
Formal Semantics of Hybrid Automata

Technical Report

Manasvi Saxena1, Nishant Rodrigues1, Xiaohong Chen1, and Grigore Roşu1

1 University of Illinois at Urbana Champaign
2 {msaxena2,nishant2,xc3,grosu}@illinois.edu

Abstract. Hybrid Automata (HA) form the backbone of modeling sys-
tems with both discrete and continuous components. However, the se-
mantics of HA are usually described loosely using Labeled Transition
Systems (LTS), and reasoning about HA involves informal proofs over
LTS. In this paper, we propose a formally rigorous, concise, and semanti-
cally correct definition of HA in Matching Logic (ML), which is a uniform
logic for programming languages design and verification. We show how
our definition allows formal reasoning about HA using ML’s proof sys-
tem. Our approach exposes HA to a rich set of tools that operate over ML
and provide a sound logical basis for various techniques like Deductive
Verification, Monitoring and Runtime Verification.

1 Introduction
The framework of Hybrid Automata is widely used to model dynamical systems -
systems that combine discrete dynamics with continuous dynamics. Cyber Phys-
ical Systems (CPS), or systems that combine cyber capabilities (computation,
communication and control) with physical capabilities (motion or other phys-
ical processes) are examples of such dynamical systems. In recent years, CPS
are increasingly being employed to tackle challenges in domains like medicine,
transportation and energy. The use of CPS in safety critical applications, how-
ever, makes their correctness and reliability extremely important. Moreover, the
inherent complexity of CPS make their analysis challenging. HA have been in-
strumental in addressing these challenges by providing an intuitive mechanism
for modeling CPS, and have become central to a rich ecosystem of CPS analysis
tools [5,9,6,10].

In this paper, we propose a formally rigorous, and semantically correct def-
inition of HA. Our approach is centered around embedding HA in Matching
Logic (ML) [4]. Given a HA H as described in [8], we derive a ML theory ΓH

from H such that Labeled Transition System (LTS) of H is an ML-model of
ΓH . Intuitively, ΓH can be thought of as an axiomatization of H’s transition
relation. Since ΓH is an ML theory, we can use ML’s proof system to formally
reason about H.

We now briefly describe the paper’s layout. In 2 we describe relevant math-
ematical preliminaries. In 3 we describe the process of embedding HA in ML,
and present its correctness in 1.A . In 4.2 we discuss monitoring and runtime

2 Manasvi Saxena , Nishant Rodrigues, Xiaohong Chen, and Grigore Roşu

verification using the embedding from 3. In 5 we discuss directions for future
work and conclude.

2 Preliminaries

2.1 Hybrid Automata

Hybrid Automaton H [8] consists of: (1) A finite set X = {x1, . . . , xn} of real
valued variables, a finite set Ẋ = {ẋ1, . . . , ẋn} of dotted variables for deriva-
tives, and a finite set X ′ = {x′1, . . . , x′n} of primed variables for final values of
discrete changes. (2) A finite directed multigraph (V,E), with vertices referred
to as control modes and edges as control switches. (3) For all v ∈ V , pred-
icates init(v), inv(v) and flow(v) called initial, invariant and flow conditions
respectively. init(v) and inv(v) are defined using variables in X, while flow(v) is
defined using those in X ∪ Ẋ. (4) For all e ∈ E, predicate jump(e) called jump
condition, defined over free variables in X ∪ X ′. (5) A finite set ΣH of events,
and an edge labeling function event : E → ΣH , assigning to each control switch
e ∈ E an event s ∈ ΣH .

2.2 Labeled Transition Systems

For the purpose of this discussion, a Labeled Transition System (LTS) S consists
of (1) A possibly infinite set of states Q, and set Q0 ⊆ Q of initial states. (2) A

possibly infinite set A of labels, and for each a ∈ A, a binary relation
a−→ on Q.

