
One-Path Reachability Logic
Grigore Roşu∗†, Andrei Ştefănescu∗, Ştefan Ciobâcă†, Brandon M. Moore∗

∗University of Illinois, USA
{grosu, stefane1,bmmoore}@illinois.edu

†University “Alexandru Ioan Cuza”, Romania
stefan.ciobaca@info.uaic.ro

Abstract—This paper introduces (one-path) reachability logic,
a language-independent proof system for program verification,
which takes an operational semantics as axioms and derives
reachability rules, which generalize Hoare triples. This system
improves on previous work by allowing operational semantics
given with conditional rewrite rules, which are known to support
all major styles of operational semantics. In particular, Kahn’s
big-step and Plotkin’s small-step semantic styles are now sup-
ported. The reachability logic proof system is shown sound (i.e.,
partially correct) and (relatively) complete. Reachability logic
thus eliminates the need to independently define an axiomatic
and an operational semantics for each language, and the non-
negligible effort to prove the former sound and complete w.r.t.
the latter. The soundness result has also been formalized in Coq,
allowing reachability logic derivations to serve as formal proof
certificates that rely only on the operational semantics.

I. Introduction

This paper is part of our agenda [26]–[28] to prove
that operational semantics, if used in combination with an
appropriate language-independent proof system, is sufficient
for program verification. No axiomatic (or Hoare), dynamic, or
other auxiliary semantics of the same language is needed for
verification purposes, the language-independent proof system
offers all the good properties of these formalisms, including
small size and compositionality of proof derivations.

Operational semantics are easy to define and understand.
They can be thought of as formal implementations of the
languages they define. For example, a big-step semantics can be
thought of as a recursive interpreter, and a small-step semantics
as an execution engine describing each computational step
that can be performed. Operational semantics typically require
little formal training, making them common introductory
topics in programming language courses. Moreover, operational
semantics scale and, being executable, can be tested against
existing implementations for faithfulness or, conversely, yield
trusted reference models for the defined languages.

In spite of all the advantages above, operational semantics
typically are not used as a basis for program verification. Proofs
based on operational semantics tend to be low level and tedious,
formalizing and then working directly with the corresponding
transition system. Existing approaches for verifying programs,
such as Hoare logic or dynamic logic, require (re)defining the
language with a set of abstract proof rules, which are often hard
to understand and trust, and may additionally require non-trivial
program transformations (e.g., to eliminate the side effects from
expressions). The state-of-the-art in mechanical verification is to
develop and prove such language-specific proof systems sound

with respect to more trusted semantics [1], [9], [14], [16], [20],
[31]. In our experience defining operational semantics for real
languages like C [5], Java (1.4) [6], Verilog [18], etc., the
capability to execute semantics on thousands of programs (e.g.,
benchmarks used to test compilers) is a quite effective means
to catch semantic errors. It goes without saying that, ideally,
we would like a language-independent proof system which
takes any operational semantics as input and then can derive
any properties that can be derived with language-specific proof
systems, like Hoare logics or dynamic logics, at the same
cost and proof granularity. Such a proof system would make
it unnecessary (1) to define multiple semantics for the same
language and (2) to give proofs of their equivalence.

In previous work [26]–[28] we showed that the above is
possible. Specifically, we proposed a language-independent
proof system by introducing (unconditional) reachability rules,
which generalize both term-rewrite rules and Hoare triples. The
proof system derives reachability rules which are a consequence
of a set of reachability rules, such as the trusted semantics
of a language. The verification of a program reduces to
checking if the specification (given as a reachability rule) is
derivable. However, the existing proof system has two important
limitations: (1) it only works with unconditional reachability
rules, so it only supports operational semantics defined with
rules without premises, such as reduction semantics with
evaluation contexts [33], the chemical abstract machine [2],
or K [25], but it does not support two of the most popular
operational semantics approaches, namely Kahn’s big-step
and Plotkin’s small-step semantics; and (2) it only derives
reachability rules with a “one-path” semantics, that is, the
proved property is guaranteed to hold on one execution path of
the program only, and not on all paths, thereby capturing partial
correctness only for deterministic programs. In this paper we
only eliminate limitation (1) above, leaving (2) for future work.

In this paper we overcome limitation (1) above by working
with conditional reachability rules, which have the form

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n.

The ϕ are matching logic patterns (defined in Section III).
An unconditional rule is restricted to the form ϕ⇒ ϕ′. Condi-
tions are absolutely necessary in most operational semantics
approaches, to express rule premises, such as

〈e1 + e2, σ〉 ⇒ 〈i +Int j〉 if 〈e1, σ〉 ⇒ 〈i〉
∧
〈e2, σ〉 ⇒ 〈 j〉

in the style of Kahn’s big-step [4] semantics, or

〈e1 + e2, σ〉 ⇒ 〈e′1 + e2, σ〉 if 〈e1, σ〉 ⇒ 〈e′1, σ〉

in the style of Plotkin’s small-step [23] semantics. By accepting
conditional rules as axioms, our approach now supports
virtually all popular styles of operational semantics [32]. The
users of our approach are therefore not required anymore to
follow particular operational styles for defining their languages.

Specifications can be given as unconditional reachability
rules. If SUM is the program overwriting s with the sum of all
the numbers up to n, then the rule

〈SUM, (s 7→ s, n 7→n)〉 ∧ n ≥ 0 ⇒ 〈(s 7→n ∗ (n + 1)/2, n 7→0)〉

states the desired property of SUM using the configuration syntax
of a big-step semantics. In words, if we execute SUM in a state
binding program variables n and s to integers n and s with
n ≥ 0, then some execution (thus all, as SUM is deterministic)
reaches a final state binding program variables n and s to 0
and to the sum of numbers up to n, respectively.

To verify programs under operational semantics requiring
conditional reachability rules we give a new proof system
for reachability, referred to as (one-path) reachability logic.
The proof system will be used to derive sequents of the form
A ` ϕ⇒ ϕ′, where ϕ⇒ ϕ′ is a reachability property and A
is a set of possibly-conditional rules giving the operational
semantics of the language. The proof system works with more
general sequents, of the form A `C ϕ⇒ ϕ′, where C is an
additional set of unconditional reachability rules. The intuition
for such sequents is that the reachability property ϕ⇒ϕ′ holds
under the hypotheses A and C, where the hypotheses in C may
only be used after taking a step according to a rule from A.
The rules in C are called circularities. The desired sequents
A ` ϕ⇒ ϕ′ are recovered when C is empty.

The characteristic rule of our proof systems is the following:

Circularity :
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

The Circularity rule allows one to claim the current goal as
a new circularity at any point in a derivation. This form of the
proof rule was introduced in [26]. In practice Circularity is
typically used for code with potentially repetitive behaviors,
such as loops, recursive functions, jumps, etc., as a language-
independent replacement of the usual language-dependent
invariant rules. The new assumption can be used to handle
cases where the program may re-execute the same code.

The following proof rule, called Axiom, is the key rule of
reachability logic which deals with conditional rules:

Axiom :

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
· · ·
∧
ϕn⇒ ϕ′n ∈ A

ψ is a structureless pattern

A∪ C `∅ ϕi ∧ ψ⇒ ϕ′i for i ∈ 1, . . . , n
A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

To show the current goal is a consequence of a conditional
rule we must show that the conditions of the rule are all satisfied.
The conditions may be satisfied only because of conditions on
the logical variables in the initial state, so the subproofs are
allowed the additional assumptions in ψ. The circularities are

made available because applying the axiom counts as taking a
step. In a big step semantics this is the only kind of step other
than complete evaluation, and releasing the circularities while
verifying conditions is essential for reasoning about loops and
other repetitive behavior.

Contributions. This paper makes the following contributions:
1) It introduces the conditional reachability rule, to allow

capturing the rules of small-step, big-step, and virtually
all other styles of operational semantics.

2) It introduces (one-path) reachability logic, a proof system
for deriving unconditional reachability rules (e.g., ones
corresponding to Hoare triples) from a set of conditional
reachability rules (e.g., an operational semantics).

3) It proves the proof system sound, that is, partially correct.
Due to its practical relevance in producing proof objects,
this result is also formalized and proved in Coq.

4) It proves the proof system relatively complete. This
result is significantly more powerful than the relative
completeness of Hoare logic, because it is proved once for
all languages, rather than separately for each language.

