
examples of computational rewrite rules:

i1 + i2 → i, where i is the sum of i1 and i2
if true then s1 else s2 → s1
if false then s1 else s2 → s2

In addition to rules like the above, of the form “l→ r”, K allows one to also
write rules using the following contextual notation (C is a multi-context):

C[t1
t′1

, t2
t′2

, ..., tn
t′n

]

which says that in context C, ti rewrites to t′i for each i ∈ {1, ..., n}. The context
C can be concurrently shared by various rules, which can apply concurrently

3

WRLA'10, LNCS. 2010 (to appear)

provided that none of them changes C (they can “read only” C). If one ignores
this concurrency aspect, then one can translate each K contextual rule into a
rule C[t1, t2, ..., tn]→ C[t′1, t

′
2, ..., t

′
n]; this is precisely what K-Maude does.

When cells contains list or multi-set soups we take the liberty to draw them
as round-ended boxes tagged at the top with their labels. Moreover, when more
cell items are allowed to the left or to the right of the items of interest, the cell
is allowed to be “ragged” in that direction. For example, the following is the K
rule for variable assignment in a language with both an environment mapping
variable names to locations and a store mapping locations to values:

X := V
·

k

(X,L)

env
(L,_

V
)

mem

The above rules says that if the assignment X := V is the first computational
task, and if X is at location L in the environment, then replace whatever is at
location L in the store (_ is a generic variable) by V and discard the assignment
(· is the unit of the list construct _ y _ for sort K). When using ascii notation,
for example in K-Maude, we write the above as follows: <k>[[X := V ==> .]]
...</k> <env>... (X,L) ...</env> <mem>... (L,[[_ ==> V]]) ...</mem> .

3 K-Maude Interface
For the purpose of this paper, K can be regarded as a notational layer on top
of rewriting logic, specialized and optimized for writing definitions of complex
programming languages and models. Since our aim for K-Maude is to fully support
rewriting logic and Maude, we implemented it as an extension of Maude. Full
Maude is a reflective definition of Maude allowing for experimentation with new
features and interface extensions. Since K-Maude introduces specific notation for
rules, which require adding specific syntax to Maude modules, it is implemented
as an extension of Full Maude. Consequently, one is free to use or not the K
notation when writing language definitions. An extreme approach, which could
be convenient for existing Maude users who want to gradually get exposed to K,
is to only include the provided k-prelude.maude and then follow the K language
definitional technique but use plain Maude, the same way one can give SOS or
other semantic definitions using plain Maude.

3.1 K-Maude Core
The core syntax of K-Maude can be found in k-prelude.maude. K is a language
of lists and sets, so the K-Maude core needs to provide them. Moreover, the idea
of computation is at the core of the K framework; therefore, the K-Maude core
provides the basic bricks for building computations. Finally, the core provides
minimal support for describing configurations as “nested soups” of cells.
Lists, (multi-)sets, maps are key constructs in K. To support them, K-Maude
provides specific parametric modules for lists (KLIST), multi-sets (KBAG), and
maps (KMAP), which resemble the generic ones defined in the Maude prelude,
but define a common subsort (containing the empty structure) and a common
supersort, to ease the use the parametric modules for sorts in a subsorting

4

WRLA'10, LNCS. 2010 (to appear)

relation. For the same reason, the SUBSORT module takes two TRIV parameters,
and includes lists and sets for these parameters, ensuring that the corresponding
Elt sorts are subsorted, as well as all corresponding KLIST and KBAG sorts.

mod SUBSORT{X :: TRIV, Y :: TRIV} is including KBAG{X} + KBAG{Y} .
subsort X$Elt < Y$Elt .
subsort NeList{X} < NeList{Y} . subsort List{X} < List{Y} .
subsort NeSet{X} < NeSet{Y} . subsort Set{X} < Set{Y} .

endm

Basic computation syntax is introduced in module K. A computation is a term of a
specific sort K, and is defined as a list of tasks with identity ‘.K’ and constructor
‘_ y _’ (in ascii ‘_~>_’), as well as a way of building structured computations
by applying labels on top of lists of computations:

op _y_ : K K → K [prec 100 assoc id : .K] .
op _(_) : KLabel List{K} →K [prec 0 gather(& &)] .

Result and proper computations are distinguished to allow for a computational
treatment of strictness rules. We distinguish two subsorts of K, namely: (1)
KResult, meant to describe results, or computations which need no further evalua-
tion; and (2) KProper, for computations incompletely evaluated. We additionally
introduce KResultLabel and KProperLabel, as subsorts of KLabel, together with
their corresponding application constructors:

op _(_) : KProperLabel List{K} →KProper [ditto] .
op _(_) : KResultLabel List{K} →KResult [ditto] .

The program configuration is a structured “soup” of cells. The basic configu-
ration components are of sort ConfigItem, which is predefined as well and is
expected to be constructed from cells. For example, if one prefers to define
cells manually (as discussed in Section 3.4, K-Maude provides special support
for defining configuration cells) then one may define the computation cell k as
follows, using an XML-like convention for grouping data (the XML-like notation
is only required when one uses the builtin cell support of K-Maude — see Section
3.4): ‘op <k>_</k> : K →ConfigItem [prec 0] .’. Having a unique configura-
tion item sort makes cell nesting easy; for example, this is the definition of the top
configuration cell: ‘op <T>_</T> : Set{ConfigItem} →ConfigItem [prec 0] .’

3.2 K-Maude specific modules

To distinguish K-Maude modules from the usual Maude modules, and thus allow
them to be transformed into their corresponding Maude modules, we introduce
them by specific keywords. The kinds of K-modules currently supported by
K-Maude are syntax, configuration, semantics, and full definition, and are intro-
duced through constructs (k 〈keyword〉 for 〈Name〉 is . . . k), where 〈keyword〉
is repectively syntax, configuration, semantics, or definition, and 〈Name〉 is
an identifier for the language, or language feature being defined. The convention
is that the syntax/configuration/semantics modules define only syntax/configura-
tion/semantics features, while a definition module contains the entire definition
(syntax/configuration/semantics) of a language or a feature in a single module.

5

WRLA'10, LNCS. 2010 (to appear)

3.3 Language syntax and annotations
Syntax sorts and operations When using the syntax modules, all sorts and
operations defined there are assumed to be part of the language syntax. However,
for definition modules, which mix syntax and semantics, a distinction needs to
be made between the signature corresponding to the language syntax and that
used for giving semantics. For that, K-Maude introduces two new declarations,
xsort and xop, to identify syntax sorts and operations; all operations of result
xsort are assumed language syntax constructs (i.e., xops). K-introduces several
new attributes (which can be used in addition to those of Maude):
— strict specifies what arguments need to be evaluated before evaluating the
termed topped in that language construct. For example, in operation definition
‘op _:=_ : Exp Exp →Exp [strict(2)]’, the strictness attribute states that the
semantic rule for assignment can assume that the second argument is evaluated.
— seqstrict is similar, but also states the evaluation sequence of the arguments.
— renameTo is used to rename an operation, either for avoiding parsing prob-
lems, or to desugar some constructs into other K constructs. For example, in
the definition ‘op __ : Exp Exp →Exp [strict renameTo apply]’, the rename
attribute specifies that __ would be renamed to apply for semantics purposes.
Similarly, in the definition ‘op {_} : StmtList → Stmt [renameTo _]’, the re-
name attribute specifies that the {_} wrapper is no longer needed once the
parsing is done, since it was there only for grouping reasons.
— aux denotes that a certain language construct would be expressed (through
equations) in terms of other language constructs and will not appear in the
semantics definition. For example, ‘op if(_)_ : Exp Stmt →Stmt [aux prec 47]’
uses aux to say that although we accept conditionals without the else branch,
they would not be handled specifically in the semantics, being reduced to the
if-then-else construct through an equation like ‘eq if (E) St = if (E) St else {}’.