For a given Hybrid Automaton H, the timed transition system StH is a LTS
that captures transition semantics of H [8], defined as: (1) Q,Q0 ⊆ (V ×Realn).
Say, (v,x) ∈ Q iff inv(v)[x/X] and (v,x) ∈ Q0 iff init(v)[x/X]. Let label set

A = ΣH ∪ R≥0. (2) For given σ ∈ ΣH , say (v,x)
σ−→ (v′,x ′) iff (a) there exists

control switch e with source v and destination v′. (b) jump(e)[x/X,x/X ′] holds,

and event(e) = σ. (3) For each non negative real δ ∈ R≥0, say (v,x)
δ−→ (v′,x ′)

iff (a) v = v′ (b) there exists a differentiable function f : [0, δ] → Rn where
ḟ : (0, δ)→ Rn is the first order derivative of f such that f(0) = x and f(δ) = x ′

(c) ∀ε ∈ (0, δ), inv(v)[f(ε)/X] and flow(v)[f(ε)/X, ḟ(ε)/Ẋ] hold.

2.3 Matching Logic

Matching Logic [14,4] is a logic for specifying static structures, logic constraints,
and dynamic properties. ML serves as the foundation of the K framework [1],
which is a language semantic framework where the formal semantics of languages
are defined and all language tools of the given languages are automatically gen-
erated in a correct-by-construction manner. In this section, we give a compact
overview of ML.

In short, ML is a many-sorted FOL variant combined with the least fixpoint
µ-binder. Unlike FOL, ML makes no distinction between functions and predi-
cates, but only has symbols that uniformly construct patterns, which can capture
static structure, dynamic properties, and FOL and modal logic constraints.

ML syntax is parametric in a signature � = (S,Var, Σ) consisting of (1) a
sort set S; (2) a disjoint union set Var = EVar∪SVar of element variables in
EVar denoted x:s, y:s etc. and set variables in SVar denoted X:s, Y :s etc; and

Formal Semantics of Hybrid Automata 3

(3) an (S∗ × S)-indexed set Σ = {Σs1...sn,s}s1,...,sn∈S of many-sorted symbols.
Patterns are inductively defined by the following grammar:

ϕs ::= x:s ∈ EVar | X:s ∈ SVar | ϕs ∧ ϕs | ¬ϕs | ∀x:s′ . ϕs

| σ(ϕs1 , . . . , ϕsn) with σ ∈ Σs1...sn,s | µX:s . ϕs where ϕs is positive in X:s

We say ϕs is positive in X:s if all occurrences of X:s are under an even number
of negations in ϕs. Sorts are omitted when they are irrelevant or can be inferred
from the context. Common propositional connectives can be define in the usual
way. We define ∃x . ϕ ≡ ¬∀x .¬ϕ, and νX .ϕ ≡ ¬µX .¬ϕ[¬X/X] (the greatest
fixpoint), where “ [/]” is the standard notion of capture-avoiding substitution
as in FOL. Define > ≡ ∃x . x as the pattern that matches all elements and
⊥ ≡ ¬> the one that matches nothing. Let Pattern = {Patterns}s∈S be the
S-indexed set of all patterns, modulo α-renaming of bound variables.

Given the signature � as above, a model M = ({Ms}s∈S , M) consists of (1) a
nonempty carrier setMs for each s ∈ S; and (2) an interpretation σM : Ms1×· · ·×
Msn → P(Ms) for each σ ∈ Σs1...sn,s, where P(Ms) is the powerset of Ms. Note
that symbols are interpreted as relations. Standard FOL models are special cases
of ML models where |σM (a1, . . . , an)| = 1 for all ai ∈ Msi , 1 ≤ i ≤ n. Partial
FOL models are also special cases where |σM (a1, . . . , an)| ≤ 1. We tacitly use the
same σM to mean its pointwise extension, σM : P(Ms1)×· · ·×P(Msn)→ P(Ms),
defined as: σM (A1, . . . , An) =

