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Abstract. A coinduction-based technique to generate an optimal mon-
itor from a Linear Temporal Logic (LTL) formula is presented in this
paper. Such a monitor receives a sequence of states (one at a time) from
a running process, checks them against a requirements specification ex-
pressed as an LTL formula, and determines whether the formula has
been violated or validated. It can also say whether the LTL formula
is not monitorable any longer, i.e., that the formula can in the future
neither be violated nor be validated. A Web interface for the presented
algorithm adapted to extended regular expressions is available.

1 Introduction
Linear Temporal Logic (LTL) [19] is a widely used logic for specifying properties
of reactive and concurrent systems. The models of LTL are infinite execution
traces, reflecting the behavior of such systems as ideally always being ready
to respond to requests, operating system being typical example. LTL has been
mainly used to specify properties of finite-state reactive and concurrent systems,
so that the full correctness of the system can be verified automatically, using
model checking or theorem proving. Model checking of programs has received an
increased attention from the formal methods community within the last couple
of years, and several tools have emerged that directly model check source code
written in Java or C [7, 26, 27]. Unfortunately, such formal verification techniques
are not scalable to real-sized systems without exerting a substantial effort to
abstract the system more or less manually to a model that can be analyzed.

Testing scales well, and in practice it is by far the technique most used to
validate software systems. Our approach follows research which merges testing
and temporal logic specification in order to achieve some of the benefits of both
approaches; we avoid some of the pitfalls of ad hoc testing as well as the com-
plexity of full-blown theorem proving and model checking. While this merger
provides a scalable technique, it does result in a loss of coverage: the technique
may be used to examine a single execution trace at a time, and may not be used
to prove a system correct. Our work is based on the observation that software
engineers are willing to trade coverage for scalability, so our goals is relatively
conservative: we provide tools that use formal methods in a lightweight manner,
use traditional programming languages or underlying executional engines (such
as JVMs), are completely automatic, implement very efficient algorithms, and
can help find many errors in programs.

Recent trends suggest that the software analysis community is interested
in scalable techniques for software verification. Earlier work by Havelund and



Rosu [10] proposed a method based on merging temporal logics and testing.
The Temporal Rover tool (TR) and its successor DB Rover by Drusinsky [2]
have been commercialized. These tools instrument the Java code so that it can
check the satisfaction of temporal logic properties at runtime. The MaC tool by
Lee et al. [14,17] has been developed to monitor safety properties in interval
past time temporal logic. In works by O’Malley et al. and Richardson et al. [20,
21], various algorithms to generate testing automata from temporal logic formu-
lae, are described. Java PathExplorer [8] is a runtime verification environment
currently under development at NASA Ames. It can analyze a single execution
trace. The Java MultiPathExplorer tool [25] proposes a technique to monitor all
equivalent traces that can be extracted from a given execution, thus increasing
the coverage of monitoring. Giannakopoulou et al. and Havelund et al. in [4, 9]
propose efficient algorithms for monitoring future time temporal logic formulae,
while Havelund et al. in [11] gives a technique to synthesize efficient monitors
from past time temporal formulae. Rosu et al. in [23] shows use of rewriting
to perform runtime monitoring of extended regular expressions. An approach
similar to this paper is used to generate optimal monitors for extended regular
expressions in work by Sen et al. [24].

In this paper, we present a new technique based on the modern coalgebraic
method to generate optimal monitors for LTL formulae. In fact, such monitors
are the minimal deterministic finite automata required to do the monitoring. Our
current work makes two major contributions. First, we give a coalgebraic formal-
ization of LTL and show that coinduction is a viable and reasonably practical
method to prove monitoring-equivalences of LTL formulae. Second, building on
the coinductive technique, we present an algorithm to directly generate mini-
mal deterministic automata from an LTL formula. Such an automaton may be
used to monitor good or bad prefixes of an execution trace (this notion will be
rigorously formalized in subsequent sections).

We describe the monitoring as synchronous and deterministic to obtain min-
imal good or bad prefixes. However, if the cost of such monitoring is deemed too
high in some application, and one is willing to tolerate some delay in discovering
violations, the same technique could be applied on the traces intermittently —
in which case one would not get minimal good or bad prefixes but could either
bound the delay in discovering violations, or guarantee eventual discovery. We
also give lower and upper bounds on the size of such automata.

The closely related work by Geilen [3] builds monitors to detect a subclass
of bad and good prefixes, which are called informative bad and good prefizes.
Using a tableau-based technique, [3] can generate monitors of exponential size
for informative prefixes. In our approach, we generate minimal monitors for
detecting all kinds of bad and good prefixes. This generality comes at a price:
the size of our monitors can be doubly exponential in the worst case, and this
complexity cannot be avoided.