3.4 Defining the program configuration
Cell labels specify the labels used to wrap configuration items. All declared
labels must be constants of builtin sort CellLabel and must specify what sort
of items they wrap by using the K specific wrapping attribute. The following
declaration of the env label, ‘op env : → CellLabel [wrapping Map{K,K}]’,
specifies that the semantics would use a cell identified by env holding elements of
sort Map{K,K}, i.e., maps from K to K; the cell itself has an XML-like syntax,
e.g., the cell corresponding to the definition above is <env>_</env>.

The k CellLabel, wrapping computations (of sort K), and the T CellLabel,
wrapping a soup of configuration items, are very common and thus predefined.
Configuration structure. Although not required, specifying the structure of the
running configuration of the program is very useful for complex configurations such
as the one presented below. Specifying the structure of the configuration serves
not only for documenting purposes, but has consequences in both modularity
and compactness of definitions, since the semantics rules need to mention only
the context required for them to apply, as detailed in next section. The following
K declaration, introduced by the K keyword kconf, specifies the structure of the
configuration for a complex language (shown in Appendix A).

6

WRLA'10, LNCS. 2010 (to appear)

kconf <T> <agent∗> <thread∗> <k> _ </k> <env> _ </env> </thread∗>
<store> _ </store> <nextLoc> _ </nextLoc>
<me> _ </me> <parent> _ </parent>

</agent∗> <nextAgent> _ </nextAgent>
<messages> <message∗> _ </message∗> </messages>

</T>
Besides the already mentioned syntax for cells, e.g., <k> _ </k>, the symbol

‘*’ appended to the cell label (e.g., for thread) is used to denote that the cell
defined by that label can appear multiple times in a program configuration. The
configuration term, together with the following cell labels declarations,

ops env store : → CellLabel [wrapping Map‘{K‘,K‘}] .
op nextLoc : → CellLabel [wrapping Nat] .
ops agent messages thread : → CellLabel [wrapping Set‘{ConfigItem‘}] .
op message : → CellLabel [wrapping Tuple] .
ops me parent nextAgent : → CellLabel [wrapping AgentName] .

completely define the program configuration to contain agents, a message, and a
counter for generating new agent names. Each agent can contain a number of
threads, a store map and a counter used to generate new free location names for
the store, as well as two cells, me and parent, containing the name of the current
agent, and that of its creator, respectively.

3.5 Defining language semantics

K-specific semantics constructs which are supported by K-Maude are K-contexts,
K-equations, K-rules, and K-nondeterministic-rules, each being introduced by
kcxt, keq, krl, and knd, respectively. Additionally, K-equations and K-rules,
provide notational shortcuts to make the equations/definitions more compact.
Context strictness. K-contexts are usually used for specifying strictness con-
straints which depend on a context rather than on a single construct. For
example, ‘kcxt ∗ K1 := K2 [strict(K1)] .’ specifies the evaluation to an L-value
of a pointer in the assignment construct, allowing the rule for pointer-assignment
to assume it has a value in place of K1; the fact that it would have a value instead
of K2 as well was specified by the strictness annotation for :=.

3.6 K equations, rules

K-equations, K-rules, and K nondeterministic rules share the same form, except
the first would be “desugared” into equations, while the latter into rules. They
basically describe a special term enriched with syntax for expressing K-specific
features as: in-place rewriting, cell comprehension, and anonymous variables.
In-place rewriting. A K-equation/rule is a term which should contain at least
one occurrence of the J T1 =⇒ T2 K construct, which is used as a textual repre-
sentation for the K visual replacement pattern: T1

T2
. For example, the following

K-rule defines how the computation and the environment are encapsulated as a
value during a call/cc invocation:

krl <k> Jcallcc V =⇒apply(V, cc(K, env(Rho)))K y K </k> <env> Rho </env>

7

WRLA'10, LNCS. 2010 (to appear)

Anonymous variables, specified by ‘_’ (underscore) can be used to replace all
variables whose name is not needed in the match-and-replace process. For example,
the rule for applying the current continuation value obtained above,

krl <k> Japply(cc(K,env(Rho)),V) =⇒V y KK y_</k> <env> J_=⇒RhoK </env>

uses anonymous variables to abstract away the remainder of the computation
and the old environment, since they would be overwritten.
Cell list and set comprehension. Similarly to the visual K notation, Maude-K
allows partial specification of the contents of a cell list/set, by attaching elipses
‘. . . ’ to the side of the cell which should be abstracted away. For example, the
rule for retrieving the address of a variable from the environment is:

krl <k> J& X =⇒LK . . .</k> <env>. . . X |→ L . . .</env>

This rule specifies that if the first task in the computation cell is the request
for dereferencing a name, and somewhere in the environment the mapping of
the name to a location can be found, then that location should replace the
dereferencing expression at the top of the computation, while the rest of the
computation and of the environment can be abstracted away by ‘. . . ’.

Context abstraction. The main reason for specifying the structure of the config-
uration is that one does not need to mention the full context required for the
application of a rule, but only the parts which are relevant. A simple instance of
using context abstraction is the rule for assigning a value to a name:

krl <k> JX := V =⇒ .KK . . .</k> <env>. . . X |→ L . . .</env>
<store>. . . L |→ J_ =⇒ VK . . .</store> .

The rule for assignment should be the same in any definition containing an
environment and a store. Although in our definition the store is not at the same
level with the computation and the environment, we can still use this rule in the
specification, because it can be easily inferred which store the rule refers to.

The following rule expresses randez-vous synchronization:

krl <k> Jrv V =⇒.KK . . .</k> <k> Jrv V =⇒.KK . . .</k> .

Note that, although the two computation cells need to be in two different threads,
there is no danger of confusion, since the multiplicity of the k cell is one, so the
only way to make sense of this rule is to have each computation in its own thread,
since the multiplicity of the thread may vary.

The benefits of using context abstraction can be better understood from the
following rule, which specifies the asynchronous sending of a value V to an agent
identified by name A:

krl <k> Jsend−asynch A V =⇒.KK . . .</k> <me> Me </me>
J .empty =⇒ <message> [Me,A,V] </message>K .

Here all three involved cells are at quite different positions in the configuration
structure: the computation cell k is inside a thread, which is at the same level as
the me cell inside an agent cell, while the message cell is inside a messages cell,
which is at the same level with the agent cell inside the top cell.

8

WRLA'10, LNCS. 2010 (to appear)

Rewrite rules One can additionally use rewrite-rules and equations when giving
semantics to the language constructs. For example, the following two rewrite rules
define the semantics for the conditional; note that, by declaring the conditional
strict in the condition, it can be assumed that it is evaluated when giving its
semantics: rl if (# true) then S1 else _ => S1 .

rl if (# false) then _ else S2 => S2 .

4 K-Maude Intermediate Representation

The K-Maude interface is written on top of the Full Maude interface to be able to
take advantage of the existing work on parsing and interpreting Maude modules.
Therefore, we are using the same database of modules defined by Full Maude, and
we encode our specific constructs in such a way that they would be recognized as
a Maude module. This has two benefits: first, it is easier to work with K-modules
as Maude meta-modules; second, having an internal representation which is
recognizable as a Maude module makes it possible to write K specifications
directly at the core level, albeit using a more unfriendly interface.
Syntax sorts, operations, and K extra attributes We encode all attributes which
are not native to Maude into the metadata string attribute. For example, the
core representation of the function application operator defined above is:

op __ : Exp Exp →Exp [metadata "renameTo apply strict syntax"] .