⋃
{σM (a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An} for all

Ai ⊆ Msi , 1 ≤ i ≤ n. An (M -)valuation ρ : Var → (M ∪ P(M)) is a function
s.t. ρ(x) ∈Ms for x:s ∈ EVar and ρ(X) ∈ P(Ms) for X:s ∈ SVar, i.e., element
variables are evaluated to elements and set variables are evaluated to sets. Its
extension ρ̄ : Pattern→ P(M) is defined inductive over patterns as follows:

ρ̄(x) = {ρ(x)} ρ̄(¬ϕ) = Ms \ ρ̄(ϕ) ρ̄(ϕ1 ∧ ϕ2) = ρ̄(ϕ1) ∩ ρ̄(ϕ2)

ρ̄(X) = ρ(X) ρ̄(∀x . ϕ) =
⋂

a∈Ms′

ρ[a/x](ϕ) ρ̄(σ(ϕ1, ..., ϕn)) = σM (ρ̄(ϕ1), ..., ρ̄(ϕn))

ρ̄(µX . ϕ) = µFρϕ,X , where Fρϕ,X : P(Ms)→ P(Ms) is the monotone function given as

Fρϕ,X(A) = ρ[A/X](ϕ) for all A ⊆Ms and µFρϕ,X denotes its the least fixpoint.

Here, “\” is set difference; ρ[a/x] (resp. ρ[A/X]) is the valuation ρ′ with ρ′(x) = a

(resp. ρ′(X) = A) and ρ′(y) = ρ(y) for y 6= x (resp. ρ′(Y) = ρ(Y) for Y 6= X). We

define M � ϕ iff ρ̄(ϕ) = M for all ρ. Let Γ be a pattern set called axiom set. We define

M � Γ iff M � ϕ for all ϕ ∈ Γ and Γ � ϕ iff M � ϕ for all M � Γ . A theory is a pair

(�, Γ), often abbreviated as Γ , where Γ is a set of �-axioms.

In this paper, we only need the FOL fragment of ML, meaning that most
ML symbols occurred in this paper can be safely understood as FOL functions
or predicates. The only exception is the “one-path next” symbol “•” (defined
in Section 3.2) which we use to capture the transition relations in transition
systems. We will elaborate it in details when we define it.

3 Matching Logic Embedding of Hybrid Automata
Given an HA H, we derive an ML theory ΓH from H, and prove, in Ap-
pendix 1.A, that the theory captures faithfully the behavior of H.

4 Manasvi Saxena , Nishant Rodrigues, Xiaohong Chen, and Grigore Roşu

3.1 Augmented Theory of Reals
We assume ΓReal - the ML theory of Real Closed Fields [15]. We define ΓReal†

which extends ΓReal with sorts Realn,Real99KRealn representing n-ary products
of Reals and relations between Reals to n-ary products of Reals respectively. and
ΓReal’s signature with symbol app ∈ ΣReal99KRealn Real,Realn . We briefly describe

the need for ΓReal† , and its need for embedding H in ML.

ConsiderMReal† to be an ML model of ΓReal† , with R and Rn as the carrier
sets of sorts Real and Realn respectively. Intuitively, the sort Real99KRealn can
be thought of as the sort of relations between Real and Realn. Since any binary
relation R can be described as a set SR, where (a, b) ∈ SR iff aR b, any relation
between R and Rn, is simply a subset of Rn+1. Thus, the carrier set of sort
Real99KRealn would be P(Rn+1). For more information on ML models, we refer
the reader to [4]. The sort Real99KRealn and symbol app ∈ ΣReal99KRealn Real,Realn

give us the ability to quantify over relations that behave functionally in an
interval. For instance, consider reals a, b, and a variable f :Real99KRealn. Say we
have ML pattern ϕ ≡ ∀a ≤ t:Real ≤ b . (∃y:Realn . (app(f, t) = y)). In a model

of ΓReal† , the (extended) evaluation of ϕ will be > iff the evaluation of f is a
relation that behaves as a function in the closed interval [a, b]. In section 3.2, we
use aforementioned sort and symbol in the axiomatization of flow predicates.

