
Matching Logic: A New Program Verification Approach

Grigore Roşu Andrei Ştefănescu
University of Illinois at Urbana-Champaign

Abstract

Matching logic is a new program verification logic, which builds upon operational semantics.
Matching logic specifications are constrained symbolic program configurations, called patterns,
which can be matched by concrete configurations. By building upon an operational semantics of
the language and allowing specifications to directly refer to the structure of the configuration,
matching logic has at least three benefits that could be key factors in its usability: (1) One’s
familiarity with the formalism reduces to one’s familiarity with the operational semantics of the
language, that is, with the language itself; (2) The verification process proceeds the same way
as the execution of the program, making debugging failed proof attempts manageable because
one can always see the “current configuration” and “what went wrong”, same like in a debugger;
and (3) Nothing is lost in translation, that is, there is no gap between the language itself and
its verifier. Moreover, direct access to the structure of the configuration facilitates defining
sub-patterns that one may reason about, such as disjoint lists or trees in the heap, as well as
supporting framing in various components of the configuration at no additional costs.

1 Introduction

An attempt to make program verification more usable could be to develop novel foundations for
program verification and corresponding tools, in a hope that some, if not most of the limitations of
the existing program verification approaches can be avoided from the root. For example, could it be
possible that other program verification logics, conceptually different from Floyd-Hoare logic [4, 2],
or separation logic [5, 6], or dynamic logic [3], wait to be unearthed in order to, at least temporarily,
make program verification more feasible and accessible to non-experts? Common scientific sense
tells that the answer is more likely positive than negative, though one would, of course, expect
intrinsic connections between such a new logic and the existing ones. Without any claim that it
overcomes all the difficult problems of the existing approaches, this position paper advances the
possibility that matching logic [7] could be a promising novel program verification logic.

Matching logic builds upon operational semantics. To use it, one must understand at least
the structure of the configurations that are used in the operational semantics of the language. For
example, the configuration of some language may contain, besides the code itself, an environment, a
heap, several stacks, synchronization resources, etc. Matching logic specifications, which are called
patterns, allow one to refer directly to the configuration of the program. For example, the pattern

〈 〈root 7→ ?root, E〉env 〈tree(?root)(T), H〉heap C 〉config

specifies the set of program configurations in which the program variable root points to tree T. More
precisely, it says the following: (1) the configuration 〈. . . 〉config must contain at least an environment

1



cell and a heap cell, and the rest of the configuration is matched by C (the configuration frame);
(2) the environment 〈. . . 〉env must hold at least the binding root 7→ ?root, and the rest of the
environment is matched by E (the environment frame); (3) the heap 〈. . . 〉heap must hold at least
the term tree(?root)(T), and the rest of the heap is matched by H. The term tree(?root)(T) matches
a portion of the heap that contains a flattened representation of the tree T (as a mathematical
object) in memory. As seen shortly, such terms are not defined, they are axiomatized.

Matching logic patterns can be defined as first-order logic formulas [7], but ones over an extended
signature that includes all the constructs for configurations and everything they can hold, such as
lists, sets, maps, trees, etc. Then, variables like ?root can be regarded as existentially quantified
over the pattern, while E, T, H, C are free variables. From a matching logic perspective, unlike
in other program verification logics, program variables like root are not logical variables; they are
simple syntactic constants. The matching logic derivation rules are nothing else but the operational
semantic rules (allowed to work on configurations with variables). For example, an assignment
statement “x = 5” changes the pattern above into the pattern

〈 〈root 7→ 5, E〉env 〈tree(?root)(T), H〉heap C 〉config

There is no backwards substitution like in the Hoare rule for assignment, as well as no introduction
of existential quantifiers like in the Floyd rule for assignment, though, technically speaking, one
can (and should!) relate the matching logic proof system to the Floyd-Hoare one, as shown in [7].