Besides the existing renameTo apply and strict attributes, a new attribute
syntax appeared in the metadata string. The reason for this is because Exp was
declared as a syntax sort, introduced with the keyword xsort. All operations
having the result sort a syntax sort, or those which are introduced by xop would
be represented in the core representation as normal operations, but with the
syntax keyword added to the list of attributes in the metadata.

A similar encoding is performed for attributes specific to configuration or
semantics constructs, e.g., wrapping.
Configurations, K-contexts, K-equations, and K-rules are all encoded as mem-
bership axioms. The following special module is used to facilitate parsing and
encoding of the remaining K-specific constructs:

mod K−RULES is including CONFIG .
op J_=⇒_K : Universal Universal → Universal [poly (0 1 2) prec 0] .
op AnyVar : → Universal [poly (0)] .
ops keq_ krl_ knd_ kcxt_ kconf_ : Universal →[K] [prec 127 poly(1)] .

endm

The first declaration defines the in-place replacement as a fully polymorphic
operation, thus allowing it to be placed anywhere and to take any arguments,
which is crucial for an in-place replacement operator. The second declaration is
that for the anonymous variable. Since ‘_’ is reserved by Maude, we have opted
to replace it in the internal representation with ‘AnyVar’; being anonymous must
also be polymorphic. Finally, the last declaration allows to encode each specific K
declaration as a membership axiom, while maintaining its identity. For example,
the rule for applying a continuation in the core representation is:

9

WRLA'10, LNCS. 2010 (to appear)

mb krl <k> Japply(cc(K, env(Rho)), V) =⇒V yKK y AnyVar </k>
<env> JAnyVar =⇒RhoK </env> : K .

What basically happens is that the rule/equation/context is wrapped in a
mb_: K . context, which is meaningless from a theoretical point of view, but
convenient as a means to represent K constructs as Maude terms.

5 From K-Maude to Maude

This section describes the technical part of the K-Maude tool. As the semantics
of the K framework itself is given using rewriting logic, it comes natural that the
executable semantics of K, as given by the K-Maude tool, is given by reduction to
pure Maude (executable) rewriting theories. These transformations are completely
defined within Maude, taking advantage of the Maude’s reflective capabilities and
the predefined Maude (or Full Maude) modules used to represent and transform
meta-terms and meta-modules.

5.1 From syntax to K syntax and K representation

When specifying the syntax we want to take advantage of the full power of speci-
fication, to obtain a syntax as close as possible to the desired language syntax. To
do that, and to reduce parsing conflicts, we allow specification features as multiple
sorts, mixfix operators, and so on. However, we want to keep computations to a
minimal structure to facilitate easy and generic traversal functions, which are
crucial for advanced reflective features such as code generation. Nevertheless,
while the running structure of the semantics should be as simple as possible,
it is still quite desirable to define the semantic rules using constructs as close
as possible to the specified language syntax. To achieve this, the K-Maude tool
automatically generates two additional syntaxes, an intermediate one, and a
running one, from the input (user) syntax.
The K intermediate syntax is only used for parsing the semantic rules. There-
fore, it bears a close resemblance to the original one by redefining the same
operator symbols, but collapsing all their sorts to the computation sort K.
For example, the conditional operation described above would now become
‘op if_then_else_ : K K K →K .’. In this step, the renameTo attributes are
also considered. For example, the generated operation declaration for the function
application ’__’ specified above would be: ‘op apply : K K → K .’.
The K running syntax only consists of K labels, as defined in the core syntax of
computations presented above. It is automatically derived from the intermediate
syntax by associating to each operation symbol a constant of the KProperLabel
sort. For the two constructs above, their corresponding K label declarations could
be ‘ops if~then~else~ apply~~ : → KProperLabel .’.

The KProperLabel sort is used because we assume that all of the syntax
constructs need evaluation when giving semantics; this plays an important role
in addressing strictness, as presented in next section. The K label symbols are
generated by replacing the ‘_’ symbols with ‘~’ for the mixfix operators, and by
appending as many ‘~’ as the length of the arity for the prefix ones; this seems
like a good choice for avoiding label symbol conflicts.

10

WRLA'10, LNCS. 2010 (to appear)

Handling data types There are certain sorts, such as integers, booleans, and names,
which need to be handled in a special way, to be able to identify them when giving
the semantics. Therefore, for all these special categories, identified by prefixing
their sort name with the ‘#’ symbol in the syntax, the K syntax is not generated
automatically. K-Maude provides a built-in translations for basic data types and
for names; for example the integers are embedded in KResult (they are already
in evaluated form) through the ‘#’ wrapper: ‘op #_ : Int → KResult .’, while
the names receive their own sort Name which is subsorted to KProper (names
need to be evaluated), and are wrapped by ‘name’: op name : #Name →Name .
Translating syntax terms to K running terms is achieved through a polymorphic
translation function, ‘op mkK : Universal → [K] [poly (1)] .’, whose equational
definition is also automatically generated. For example, the equations generated
for conditional and function application constructs are:
eq mkK(if_then_else_(X0:Exp,X1:Stmt,X2:Stmt))
= _‘(_‘)(if~then~else~,_‘,_(mkK(X0:Exp),mkK(X1:Stmt),mkK(X2:Stmt))) .

eq mkK(__(X0:Exp,X1:Exp))
= _‘(_‘)(apply~~,_‘,_(mkK(X0:Exp),mkK(X1:Exp))) .

Since these rules are automatically generated, they are generated in prefix form,
to avoid potential parsing problems. However, to improve readability, we will use
mixfix notation for the remainder of the paper.
K intermediate syntax to K running syntax translation is realized by equating K
intermediate syntax constructs to their corresponding label application constructs
of the K running syntax. The following equations “desugar” the two constructs
defined above:
eq if X0:K then X1:K else X2:K = if~then~else~(X0:K,X1:K,X2:K) .
eq apply(X0:K,X1:K) = apply~~(X0:K,X1:K) .

5.2 Strictness

Strictness declarations, either those provided as attributes to operator declaration,
or those introduced through specific K contexts constructs, are transformed into
pairs of equations which pull the strict arguments out of their contexts for
evaluation, and, once they became values, plug them into their original context.
Strict operator attributes are transformed as follows: for each position which is
declared as strict, a special KLabel declaration is generated and two equations,
one for pulling out the proper computation for evaluation and the other for
plugging in the result computation. For the assignment operation declared strict
in the first argument, the operation declaration and equations generated are:
op ~:=@ : → KLabel .
eq <k> ~:=~(k1:K,k:KProper) yKCxt:K</k>
= <k> k:KProper y~:=@(k1:K) yKCxt:K</k> .
eq <k> k:KResult y~:=@(k1:K) yKCxt:K</k> .
= <k> ~:=~(k1:K,k:KResult) yKCxt:K</k>

These equations apply only at the top of the continuation, because they should
only affect the current evaluation redex. Again, as a way to generate unique
and meaningful identifiers, we have chosen to generate the K label “freezing” the
remainder arguments by replacing the ‘~’ corresponding to the strict argument
with ‘@’, identifying the position of the “hole”.