We define syntactic sugar for frequently used ΓReal†-terms. Say we have vari-
ables f :Real99KRealn, l:Real≥0, u:Real≥0, x:Real≥0, and y:Realn, then we say f(x)
instead of app(f, x); f :[l, u] instead of ∀l ≤ t ≤ u . (∃y . f(t) = y) and f :(l, u) in-

stead of ∀l < t < u . (∃y . f(t) = y). Given f, ḟ :Real99KRealn, we say ḟ is the first
order derivative of f in interval l, u as:

ϕisDerivativeOf(f, ḟ , l, u) ≡ f :[l, u] ∧ ḟ :(l, u) ∧ ∀l < t:Real>0 < u

∀ε:Real≥0 .

(
∃δ:Real≥0 .

(
∀h:Real≥0 < δ .

(∣∣∣∣f(t+ h)− f(t)

h
− ḟ(t)

∣∣∣∣ ≤ ε))) (1)

Intuitively, the valuation of ϕisDerivativeOf will be > iff (1) valuation of f is
a relation that behaves functionally in closed interval [a, b], and (2) valuation of
ḟ is a relation that behaves functionally in the open interval (a, b), and (3) at
time t ∈ (a, b), the valuation of ḟ(t) is the first order derivative of f .

3.2 ML Theory of Hybrid Automata
In section 3.1 we defined ΓReal† , an augmented theory of Reals. The ML embed-
ding ΓH = (�H, AH) of H as:

(Sorts) �H = (({V,E,State,Transition,Event} ∪ SReal†),VarH, ΣH), where

SReal† is the sort-indexed set of ΓReal† sorts. Sorts V,E are understood to rep-
resent H’s control graph. We assume ΣV and ΣE contain symbols σv and σe
for every v ∈ V and e ∈ E respectively. Similarly, we say Event is the sort
of H-events, and assume ΣEvent to be the corresponding (finite) signature of
H-events. Sort State is assumed to a subsort of V × Realn. The sort Transition
represents both continuous and discrete transitions of H. We assume appropriate
axioms such that in any ML-model, the carrier sets of sorts Event and Real≥0
are subsets of the carrier set of sort Transition. Intuitively, State and Real≥0 can
be thought of as subsorts of Transition.

Formal Semantics of Hybrid Automata 5

(Symbols) We define symbols first ∈ ΣState,V and second ∈ ΣState,Realn , with
appropriate axioms such that they behave as projection functions. Say we have
s:State, then we use sv and sx as syntactic sugar to refer to first(s) and second(s)
respectively. Intuitively, the sort State can be thought of as a subsort of V ×Realn,
where first and second are projections into V and Realn. In the remainder of
this work, we may use (v, x):State instead of s:State, where it is understood that
v = sv and x = sx. We also define symbol • ∈ ΣTransition State,State . The • (one
path next) symbol is the idiomatic way of capturing transition sytems in ML. We
refer the reader to [4] for futher information. We tacitly assume that flow,inv,init
and jump behave similarly for ML-symbols corresponding to vertices and edges
in H’s control graph. In other words, given v ∈ V and corresponding ML symbol
σv ∈ ΣV , flow(v) = flow(σv).