All proofs are included in a companion report [29], which
can be found together with all the supporting code and Coq
mechanical proofs at http://fsl.cs.uiuc.edu/RL.

Due to space constraints, this paper does not discuss our
implementation of reachability logic in the program verifier
MatchC (for C). MatchC is based completely on an operational
semantics of C. MatchC has efficiently and automatically
verified the functional correctness of programs implementing
sorting algorithms, AVL trees, the Schorr-Waite graph marking
algorithm, etc., and involving arithmetic, heap data structures,
I/O, and so on. The URL above provides an online interface
to MatchC, together with dozens of examples. MatchC
strengthens the motivation for the foundational work in this
paper, showing that our overall verification approach based on
a language-independent proof system is also practical.

II. Operational Semantics

To give a proof system parameterized over an operational
semantics, we must first fix a language for defining operational
semantics. A common denominator of typical syntaxes for
big-step, small-step, and reduction semantics is conditional
term rewriting. The general form of a rewrite rule is

p⇒ p′ if b
∧

p1⇒ p′1
∧

b1
∧
. . .
∧

pn⇒ p′n
∧

bn

where each pi is a pattern and each bi is a boolean expression
over variables bound in earlier patterns. A set of rules generates
a transition system which includes a step between a pair of
configurations if there is some rule and some environment
mapping variables to subterms so that the first term matches p,
the second term matches p′, all of the bi are true, and for each
1 ≤ i ≤ n the term obtained by instantiating pi can take zero
or more steps in the transition system to reach p′i . A rule is
called unconditional if n = 0, whether or not b is trivial. E.g.,

〈if e s1 s2, σ〉 ⇒ 〈σ
′〉 if 〈e, σ〉 ⇒ 〈i〉

∧
i , 0

∧
〈s1, σ〉 ⇒ 〈σ

′〉

2

http://fsl.cs.uiuc.edu/RL

handles the semantics of the positive case of if in a big-step
style, where configurations are pairs 〈code, σ〉 of a statement
or expression code to evaluate, and a state/store σ.

Conditional term rewriting is sufficient to express every style
of operational semantics, perhaps through a translation adding
some auxiliary configurations and rules (e.g., to capture the
one-step reduction ⇒1). This is covered in detail in [32] for
small-step and big-step semantics, reduction semantics [33],
the chemical abstract machine [2], and continuation-based
semantics [7]. The representations are strongly faithful in the
sense that two configurations are related by a single step in
the original system iff appropriate injections into the domain
of the term rewriting system are related by a single step.

Fig. 1 shows a small-step and a big-step semantics of a
simple imperative language, called IMP, using rewrite rules. In
the sequel, we will refer to three IMP programs:

SUM ≡ s := 0; while (n > 0) (s := s+n; n := n-1)
SUM’ ≡ s := 0; while (n > 0) s := s+n
SUM∞ ≡ n := 1; while (n > 0) s := s+n

SUM always terminates, SUM’ only terminates when n ≤ 0, and
SUM∞ never terminates.

In conclusion, rewrite rules can be used to formally and
uniformly define operational semantics. The rest of the paper is
dedicated to showing that with an appropriate proof system, a
rewrite-based operational semantics is also sufficient to support
program reasoning; no other (axiomatic) semantics is needed.

III. Matching Logic

Traditionally, program logics are deliberately not concerned
with low level details about program configurations, those
details being almost entirely deferred to operational semantics.
This is a lost opportunity, since configurations contain precious
information about the structure of the various data in a
program’s state, such as the heap, the stack, the input, the output,
etc. Without direct access to this information, program logics
end up having to either encode it by means of sometimes hard
to define predicates, or extend themselves in non-conventional
ways, or sometimes both. To design a language-independent
proof-system, we cannot rely on language-specific logics.
Instead, we use matching logic over program configurations.
Matching logic [26], [30] is a logic suitable for specifying and
reasoning about program or system configurations.

Matching logic formulas combine definition of structure and
properties. For simplicity, we present it as a methodological
fragment of multi-sorted first-order logic, but the ideas may
easily be applied in other settings. Matching logic is parametric
in a syntax and a model for configurations. Configurations can
be as simple as pairs 〈code, σ〉 of code and store as used in
Section II, or as complex as that of the C language [5], which
contains more than 70 semantic components.

We assume the reader is familiar with basic concepts of first-
order logic. Given a signature Σ specifying the sorts and arities
of the function symbols (constructors or operators) used in
configurations, let TΣ(Var) denote the free Σ-algebra of terms
with variables in Var. TΣ,s(Var) is the set of Σ-terms of sort

IMP syntax
PVar F identifiers to be used as program variables
Exp F PVar | Int | Exp + Exp | ...
Stmt F skip | PVar := Exp | Stmt ; Stmt

| if Exp Stmt Stmt | while Exp Stmt

IMP small-step semantics
+1 〈e1 + e2, σ〉 ⇒

1 〈e′1 + e2, σ〉 if 〈e1, σ〉 ⇒
1 〈e′1, σ〉

+2 〈i1 + e2, σ〉 ⇒
1 〈i1 + e′2, σ〉 if 〈e2, σ〉 ⇒

1 〈e′2, σ〉
+3 〈i1 + i2, σ〉 ⇒1 〈i1 +Int i2, σ〉
lookup 〈x, σ〉 ⇒1 〈σ(x), σ〉 if x ∈ Dom(σ)
asgn1 〈x := e, σ〉 ⇒1 〈x := e′, σ〉 if 〈e, σ〉 ⇒1 〈e′, σ〉
asgn2 〈x := i, σ〉 ⇒1 〈skip, σ[x← i]〉 if x ∈ Dom(σ)
seq1 〈s1;s2, σ〉 ⇒

1 〈s′1;s2, σ
′〉 if 〈s1, σ〉 ⇒

1 〈s′1, σ
′〉

seq2 〈skip;s2, σ〉 ⇒
1 〈s2, σ〉

cond1 〈if e s1 s2, σ〉 ⇒
1 〈if e′ s1 s2, σ〉 if 〈e, σ〉 ⇒1 〈e′, σ〉

cond2 〈if i s1 s2, σ〉 ⇒
1 〈s1, σ〉 if i , 0

cond3 〈if 0 s1 s2, σ〉 ⇒
1 〈s2, σ〉

while 〈while e s, σ〉 ⇒1 〈if e (s;while e s) skip, σ〉

IMP big-step semantics
+ 〈e1+ e2, σ〉 ⇒ 〈i1 +Int i2〉 if 〈e1, σ〉 ⇒ 〈i1〉, 〈e2, σ〉 ⇒ 〈i2〉
int 〈i, σ〉 ⇒ 〈i〉
lookup 〈x, σ〉 ⇒ 〈σ(x)〉 if x ∈ Dom(σ)
skip 〈skip, σ〉 ⇒ 〈σ〉
asgn 〈x := e, σ〉 ⇒ 〈σ[x← i]〉 if x ∈ Dom(σ), 〈e, σ〉 ⇒ 〈i〉
seq 〈s1;s2, σ〉 ⇒ 〈σ2〉 if 〈s1, σ〉 ⇒ 〈σ1〉 , 〈s2, σ1〉 ⇒ 〈σ2〉

cond1 〈if e s1 s2, σ〉 ⇒ 〈σ
′〉

if 〈e, σ〉 ⇒ 〈i〉, i , 0, 〈s1, σ〉 ⇒ 〈σ
′〉

cond2 〈if e s1 s2, σ〉 ⇒ 〈σ
′〉 if 〈e, σ〉 ⇒ 〈0〉 , 〈s2, σ〉 ⇒ 〈σ

′〉

while1 〈while e s, σ〉 ⇒ 〈σ〉 if 〈e, σ〉 ⇒ 〈0〉
while2 〈while e s, σ〉 ⇒ 〈σ′〉

if 〈e, σ〉 ⇒ 〈i〉 , i,0 , 〈s; while e s, σ〉 ⇒ 〈σ′〉

Fig. 1. The IMP language: syntax, a small-step and a big-step operational
semantics. The operational semantics contain rewrite rules making use of
ordinary first-order variables: e, e′, e1, e′1, e2, e′2 are variables of sort Exp; σ,σ′
are variables of sort State; i, i1, i2 are variables of sort Int; x is a variable of
sort PVar; s, s1, s′1, s2 are variables of sort Stmt; code, code’ are variables of
sort Exp or Stmt. The underlying mathematical domain is assumed to provide
all the needed operations, for example +Int, ∗Int, <Int, etc., for integers, and
σ(x), σ[x← i], x ∈ Dom(σ), etc., for maps.

s. Maps ρ : Var→ T with T a Σ-algebra extend uniquely to
(homonymous) Σ-algebra morphisms ρ : TΣ(Var)→ T . Many
mathematical structures needed for language semantics have
been defined as Σ-algebras: boolean algebras, natural/integer/ra-
tional numbers, lists, sets, bags (or multisets), maps (e.g., for
states, heaps), trees, queues, stacks, etc. We refer the reader to
the CASL [19] and Maude [3] manuals for examples.