11

WRLA'10, LNCS. 2010 (to appear)

Strict contexts receive a similar treatment, but now the generated label used
to freeze the remaining computations and to represent the hole would be more
complex. For example, the generated K label and equations for the K context
defining the evaluation to L-value of a pointer in an assignment, are:
op ∗@:=~ : → KLabel .
eq <k> ~:=~(∗~(k:KProper),K’:K) yKCxt:K </k>
= <k> k:KProper y∗@:=~(K’:K) yKCxt:K </k> .
eq <k> k:KResult y∗@:=~(K’:K) yKCxt:K </k> .
= <k> ~:=~(∗~(k:KResult),K’:K) yKCxt:K </k>

5.3 K Semantics
This section describes and exemplifies the process of translating the K semantic
constructs to Maude constructs, obtaining an executable definition as a result.
Applying Context Transformers Although K-Maude allows the specification to
omit the configuration context (for modularity and compactness purposes), this
context needs to be filled in by the tool as a first step towards obtaining a runnable
definition. To do that, we use the tree associated to the kconf declaration and
iteratively match the cells having the maximal level in the tree, and to wrap them
(if not already wrapped) by their corresponding parent cell in the configuration
tree, and then continue. Let us present how the context transformers algorithm
works on the examples discussed in Section 3.5.
krl <k> JX := V =⇒ .KK . . .</k> <env>. . . X |→ L . . .</env>

<store>. . . L |→ J_ =⇒ VK . . .</store> .
For the assigment rule, the deepest in the configuration tree are the k and the
env cell, which both are subcells of the thread cell. Since the store cell, although
declared at the same level, corresponds to a higher level in the configuration tree,
the first two cells are wrapped by a thread cell:
krl <thread>. . . <k> JX := V =⇒.KK . . .</k> <env>. . . X |→ L . . .</env>

. . .</thread> <store>. . . L |→ J_ =⇒ VK . . .</store> .
The levels of the cells in the new term correspond to their levels in the configura-
tion term; therefore the algorithm concludes succesfully.
krl <k> Jrv V =⇒.KK . . .</k> <k> Jrv V =⇒.KK . . .</k> .

Although the two computations are here at the same level, their multiplicity
does not correspond to the one declared in the configuration term. Therefore the
context transformers will wrap each of them in their container thread cell:
krl <thread>. . . <k> Jrv V =⇒.KK . . .</k> . . .</thread>

<thread>. . . <k> Jrv V =⇒.KK . . .</k> . . .</thread> .
Since this cell allows multiple instances in the same cell, the process is complete.

Finally, let us apply the context transformers on the asynchronous send rule:krl <k> Jsend−asynch A V =⇒.KK . . .</k> <me> Me </me>
J .empty =⇒ <message> [Me,A,V] </message>K .

First, the k cell is at the lowest level, so it must be wrapped by the thread cell:

<thread>. . . <k> Jsend−asynch A V =⇒.KK . . .</k> . . .</thread>
<me> Me </me> J.empty =⇒<message> [Me,A,V] </message>K .

In the next iteration, since all top cells are at the same level, but not having the
same parent, they are split up and wrapped accordingly:

12

WRLA'10, LNCS. 2010 (to appear)

<agent>. . . <me> Me </me>
<thread>. . . <k> Jsend−asynch A V =⇒.KK . . .</k> . . .</thread>

. . .</agent>
<messages>. . . J.empty =⇒<message> [Me,A,V] </message>K
. . .</messages>

This term is correct according to the configuration, thus the process is complete.
Resolving cell comprehension and anonymous variables. Once the context trans-
formers have been applied (taking advantage of the cell comprehension feature),
the next step towards obtaining a standard rewriting theory is to resolve cell
comprehension and anonymous variables by replacing them with variables of the
right sort. To do that, the K definition is traversed, and each term is recursively
visited. The visitor uses the information specified as the wrapping attribute in
the declaration of the cell labels to infer the constructor and the variables needed
to replace the ellipses, and it uses the full signature to resolve the anonymous
variables. For example, the context-transformed version of the assignment rule
above will look as follows after this step:

krl <k> JX := V =⇒ .KK y Rest:K </k>
<env> X |→ L &’ Rest:Map{K,K} </env>
<store> L |→ J . . . :K =⇒ VK &’ Rest’:Map{K,K} </store> .

Note that although set comprehension uses ellipses on both sides of the cell, we
only need one variable, since the constructor is associative and commutative. The
ellipses are replaced by the corresponding constructor and a variable whose name
starts with ‘Rest’ and which can be “primed” several times for disambiguation.
Anonymous variables use ‘. . . ’ as their variable name, again primed if necessary.
At the completion of this step, the asynchronous send rule would look as follows:

krl <agent> Rest:Set{ConfigItem} <me> Me </me>
<thread> Rest’:Set{ConfigItem}

<k> Jsend−asynch A V =⇒.KK yRest:K </k> </thread>
</agent>
<messages> Rest’’:Set{ConfigItem}

J .empty =⇒ <message> [Me,A,V] </message>K </messages>

Transforming K-equations and rules into rewrite equations and rules becomes
relatively simple upon the completion of the steps above. Mathematically speaking,
from each K rule/equation term C[J l1 =⇒ r1K , . . . , Jln =⇒ rnK] , two terms
of the corresponding rewrite rule (l⇒ r) or equation (l = r), can be inferred as
being l = C[l1, . . . , ln], and r = C[r1, . . . , rn]. This inference process is defined
by building the two terms l and r together while traversing the K rule/equations.
At the completion of this step, the asynchronous send rule is:

rl <agent> Rest:Set{ConfigItem} <me> Me </me>
<thread> Rest’:Set{ConfigItem}

<k> send−asynch A V yRest:K </k> </thread>
</agent>
<messages> Rest’’:Set{ConfigItem} .empty </messages>

=> <agent> Rest:Set{ConfigItem} <me> Me </me>
<thread> Rest’:Set{ConfigItem}

13

WRLA'10, LNCS. 2010 (to appear)

<k> .K yRest:K </k> </thread>
</agent>
<messages> Rest’’:Set{ConfigItem} <message> [Me,A,V] </message>
</messages>

Reduction to the K running syntax. Although the previous step produces rules/e-
quations which would be accepted by Maude with the K intermediate and running
syntaxes combined, for executability reasons we need to make sure all rules are
in the K running syntax. This is achieved by (meta-)reducing each semantic
rule/equation to its normal form w.r.t. the equations transforming K intermediate
to K running syntax, as well as to the strictness equations. Doing so ensures
that all rules/equations would act on the running syntax of K, and thus the
consistency of their interaction among themselves. Additionally, this step reduces
the compositions of constructors with their identities (due to the use of · in rules)
which were introduced at the previous step. The final running version of the
asynchronous send rule would thus be:

rl <agent> Rest:Set{ConfigItem} <me> Me </me>
<thread> Rest’:Set{ConfigItem}

<k> send−asynch~~(A, V) yRest:K </k> </thread>
</agent>
<messages> Rest’’:Set{ConfigItem} </messages>

=> <agent> Rest:Set{ConfigItem} <me> Me </me>
<thread> Rest’:Set{ConfigItem} <k> Rest:K </k> </thread>

</agent>
<messages> Rest’’:Set{ConfigItem} <message> [Me,A,V] </message>
</messages>

6 From K-Maude to LATEX
Although the K-Maude textual interface is itself a good communication medium,
K was primarily introduced through a very intuitive and visual notation, more ap-
propriate for programming languages design. Therefore, to facilitate the inclusion
of (parts of) the K definitions in research papers and presentations, K-Maude
allows for annotations (as special attributes) specifying how various constructs
should be represented in LATEX, and provides a tool (written in Maude, as well)
which automatically generates a LATEXdocument from a provided K-Maude defi-
nition. The LATEX-specific attributes (currently only renameTo and color are
wrapped in an attribute wrapper, latex. For example, the following definition of
the lambda abstraction renames ‘lambda’ to ‘λ’ for LATEXpurposes:

op lambda_._ : #Name Exp →Exp [latex(renameTo \ensuremath‘{\lambda‘}_._)].