(Axioms) AH , the set of ΓH axioms is defined as:

(Invariant) For each σv ∈ ΣV , we define an axiom:

∀x : Realn . (inv(σv)[x /X]↔ ∃(v′, x′):State . v′ = σv ∧ x′ = x) (2)

(Jump) For each σe ∈ ΣE , we define an axiom:

∀(v, x), (v′, x′):State . ((v, x)→ •(event(σe), (v′, x′)))↔
(jump(σe)[x /X, x

′ /X ′] ∧ (source(σe) = v) ∧ (destination(σe) = v′)) (3)

(Flow) For each σv ∈ ΣV , we define an axiom:

∀δ:Real≥0 .∀(v, x), (v′, x′):State . (v = σv) ∧ ((v, x)→ •(δ, (v′, x′)))↔ (v = v′)

∧ ∃f, ḟ :Real99KRealn . ϕisDerivativeOf(f, ḟ , 0, δ) ∧ (f(0) = x ∧ f(δ) = x′)

∧ ∀0 < ε < δ . (inv(σv)[f(ε) /X] ∧ flow(σv)[f(ε) /X, ḟ(ε) / Ẋ]) (4)

(Init) For each σv ∈ ΣV we also define aliases:

initσv ≡ ∃(v, x):State . init(σv)[x
′ /X] ∧ (v = σv) (5)

4 Applications
4.1 Verification

HA are commonly used to model safety-critical hybrid systems like cars, planes
and medical devices, where safety is important. As a prelude to talking about
safety, we briefly describe trace semantics of HA, and the Reachability Problem.
Given a HA H and its LTS StH = (Q,Q0, A), a duration is assigned to each
transition a ∈ A. For discrete events σ ∈ ΣH , the duration is 0. For reals

δ ∈ R≥0, the duration of q
δ−→ q′ is δ, where q, q′ ∈ Q [8]. If q0 is the initial state

and q0
a0−→ q1 , then 〈ai, qi〉i≥1 is an initialized trajectory.

In [8], the reachability problem a fundamental subtask for safety verification,
but is only described informally as “existence of an initialized trajectory that
visits a state of the form (v′, x′)”. Our embedding however, allows us to formally

6 Manasvi Saxena , Nishant Rodrigues, Xiaohong Chen, and Grigore Roşu

and concisely define the Reachability Problem, for a given HA H, its ML embed-
ding ΓH , and initial state (v, x) as (v, x) → ♦(v′, x′) while safety can be then
be stated in terms of the reachability problem as ψsafety ≡ ¬((v, x)→ ♦ϕunsafe)
Intuitively, the above formalization says that given an initial state (v, x), it must
not be the case that an initialized trajectory will eventually reach an unsafe state
(denoted by ϕunsafe). For more information on modal operators in ML, we refer
the reader to [4]. Deductive verification is then proving ΓH ` ψsafety. Deductive
verification of Hybrid Systems isn’t a novel idea. In [13,16], the authors present
Differential Dynamic Logic and Hybrid Hoare Logic respectively - logics for veri-
fication of Hybrid Systems. These approaches however use Hybrid Programs and
Hybrid CSP respectively to model hybrid systems. This places an additional re-
quirement of understanding a different modeling approach instead of widely used
HA. On the other hand our approach is centered around HA which eliminates
the need for learning new modeling approaches for deductive verification.

4.2 Monitoring and Runtime Verification

Given a hybrid system S, and a HA H that models S, we can use ΓH , the
embedding of H in ML, and the ML proof system to deductively verify properties
(like safety, liveness, et.c.) about H. However, verification doesn’t guarantee
that S behaves as expected, since H may not be an adequate model of S, as
it is impossible to completely model real word physics. Thus it is vital, even
after deductive verification, to monitor S’s execution for properties like model
compliance and safety. In [12,3], the authors build on [13] to present monitoring
mechanisms for stronger safety guarantees. However, since the aforementioned
frameworks can only generate monitors for Hybrid Programs, and cannot be
directly used with HA.

We now attempt to formally define monitoring in the context of HA. In
Section 5, we briefly discuss approaches for efficient monitoring. We assume an
0-duration event is generate on every discrete transition, and at time interval tSR,
some pre determined sampling rate for continuous transitions. We also assume
that for each 0-duration event, the discrete transition associated with the event
is known.