One standard way to generate an optimal monitor is to use the Biichi au-
tomata construction [16] for LTL to generate a non-deterministic finite automa-
ton, determinize it and then to minimize it. In this method, one checks only



the syntactic equivalence of LTL formulae. In the coalgebraic technique that we
propose as an alternative method, we make use of the monitoring equivalence
(defined in subsequent sections) of LTL formulae. We thus obtain the minimal
automaton in a single go and minimize the usage of computational space. More-
over, our technique is completely based on deductive methods and can be applied
to any logic or algebra for which there is a suitable behavioral specification. A
related application can be found in [24] in which the minimal deterministic finite
automata for extended regular expressions is generated.

2 Linear Temporal Logic and Derivatives
In order to make the paper self-contained, we briefly describe classical Linear
Temporal Logic over infinite traces. We use the classical definition of Linear

Temporal Logic and assume a finite set AP of atomic propositions. The syntax
of LTL is as follows:

¢ = true | false |a € AP | ¢ |dpANDP|dVO|d—>P|d=0¢d]| D¢ propositional
dU G| 0¢ | O¢ | O temporal

The semantics of LTL is given for infinite traces. An infinite trace is an infinite
sequence of program states, each state denoting the set of atomic propositions
that hold at that state. The atomic propositions that hold in a given state s is
given by AP(s). We denote an infinite trace by p; p(i) denotes the i-th state in
the trace and p’ denotes the suffix of the trace p starting from the i-th state.
The notion that an infinite trace p satisfies a formula ¢ is denoted by p = ¢,
and is defined inductively as follows:

p = true for all p p ¥ false for all p

p = aiff a € AP(p(1)) plE-¢iff p¥ o

pPE®V o2 iff pl= g1 orpE @2 pPEG1LAG2 i pl=¢1 and p = ¢2
pPEGL® @2 iff p =1 exclusiveor p =2 p E d1 — ¢2 iff p = ¢1 implies p = ¢
pE o= iff pl=guiff p = ¢o pEOgiff p° = ¢ _
pEOIEVi>1p Eo¢ p [ 0¢ iff 35 > 1 such that p’ |= ¢

p = ¢1 U ¢2 iff there exists a j > 1 such that p/ E ¢ and V1 <i<j: p' = ¢y

The set of all infinite traces that satisfy the formula ¢ is called the language
expressed by the formula ¢ and is denoted by Ly. Thus, p € Ly if and only if
p = ¢. The language Ly is also called the property expressed by the formula ¢.
We informally say that an infinite trace p satisfies a property ¢ iff p = ¢.

A property in LTL can be seen as the intersection of a safety property and
a liveness property [1]. A property is a liveness property if for every finite trace
« there exists an infinite trace p such that a.p satisfies the property. A property
is a safety property if for every infinite trace p not satisfying the property, there
exists a finite prefix a such that for all infinite traces p’, a.p’ does not satisfy
the property. The prefix « is called a bad prefix [3]. Thus, we say that a finite
prefix « is a bad prefix for a property if for all infinite traces p, a.p does not
satisfy the property. On the other hand, a good prefiz for a property is a prefix
« such that for all infinite traces p, a.p satisfies the property. A bad or a good
prefix can also be minimal. We say that a bad (or a good prefix) « is minimal if
a is a bad (or good) prefix and no finite prefix o’ of « is bad (or good) prefix.



We use a novel coinduction-based technique to generate an optimal monitor
that can detect good and bad prefixes incrementally for a given trace. The es-
sential idea is to process, one by one, the states of a trace as these states are
generated; at each step the process checks if the finite trace that we have already
generated is a minimal good prefix or a minimal bad prefix. At any point, if we
find that the finite trace is a minimal bad prefix, we say that the property is
violated. If the finite trace is a minimal good prefix then we stop monitoring for
that particular trace and say that the property holds for that trace.

At any step, we will also detect if it is not possible to monitor a formula any
longer. We may stop monitoring at that point and say the trace is no longer
monitorable and save the monitoring overhead. Otherwise, we continue by pro-
cessing one more state and appending that state to the finite trace. We will see
in the subsequent sections that these monitors can report a message as soon as
a good or a bad prefix is encountered; therefore, the monitors are synchronous.
Two more variants of the optimal monitor are also proposed; these variants can
be used to efficiently monitor either bad prefixes or good prefixes (rather than
both). Except in degenerate cases, such monitors have smaller sizes than the
monitors that can detect both bad and good prefixes.

In order to generate the minimal monitor for an LTL formula, we will use
several notions of equivalence for LTL:

Definition 1 (=). We say that two LTL formulae ¢1 and ¢2 are equivalent i.e.
$1 = @2 if and only if Ly, = Lg,.

Definition 2 (=p). For a finite trace o we say that o ¥ ¢ iff o is bad prefix
for ¢ i.e. for every infinite trace p it is the case that a.p & Ly. Given two LTL
formulae ¢ and ¢2, @1 and ¢o are said to be bad prefix equivalent i.e. p1 =p ¢po
if and only if for every finite trace o, a ¥ ¢1 iff a ¥ ¢o.