Besides renaming constructs, one can additionally associate color codes to
the K cells, to make them more easily distinguishable in presentations, as in the
following example, used for coloring the agent cell in red:

ops agent : → CellLabel [wrapping Set‘{ConfigItem‘} latex(color: red)] .

14

WRLA'10, LNCS. 2010 (to appear)

Formatted output. Sort, subsort, and operation declarations are converted to
their equivalent BNF notation, since this notation is prevalent in programming
languages definitions. For example, the following declarations

xsort Exp .
subsort #Int #Name < Exp .
op _+_ : Exp Exp →Exp [gather(E e) prec 33 strict] .
op lambda_._ : #Name Exp →Exp [latex(renameTo \ensuremath‘{\lambda‘}_._)].

are automatically typesetted to: Exp ::= #Int |#Name
Exp :: | Exp * Exp [strict]
Exp :: | λ#Name . Exp

K cells are represented using the tikz package as rectangles with rounded sides
and with the cell label attached to the top. Completely specified cells have both
sides rounded. Cells specified with ellipses on either side have the corresponding
side “ripped”. For example, the rules for asynchronous message sending and
variable assignment discussed above would be typesetted as, respectively:

send-asynch AV
•

k

Me
me

•

[Me ,A ,V]

message
X := V

•

k

X 7→ L

env
L 7→—

V

store

The configuration is represented by combining the configuration term with
the wrapping attributes of cell labels declarations, which are used to fill the _
places. For example, the configuration specified above can be typesetted to:

K
k

Map{K,K}
env

thread*

Map{K,K}
store

Nat
nextLoc

Agent
me

Agent
parent

agent*

Tuple
message*

messages

Agent
nextAgent

T

7 Conclusions

We described K-Maude, an implementation of the K language definitional frame-
work in Maude. K-Maude consists of an interface, which allows one to define a
language using both special K modules and Maude modules. The K modules
are translated into intermediate representation Maude modules, which can be
further translated into either executable Maude modules to obtain interpreters
or into Latex to obtain formal language semantics documentation.

15

WRLA'10, LNCS. 2010 (to appear)

References

1. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, 1992.

2. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet, and C. Talcott.
All About Maude, A High-Performance Logical Framework, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

3. Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet,
and Martin Wirsing, editors, STACS 87, 4th Annual Symposium on Theoretical
Aspects of Computer Science, Passau, Germany, February 19-21, 1987, Proceedings,
volume 247 of Lecture Notes in Computer Science, pages 22–39. Springer, 1987.

4. José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

5. José Meseguer and Grigore Rosu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

6. Peter D. Mosses. Modular structural operational semantics. Journal of Logic and
Algebraic Programming, 60-61:195–228, 2004.

7. Gordon D. Plotkin. A structural approach to operational semantics. Journal of
Logic and Algebraic Programming, 60-61:17–139, 2004. Original version: University
of Aarhus Technical Report DAIMI FN-19, 1981.

8. Grigore Roşu. K: a Rewrite-based Framework for Modular Language Design,
Semantics, Analysis and Implementation. Technical Report UIUCDCS-R-2006-
2802, Computer Science Department, University of Illinois at Urbana-Champaign,
2006. A previous version of this work has been published as technical report
UIUCDCS-R-2005-2672 in 2005. K was first introduced in 2003, in the technical
report UIUCDCS-R-2003-2897: lecture notes of CS322 (programming language
design).

9. Traian Florin Serbanuta, Grigore Rosu, and Jose Meseguer. A rewriting logic
approach to operational semantics. Information and Computation, 2007. to appear.

10. Christopher Strachey and Christopher P. Wadsworth. Continuations: A Mathemat-
ical Semantics for Handling Full Jumps. Higher-Order and Symb. Computation,
13(1/2):135–152, 2000.

11. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

16

WRLA'10, LNCS. 2010 (to appear)

The appendix is only provided for reviewer’s convenience.

A Annotated definition of the K-CHALLENGE language

The definition presented below was used to compare the features of the K
framework with those of other language definitional frameworks. It is completely
written using the K-Maude tool and is effectively an interpreter on top of Maude
for the given language. The definition was developed iteratively, starting from a
minimalist language, and iteratively adding new features. All new features were
appended, together with the induced replacements for existing rules (if any).

We present below the full definition, fragmented with explanations of the
various constructs used. To make this appendix self-contained, parts of the
explanations regarding the K-Maude interface might be repeated.

(k definition for KCHALLENGE is
including INT−K−SYNTAX + BOOL−K−SYNTAX + FLOAT−K−SYNTAX .
including NAME−K−SYNTAX .
including COMMON−ENV−STORE .
including BINDER−K−SYNTAX .
including KMAP{K,K} + KSET{K} .
including TUPLE .

var VL : List{KResult} . var N : Nat .
vars I I1 I2 : Int . var B : Bool . var X : Name . var V V’ : KResult .
vars F1 F2 : Float . var L L’ : Loc .
var E BE S S1 S2 K K’ : K . var Sigma : Store . var Rho Rho’ : Env{Loc} .

xsort Exp .

‘xsort’ is used to specify a syntax sort – all operations having it as a result sort
would be considered part of syntax

subsort #Int #Bool #Float < Exp .

By convention, ‘#’ sorts are used for input literals, while their corresponding
semantics sorts are named by removing the ‘#’ . Int, Bool, and Float, are imported
from built-in modules INT-K-SYNTAX, BOOL-K-SYNTAX, and FLOAT-K-
SYNTAX, respectively.

subsort #Name < Exp .
krl <k> JX =⇒VK . . .</k> <env>. . . X |→ L . . .</env> <store>. . . L |→ V . . .</store> .

Names are imported from predefined module NAME-K-SYNTAX. ‘env’ and ‘store’
cells as well as basic operations on them are imported from COMMON-ENV-STORE
. When a name is matched at the top of computation, it can replaced by value V,
provided that the mapping of X to location L can be matched in the environment
and the mapping of L to V can be matched in the store.

op _+_ : Exp Exp →Exp [gather(E e) prec 33 strict] .
rl # I1 + # I2 => # (I1 + I2) .
rl # F1 + # F2 => # (F1 + F2) .

17

WRLA'10, LNCS. 2010 (to appear)

‘gather’ and ‘prec’ are standard attributes in Maude, used for parsing. Additionally
‘strict’ specifies that both operands of ‘+’ should be evaluated (order not specified)
before ‘+’ being evaluated itself. This allows us to only give semantics of ‘+’ on
valued terms. Operation ‘#’ is used to distinguish values when giving semantics.

op _∗_ : Exp Exp → Exp [gather(E e) prec 31 strict] .
rl _∗_(# I1, # I2) => # (I1 ∗ I2) .
rl _∗_(# F1, # F2) => # (F1 ∗ F2) .

op _<=_ : Exp Exp →Exp [prec 37 seqstrict] .
rl # I1 <= # I2 => # (I1 <= I2) .
rl # F1 <= # F2 => # (F1 <= F2) .

‘seqstrict’ is specified when the order of evaluation matters. The default order is
left-to-right.

op not_ : Exp → Exp [prec 53 strict] .
rl not (# B) => # (not B) .

op _and_ : Exp Exp →Exp [gather(E e) prec 55 strict (1)] .
rl (# true) and BE => BE .
rl (# false) and _ => # false .

The semantics of ‘and’ given above is “shortcut”. For this, we only require the first
operand to be evaluated—‘strict(1)’—, and evaluate the expression according to that
value. Note that one can use anonymous variable ‘_’ if the name of a variable is
only required for matching.

xsort Stmt .
op _;_ : Stmt Stmt → Stmt [prec 100 gather(e E) renameTo _y_] .