The variables appearing in patterns often need to be constrained. Since patterns are just FOL
formulas, one can simply conjunct them with a formula expressing the desired constraints. For
notational uniformity, we prefer to write the constraints inside a special cell 〈. . . 〉form that we add
to patterns (such a cell was not necessary in the original program configurations). For example:

〈 〈root 7→ ?root, E〉env 〈tree(?root)(T), H〉heap 〈T 6= empty〉form C 〉config

Unlike in separation logic, there is no need for logical support for “separation”. In matching
logic, separation is achieved at the structural (i.e., term) level and not at the logical level. In
algebraic specification and term rewriting, separation at the term level was always understood,
without anything special to say about it. For example, if one matches two terms in a multiset, then
the two terms are obviously distinct. In our pattern above, the implicit structural separation tells
us that the binding of root is separated from the rest of the environment E, the term tree(?root)(T)
is separated from the rest of the heap H, and that the three mentioned cells are separated from the
rest of the configuration C.

In matching logic, framing can appear in any cell of the configuration. Same like separation,
it needs no special support from the logical infrastructure, in particular no derivation rules. Cell
framing simply falls under the general principle of matching. Consider, for example, the assignment
“x=5” discussed above, which changed the first pattern discussed above into the second, and the
free variable H. Since the same H variable appears free in both patterns, it must match the same
term. In other words, any concrete program configuration that matches the first pattern will induce
a binding for H, which will be the same in the configuration after the assignment.

We implemented a proof-of-concept matching logic verifier for a fragment of C, called MatchC,
which can automatically verify programs like the one discussed next. A web interface is available
at http://fsl.cs.uiuc.edu/ml, together with examples. MatchC is based on an executable
rewrite-based semantics of the fragment of C. Both the executable semantics and the verifier are
implemented using the K language definitional framework [8], which compiles into Maude [1].

2



struct treeNode { int val; struct treeNode ∗left; struct treeNode ∗right; };
struct nodeList { int val ; struct nodeList ∗next; };
struct treeNodeList { struct treeNode ∗val; struct treeNodeList ∗next; };

struct nodeList ∗toListIterative (struct treeNode ∗root)

/*@ pre 〈 〈root 7→ ?root〉env 〈tree(?root)(T), H〉heap 〈TrueFormula〉form C 〉config

/*@ post 〈 〈?rho〉env 〈list(?a)(tree2list(T)), H〉heap 〈returns ?a〉form C 〉config

{
struct nodeList ∗a; struct nodeList ∗node; struct treeNode ∗t;
struct treeNodeList ∗stack; struct treeNodeList ∗x;
if (root == 0) return 0;
a = 0;
stack = (struct treeNodeList ∗) malloc(sizeof(struct treeNodeList));
stack−>val = root; stack−>next = 0;

/*@ invariant 〈 〈root 7→ ?root, a 7→ ?a, stack 7→ ?stack, t 7→ ?t, x 7→ ?x, node 7→ ?node〉env

〈list{tree}(?stack)(?TS), list(?a)(?A), H〉heap

〈tree2list(T) = list{tree}2list(rev(?TS))@?A〉form C 〉config

while (stack != 0) {
x = stack; stack = stack−>next; t = x−>val;
free (x);
if (t−>left != 0) {

x = (struct treeNodeList ∗) malloc(sizeof(struct treeNodeList));
x−>val = t−>left; x−>next = stack; stack = x;
}
if (t−>right != 0) {

x = (struct treeNodeList ∗) malloc(sizeof(struct treeNodeList));
x−>val = t; x−>next = stack; stack = x;
x = (struct treeNodeList ∗) malloc(sizeof(struct treeNodeList));
x−>val = t−>right; x−>next = stack; stack = x;
t−>left = t−>right = 0;
}
else {

node = (struct nodeList ∗) malloc(sizeof(struct nodeList));
node−>val = t−>val; node−>next = a; a = node;
free (t );

}
}
return a;
}
Figure 1: Iterative C program flattening a tree into a list: traverses the tree in infix order and, as
it reaches each tree node, it deallocates it and allocates a corresponding list node. The matching
logic annotations state the full correctness of this program: the tree is completely deallocated, the
resulting list is allocated and contains exactly the same elements in the desired order, and that
nothing else changes. MatchC automatically verifies the annotated program above in milliseconds.