Definition 3 (=¢). For a finite trace o we say that « = ¢ iff « is good prefix
for ¢ i.e. for every infinite trace p it is that case that a.p € Lg. Given two
LTL formulae ¢ and ¢2, ¢1 and ¢o are said to be good prefix equivalent i.e.
@1 =c @2 if and only if for every finite trace a, a = ¢1 iff @ = ¢a.

Definition 4 (=gg). We say that ¢1 and ¢2 are good-bad prefix equivalent
i.e. o1 =gp ¢2 if and only if 1 =p ¢2 and P1 =g P2.

Thus, for our purpose, the two non equivalent formulae O0¢ and Q¢ are good-
bad prefix equivalent since they do not have any good or bad prefixes. Such
formula are not monitorable. Note that the equivalence relation = is included
in the equivalence relation =g, which is in turn included in both =4 and =p.
We will use the equivalences =g,=p, and =gp to generate optimal monitors
that detect good prefixes only, bad prefixes only and both bad and good prefixes
respectively. We call these three equivalences monitoring equivalences.

2.1 Derivatives

We describe the notion of derivatives for LTL [9, 10] based on the idea of state
consumption: an LTL formula ¢ and a state s generate another LTL formula,
denoted by ¢{s}, with the property that for any finite trace a, sa ¥ ¢ if and
only if a # ¢{s} and sa = ¢ if and only if a = ¢{s}. We define the operator
_{-} recursively through the following equations:



false {s} = false true {s} = true

p{s} = if p € AP(s) then true else false (=) {s} = ~(¢{s})

(PrV ¢2){s} = ¢1{s} V ¢2{s} (61 A @2){s} = d1{s} A d2{s}
(1 = @2){s} = d1{s} — ¢2{s} (¢1 @ ¢2){s} = d1{s} & po{s}
(09){s} = ¢{s} v 0o (Og){s} = ¢{s} A DOo

(1 U p2){s} = ¢2{s} V (¢1{s} A ¢1 U ¢2)

We use the decision procedure for propositional calculus by Hsiang [13] to get a
canonical form for a propositional formula. The procedure reduces a tautological
formula to the constant true, a false formula to the constant false, and all other
formulae to canonical forms modulo associativity and commutativity. An unusual
aspect of this procedure is that the canonical forms consist of exclusive or (@)
of conjunctions. The procedure is given below using equations that are shown to
be Church-Rosser and terminating modulo associativity and commutativity.

true Ao = o false A ¢ = false

GNDP=¢ false ® ¢ = ¢

¢ P ¢ = false ¢ = true @ ¢

&1 A (92 ® ¢3) = (d1 A P2) © (d1 A ¢3) $1V 2 = (91 A p2) © 1 D P2
P1 — P2 =true ® ¢1 @ (P1 A ¢2) 1 = g2 = true ® o1 B P2

The exclusive or operator @ and the A operator are defined as commutative
and associative. The equations DERIVATIVE and PROPOSITIONAL CALCULUS
when regarded as rewriting rules are terminating and Church-Rosser (modulo
associativity and commutativity of A and @), so they can be used as a functional
procedure to calculate derivatives.

In the rest of the paper, at several places we need to check if an LTL formula
is equivalent to true or false. This can be done using the tableau-based proof
method for LTL; the STeP tool at Stanford [18] has such an implementation.

The following result gives a way to determine if a prefix is good or bad for a
formula through derivations.

Theorem 1. a) For any LTL formula ¢ and for any finite trace « = s183 ... Sy,
a s a bad prefix for ¢ if and only if ¢p{s1}{s2}...{sn} = false. Similarly, « is
a good prefix for ¢ if and only if ¢{s1}{s2}...{sn} = true. b) The formula
H{s1}{s2} ... {sn} needs O(25%¢(?)) space to be stored.

Proof. b): Due to the Boolean ring equations above regarded as simplification
rules, any LTL formula is kept in a canonical form, which is an exclusive disjunc-
tion of conjunctions, where conjuncts have temporal operators at top. Moreover,
after a series of applications of derivatives s1, so, ..., S5, the conjuncts in the nor-
mal form ¢{s1}{s2}...{sn} are subterms of the initial formula ¢, each having a
temporal operator at its top. Since there are at most size(¢) such subformulae, it
follows that there are at most 25%¢(#) possibilities to combine them in a conjunc-
tion. Therefore, one needs space 0(25”6(‘75)) to store any exclusive disjunction of
such conjunctions. This reasoning only applies on “idealistic” rewriting engines,
which carefully optimize space needs during rewriting.0

In order to effectively generate optimal monitors, it is crucial to detect efficiently
and as early as possible when two derivatives are equivalent. In the rest of
the paper we use coinductive techniques to solve this problem. We define the



operators G : LTL — {true,false} and B: LTL — {true, false} that return
true if an LTL formula is equivalent (=) to true or false respectively, and return
false otherwise. We define an operator GB : LTL — {0, 1,7} that checks if an
LTL formula ¢ is equivalent to false or true and returns 0 or 1, respectively, and
returns 7 if the formula is not equivalent to either true or false.