By renaming the statement sequencing operator to ’_y_’, the K sequencing
operator, we don’t need to specify any additional semantic rules for it.

op var_ : #Name →Stmt .
krl <k> Jvar X =⇒.KK . . .</k>

<env> JRho =⇒Rho[X ←LK] </env>
<nextLoc> JL =⇒L + 1K </nextLoc> .

Variable declaration: we use the ‘nextLoc’ cell imported from COMMON-ENV-STORE.
also, we use Rho[X <- L] to map X to L in Rho.

op if_then_else_ : Exp Stmt Stmt → Stmt [strict (1)] .
rl if (# true) then S1 else _ => S1 .
rl if (# false) then _ else S2 => S2 .

Before giving semantics for conditional, we only need to evaluate the condition,
specified by the ‘strict(1)’ annotation.

op while_do_ : Exp Stmt → Stmt .
keq <k> Jwhile BE do S =⇒if BE then (S → while BE do S) else .KK . . .</k> .

The semantics of ‘while’ is given by unrolling, but only at the top of the computation,
to avoid cycling.

18

WRLA'10, LNCS. 2010 (to appear)

op _;_ : Stmt Exp → Exp [prec 110 renameTo _→_] .

op output_ : Exp → Stmt [strict] .
op output : → CellLabel [wrapping List ‘{KResult‘}] .
krl <k> Joutput V =⇒ .KK . . .</k> <output>. . . J.nil =⇒ VK </output> .

We declare a new cell—output—to hold the list of output values.

op ++_ : #Name →Exp [prec 0 renameTo inc] .
krl <k> Jinc(X) =⇒# (I + 1)K . . .</k> <env>. . . X |→ L . . .</env>

<store>. . . L |→ # JI =⇒ I + 1K . . .</store> .

Sometime we need to rename constructs when going from syntax to semantics to
avoid name clashing. In this case, we rename ‘++’ to ‘inc’.

op #_ : Loc → KResult .
op &_ : #Name →Exp [prec 0] .
krl <k> J& X =⇒# LK . . .</k>

<env>. . . X |→ L . . .</env> .

Obtaining the reference location of a name.

op ∗_ : Exp → Exp [strict prec 25] .
krl <k> J∗ # L =⇒VK . . .</k> <store>. . . L |→ V . . .</store> .

Dereferencing a location.

op ref_ : Exp → Exp [strict prec 0] .
krl <k> Jref V =⇒LK . . .</k>

<store> JSigma =⇒ Sigma[L ← VK] </store>
<nextLoc> JL =⇒L + 1K </nextLoc> .

Evaluating an expression and returning a reference to it.

op _:=_ : Exp Exp →Stmt [strict (2)] .
krl <k> JX := V =⇒.KK . . .</k>

<env>. . . X |→ L . . .</env>
<store> JSigma =⇒ Sigma[L ← VK] </store> .

kcxt ∗ K := K’ [strict (K)] .
krl <k> J∗ # L := V =⇒.KK . . .</k>

<store> JSigma =⇒ Sigma[L ← VK] </store> .

The right hand side is evaluated to a value, specified here by ‘strict(2)’ in the operator
declaration, while the left-hand-side is evaluated to a l-value, here either a Name, or
the dereferencing of a location (the ‘strict(K)’ in the K-context declaration).

op aspect_ : Stmt → Stmt .
op aspect : → CellLabel [wrapping K] .
krl <k> Jaspect S =⇒ .KK . . .</k> <aspect> J_ =⇒SK </aspect> .
keq <k> Jlambda X . E =⇒ closure (X, S → E, Rho)K . . .</k>

<env> Rho </env> <aspect> S </aspect> .

Aspects are defined to be executed before the start of each function evaluation, in
the environment in which that function was defined. Note that lambda abstractions
are evaluated to closures.

19

WRLA'10, LNCS. 2010 (to appear)

op __ : Exp Exp → Exp [strict renameTo apply] .
op closure : Name K Env{Loc} →KResult .
krl <k> Japply(closure(X, E, Rho), V) =⇒ E → restore (Rho’)K . . .</k>

<env> JRho’ =⇒Rho[X ←LK] </env>
<store> JSigma =⇒ Sigma[L ← VK] </store>
<nextLoc> JL =⇒L + 1K </nextLoc> .

Application of a function is declared ‘strict’ (call-by-value), renamed to ‘apply’ to avoid
name clashes. Note that we use ‘restore’ (imported from COMMON-ENV-STORE)
to restore the environment once the function was evaluated.

krl <k> Jmu X . E =⇒ E → restore (Rho)K . . .</k>
<env> JRho =⇒Rho[X ←LK] </env>
<store> JSigma =⇒ Sigma[L ←mu X . EK] </store>
<nextLoc> JL =⇒L + 1K </nextLoc> .

The semantics of µX.E is given by evaluating the expression E in the environment/-
store where X is bound to a µX.E.

op callcc_ : Exp → Exp [strict] .
op cc : K Env{Loc} → KResult .
krl <k> Jcallcc V =⇒apply(V, cc(K, Rho))K → K </k>

<env> Rho </env> .
krl <k> Japply(cc(K, Rho), V) →_ =⇒ V → KK </k>

<env> J_ =⇒RhoK </env> .

op randomBool : → Exp .
knd <k> JrandomBool =⇒# trueK . . .</k> .
knd <k> JrandomBool =⇒# falseK . . .</k> .

‘randomBool’ non−deterministically evaluates to either ‘ true ’ or ‘ false ’.

op spawn_ : Stmt → Stmt .
op holds : → CellLabel [wrapping Map‘{K‘,K‘}] .
op thread : → CellLabel [wrapping Set‘{ConfigItem‘}] .
var Holds : Map‘{K‘,K‘} .
krl <thread>. . . <k> Jspawn S =⇒.KK . . .</k> <env> Rho </env> . . .</thread>

J .empty =⇒ .empty <thread> <k> S </k> <env> Rho </env>
<holds> .empty </holds> </thread>K .

Spawning a new thread: the ‘thread’ cell is used to group together all cell related to
a thread; ‘holds’ holds the locks acquired by the thread (and their multiplicity).

op busy : → CellLabel [wrapping Set‘{K‘}] .
var Busy : Set‘{K‘} .
krl J<thread>. . . <k> .K </k> <holds> Holds </holds> . . .</thread>

=⇒ .emptyK <busy> JBusy =⇒Busy −’ keys(Holds)K </busy> .

When the computation of a thread has completed, it can be dissolved and its resources
released. ‘busy’ holds the names of the locks acquired by any of the threads.

op acquire_ : Exp → Stmt [strict] .
krl <k>Jacquire V =⇒.KK . . .</k>

<holds>. . . V |→ # JN =⇒ s(N)K . . .</holds> .

20

WRLA'10, LNCS. 2010 (to appear)

kcrl <k>Jacquire V =⇒.KK . . .</k>
<holds>. . . J.empty =⇒ V |→ # 0K . . .</holds>
<busy> Busy J.empty =⇒VK</busy> if not(V in’ Busy) .

One can lock on any value. A lock can only be acquired it it is not busy. Same thread
can acquire same lock multiple times, therefore we keep multiplicities for each lock
in the ‘holds’ cell.

op release_ : Exp → Stmt [strict] .
krl <k>Jrelease V =⇒.KK . . .</k>

<holds>. . . V |→ # Js(N) =⇒ NK . . .</holds> .
krl <k>Jrelease V =⇒.KK . . .</k>

<holds>. . . JV |→ # 0 =⇒ .emptyK . . .</holds>
<busy>. . . JV =⇒ .emptyK . . .</busy> .

op rv_ : Exp → Stmt [strict] .
krl <k> Jrv V =⇒ .KK . . .</k> <k> Jrv V =⇒.KK . . .</k> .