Let us fix the following: (1) an algebraic signature Σ, associ-
ated to some desired configuration syntax, with distinguished
sort Cfg, (2) a sort-wise infinite set of variables Var, and (3)
a Σ-algebra T , the configuration model, which may but need
not be a term algebra. As usual, TCfg denotes the elements of
T of sort Cfg, which we call configurations.

3

Definition 1: [30] A matching logic formula, or a pattern,
is a first-order logic (FOL) formula extended to allow terms
in TΣ,Cfg(Var), called basic patterns, as predicates. We define
the satisfaction (γ, ρ) |= ϕ of a pattern ϕ w.r.t. a pair of a
configuration γ ∈ TCfg and a valuation ρ : Var→ T as follows:

(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ : Var→ T with
ρ′(y) = ρ(y) for all y ∈ Var\X

(γ, ρ) |= π iff γ = ρ(π) , where π ∈ TΣ,Cfg(Var)

Satisfaction of other FOL constructs is defined in the usual
way in terms of satisfaction of subformulas against the same
environment. A pattern ϕ is valid, written |= ϕ, when (γ, ρ) |= ϕ
for all γ ∈ TCfg and all ρ : Var→ T . A matching logic formula
ψ is patternless iff it contains no basic pattern.

A basic pattern π is satisfied by all the configurations γ
that match it; the ρ in (γ, ρ) |= π can be thought of as the
“witness” of the matching, and can be further constrained
in a pattern. If SUM is the IMP program in Section II, then
the pattern ∃s (〈 SUM, (s 7→ s, n 7→n) 〉 ∧ n ≥Int 0) matches
the configurations with code SUM and state binding program
variables s and n respectively to integers s and n with n ≥Int 0.
We typically use typewriter for program variables and italic
for mathematical variables in Var. Pattern reasoning reduces
to FOL reasoning in the configuration model T [26], [30].

Not all patterns are equally meaningful. For example, the
pattern true is matched by all configurations, the pattern false is
matched by no configurations, and some patterns are satisfiable
only under some valuations ρ. For our subsequent results, we
are interested in two classes of patterns:

Definition 2: A pattern ϕ is weakly well-defined iff for any
valuation ρ : Var → T some configuration γ ∈ TCfg validates
(γ, ρ) |= ϕ, and it is well-defined iff ρ uniquely determines γ.

For example, all basic patterns π are well-defined, while
patterns of the form π1 ∨ π2 are weakly well-defined.

IV. Conditional Reachability Rules

Unconditional reachability rules were introduced in [28],
which showed they can express particular operational semantics
that do not require rule premises. They were studied further
in [27], which showed they can express the Hoare triples of
axiomatic semantics. Here we introduce conditional reachability
rules, a generalization capturing as special instances the rules
used in conventional operational semantics with rule premises.

Definition 3: A conditional reachability rule is a sentence

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n

with n ≥ 0 and with ϕ, ϕ′, ϕ1, ϕ′1, ..., ϕn, ϕ′n matching logic
patterns. We call ϕ the left-hand side (LHS) and ϕ′ the right-
hand side (RHS) of the rule. A rule is unconditional when
n = 0. A reachability system is a set of reachability rules.

A. Operational Semantics using Reachability Rules

As discussed in Section II, in this paper we assume that
operational semantics are defined with rewrite rules of the form

cfg⇒ cfg′ if b
∧

cfg1⇒ cfg′1
∧

b1
∧
. . .
∧

cfgn⇒ cfg′n
∧

bn,

which can now be seen as syntactic sugar for reachability rules

cfg ∧ b ∧ b1 ∧ . . . ∧ bn⇒cfg′ ifcfg1⇒ cfg′1
∧
. . .
∧

cfgn⇒ cfg′n

Here the Boolean side conditions have been all conjuncted with
the LHS pattern. Recall from Definition 1 that matching logic
includes configuration terms as patterns and allows the use of
FOL constructs, like conjunction, to build new patterns, so the
above is a correct reachability rule, where ϕ is cfg ∧ b ∧ b1 ∧

. . .∧ bn. For example, the rule cond1 in the big-step semantics
of IMP in Fig. 1 is syntactic sugar for the reachability rule

〈if e s1 s2, σ〉 ∧ i , 0⇒ 〈σ′〉 if 〈e, σ〉 ⇒ 〈i〉
∧
〈s1, σ〉 ⇒ 〈σ

′〉

From here on we assume that a language/calculus/system is
defined as a reachability system and, unless otherwise specified,
fix an arbitrary reachability system S. It is irrelevant for the
subsequent developments whether such rules represent a small-
step, a big-step, or any other particular operational semantics.

An operational semantics typically describes program behav-
iors by generating a transition system over program configura-
tions, which can associate a behavior to any given program in
any given state. In some cases, e.g., small-step semantics, the
transition system comprises all the atomic computational steps;
in other cases, e.g., big-step semantics, the transition system
consists of a binary relationship mapping configurations holding
(fragments of) programs to their resulting configurations after
evaluation. Recall (Definition 1) that matching logic comes
equipped with a model of configurations, T . We next show
how S yields a transition system over the configurations of T .

Definition 4: The transition relation induced by S, �S ⊆
TCfg ×TCfg (written infix), is the least fixpoint of the following
condition: γ �S γ′ if there exists a reachability rule

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n

in S and some valuation ρ :Var→ T such that:
1) (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′; and
2) for all γ1, . . . , γn ∈ TCfg with (γi , ρ) |= ϕi for all 1 ≤ i ≤ n

there exist γ′1, . . . , γ
′
n with (γ′i , ρ) |= ϕ′i and γi �?

S
γ′i for

all 1≤ i≤n (�?
S

is the transitive/reflexive closure of �S).
Then (TCfg,�S) is the transition system induced by S.

Intuitively, �S is the least relation compatible with all the
rules in S, with all rule conditions interpreted as �S-reachability.
The existence of a least fixpoint is guaranteed by the Knaster-
Tarski theorem: the set of binary relations on TCfg with inclusion
forms a complete lattice, and the condition is monotonic.

If S contains only rewrite rules, that is, rules whose patterns
are all basic, then all the configurations γ, γ′, γ1, γ′1, . . . , γn, γ′n
in Definition 4 are uniquely determined by ρ, since (γ, ρ) |= π
iff γ = ρ(π) for any basic pattern π (by Definition 1). In this
case, �S becomes the usual transition relation induced by a
(top-most) term rewrite system (S) on a Σ-algebra (T). For
example, if S is IMP’s small-step semantics in Fig. 1 then
the following are valid transitions (LOOP is the loop of SUM in
Section II; for notational simplicity, we make no distinction

4

between ground terms and their interpretation in T):
〈SUM, (s 7→ 7, n 7→10)〉 �S 〈LOOP, (s 7→ 0, n 7→10)〉 �S

〈if (n>0) (s:=s+n;n:=n-1;LOOP) skip, (s 7→ 0, n 7→10)〉 �S
〈if(10>0) (s:=s+n;n:=n-1;LOOP) skip, (s 7→ 0, n 7→10)〉 �S

. . . �S 〈LOOP, (s 7→ 10, n 7→9)〉 �S . . . �S
〈LOOP, (s 7→ 55, n 7→0)〉 �S . . . �S 〈skip, (s 7→ 55, n 7→0)〉

In computing the transitions above, we need to go up to 3
nested conditional rules in Definition 4. On the other hand, if
S is the big-step semantics in Fig. 1, then we have

〈SUM, (s 7→ 7, n 7→10)〉 �S 〈s 7→ 55, n 7→0〉
in one transition step, but in order to compute that we need to
apply more than 40 nested conditional rules.