3 Hidden Logic and Coinduction

We use circular coinduction, defined rigorously in the context of hidden logics
and implemented in the BOBJ system [22, 5, 6], to test whether two LTL formu-
lae are good-bad prefix equivalent. A particularly appealing aspect of circular
coinduction in the framework of LTL formula is that it not only shows that two
LTL formulae are good-bad prefix equivalent, but also generates a larger set of
good-bad prefix equivalent LTL formulae which will all be used in order to gen-
erate the target monitor. Readers familiar with circular coinduction may assume
the result in Theorem 4 and read Section 4 concurrently.

Hidden logic is a natural extension of algebraic specification which benefits of
a series of generalizations in order to capture various natural notions of behav-
ioral equivalence found in the literature. It distinguishes wisible sorts for data
from hidden sorts for states, with states behaviorally equivalent if and only if
they are indistinguishable under a formally given set of experiments. In order to
keep the presentation simple and self-contained, we define a simplified version of
hidden logic together with its associated circular coinduction proof rule which is
nevertheless general enough to support the definition of LTL formulae and prove
that they are behaviorally good and/or bad prefix equivalent.

3.1 Algebraic Preliminaries

We assume that the reader is familiar with basic equational logic and algebra but
recall a few notions in order to just make our notational conventions precise. An
S-sorted signature X' is a set of sorts/types S together with operational symbols
on those, and a Y-algebra A is a collection of sets {4 | s € S} and a collection
of functions appropriately defined on those sets, one for each operational symbol.
Given an S-sorted signature X and an S-indexed set of variables Z, let Tx;(Z)
denote the Y-term algebra over variables in Z. If V' C S then X[y is a V-sorted
signature consisting of all those operations in X with sorts entirely in V. We
may let o(X) denote the term o(z1, ..., ;) when the number of arguments of o
and their order and sorts are not important. If only one argument is important,
then to simplify writing we place it at the beginning; for example, o(¢, X) is a
term having o as root with no important variables as arguments except one, in
this case t. If ¢ is a X-term of sort s’ over a special variable * of sort s and A is
a XY-algebra, then A; : A; — Ay is the usual interpretation of ¢ in A.

3.2 Behavioral Equivalence, Satisfaction and Specification

Given disjoint sets V, H called visible and hidden sorts, a hidden (V, H)-signature,
say X, is a many sorted (VUH )-signature. A hidden subsignature of X is a hidden
(V, H)-signature I" with I' C X and I'ly= X[y . The data signature is X[y . An



operation of visible result not in Xy is called an attribute, and a hidden sorted
operation is called a method.

Unless otherwise stated, the rest of this section assumes fixed a hidden sig-
nature X with a fixed subsignature I'. Informally, X-algebras are universes of
possible states of a system, i.e., “black boxes,” for which one is only concerned
with behavior under experiments with operations in I', where an experiment is
an observation of a system attribute after perturbation.

A I'-context for sort s € VUH is a term in T ({x : s}) with one occurrence of
x. A I'-context of visible result sort is called a I'-experiment. If ¢ is a context for
sort h and ¢t € T, then c[t] denotes the term obtained from ¢ by substituting
t for x; we may also write c[«] for the context itself.

Given a hidden X-algebra A with a hidden subsignature I', for sorts s &
(VUH), we define I'-behavioral equivalence of a,a’ € As by a =L o’ iff A.(a) =
Ac(a’) for all I'-experiments c; we may write = instead of =5 when ¥ and I’
can be inferred from context. We require that all operations in X' are compatible
with =%. Note that behavioral equivalence is the identity on visible sorts, since
the trivial contexts x : v are experiments for all v € V. A major result in
hidden logics, underlying the foundations of coinduction, is that I'-behavioral
equivalence is the largest equivalence which is identity on visible sorts and which
is compatible with the operations in I'.

Behavioral satisfaction of equations can now be naturally defined in terms
of behavioral equivalence. A hidden X-algebra A I'-behaviorally satisfies a X-
equation (VX) t = ¢/, say e, iff for each 0 : X — A, 0(t) =L 0(¢'); in this case
we write A EL e. If F is a set of X-equations we then write A EL E when A
I'-behaviorally satisfies each Y-equation in E. We may omit X and/or I" from
EL when they are clear.

A behavioral X-specification is a triple (X, I', E) where X' is a hidden signa-
ture, I" is a hidden subsignature of X', and F is a set of Y-sentences equations.
Non-data [-operations (i.e., in I' — X'[y) are called behavioral. A X-algebra A
behaviorally satisfies a behavioral specification B = (X, I E) iff A EL E, in
which case we write A [ B; also B £ e iff A |E B implies A4 EL e.