Model Compliance Consider an initialized trajectory π = 〈ai, qi〉i≥1. Recall ai
is a duration, and qi a state in the LTS of HA. We say π �trajectory ΓH iff (a) Let
π = π′〈ai, qi〉, where π′ is sub-trajectory. If π′ is non empty then π′ �trajectory ΓH
(b) For events with duration ai ∈ R>0, ΓH ` (qi−1 → •(ai, qi)). (c) For 0-duration
(discrete) events, with dicrete transition σ, there must exists an intermedi-
ate event 〈δ, q′i〉 with duration δ ∈ R≥0 such that ΓH ` (qi−1 → •(δ, q′i))
∧(q′i → •(σ, qi)).
Safety In section 4.1 we presented ψsafety - a formalization of safety using the
Reachability Problem. Intuitively, ϕunsafe is a unsafe state that an initialiazed
trajectory must not reach to be considered safe. Formally, we say an initialiazed
trajectory π = 〈ai, qi〉i≥1 is a safe iff (a) Initial state ΓH ` ¬dq0 → ϕunsafee.
(b) Let π = π′〈ai, qi〉, where π′ is sub-trajectory. If π′ is non empty then π′ must
be a safe trajectory. (c) The most recent observed event 〈ai, qi〉 must not match
the unsafe pattern, i.e. ΓH ` ¬dqi → ϕunsafee.

Formal Semantics of Hybrid Automata 7

Note that while monitoring, we can produce ML proof objects certifying how
each event adheres to the the property being monitored.

5 Future Work and Conclusion

In the immediate future, we plan to develop efficient algorithms that accomplish
monitoring as described in section 4.2. In [7] the authors presented an algorithm
for efficiently monitoring propositional LTL formulas by using the LTL property
itself as a monitor, and rewriting the property w.r.t. every event to obtain a
derived formula to be used as a monitor. We plan to extend their approach to
our ML-embedding of Transition Systems, and derive efficient algorithms for
monitoring Transition Systems expressed in ML, of which our HA embedding is
a special case.

In the long term, we plan to identify classes of HA for which generation of
effecient monitors can be automated. We plan to use and extend the existing
infrastructure of RV-Monitor [11,2], to implement and test our approach using
examples. Our choice is driven by RV-Monitor’s existing support for instru-
menting LLVM and ROS. LLVM support is needed to instrument simulation of
Hybrid Systems, while ROS (widely used for embedded systems) support allows
monitoring actual ROS based Hybrid Systems.

In conlusion, this short paper presents a faithful (Appendix 1.A) embedding
of HA in ML. Unlike other logical formalizations, our embedding can express can
express all classes of HA. Importantly our work provides a framework for deduc-
tive verification of Hybrid Systems without going through alternative modeling
approach and logics.

We also provided concise and formal definitions of important but informally
defined problems from [8] such as the Reachability Problem and safety. We then
formally defined monitoring model compliance and safety. Since we our defini-
tions are expressed in a well understood logic, we hope to be able to produce
proof objects certifying compliance of an observed trajectories with properties of
interest. Finally, as future work, we present ideas for efficient online monitoring
techniques that can be used with offline deductive verification to provide strong
safety guarantees about Hybrid Systems.

References

1. K framework. https://www.kframework.org.com/

2. Runtime verification monitor. https://www.runtimeverification.com/monitor/

3. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: Veriphy: Verified
controller executables from verified cyber-physical system models. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (2018)

4. Chen, X., Roşu, G.: Matching µ-logic. In: Proceedings of the 34th Annual
IEEE/ACM Symposium on Logic in Computer Science (2019)

5. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2e2: A verification tool
for stateflow models. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 68–82. Springer (2015)

https://www.kframework.org.com/
https://www.runtimeverification.com/monitor/

8 Manasvi Saxena , Nishant Rodrigues, Xiaohong Chen, and Grigore Roşu

6. Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In:
International workshop on hybrid systems: computation and control. pp. 258–273.
Springer (2005)

7. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Proceedings of
the 16th IEEE International Conference on Automated Software Engineering. ASE
’01 (2001)