Rendez-vous synchronization. Two threads can only pass together a barrier specified
by a lock V.

sort Agent .
op agent : Nat → Agent .
subsort Agent < KResult .
op new−agent_ : Stmt →Exp .
op agent : → CellLabel [wrapping Set‘{ConfigItem‘}] .
ops me parent nextAgent : → CellLabel [wrapping Agent] .
krl <k> Jnew−agent S =⇒agent(N)K . . .</k> <me> Me </me>

<nextAgent> agent(JN =⇒N + 1K) </nextAgent>
J .empty =⇒ <agent>

<thread>
<k> S </k> <env> .empty </env> <holds> .empty </holds>
</thread>
<store> .empty </store> <nextLoc> loc(0) </nextLoc>
<aspect> .K </aspect> <busy> .empty </busy>
<me> agent(N) </me> <parent> Me </parent>

</agent>K .

An agent is here a collection of threads, grouped in an ‘agent’ cell identified by an id
held by the ‘me’ cell, and holding in the ‘parent’ cell a reference id to its creating
agent. ‘nextAgent’ is used for providing fresh ids for agents.

rl <agent>
<store> _ </store>
<nextLoc> _ </nextLoc>
<aspect> _ </aspect>
<busy> _ </busy>
<me> _ </me>
<parent> _ </parent>

</agent> => .empty .

When all threads inside an agent have completed, the agent can be dissolved.

21

WRLA'10, LNCS. 2010 (to appear)

op me : → Exp .
krl <k>Jme =⇒AK . . .</k> <me> A </me> .

op parent : → Exp .
krl <k>Jparent =⇒AK . . .</k> <parent> A </parent> .

op message : → CellLabel [wrapping Tuple] .
vars Me Parent A : Agent .
op send−asynch__ : Exp Exp →Stmt [strict] .
krl <k> Jsend−asynch A V =⇒.KK . . .</k> <me> Me </me>

J .empty =⇒ <message> [Me,A,V] </message>K .

An agent can send any value (including agents ids) to other agents (provided it
knows their id). To model asynchronous communication, each value sent is wrapped
in a ‘message’ cell identifying both the sender and the intended receiver.

op receive−from_ : Exp →Exp [strict] .
krl <k> Jreceive−from A =⇒VK . . .</k> <me> Me </me>

J<message> [A,Me,V] </message> =⇒.emptyK .

An agent can request to receive a message from a certain agent.

ops receive : → Exp .
krl <k> Jreceive =⇒VK . . .</k> <me> Me </me>

J<message> [_,Me,V] </message> =⇒.emptyK .

An agent can request to receive a message from any agent.

op send−synch__ : Exp Exp →Stmt [strict] .
krl <agent>. . . <k> Jsend−synch A V =⇒.KK . . .</k> <me> Me </me> . . .</agent>
<agent>. . . <k> Jreceive−from Me =⇒VK . . .</k> <me> A </me> . . .</agent> .
krl <agent>. . . <k> Jsend−synch A V =⇒.KK . . .</k> . . .</agent>
<agent>. . . <k> Jreceive =⇒VK . . .</k> <me> A </me> . . .</agent> .

The message can be sent synchronously, in which case, two agents need to matched
together for the exchange to occur.

op halt : → Stmt .
krl J<agent>. . . <k> halt . . .</k> . . .</agent>
=⇒ .emptyK .

The semantics of halt in one of the thread of an agent is that is dissolves the agent.

op messages : → CellLabel [wrapping Set‘{ConfigItem‘}] .
op result : → CellLabel [wrapping List ‘{KResult‘}] .
kconf
<T>
<agent∗>

<thread∗>
<k> _ </k>
<env> _ </env>
<holds> _ </holds>

</thread∗>
<store> _ </store>

22

WRLA'10, LNCS. 2010 (to appear)

<nextLoc> _ </nextLoc>
<aspect> _ </aspect>
<busy> _ </busy>
<me> _ </me>
<parent> _ </parent>

</agent∗>
<output> _ </output>
<messages> <message∗> _ </message∗> </messages>
<nextAgent> _ </nextAgent>

</T> <result> _ </result> .

For K to know where each cell is located, one needs to specify (if there are cells
at different levels) the structure of the configuration, together whit an indication
of which of the cells have multiplicities. Notice here that we have a wrapper for
messages which was not specified anywhere, as well as a wrapper for the results
which is at the top level.

op ‘[‘[_ ‘]‘] : Stmt → Config .
eq JP:StmtK
= <T>

<agent>
<thread>

<k> mkK(P:Stmt) </k>
<env> .empty </env>
<holds> .empty </holds>

</thread>
<store> .empty </store>
<nextLoc> loc(0) </nextLoc>
<aspect> .K </aspect>
<busy> .empty </busy>
<me> agent(0) </me>
<parent> agent(0) </parent>

</agent>
<output> .nil </output>
<messages> .empty </messages>
<nextAgent> agent(1) </nextAgent>

</T> .

This is how a program is initialized to be executed using the above definition.

krl J<T> <output> VL </output> <nextAgent> _ </nextAgent>
<messages> _ </messages> </T>

=⇒ <result> VL </result> K.

When there are no more agents executing, we can collect the output and transfer it
into the result cell.

Advanced features: code generation

op quote_ : Exp → Exp .
op unquote_ : Exp → Exp .
op eval_ : Exp → Exp [strict] .

23

WRLA'10, LNCS. 2010 (to appear)

op quote : Nat List{K} → KProper .
op code : List {K} → KResult .
op _box‘(→ ‘)_ : K K → KProper [strict] .
op _box ‘(‘,‘) _ : K K → KProper [strict] .

op box : K → KSynLabel .
op kl : KLabel → K .
var KL : KLabel . var KLK : K . var Ks : NeList‘{K‘} .
var K1 K2 : NeK .
kcxt box(KLK)(Ks) [strict(Ks)] .

keq <k> Jquote K =⇒quote(0,K)K . . .</k> .
eq quote(N, K1 → K2) = quote(N, K1) box(→) quote(N,K2) .
eq code(K1) box(→) code(K2) = code(K1 →K2) .
ceq quote(N, KL(Ks)) = box(kl(KL))(quote(N, Ks))
if KL =/= quote~ /\ KL =/= unquote~ .

eq box(kl(KL))(code(Ks)) = code(KL(Ks)) .
eq quote(N, quote(K)) = box(kl(quote~))(quote(s(N), K)) .
eq quote(0, unquote(K)) = K .
eq quote(s(N), unquote(K)) = box(kl(unquote~))(quote(N,K)) .

eq quote(N, (K, Ks)) = quote(N, K) box(,) quote(N, Ks) .
eq code(K) box(,) code(Ks) = code((K, Ks)) .

eq quote(N, V) = code(V) .
eq quote(N,X) = code(X) .

eq eval code(K) = K .

k)

The end of our K definition module is specified by ‘k)’.