LTL can be very naturally defined as a behavioral specification. The enor-
mous benefit of doing so is that the behavioral inference, including most impor-
tantly coinduction, provide a decision procedure for good-bad prefix equivalence.

Ezxample 1. A behavioral specification of LTL defines a set of two visible sorts
V = {Triple, State}, one hidden sort H = {Ltl}, one behavioral attribute
GB : Ltl — Triple (defined as an operator in Subsection 2.1) and one behavioral
method, the derivative, {_} : Ltl x State — Ltl, together with all the other
operations in Section 2 defining LTL, including the states in S which are defined
as visible constants of sort State, and all the equations in Subsection 2.1. The
sort Triple consists of three constants 0, 1, and 7. We call this the LTL behavioral
specification and we use Brrr,gp to denote it.

Since the only behavioral operators are the test for equivalence to true and
false and the derivative, it follows that the experiments have exactly the form
GB(*{s1}{s2}...{sn}), for any states si, s2, ..., sp. In other words, an experi-



ment consists of a series of derivations followed by an application of the operator
GB, and therefore two LTL formulae are behavioral equivalent if and only if they
cannot be distinguished by such experiments. Such behavioral equivalence is ex-
actly same as good-bad prefix equivalence. In the specification of Brrr,gp if
we replace the attribute GB by B (or G), as defined in Subsection 2.1, the be-
havioral equivalence becomes same as bad prefix (or good prefix) equivalence.
We denote such specifications by By s (or Brrr/c). Notice that the above
reasoning applies within any algebra satisfying the presented behavioral specifi-
cation. The one we are interested in is, of course, the free one, whose set carriers
contain exactly the LTL formulae as presented in Section 2, and the operations

have the obvious interpretations. We informally call it the LTL algebra.
Letting =, denote the behavioral equivalence relation generated on the LTL

algebra, then Theorem 1 immediately yields the following important result.

Theorem 2. If ¢1 and ¢z are two LTL formulae then ¢1 =y ¢2 in Brrr/ap
iff 1 and ¢3 are good-bad prefiz equivalent. Similarly, ¢1 =y ¢2 in Brrryp (or
Brrra) if and only if ¢1 and ¢ are bad prefiz (or good prefix) equivalent.
This theorem allows us to prove good-bad prefix equivalence (or bad prefix or
good prefix equivalence) of LTL formulae by making use of behavioral inference
in the LTL behavioral specification Brrr,gp (or Brrr/p or Brrr)q) including
(especially) circular coinduction. The next section shows how circular coinduc-
tion works and how it can be used to show LTL formulae good-bad prefix equiv-
alent (or bad prefix equivalent or good prefix equivalent). From now onwards we
will refer Byrr/gp simply by B.

3.3 Circular Coinduction as an Inference Rule

In the simplified version of hidden logics defined above, the usual equational in-
ference rules, i.e., reflexivity, symmetry, transitivity, substitution and congruence
[22] are all sound for behavioral satisfaction. However, equational reasoning can
derive only a very limited amount of interesting behavioral equalities. For that
reason, circular coinduction has been developed as a very powerful automated
technique to show behavioral equivalence. We let - denote the relation being
defined by the equational rules plus circular coinduction, for deduction from a
specification to an equation.

Before formally defining circular coinduction, we give the reader some intu-
itions by duality to structural induction. The reader who is only interested in
using the presented procedure or who is not familiar with structural induction,
can skip this paragraph. Inductive proofs show equality of terms ¢(z),t'(z) over
a given variable x (seen as a constant) by showing t(o(z)) equals t'(o(z)) for
all o in a basis, while circular coinduction shows terms ¢,t’ behaviorally equiv-
alent by showing equivalence of §(t) and §(¢') for all behavioral operations ¢.
Coinduction applies behavioral operations at the top, while structural induction
applies generator/constructor operations at the bottom. Both induction and cir-
cular coinduction assume some “frozen” instances of t,t’ equal when checking
the inductive/coinductive step: for induction, the terms are frozen at the bottom
by replacing the induction variable by a constant, so that no other terms can
be placed beneath the induction variable, while for coinduction, the terms are



frozen at the top, so that they cannot be used as subterms of other terms (with
some important but subtle exceptions which are not needed here; see [6]).