To define rule validity with the sense of partial correctness
we need to say which configurations terminate. In some cases,
e.g., small-step semantics, nontermination is captured by the
ability to take an infinite sequence of transitions starting with
the given configuration; in other cases, e.g., big-step semantics,
nontermination is captured by the ability to make an infinite
sequence of nested attempts to fulfill conditions of rules while
trying to take a step—which is not the same as a stuck
configuration which cannot take a step because no rules apply.

We define a novel notion of termination of configurations
with respect to S, which captures both cases above. Our
definition is based on a preorder on configurations, which
will be well-founded under terminating configurations. This
order is inspired by quasi-decreasing orders for conditional
term rewriting systems [10]. Our definition is also somewhat
related to operational termination of conditional term rewrite
systems [17], although the latter is a property of a rewrite
system as whole, while our notion of termination refers to a
particular configuration in a particular model.

Definition 5: Let (TCfg,�) be the termination dependence
relation defined as follows:
• γ � γ′ if γ �S γ′; and
• γ � γ′ if there is a rule ϕ⇒ϕ′ ifϕ1⇒ ϕ′1

∧
. . .
∧
ϕn⇒ ϕ′n

in S, valuation ρ :Var→ T , and index 1 ≤ i ≤ n so that:
1) (γ, ρ) |= ϕ
2) (γ′, ρ) |= ϕi

3) For each 1 ≤ j < i, ϕ j ⇒ ϕ′j is “strongly ρ-valid”:
for any γ j such that (γ j, ρ) |= ϕ j there exists γ′j such
that γ j �?

S
γ′j and (γ′i , ρ) |= ϕ′j

γ ∈ TCfg terminates iff there are no infinite decreasing � chains
starting at γ; γ diverges otherwise. We let � denote the partial
order associated to �, i.e., its reflexive and transitive closure.

Our definition of termination above mimics the application of
conditional rules in the configuration model, in that conditions
are solved in order and a condition is considered only if all
the previous conditions are successfully solved. Taking into
account the order of conditions is essential to get the correct
notion of termination. If condition 3 were dropped, then any
while loop could be said to diverge in the big-step semantics by
using the while2 rule and recursing into the second condition
which executes the body again, without first checking that the
test of the loop actually passes. Termination dependence is
essential in the proof of soundness, which justifies circularity by
well-founded induction on � under terminating configurations.

Let us consider IMP again. In Section II we informally
claimed that SUM always terminates, SUM’ only terminates when
n ≤ 0, and SUM∞ never terminates. We can now make these
claims formal. For SUM, we can show that any configuration γ
of the form 〈SUM, σ〉 terminates with any of the two semantics
in Fig. 1, for any state σ (including σ’s which lack s or n).
For SUM’, any configuration 〈SUM’, (n 7→n, σ)〉 with n ≤ 0
terminates in both semantics, whether or not σ binds s.
However, our informal claim “SUM’ only terminates when
n ≤ 0” in Section II was (purposely) imprecise. Indeed, config-
urations 〈SUM’, σ〉 with n or s undefined in σ also terminate.
Finally, our informal claim “SUM∞ never terminates” was also
imprecise for similar reasons. Stated precisely, configurations
of the form 〈SUM∞, (n 7→n, s 7→ s, σ)〉 diverge. Interestingly,
such configurations diverge for different reasons in the two
semantics, descending by the first bullet of Definition 5 in
small-step semantics, and by the second in big-step semantics.

Definition 6: A pattern ϕ terminates (resp. diverges), writ-
ten S |= ϕ↓ (resp. S |= ϕ↑), iff for all γ ∈ TCfg and for all
ρ :Var→ T , if (γ, ρ) |= ϕ then γ terminates (resp. diverges).

In the case of IMP with S either its small-step or its big-step
semantics, from the discussion above we can conclude

S |= 〈SUM, σ〉↓
S |= (〈SUM’, (n 7→n,σ)〉∧n≤Int0 ∨〈SUM’, σ〉∧(n<Dom(σ)∨s<Dom(σ))↓
S |= (〈SUM’, (n 7→n, s 7→ s, σ)〉 ∧ n >Int 0)↑
S |= 〈SUM∞, (n 7→n, s 7→ s, σ)〉↑

B. Validity and Well-Definedness

In Hoare logic, {pre} code {post} is (semantically) valid, in
the sense of partial correctness, iff for any state satisfying pre,
if code terminates then the resulting state satisfies post. This
elegant definition has the luxury of relying on another formal
semantics of the target language which provides the language-
specific notions of “state”, “satisfaction”, and “termination”.
Since here everything happens in a single language-independent
framework, we generalize the notion of validity as follows:

Definition 7: Given valuation ρ :Var→ T , an unconditional
reachability rule ϕ⇒ ϕ′ is ρ-valid, written S, ρ |= ϕ⇒ ϕ′, iff
for any γ ∈ TCfg with (γ, ρ) |= ϕ, if γ terminates then there is
a γ′ ∈ TCfg such that (γ′, ρ) |= ϕ′ and γ �?

S
γ′. Rule ϕ⇒ ϕ′ is

valid, written S |= ϕ⇒ϕ′, iff it is ρ-valid for each ρ :Var→ T .
Intuitively, S |= ϕ⇒ϕ′ specifies reachability: any terminating

configuration matching ϕ transits, on some execution path, to a
configuration matching ϕ′. This notion of validity becomes the
usual Hoare logic validity when the reachability rule ϕ⇒ ϕ′

corresponds to a Hoare triple as described in Section IV-C
and S is deterministic. Both IMP definitions in Fig. 1 are
deterministic. A major difference between our validity and
Hoare validity is that the language-specific “state” and “code”
are replaced by the language-independent “configuration”.

Recall that S is an arbitrary reachability system, thought
of as a “semantics”. However, not all reachability systems
are meaningful as semantics in all situations. Consider a
reachability system containing a rule of the form ϕ⇒ false.
Such a rule is semantically useless (because it generates no
transitions), but also makes reachability reasoning unsound,

5

because there are no transitions in the generated transition
system which would validate ϕ⇒false. Some of the subsequent
results require that S |= µ for any unconditional µ ∈ S, which
can be ensured by simple conditions on S such as:

Definition 8: Rule ϕ ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n is

(weakly) well-defined iff ϕ′, ϕ1, ..., ϕn are (weakly) well-
defined. S is (weakly) well-defined iff all its rules are.

Rules of the form ϕ⇒ false are not (weakly) well-defined.
Since operational semantics rules contain only configuration
terms except possibly for their LHSs (see discussion at
beginning of Section IV-A), and since configuration terms
are basic patterns, which are always well-defined, it is safe to
say that the reachability systems of interest are expected to
be well-defined. Nevertheless, weak well-definedness suffices
for the soundness of reachability logic, although we need full
well-definedness for completeness.

C. Specifying Program Properties using Reachability Rules

Reachability rules can specify not only operational semantics,
but also program properties. In fact, each Hoare triple can be
translated into a particular reachability rule [27], although
the translation needs to be mechanized separately for each
language. However, it is not recommend to follow this route
when specifying program properties, because Hoare triples can
be more complex than reachability rules expressing the same
property, even without the additional complexity added by the
mechanical translation. Consider, for example, the following
Hoare triple expressing SUM’s property:

{n = oldn ∧ n ≥ 0} SUM {s = oldn * (oldn + 1) / 2 ∧ n = 0}

The introduction of the additional oldn variable follows a
common Hoare logic “trick” to save the initial value of n.
Following [27], this Hoare triple translates mechanically into

∃s, n(〈SUM, (s 7→s, n 7→n)〉 ∧ n = oldn ∧ n ≥Int 0) ⇒
∃s, n(〈skip, (s 7→s, n 7→n)〉 ∧ s=oldn∗Int (oldn+Int 1)/Int2 ∧ n=0)

On the other hand, with the configurations of IMP’s big-step
semantics in Fig. 1, we can express the same property as:

〈SUM, (s 7→ s, n 7→n)〉 ∧ n≥Int 0⇒ 〈(s 7→n∗Int (n+Int 1)/Int2, n 7→0)〉

In words, if we execute the configuration holding the program
SUM and a state binding program variables s and n to integers
s and n ≥ 0 using IMP’s big-step semantics, then we reach a
configuration holding a state that binds s and n to the sum of
numbers up to n and to 0, respectively. Technically, s and n are
variables of sort Int; one can also think of them as “symbolic”
integers. On the other hand, s and n are constants of sort PVar.