8. Henzinger, T.A.: The Theory of Hybrid Automata, pp. 265–292. Springer Berlin
Heidelberg (2000)

9. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. In: International Conference on Computer Aided Verification. pp. 460–
463. Springer (1997)

10. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 34(11), 1704–1717 (2015)

11. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O., Serbanuta, T.F., Rosu, G.:
Rv-monitor: Efficient parametric runtime verification with simultaneous proper-
ties. In: Proceedings of the 14th International Conference on Runtime Verification
(September 2014)

12. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods in System Design 49(1), 33–74 (Oct
2016). https://doi.org/10.1007/s10703-016-0241-z

13. Platzer, A.: Logics of dynamical systems. In: Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science. pp. 13–24 (2012)

14. Roşu, G.: Matching logic. Logical Methods in Computer Science 13(4), 1–61 (De-
cember 2017)

15. Tarski, A.: A decision method for elementary algebra and geometry. Journal of
Symbolic Logic 14(3) (1949). https://doi.org/10.2307/2267068

16. Zhan, N., Wang, S., Zhao, H.: Hybrid Hoare Logic, pp. 91–105. Springer Interna-
tional Publishing, Cham (2017)

https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.2307/2267068

Formal Semantics of Hybrid Automata 9

Appendix 1.A Proof of Faithfulness
Let StH = (Q,Q0, A) be the LTS expressing the transition semantics of H, and
ΓH be the ML embedding of H. We refer the reader to section 2.2 and [8] for
more information on transition semantics of Hybrid Automata.

Lemma 1. For every q, q′ ∈ Q and a ∈ A (v, x)
a−→ (v′, x′) iff

ΓH ` (v, x)→ •(a, (v′, x′)).

Since A = ΣH ∪ R≥0, where ΣH is finite and ΣH ∩ R≥0 = ∅, we have the
following cases:

Discrete When a ∈ ΣH , (v, x)
a−→ (v′, x′) iff there is a control switch e ∈ E

such that

(d1) source(e) = v and destination(e) = v′

(d2) event(e) = a
(d3) jump(e)[x /X, x′ /X] holds

We first prove (→) direction. Assume (v, x)
a−→ (v′, x′). By assumption (d1), (d2)

and (d3) hold. Using the 3 (Jump axiomatization) from section 3.2, since (d1),
(d2) and (d3) hold, we get ∀(v, x), (v′, x′):State . (v, x) → •(event(e), (v′, x′)),
which proves (→) direction. Next we prove (←) direction. Assume event(e) = a
and ∀(v, x), (v′, x′):State . (v, x)→ •(event(e), (v′, x′)). Using 3 from section 3.2,
we get
(jump(e)[x /X, x′ /X ′]∧(source(e) = v)∧(destination(e) = v′)). Thus, (d1), (d2)
and (d3) hold, which proves (←) direction.

Continuous When a ∈ R≥0. (v, x)
a−→ (v′, x′) iff

(c1) v = v′

(c2) There exist functions f : [0, a] → Rn and ḟ : (0, a) → Rn such that ḟ is the
first-order derivative of f .

(c3) f(0) = x and f(a) = x′

(c4) ∀0 < ε:Rn < a . inv(v)[f(ε) /X] and flow(v)[f(ε) /X, ḟ(ε) / Ẋ] hold.

We first prove (→) direction. Assume (v, x)
a−→ (v′, x′). By assumption (c1), (c2),

(c3) and (c4) hold. Using 4 (Flow axiomatization) from section 3.2, we get, (c1),
(c2) , (c3) and (c4) hold iff (v, x) → •(a, (v′, x′)). For proof of (←) we assume
(v, x)→ •(a, (v′, x′)). Using Flow, we get , (c1), (c2), (c3) and (c4) hold, leading

to (v, x)
a−→ (v′, x′).

	Formal Semantics of Hybrid Automata