Freezing terms at the top is elegantly handled by a simple trick. Suppose
every specification has a special visible sort b, and for each (hidden or visible)
sort s in the specification, a special operation []: s — b. No equations are
assumed for these operations and no user defined sentence can refer to them;
they are there for technical reasons. Thus, with just the equational inference
rules, for any behavioral specification B and any equation (VX) t = ¢, it is
necessarily the case that B IIF (VX) ¢ = ¢ iff B IIF (VX) [¢] = [t]. The rule
below preserves this property. Let the sort of ¢,¢’ be hidden; then
Circular Coinduction:

BU{(VX) [t] = [t']} IF (VX,W) [6(t, W)] = [6(t', W)], for all appropriate § € I"
BlF(VX)t=¢t

We call the equation (VX) [¢t] = [t'] added to B a circularity; it could just as
well have been called a coinduction hypothesis or a co-hypothesis, but we find the
first name more intuitive because from a coalgebraic point of view, coinduction
is all about finding circularities.
Theorem 3. The usual equational inference rules together with Circular Coin-
duction are sound. That means that if B I+ (VX) t =+t and sort(t,t') # b, or if
B IF(VX) [t] =[t'], then B = (VX)t=1t.
Circular coinductive rewriting[5, 6] iteratively rewrites proof tasks to their normal
forms followed by an one step coinduction if needed. Since the rules in Brrr, a3,
Brrr s, and Brrrq are ground Church-Rosser and terminating, this provides
us with a decision procedure for good-bad prefix equivalence, bad prefix equiv-
alence, and good prefix equivalence of LTL formulae respectively.
Theorem 4. If ¢1 and ¢o are two LTL formulae, then ¢1 =gp ¢2 if and only
if Brroyap Wb @1 = ¢2. Similarly, if ¢1 and ¢z are two LTL formulae, then
1 =p ¢2 (or 91 =¢ ¢2) if and only if Bpryp b ¢1 = ¢2 (or Brrpja -
@1 = ¢2). Moreover, circular coinductive rewriting provides us with a decision
procedure for good-bad prefiz equivalence, bad prefiz equivalence, and good prefix
equivalence of LTL formulae.

Proof. By soundness of behavioral reasoning (Theorem 3), one implication fol-
lows immediately via Theorem 2. For the other implication, assume that ¢; and
@2 are good-bad prefix equivalent (or good prefix or bad prefix equivalent, respec-
tively) and that the equality ¢; = ¢ is not derivable from Brrr,ap (or Brrr g
or Brrr B, respectively). By Theorem 1, the number of formulae into which
any LTL formula can be derived via a sequence of events is finite, which means
that the total number of equalities ¢] = ¢4 that can be derived via the circular
coinduction rule is also finite. That implies that the only reason for which the
equality ¢ = ¢2 cannot be proved by circular coinduction is because it is in fact
disproved by some experiment, which implies the existance of some events aq,
<ey Gy, such that GB(¢1{a1}---{an}) # GB(¢2{a1}---{an}) (or the equivalent
ones for B or G). However, this is obviously a contradition because if ¢; and ¢
are good-bad (or good or bad) prefix equivalent that so are ¢1{a;}---{a,} and
¢2{a1}---{an}, and GB (or G or B) preserve this equivalence.



4 Generating Optimal Monitors by Coinduction

We now show how one can use the set of circularities generated by applying
the circular coinduction rules in order to generate, from any LTL formula, an
optimal monitor that can detect both good and bad prefixes. The optimal mon-
itor thus generated will be a minimal deterministic finite automaton containing
two final states true and false. We call such a monitor GB-automaton. We con-
clude the section by modifying the algorithm to generate smaller monitors that
can detect either bad or good prefixes. We call such monitors B-automaton and
G-automaton respectively. The main idea behind the algorithm is to associate
states in GB-automaton to LTL formulae obtained by deriving the initial LTL
formula; when a new LTL formula is generated, it is tested for good-bad pre-
fix equivalence with all the other already generated LTL formulae by using the
coinductive procedure presented in the previous section. A crucial observation
which significantly reduces the complexity of our procedure is that once a good-
bad prefix equivalence is proved by circular coinductive rewriting, the entire set
of circularities accumulated represent good-bad prefix equivalent LTL formu-
lae. These can be used to quickly infer the other good-bad prefix equivalences,
without having to generate the same circularities over and over again.

Since BOBJ does not (yet) provide any mechanism to return the set of circu-
larities accumulated after proving a given behavioral equivalence, we were unable
to use BOBJ to implement our optimal monitor generator. Instead, we have im-
plemented our own version of coinductive rewriting engine for LTL formulae,
which is described below.

We are given an initial LTL formula ¢y over atomic propositions P. Then
o = 2F is the set of possible states that can appear in an execution trace; note
that o will be the set of alphabets in the GB-automaton. Now, from ¢ we want
to generate a GB-automaton D = (S, 0,6, sg, {true, false}), where S is the set of
states of the GB-automaton, § : S x ¢ — S is the transition function, sg is the
initial state of the GB-automaton, and {true, false} C S is the set of final states
of the DFA. The coinductive rewriting engine explicitly accumulates the proven
circularities in a set. The set is initialized to an empty set at the beginning of the
algorithm. It is updated with the accumulated circularities whenever we prove
good-bad prefix equivalence of two LTL formulae in the algorithm. The algorithm
maintains the set of states S in the form of non good-bad prefix equivalent LTL
formulae. At the beginning of the algorithm S is initialized with two elements,
the constant formulae true and false. Then, we check if the initial LTL formula
¢g is equivalent to true or false. If ¢ is equivalent to true or false, we set sg to
true or false respectively and return D as the GB-automaton. Otherwise, we set
S0 to ¢, add ¢p to the set S, and invoke the procedure dfs (see Fig 1) on ¢p.