One could argue that the Hoare triple above is more natural
because it is more compact and the FOL specifications make
direct use of program’s variables. However, one should note
that the reachability rule is more informative, since it also
states that s and n must be available in the state before SUM is
executed. To state these properties using Hoare logic we need
additional specification contents, e.g. definedness predicates.
Also, Hoare logic conflating program variables (like s, n)
and specification variables (like oldn) is often a source of
complexity and confusion, particularly in combination with

Axiom :

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
· · ·
∧
ϕn⇒ ϕ′n ∈ A

ψ is a structureless pattern

A∪ C `∅ ϕi ∧ ψ⇒ ϕ′i for i ∈ 1, . . . , n
A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Reflexivity : A `∅ ϕ⇒ ϕ

Transitivity :
A `C ϕ1⇒ ϕ2 A∪ C `∅ ϕ2⇒ ϕ3

A `C ϕ1⇒ ϕ3

Consequence :
|= ϕ1 → ϕ′1 A `C ϕ

′
1⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1⇒ ϕ2

Case Analysis :
A `C ϕ1⇒ ϕ A `C ϕ2⇒ ϕ

A `C ϕ1 ∨ ϕ2⇒ ϕ

Abstraction :
A `C ϕ⇒ ϕ′ where X ∩ FV(ϕ′) = ∅

A `C ∃X ϕ⇒ ϕ′

Circularity :
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Fig. 2. Proof system for (one-path) reachability using conditional rules.

substitution and pointers. Unlike Hoare triples, which only
specify properties about final program states, reachability rules
can also specify properties of intermediate states as reachability
rules where the right hand side has some intermediate code.
Hoare triples correspond to reachability rules whose RHS holds
the empty code, like the one above. We refer the reader to [27]
for more details on the expressiveness of reachability rules.

V. Proof System

Figure 2 shows the reachability logic proof system. The
target language is given as a weakly well-defined reachability
system S. The soundness result (Theorem 1) guarantees that
S |= ϕ⇒ ϕ′ if S ` ϕ⇒ ϕ′ is derivable. Note that the proof
system derives more general sequents of the form A `C ϕ⇒ϕ′,
where A and C are sets of reachability rules. The rules in A
are called axioms and rules in C are called circularities. If C
does not appear in a sequent, it means it is empty: A ` ϕ⇒ϕ′

is a shorthand for A `∅ ϕ⇒ ϕ′. Initially, C is empty and A
is S. During the proof, circularities can be added to C via
Circularity and flushed into A by Transitivity or Axiom.

The intuition is that rules in A can be assumed valid, while
those in C have been postulated but not yet justified. After
making progress it becomes (coinductively) valid to rely on
them. The intuition for sequent A `C ϕ⇒ ϕ′, read “A with
circularities C proves ϕ⇒ ϕ′”, is: ϕ⇒ ϕ′ is true if the rules
in A are true and those in C are true after making progress,
and if C is nonempty then ϕ reaches ϕ′ (or diverges) after at
least one transition. Let us now discuss the proof rules.

Axiom states that a trusted rule can be used in any logical
frame ψ. The logical frame is formalized as a patternless
formula, as it is meant to only add logical but no structural
constraints. Incorporating framing into the axiom rule is

6

General macros
SUM ≡ s := 0; while (n>0) (s := s+n; n := n-1)
S1 ≡ s := s + n; n := n - 1; LOOP
IF ≡ if (n > 0) then S1 else skip

ϕSUM ≡ 〈SUM, (s 7→ s, n 7→ n)〉 ∧ n ≥Int 0
ϕINV ≡ 〈LOOP, (s 7→ suminv(n, n′), n 7→ n′)〉 ∧ n′≥Int 0
ϕS1 ≡ 〈S1, (s 7→ suminv(n, n′), n 7→ n′)〉

LOOP ≡ while (n>0) (s := s+n; n := n-1)
S2 ≡ n := n - 1; LOOP

suminv(n, n′) ≡ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int 2
ϕIF ≡ 〈IF, (s 7→ suminv(n, n′), n 7→ n′)〉

ϕ
after
LOOP ≡ 〈LOOP, (s 7→ suminv(n, n′ −Int 1), n 7→ n′ −Int 1)〉
ϕS2 ≡ 〈S2, (s 7→ suminv(n, n′ −Int 1), n 7→ n′)〉

Small-step macros
ϕ ≡ 〈skip, (s 7→ n ∗Int (n +Int 1)/Int 2, n 7→ 0)〉
µ ≡ ∃n′ ϕINV⇒ ϕ

Big-step macros
ϕ ≡ 〈(s 7→ n ∗Int (n +Int 1)/Int 2, n 7→ 0)〉
µ ≡ ∃n′ ϕINV⇒ ϕ

Small-step proof derivation (S is IMP’s small-step semantics)
1.S ` ϕSUM⇒ ϕINV ∧ n′=Int n [asgn2, seq1, seq2]
2.S `{µ} ϕINV⇒ ϕIF ∧ n′ ≥Int 0 [while]
3.S `{µ} ϕIF∧n′>Int 0⇒ ϕS1∧n′>Int 0 [lookup,>1,>3, cond1, cond2]
4.S `{µ} ϕS1∧n′>Int 0⇒ ϕS2∧n′>Int 0 [lookup,+1,+2,+3,asgn1,asgn2,seq1,seq2]
5.S `{µ} ϕS2∧n′>Int 0⇒ ϕ

after
LOOP∧n′>Int 0 [lookup,-1,-3,asgn1,asgn2,seq1,seq2]

6.S `{µ} ϕS2∧n′ >Int 0⇒∃n′ ϕINV [Consequence(5)]
7.S ∪ {µ} ` ∃n′ ϕINV⇒ ϕ [µ]
8.S ∪ {µ} ` ϕIF ∧ n′ >Int 0⇒ ϕ [Transitivity(3, 4, 6, 7)]
9.S ∪ {µ} ` ϕIF ∧ n′ =Int 0⇒ ϕ [lookup,>1,>3, cond1, cond3]

10.S ∪ {µ} ` ϕIF ∧ n′ ≥Int 0⇒ ϕ [Case Analysis(8, 9)]
11.S `{µ} ∃n′ ϕINV⇒ ϕ [Transitivity(2, 10); Abstraction]
12.S ` ∃n′ ϕINV⇒ ϕ [Circularity(11)]
13.S ` ϕSUM⇒∃n′ ϕINV [Consequence(1)]
14.S ` ϕSUM⇒ ϕ [Transitivity(13, 12)]

Big-step proof derivation (S is IMP’s big-step semantics)
1.S ∪ {µ} ` ∃n′ ϕINV⇒ ϕ [µ]
2.S ∪ {µ} ` ϕafter

LOOP ∧ n′>Int 0⇒ ϕ [Consequence(1)]
3.S `{µ} ϕS2∧n′>Int 0⇒ ϕ [lookup, int, -,asgn, seq(2)]
4.S `{µ} ϕS1∧n′>Int 0⇒ ϕ [lookup, int,+,asgn, seq(3)]
5.S `{µ} ϕINV ∧ n′ >Int 0⇒ ϕ [lookup, int,>,while2(4)]
6.S `{µ} ϕINV ∧ n′ =Int 0⇒ ϕ [lookup, int,>,while1]
7.S `{µ} ϕINV⇒ ϕ [Case Analysis(5, 6)]
8.S `{µ} ∃n′ ϕINV⇒ ϕ [Abstraction(7)]
9.S ` ∃n′ ϕINV⇒ ϕ [Circularity(8)]

10.S ` ϕINV ∧ n′ =Int n⇒ ϕ [Consequence(9)]
11.S ` ϕSUM⇒ ϕ [int,asgn, skip, seq(10)]

Fig. 3. Formal reachability logic proofs for SUM. Simple Consequence rules used to perform domain reasoning are elided for readability.

necessary to make logical constraints available while proving
the conditions of the axiom hold. Since reachability logic
keeps a clear separation between program variables and logical
variables the logical constraints are persistent, that is, they
do not interfere with the dynamic nature of the operational
rules and can therefore be safely used for framing. This is
not the case for structural constraints. Consider, for example,
a structural constraint given as pattern 〈skip, σ〉. We cannot
use this pattern as a frame ψ for the rule skip of the big-step
semantics of IMP, because 〈skip, σ〉 ∧ 〈σ〉 is matched by no
pattern, like false, so the proof system would unsoundly derive
〈skip, σ〉 ⇒ false. Additionally, note that the circularities are
released as trusted axioms when deriving the rule’s conditions,
which is consistent with the intuition above for sequents.