24

WRLA'10, LNCS. 2010 (to appear)

B KCHALLENGE in LATEX

Module KCHALLENGE
imports BOOL-K-SYNTAX+FLOAT-K-SYNTAX+INT-K-SYNTAX
imports NAME-K-SYNTAX
imports KMAP{K,K}
imports TUPLE
imports KCHALLENGE-CONFIGURATION
syntactic constructs:
Exp ::= #Bool |#Float|#Int|#Name
Exp :: | me
Exp :: | parent
Exp :: | randomBool
Exp :: | receive
Exp :: | * Exp [strict]
Exp :: | ++ #Name [renameTo inc]
Exp :: | callcc Exp [strict]
Exp :: | eval Exp [strict]
Exp :: | new-agent Stmt
Exp :: | not Exp [strict]
Exp :: | quote Exp
Exp :: | receive-from Exp [strict]
Exp :: | ref Exp [strict]
Exp :: | unquote Exp
Exp :: | &(#Name)
Exp :: | Exp Exp [renameTo apply strict]
Exp :: | Exp * Exp [strict]
Exp :: | Exp+ Exp [strict]
Exp :: | Exp and Exp [strict(1)]
Exp :: | Stmt ; Exp [renameTo _y_]
Exp :: | Exp≤Exp [seqstrict]
Exp :: | λ#Name . Exp
Exp :: | µ#Name . Exp
Stmt ::=
Stmt :: | halt
Stmt :: | acquire Exp [strict]
Stmt :: | aspect Stmt
Stmt :: | output Exp [strict]
Stmt :: | release Exp [strict]
Stmt :: | rv Exp [strict]
Stmt :: | spawn Stmt
Stmt :: | var #Name
Stmt :: | Exp := Exp [strict(2)]
Stmt :: | Stmt ; Stmt [renameTo _y_]
Stmt :: | send-asynch Exp Exp [strict]
Stmt :: | send-synch Exp Exp [strict]

25

WRLA'10, LNCS. 2010 (to appear)

Stmt :: | while Exp do Stmt
Stmt :: | if Exp then Stmt else Stmt [strict(1)]

semantic constructs:
Agent ::=
Agent :: | agent(Nat)
Config ::=
Config :: | JStmt K
KProper ::=
KProper :: | K , K [strict]
KProper :: | K y K [strict]
KProper :: | quote(Nat , List{K})
KProperLabel ::=
KProperLabel :: | ∼
KProperLabel :: | K
KResultLabel ::=
KResultLabel :: | cc
KResultLabel :: | closure
KResultLabel :: | code
NeK ::=
NeK :: | KLabel
NeK :: | Map{K,K}

configuration:

K
k

Map{K,K}

env

Map{K,K}
holds

thread*

Map{K,K}
store

Nat
nextLoc

K

aspect

Set{K}
busy

Agent

me

Agent

parent

agent*

List{KResult}

output

Tuple
message*

messages

Agent

nextAgent

T

List{KResult}
result

K equations and rules:
context: * K := K’ [strict(K)]
context: ∼ (Kl) [strict(Kl)]

26

WRLA'10, LNCS. 2010 (to appear)

context: KLabel (Ks) [strict(Ks)]
equation:

quote K
quote(0 ,K)

k

equation:

while BE do S
if BE then S ywhile BE do S else •

k

equation:

V y ρ
•

k
%
ρ

env

equation:

λX . E
closure (X , S yE , ρ)

k

ρ

env

S

aspect

rule:

send-synch AV
•

k

agent

receive
V

k

A

me

agent

rule:

send-synch AV
•

k

Me

me

agent

receive-from Me
V

k

A

me

agent

rule:

X
K

k

X 7→ L

env

L 7→K
store

rule:

27

WRLA'10, LNCS. 2010 (to appear)

me
A

k

A

me

rule:

parent
A

k

A

parent

rule:

receive
V

k

Me

me

[— ,Me ,V]

message

•

rule:

&(X)
L

k

X 7→ L

env

rule:

* L
V

k

L 7→V
store

rule:

X := V
•

k

X 7→ L

env
σ

σ [L←V]

store

rule:

* L := V
•

k
σ

σ [L←V]

store

rule:

acquire V
•

k
V 7→ N

s N

holds

rule:

28

WRLA'10, LNCS. 2010 (to appear)

apply(closure (X ,E , ρ) ,V)
E y %

k
%

ρ [X ← N]

env

•

N 7→V

store
N

N + 1

nextLoc

rule:

aspect S
•

k
—
S

aspect

rule:

inc(X)
I + 1

k

X 7→ L

env
L 7→ I

I + 1

store

rule:

µX . E
E y ρ

k
ρ

ρ [X ← N]

env

•

N 7→µX . E

store
N

N + 1

nextLoc

rule:

new-agent S
agent(N)

k

Me

me
agent(N

N + 1
)

nextAgent
•

S
k

•

env

•

holds

thread

•

busy
agent(N)

me

Me

parent

•

store
0

nextLoc
•

aspect

agent

rule:

receive-from A
V

k

Me

me

[A ,Me ,V]

message

•

rule:

29

WRLA'10, LNCS. 2010 (to appear)

ref V
N

k
σ

σ [N ←V]

store
N

N + 1

nextLoc

rule:

release V
•

k
V 7→ s N

N

holds

rule:

release V
•

k
V 7→ 0

•

holds
V
•

busy

rule:

rv V
•

k
rv V

•

k

rule:

send-asynch AV
•

k

Me

me
•

[Me ,A ,V]

message

rule:

var X
•

k
ρ

ρ [X ← N]

env

N
N + 1

nextLoc

rule:

K [[callcc V
apply(V , cc (K , ρ))

]]
k

ρ

env

rule:

— [[apply(cc (K , ρ) ,V)]]
K [[V]]

k
—
ρ

env

rule:

30

WRLA'10, LNCS. 2010 (to appear)

spawn S
•

k

ρ

env

thread

•

S
k

ρ

env

•

holds

thread

rule:

•

k
Holds
holds

thread

•

Busy
Busy -’ keys(Holds)

busy

rule:

VL

output

—
nextAgent

—

messages

T

VL
result

rule:

halt
k

agent

•

output rule:

output V
•

k
•

V

output

rule:

acquire V
•

k
•

V 7→ 0

holds
Busy & •

V

busy
when not V in’ Busy

non-det rule:

31

WRLA'10, LNCS. 2010 (to appear)

randomBool
false

k

non-det rule:

randomBool
true

k

equation: quote(N , Label (Ks)) = Label (quote(N ,Ks)) when Label =/= quote
and Label =/= unquote

equation: ∼ (code (Kl)) = code (∼(Kl))
equation: Label (code (Ks)) = code (Label (Ks))
equation: code (K1) y code (K2) = code (K1 yK2)
equation: code (K) , code (Ks) = code (K ,Ks)

equation: JP K =

mkK(P)
k

•

env

•

holds

thread

•

store
0

nextLoc
•

aspect

•

busy
agent(0)

me

agent(0)

parent

agent

•

output

•

messages

agent(1)

nextAgent

T

equation: eval code (K) = K
equation: quote(0 , unquote K) = K
equation: quote(N , •) = code (•)
equation: quote(N ,V) = code (V)
equation: quote(N ,X) = code (X)
equation: quote(N ,K1 yK2) = quote(N ,K1) y quote(N ,K2)
equation: quote(N ,K ,Ks) = quote(N ,K) , quote(N ,Ks)
equation: quote(N , quote K) = quote (quote(s N ,K))
equation: quote(N ,∼(Kl)) = ∼ (quote(N ,Kl))
equation: quote(s N , unquote K) = unquote (quote(N ,K))

32

WRLA'10, LNCS. 2010 (to appear)

rule: —
store

—
nextLoc

—

aspect

—
busy

—
me

—

parent

agent

⇒ •

rule: F1 * F2 ⇒ F1 * F2

rule: I1 * I2 ⇒ I1 * I2

rule: F1 + F2 ⇒ F1 + F2

rule: I1 + I2 ⇒ I1 + I2

rule: F1 ≤ F2 ⇒ F1≤F2

rule: I1 ≤ I2 ⇒ I1≤ I2

rule: false and — ⇒ false

rule: true and BE ⇒ BE

rule: if false then — else S2 ⇒ S2

rule: if true then S1 else — ⇒ S1

rule: not B ⇒ not B

end module

33

WRLA'10, LNCS. 2010 (to appear)