The procedure dfs generates the derivatives of a given formula ¢ for all
x € o one by one. A derivative ¢, = ¢{z} is added to the set S, if the set does
not contain any LTL formula good-bad prefix equivalent to the derivative ¢,.
We then extend the transition function by setting 6(¢, z) = ¢, and recursively
invoke dfs on ¢,. On the other hand, if an LTL formula ¢’ equivalent to the
derivative already exists in the set S, we extend the transition function by setting



0(¢,z) = ¢'. To check if an LTL formula, good-bad prefix equivalent to the
derivative ¢,, already exists in the set S, we sequentially go through all the
elements of the set S and try to prove its good-bad prefix equivalence with ¢,. In
testing the equivalence we first add the set of circularities to the initial Brrr,¢p-
Then we invoke the coinductive procedure. If for some LTL formula ¢’ € S, we
are able to prove that ¢’ =gp ¢ i.e Brrr/apUEqUEq, ey IF ¢' = ¢z, then we
add the new equivalences Eq, ., , created by the coinductive procedure, to the set
of circularities. Thus we reuse the already proven good-bad prefix equivalences
in future proofs.

S+ {true, false}
dfs(¢)
begin
foreach z € o do
if 3¢’ € S such that Brrr/ap U Eqa U Eqye, IF ¢ = ¢, then
5(¢,2) = ¢'s Equ + Equy U Eq ey
else S« SU{dz}; 0(¢p,x) = ¢ps; dfs(¢z); fi
endfor
end

Fig. 1. LTL to optimal monitor generation algorithm

The GB-automaton generated by the procedure dfs may now contain some states
which are non-final and from which the GB-automaton can never reach a final
state. We remove these redundant states by doing a breadth first search in back-
ward direction from the final states. This can be done in time linear in the size
of the GB-automaton. If the resultant GB-automaton contains the initial state
50 then we say that the LTL formula is monitorable. That is for the LTL formula
to be monitorable there must be path from the initial state to a final state i.e.
to true or false state. Note that the GB-automaton may now contain non-final
states from which there may be no transition for some z € o. Also note that no
transitions are possible from the final states.
The correctness of the algorithm is given by the following theorem.

Theorem 5. If D is the GB-automaton generated for a given LTL formula ¢
by the above algorithm then

1) L(D) is the language of good and bad prefizes of ¢,

2) D is the minimal deterministic finite automaton accepting the good and bad

prefixes of ¢.

Proof. 1) Suppose s152 ..., be a good or bad prefix of ¢. Then by Theorem
1, GB(¢{s1}{s2}...{sn}) € {0,1}. Let ¢; = p{s1}{s2}...{s:}; then ¢;11 =
¢i{ait1}. To prove that syse...s, € L(D), we use induction to show that for
each 1 <i<n, ¢; =¢p 0(¢,s152...5;). For the base case if ¢1 =gp ¢{s1} then
dfs extends the transition function by setting §(¢, s1) = ¢. Therefore, ¢1 =¢p
¢ =0(p,s1). If p1 Zap ¢ then dfs extends 0 by setting §(¢, s1) = ¢1. So 1 =gp
0(o, s1) holds in this case also. For the induction step let us assume that ¢; =¢p
¢ =06(p,s182...8;). I 6(¢, 8501) = ¢” then from the dfs procedure we can see



that ¢" =gp ¢'{sit+1}. However, ¢i{si+1} =ap ¢'{Si+1}, since ¢; =g ¢’ by
induction hypothesis. So ¢;11 =g ¢ = 6(¢', si41) = (), 8182...8;41). Also
notice GB(¢n, =B 0(4,5152...5,)) € {0,1}; this implies that (¢, s152...5,)
is a final state and hence s1s2...s, € L(D).

Now suppose 8183 ...8, € L(D). The proof that s1s5...s, is a good or bad
prefix of ¢ goes in a similar way by showing that ¢; =gp d(d, 5182 .- . 8;).
2) If the automaton D is not minimal then there exists at least two states p and
¢ in D such that p and ¢ are equivalent [12] i.e. Vw € o* : §(p,w) € F if and only
if 5(q,w) € F, where F is the set of final states. This means, if ¢1 and ¢o are the
LTL formulae associated with p and ¢ respectively in dfs then ¢; =gp ¢2. But
dfs ensures that no two LTL formulae representing the states of the automaton
are good-bad prefix equivalent. So we get a contradiction. O

The GB-automaton thus generated can be used as a monitor for the given
LTL formula. If at any point of monitoring we reach the state true in the GB-
automaton we say that the monitored finite trace satisfies the LTL formula.
If we reach the state false we say that the monitored trace violates the LTL
formula. If we get stuck at some state i.e. we cannot take a transition, we say
that the monitored trace is not monitorable. Otherwise we continue monitoring
by consuming another state of the trace.