Reflexivity and transitivity correspond to corresponding
closure properties of the reachability relation. Reflexivity
requires C to be empty to meet the requirement above, that a
reachability property derived with nonempty C takes one or
more steps. Transitivity releases the circularities as axioms for
the second premise, because if there are any circularities to
release the first premise is guaranteed to make progress.

Consequence and Case Analysis are adapted from Hoare
logic. In Hoare logic Case Analysis is typically a derived
rule, but there is no way to derive it language-independently.
Ignoring circularities, we can think of these five rules discussed
so far as a formal infrastructure for symbolic execution.

Abstraction allows us to hide irrelevant details of ϕ be-
hind an existential quantifier, which is particularly useful in
combination with the next proof rule.

Circularity has a coinductive nature and allows us to make
a new circularity claim at any moment. We typically make
such claims for code with repetitive behaviors, such as loops,

recursive functions, jumps, etc. If we succeed in proving
the claim using itself as a circularity, then the claim holds.
This would obviously be unsound if the new assumption
was available immediately, but requiring progress before
circularities can be used ensures that only diverging executions
can correspond to endless invocation of a circularity.

Fig. 3 shows detailed formal proofs that the SUM program
(Section II) indeed calculates the sum of the first n natural
numbers in s, for the small-step and big-step semantics of IMP
from Fig. 1. In the small-step case (left column) the circularity
corresponding to the loop is used via the Transitivity rule,
while in the big-step case (right column) the circularity is used
via the Axiom rule. Below we discuss these proofs informally.

In small-step, the specification ϕSUM⇒ ϕ (sequent 14) is

〈SUM, (s 7→ s, n 7→n)〉 ∧ n≥Int 0⇒ 〈skip, (s 7→n∗Int (n+Int 1)/Int2, n 7→0)〉

We begin by Transitivity (12,13) through ∃n′ ϕINV, with ϕINV

〈LOOP, (s 7→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n 7→ n′)〉 ∧ n′ ≥Int 0.

ϕSUM ⇒ ∃n′ ϕINV (13) holds by running the operational
semantics on SUM (1), and abstracting this as ∃n′ ϕINV by
Consequence. The property µ ≡ ∃n′ ϕINV⇒ ϕ (12) is proved
by Circularity (from 11). Sequent 11 is proven by using
Abstraction to remove the quantifier and fix an arbitrary n′,
and using Transitivity between 2 and 10. Sequent 2 holds by
applying the while rule to unroll the loop into a conditional.
This progress releases the circularity µ in 10. We continue by
Case Analysis on n′ =Int 0 ∨ n′ >Int 0, running the operational
semantics in each case (the two cases are described by sequents
8 and 9). When n′ =Int 0 the goal is reached directly (sequent 9),
and when n′ >Int 0 we reach a configuration implying ∃n′ ϕINV
and finish by applying the recently-added axiom µ (sequent 7).

7

In the big-step case the specification (11) ϕSUM⇒ ϕ is now

〈SUM, (s 7→ s, n 7→n)〉 ∧ n≥Int 0 ⇒ 〈(s 7→n ∗Int (n +Int 1)/Int2, n 7→0)〉

As before, we prove µ ≡ ∃n′ ϕINV⇒ ϕ, with the same ϕINV as
before. We reach ∃n′ ϕINV from ϕSUM by applying the big-step
semantics of assignment and sequential composition (10) and
then Consequence (9). The difference is that this is reached in
a premise of applications of conditional axioms, rather than a
premise of Transitivity. Property ∃n′ ϕINV⇒ϕ is also proved by
Circularity (8), but this time the circularity is released (in 1) by
applying the while2 axiom, and used in one of its conditions.

We take this opportunity to emphasize the verification
philosophy in the examples above meets our goals: a property
of a program in a particular language, IMP, has been formally
derived using only the operational semantics of IMP and a fixed,
language-independent seven-rule proof system. No axiomatic
semantics and no induction on the program or on its transition
system were necessary! Nothing specific to IMP has been
done, except applying its operational semantics rules via the
Axiom proof rule. The only trusted base for the proofs above
is therefore the operational semantics of IMP (provided that
the generic proof system is sound, which is shown next). In
some sense, the addition of the reachability logic proof system
turned the operational semantics of IMP into an axiomatic
semantics—at no additional cost. This is the ideal scenario
for certifiable program verification. A program verifier for a
particular programming language now only needs to implement
proof strategies (and possibly syntactic sugar) to conveniently
use the generic proof system. This is precisely what our current
MatchC program verifier does.

There are two other important practical aspects, which we
do not address in depth in this paper. One is the domain (static)
reasoning, which is necessary in order to rearrange patterns (via
the Consequence rule) so that the operational semantics rules
can match and apply. Domain reasoning cannot be avoided
by any verification framework, is handled by domain-specific
or heuristic techniques in tools, and assumed decidable (via
oracles) when proving relative completeness results. We do the
same. Another is proof compositionality. As some languages
have non-compositional semantics, reachability logic cannot
guarantee compositionality of proofs (imagine for example
a construct returning the size of the remaining program).
Instead, it can be achieved methodologically for languages
with compositional semantics, as an instance of the transitivity
rule. This is discussed in detail in [27], for an unconditional
precursor of reachability logic.

VI. Soundness and Relative Completeness

Here we discuss the soundness and relative completeness
of our proof system. Unlike the soundness and relative
completeness of Hoare logics and dynamic logics, which are
shown for each language separately taking into account the
particularities of that language, our mission here is much harder:
we need to prove the soundness and relative completeness of
our proof system for all languages at once.

Theorem 1 (Soundness): If S is a weakly well-defined
reachability system, then S ` ϕ⇒ ϕ′ implies S |= ϕ⇒ ϕ′.

Proof Sketch (see companion report[29] for complete details):
By well-founded induction (on the termination dependence
relation) on terminating configurations g ∈ TCfg, using the
following claims and generalization of validity.

Definition 9: Let g ∈ TCfg be any configuration. Uncondi-
tional reachability rule ϕ⇒ ϕ′ is (g,�)-strongly-valid (resp.
(g,�)-strictly-strongly-valid), written S |=∗g� ϕ ⇒ ϕ′ (resp.
S |=+g� ϕ⇒ϕ′), if for all γ with g � γ and all ρ with (γ, ρ) |= ϕ,
there is a γ′ such that γ �?

S
γ′ (resp. γ �+

S
γ′) and (γ′, ρ) |= ϕ′.

Intuitively, “(g,�)-strongly-valid" is similar to “strongly
valid”, but only concerns configurations less than g, according
to the termination dependence relation. If g terminates, then
“(g,�)-strongly-valid” is similar to “valid”. The following claim
(Proposition 4 in [29]) captures the link between the two:

Claim 1: S |= ϕ⇒ϕ′ iff S |=∗g� ϕ⇒ϕ′ for all terminating g.
To prove Theorem 1, we generalize the induction hypothesis:
Claim 2: For any proof tree concluding A `C ϕ⇒ ϕ′, for

all terminating configurations g ∈ TCfg, if the conditional rules
in A are weakly well-defined, if the unconditional rules in
A are (g,�)-strictly-strongly-valid and if C is (g0,�)-strictly-
strongly-valid for all g0 such that g � g0, we have that:

1) if C = ∅ then ϕ⇒ ϕ′ is (g,�)-strongly-valid and
2) if C , ∅ then ϕ⇒ ϕ′ is (g,�)-strictly-strongly-valid.

Claim 2, proved as Lemma 1 in [29], follows by induction
on the proof tree with case analysis on the last rule. For the
Circularity case, an inner induction on the termination proof
of g is performed. Theorem 1 follows from these claims.