In the above procedure if we use the specification By, p (or By, ¢) instead
of Brrr/gp and consider false (or true) as the only final state, we get a B-
automaton (or G-automaton). These automata can detect either bad or good
prefixes. Since the final state is either false or true the procedure to remove
redundant states will result in smaller automata compared to the corresponding
GB-automaton.

We have an implementation of the algorithm adapted to extended regular
expressions which is available for evaluation on the internet via a CGI server
reachable from http://fsl.cs.uiuc.edu/rv/.

5 Time and Space Complexity

Any possible derivative of an LTL formula ¢, in its normal form, is an exclusive
or of conjunctions of temporal subformulae (subformulae having temporal oper-
ators at the top) in ¢. The number of such temporal subformulae is O(m), where
m is the size of ¢. Hence, by counting argument, the number of possible con-
juncts is O(2™). The number of possible exclusive ors of these conjuncts is then
O(2%"). Therefore, the number of possible distinct derivatives of ¢ is O(22").
Since the number states of the GB-automaton accepting good and bad prefixes
of ¢ cannot be greater than the number of derivatives, 22" is an upper bound
on the number of possible states of the GB-automaton. Hence, the size of the
GB-automaton is O(22"). Thus we get the following lemma:

Lemma 1. The size of the minimal GB-automaton accepting the good and bad
prefizes of any LTL formula of size m is O(22").

For the lower bound on the size of the automata we consider the language

Ly, = {o#w#c'$w | w € {0,1}" and 0,0” € {0,1,#}*}.



This language was previously used in several works [15,16, 23] to prove lower
bounds. The language can be expressed by the LTL formula [16] of size O(k?):

= [(-$) U ($U OD(—\$))]/\<>[#/\O”+1#/\/n\ ((0'0AD($ — O'0))V(O 1AD($ — O'1)))].

1=1
For this LTL formula the following result holds.

Lemma 2. Any GB-automaton accepting good and bad prefixes of ¢y will have
size 2(22").

Proof: In order to prove the lower bound, the following equivalence relation
on strings over (0 4+ 1 + #)* is useful. For a string o € (0 4+ 1 + #)*, define
S(o) = {w € (0+ 1)* | IN, Ao. Mi#wH# o = o}. We will say that oy =, oy iff
S(o1) = S(02). Now observe that the number of equivalence classes of =y, is 22"
this is because for any S C (0 + 1)*, there is a ¢ such that S(o) = S.

We will prove this lower bound by contradiction. Suppose A is a GB-
automaton that has a number of states less than 22" for the LTL formula O
Since the number of equivalence classes of =y is 22k, by pigeon hole princi-
ple, there must be two strings o1 Zi o2 such that the state of A after read-
ing 01$ is the same as the state after reading 02$. In other words, A will
reach the same state after reading inputs of the form o;$w and o2$w. Now
since o1 #j 09, it follows that (S(o1) \ S(o2) U (S(o2) \ S(o1)) # 0. Take
w € (S(o1) \ S(o2) U (S(o2) \ S(o1)). Then clearly, exactly one out of o1$w
and oo%w is in Ly, and so A gives the wrong answer on one of these inputs.
Therefore, A is not a correct GB-automaton. O

Combining the above two results we get the following theorem.

Theorem 6. The size of the minimal GB-automaton accepting the good and bad
prefizes of any LTL formula of size m is O(22") and Q(ZQM).

The space and time complexity of the algorithm is given by the following:

Theorem 7. The LTL to optimal monitor generation algorithm requires 20™)
space and ¢2°C™) time for some constant c.

Proof: The number of distinct derivatives of an LTL formula of size m can be
O(2%"). Bach such derivative can be encoded in space O(2™). So the number
of circularities that are generated in the algorithm can consume O(22"2™2™)
space. The space required by the algorithm is thus 202™). 0O

The number of iterations that the algorithm makes is less than the number of
distinct derivatives. In each iteration the algorithm generates a set of circularities
that can be at most 2°(2™). So the total time taken by the algorithm is ¢29(2™)
for some constant c.

6 Conclusion and Future Work

In this paper we give a behavioral specification for LTL, which has the appealing
property that two LTL formulae are equivalent with respect to monitoring if and



only if they are indistinguishable under carefully chosen experiments. To our
knowledge, this is the first coalgebraic formalization of LTL. The major bene-
fit of this formalization is that one can use coinduction to prove LTL formulae
monitoring-equivalent, which can further be used to generate optimal LTL mon-
itors on a single go. As future work we want to apply our coinductive techniques
to generate monitors for other logics.
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