Because of the utmost importance of the result above, we
have also mechanized its proof. Our complete Coq formal-
ization can be found at http://fsl.cs.uiuc.edu/RL. The proof
is parametric in the operational semantics S and thus can be
used to produce formal correctness certificates for program
verification tasks. The URL also includes several derived proof
rules which are useful for verifying programs, together with
their soundness proofs, such as weakening, logic framing, set
circularity, and substitution. Set circularity allows introducing
several circularities in advance, rather than just one, and is at
the core of the MatchC prover, where is useful for proving
properties about mutually recursive functions.

We next show that reachability logic is relatively complete:
any valid reachability property of any program in any language
with an operational semantics given as a reachability system
S is formally derivable with the proof system in Fig. 2 with
the rules in S as axioms. Like in Hoare and dynamic logics,
relativity refers to the fact that we assume an oracle capable of
establishing validity in the first-order theory of the state, which
here is the configuration model T . An immediate consequence
is that Circularity is sufficient to derive any repetitive behavior
occurring in any programs written in any languages! We can
only afford to give a high-level sketch of the proof here, as
the complete proof with all the details, which can found in the
companion technical report [29], is itself the size of this paper.

The main difficulty in proving our result comes from dealing
with conditions. One problem arises from the combination of

8

http://fsl.cs.uiuc.edu/RL

divergence and conditions. We can easily express divergence:
S |= ϕ↑ iff S |= ϕ ⇒ false. However, in order to derive
corresponding sequents, we need to refer to divergence directly.
Let us construct the ω-closure of S, Sω, as follows: (1) add
to TCfg a new constant ω; (2) add to S a new rule ω⇒ω; and
(3) for each rule ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1

∧
. . .
∧
ϕn⇒ ϕ′n in S and

each 1 ≤ i ≤ n, add to S a conditional reachability rule

ϕ⇒ ω if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕi−1⇒ ϕ′i−1

∧
ϕi⇒ ω.

The ω-closure operation does not affect well-definedness: S is
(weakly) well-defined iff Sω is (weakly) well-defined. It also
has no semantic effect: S |= ϕ⇒ ϕ′ iff Sω |= ϕ⇒ ϕ′. It only
ensures that we can prove divergence: S |= ϕ↑ iff Sω ` ϕ⇒ω.
Our approach to divergence is reminiscent of the one in [15],
except that instead of using coinduction directly, we use our
proof system (particularly the Circularity proof rule).

We establish the relative completeness of reachability logic
under the following assumptions: (1) the reachability system
S is well-defined; (2) S is ω-closed; (3) the termination
dependence relation � is finitely branching; (4) the set of
configurations TCfg is countable; and (5) the model T includes
natural numbers with addition and multiplication. Assumptions
(1) and (3) allow the encoding of finite and infinite transition
sequences into FOL formulas. Assumption (4) allows the
encoding of sequences of configurations into sequences of
natural numbers. Assumption (5) is a standard assumption
(made also by Hoare and dynamic logic completeness results)
which allows the expressing of Gödel’s β predicate. We expect
the operational semantics of any reasonable language to satisfy
these conditions. Formally, we have the following

Theorem 2 (Relative Completeness): Under the above five
assumptions, if S |= ϕ⇒ ϕ′ then S ` ϕ⇒ ϕ′.

Proof Sketch (see companion report[29] for complete details):
Our proof relies on the fact that pattern reasoning in first-order
matching logic reduces to FOL reasoning in the configuration
model T . Let � be a fresh configuration variable. For a pattern
ϕ, let ϕ� be the FOL formula obtained by replacing each basic
pattern π with an equality � = π. Further, for γ ∈ TCfg and
ρ : Var→ T , let ργ be the valuation extending ρ by mapping
� into γ. Then (γ, ρ) |= ϕ iff ργ |= ϕ�, and from now on we use
ϕ to unambiguously refer to both the matching logic pattern
and its FOL equivalent. Also, ϕ[c/�] stands for the patternless
formula obtained from ϕ by substituting � with the variable c.

A key component of the proof is the encoding of a finite
transition sequence, namely path(c, c′), in FOL, in the context
of conditional rules. To achieve that, we use Gödel’s β function
to existentially quantify over the configurations occurring in
the sequence, and in the conditions of the rules applied in
the sequence, and in the conditions of the rules applied in the
conditions, and so on. The configuration variables are indexed
by integers according to a tree-like scheme which is parametric
in the maximum sequence length and the maximum condition
nesting. Then we use β to encode the quantification over a
sequence into quantification over two integer variables, thereby
expressing path(c, c′) in FOL. The formal definition is quite
involved, and due to space constrains is not given here.

step(c, c′) ≡ ∃c1 . . . cmaxn ∃c′1 . . . c
′
maxn∃x̄ (

∨
µ∈S

(ϕ[c/�] ∧ ϕ′[c′/�]

∧
∧

1≤i≤n

(ϕi[ci/�] ∧ ϕ′i [c
′
i/�] ∧ path(ci, c′i))))

succ(c, c′) ≡ step(c, c′)
∨ ∃c1 . . . cmaxn ∃c′1 . . . c

′
maxn∃x̄ (

∨
µ∈S

(ϕ[c/�] ∧
∨

1≤i≤n

(ϕi[c′/�]

∧
∧

1≤ j<i

(ϕ j[c j/�] ∧ ϕ′j[c
′
j/�] ∧ path(c j, c′j)))))

diverge(c) ≡ ∀m∃c0 . . . cm(
∧

0≤i<m

succ(ci, ci+1) ∧ c0 = c)

coreach(ϕ) ≡ ∃c∃c′ (c = � ∧ ϕ[c′/�] ∧ path(c, c′))

Fig. 4. FOL encodings for properties of the transition system

Using path(c, c′) we can encode in FOL the following: (1)
step(c, c′), the one step transition relation (�S), (2) succ(c, c′),
the termination dependence relation (�), (3) diverge(c), the
divergence predicate (↑), and (4) coreach(ϕ), the configurations
reaching some formula ϕ. These encodings are shown in Fig. 4,
with µ the rule ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1

∧
. . .
∧
ϕn⇒ ϕ′n in S.

Next, we can use the definitions above to encode the semantic
validity of reachability rules as FOL validity: S |= ϕ⇒ ϕ′ iff
|= ϕ→ ∃c (� = c∧diverge(c))∨coreach(ϕ′). Then the theorem
follows by using Consequence and Case Analysis from sequents
S ` � = c ∧ diverge(c)⇒ ϕ and S ` coreach(ϕ)⇒ ϕ. These
sequents are derived using Circularity, with S being ω-closed
playing a crucial role in the derivation of the former.

VII. Related work

We fully share the goal of the unified theory of programming
initiative [13] and of the mechanical verification community
to reduce the correctness of program verification to a trusted
formal semantics of the target language [1], [9], [14], [16],
[20], [31], although our methods are different. Instead of a
framework to ease the task of giving multiple semantics of the
same language and proving systematic relationships between
them, we advocate developing frameworks which eliminate the
task by requiring only one semantics (which is operational),
and offering an underlying theory with the necessary machinery
to achieve the benefits of multiple semantics without the costs.

Regarding a program as a forwards specification transformer
goes back to Floyd [8]. However, his rules are not concerned
with structural configurations, are not meant to be operational,
and introduce quantifiers. Similar ideas have been used in equa-
tional algebraic specifications of programming languages [11]
and in evolving specifications [22]. Conceptually, what distin-
guishes our approach from these is the use of matching logic to
specify configurations of interest by means of patterns, which
give access to all the structural details. The use of variables in
patterns offers a comfortable level of abstraction by mentioning
in each rule only the necessary configuration components.

Dynamic logic [12] adds modal operators to FOL to
embed program fragments within specifications. For example,
ψ→ [s]ψ′ means “after executing s in a state satisfying ψ, a
state may be reached which satisfies ψ′”. In matching logic,
programs and specifications also coexist in the same logic, but
we use it only for expressing static properties. We express

9

the dynamic properties using reachability logic which consists
of only language-independent proof rules and works with any
operational semantics, unlike dynamic logic which still requires
language-specific proof rules (e.g., invariant rules).

Separation logic [21], [24] has been proposed as a state
specification formalism to enhance Hoare logic in the presence
of heaps. While reachability logic is an alternative to, rather
than an extension of Hoare logic, one could use separation logic
as a pattern specification formalism. This is not precluded by
presenting our results in terms of matching logic, as separation
logic has been shown to be a matching logic instance when
the configuration model is chosen to be that of heaps [26].
However, operational semantics of complex languages require
many configuration components besides the heap, and matching
logic works with arbitrarily complex configurations by design.
Language-independent proof systems: Matching logic and
a first proof system were presented in [30]. However, that
approach required a specialized proof system for each target
language. A first sound language-independent proof system
for unconditional rules can be found in [28], and [27] gives
a mechanical and compositional translation of Hoare logic
proof derivations for IMP into derivations in the proof system.
Finally, [26] gives a different proof system, introducing the
Circularity proof rule. All the previous language-independent
proof systems and results could only be applied to operational
semantics given in terms of unconditional rules, so the most
popular styles of operational semantics were excluded.

VIII. Conclusion

We presented (one-path) reachability logic, a novel frame-
work for reasoning about reachability which unifies operational
and axiomatic semantics. Its sentences, the reachability rules,
can express both transitions between configurations, as needed
for operational semantics, and Hoare-style triples, as needed for
axiomatic semantics. A programming language is given as a set
of reachability rules defining its operational semantics, and a
sound and relatively complete language-independent seven-rule
proof system then can derive any reachability property of the
language. The soundness result was also mechanized in Coq,
which lets reachability logic proofs serve as proof certificates.

Until now, reachability rules were unconditional, so they
could only express a few styles of operational semantics. By
allowing conditional rules, reachability logic can now express
virtually all operational semantics styles, including the standard
small-step (by Plotkin) and big-step (by Kahn) semantics which
were excluded before.

We hope reachability logic may serve as a new foundation for
verifying programs. Also, since Hoare-style proof derivations
can be mechanically translated into reachability logic proof
derivations, reachability logic may also serve as a more elegant
means to establish soundness of axiomatic semantics.
Acknowledgements: We thank Chucky Ellison and the anony-
mous reviewers for their valuable comments on drafts of this
paper. This work is partially funded by NSA contract H98230-
10-C-0294, NSF contract CCF-1218605, DARPA HACMS, and
Romanian SMIS-CSNR 602-12516 contract 161/15.06.2010.

References
[1] A. W. Appel, “Verified software toolchain,” in ESOP, ser. LNCS, vol.

6602. Springer, 2011, pp. 1–17.
[2] G. Berry and G. Boudol, “The chemical abstract machine,” Theoretical

Computer Science, vol. 96, no. 1, pp. 217–248, 1992.
[3] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet,

and C. Talcott, All About Maude, ser. LNCS. Springer, 2007, vol. 4350.
[4] D. Clément, J. Despeyroux, L. Hascoet, and G. Kahn, “Natural semantics

on the computer,” in Proceedings of the France-Japan AI and CS
Symposium. ICOT, Japan, 1986, pp. 49–89.

[5] C. Ellison and G. Roşu, “An executable formal semantics of C with
applications,” in POPL. ACM, 2012, pp. 533–544.

[6] A. Farzan, F. Chen, J. Meseguer, and G. Roşu, “Formal analysis of Java
programs in JavaFAN,” in CAV, ser. LNCS, vol. 3114. Springer, 2004,
pp. 501–505.

[7] M. Felleisen and D. P. Friedman, “Control operators, the SECD-machine,
and the lambda-calculus,” in 3rd Working Conference on the Formal
Description of Programming Concepts. IFIP, Aug. 1986, pp. 193–219.

[8] R. W. Floyd, “Assigning meaning to programs,” in Symposium on Applied
Mathematics, vol. 19. A.M.S., 1967, pp. 19–32.

[9] C. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S.
Pedersen, The RAISE Development Method. Prentice Hall, 1995.

[10] J. Giesl and T. Arts, “Verification of Erlang processes by dependency
pairs,” AAECC, vol. 12, no. 1/2, pp. 39–72, 2001.

[11] J. Goguen and G. Malcolm, Algebraic Semantics of Imperative Programs.
MIT Press, 1996.

[12] D. Harel, D. Kozen, and J. Tiuryn, “Dynamic logic,” in Handbook of
Philosophical Logic, 1984, pp. 497–604.

[13] C. A. R. Hoare and H. Jifeng, Unifying Theories of Programming.
Prentice Hall, 1998.

[14] B. Jacobs, “Weakest pre-condition reasoning for Java programs with
JML annotations,” Journal of Logic & Algebraic Programming, vol. 58,
no. 1-2, pp. 61–88, 2004.

[15] X. Leroy and H. Grall, “Coinductive big-step operational semantics,”
Information & Computation, vol. 207, no. 2, pp. 284–304, 2009.

[16] H. Liu and J. S. Moore, “Java program verification via a JVM deep
embedding in ACL2,” in TPHOLs’04, ser. LNCS, vol. 3223, pp. 184–200.

[17] S. Lucas, C. Marché, and J. Meseguer, “Operational termination of
conditional term rewriting systems,” Information Processing Letters,
vol. 95, no. 4, pp. 446–453, 2005.

[18] P. O. Meredith, M. Katelman, J. Meseguer, and G. Roşu, “A formal
executable semantics of Verilog,” in MEMOCODE. IEEE, 2010, pp.
179–188.

[19] P. D. Mosses, CASL Reference Manual. Springer, 2004.
[20] T. Nipkow, “Winskel is (almost) right: Towards a mechanized semantics

textbook,” Formal Aspects of Computing, vol. 10, pp. 171–186, 1998.
[21] P. W. O’Hearn and D. J. Pym, “The logic of bunched implications,”

Bulletin of Symbolic Logic, vol. 5, no. 2, pp. 215–244, 1999.
[22] D. Pavlovic and D. R. Smith, “Composition and refinement of behavioral

specifications,” in ASE, 2001, pp. 157–165.
[23] G. Plotkin, “A structural approach to operational semantics,” Journal of

Logic & Algebraic Programming, vol. 60-61, pp. 17–139, 2004.
[24] J. C. Reynolds, “Separation logic: A logic for shared mutable data

structures,” in LICS. IEEE, 2002, pp. 55–74.
[25] G. Roşu and T.-F. Şerbanuţă, “An overview of the K semantic framework,”

Journal of Logic & Algebraic Programming, vol. 79, pp. 397–434, 2010.
[26] G. Roşu and A. Ştefănescu, “Checking reachability using matching logic,”

in OOPSLA’12. ACM, 2012, pp. 555–574.
[27] ——, “From Hoare logic to matching logic reachability,” in FM’12, ser.

LNCS, vol. 7436. Springer, 2012, pp. 387–402.
[28] ——, “Towards a unified theory of operational and axiomatic semantics,”

in ICALP’12, ser. LNCS, vol. 7392. Springer, 2012, pp. 351–363.
[29] G. Roşu, A. Ştefănescu, Ştefan Ciobâcă, and B. M. Moore, “Reachability

logic,” UIUC, Tech. Rep. http://hdl.handle.net/2142/32952, Jul 2012.
[30] G. Roşu, C. Ellison, and W. Schulte, “Matching logic: An alternative to

Hoare/Floyd logic,” in AMAST, ser. LNCS, vol. 6486, 2010, pp. 142–162.
[31] R. Sasse and J. Meseguer, “Java+ITP: A verification tool based on Hoare

logic and algebraic semantics,” ENTCS, vol. 176, no. 4, pp. 29–46, 2007.
[32] T.-F. Şerbanuţă, G. Roşu, and J. Meseguer, “A rewriting logic approach

to operational semantics,” Information & Computation, vol. 207, no. 2,
pp. 305–340, 2009.

[33] A. Wright and M. Felleisen, “A syntactic approach to type soundness,”
Information & Computation, vol. 115, no. 1, pp. 38–94, 1994.

10

http://hdl.handle.net/2142/32952

	Introduction
	Operational Semantics
	Matching Logic
	Conditional Reachability Rules
	Operational Semantics using Reachability Rules
	Validity and Well-Definedness
	Specifying Program Properties using Reachability Rules

	Proof System
	Soundness and Relative Completeness
	Related work
	Conclusion
	References