3



2 An Example: Iterative Flattening of a Tree into a List

Figure 1 shows a C function that flattens a binary tree into a list, traversing the tree in infix order.
Each node of the initial tree (structure treeNode) has three fields: the value, and two pointers, for
the left and the right subtrees. Each node of the final list (structure nodeList) has two fields: the
value and a pointer to the next node of the list. The program makes use of an auxiliary structure
(treeNodeList) to represent a stack of trees. For demonstration purposes (to highlight the invariant
capability of our verifier), we prefer an iterative version of this program. We need a stack to keep
track of our position in the tree. Initially that stack contains the tree passed as argument (as a
pointer). The loop repeatedly pops a tree from the stack, and it either pushes back the left tree,
the root, and the right tree onto the stack, or if the right tree is empty it pushes back the left
subtree and appends the value in the root node at the beginning of the list of tree elements. As
the loop processes the tree, it frees the tree nodes and it allocates the corresponding list nodes.

The function is annotated with pre and post pattern conditions. The precondition binds the
argument root to the pattern existential variable ?root in the environment, which points to a binary
tree holding the contents T; the variable T is free in both the pre and the post conditions, indicating
that it must be bound to the same tree (defined algebraically in a trivial way; see below). There
are two other free variables in the pre and the post conditions, H and C, which will be bound
to the remaining contents of the heap and the configuration cells, that is, to their corresponding
frames. No frame for the environment is necessary in the precondition, because at that point in
the program root is the only variable in the environment. The postcondition binds the pattern
existential variable ?rho to whatever is in the environment when the function returns (we do not
care about that information in this example), and binds ?a to the return value of the function,
which points to a list with contents tree2list(T) (the infix traversal sequence of T, also trivially
defined algebraically). In matching logic, list, tree, and tree2list are ordinary operation symbols
added to the signature and constrained through axioms as discussed shortly.

When a function is verified, its precondition is assumed as “the” configuration (but, of course,
it is symbolic and constrained) in which its body is executed using the operational semantics of
the language. The semantics is extended with pattern assertions as expected: when a pattern
assertion is encountered, MatchC attempts to prove that the current (symbolic and constrained)
configuration matches the asserted pattern. The verification fails if any such match fails. One can
assert patterns anywhere in the program. The postcondition is automatically asserted at function
return. We call asserted patterns invariants when they are associated to loops. An invariant
pattern always holds before each loop iteration (we only consider partial correctness for the time
being). The invariant of our program binds all program variables to pattern existential variables,
asserts that the heap contains a stack of trees (represented as a list of trees) with contents ?TS
and a list with contents ?A, and that the infix traversal sequence of T, tree2list(T), is equal to the
concatenation in reverse order of the infix traversal sequences of the trees in the stack concatenated
with the contents of the list. All these operations on trees and lists are axiomatized below. The
remainder of the heap (H) and of the configuration (C) in the invariant happened to stay unchanged.

We next list the axioms that we had to add in the mathematical library of MatchC in order to
verify the program above automatically. Here is our axiom for lists, which is a first-order formula:

〈〈list(p, α),H〉heap〈φ〉formC〉config ⇔ 〈〈H〉heap〈p = 0 ∧ α = nil ∧ φ〉formC〉config

∨ 〈〈p 7→ [?a, ?q], list(?q, ?β),H〉heap〈α = [?a]@?β ∧ φ〉formC〉config

The above captures the two cases, one in which the list is empty and the other in which it has at

4



least one element. We borrowed the notation p 7→ [?a, ?q] from separation logic; it stays for two
bindings, namely for “p 7→ ?a, p+1 7→ ?q”. we also borrowed the notation for lists from OCAML:
[?a] is a one-element list and @ concatenates two lists. All the non-existential variables in the axiom
above are assumed universally quantified, not free; in other words, the H and C variables in this
axiom have nothing to do with the homonymous variables in the program annotations.

The tree pattern is axiomatized similarly (tree(a, τl, τr) is our constructor for trees):

〈〈tree(p, τ),H〉heap〈φ〉formC〉config ⇔ 〈 〈H〉heap〈p = 0 ∧ τ = empty ∧ φ〉formC〉config

∨ 〈 〈p 7→ [?a, ?l, ?r], tree(?l, ?τl), tree(?r, ?τr),H〉heap

〈τ = tree(?a, ?τl, ?τr) ∧ φ〉formC〉config

The axiomatization for list{tree} is similar to that of list, but the data field is a pointer to a tree.
The only thing left to show is our axioms for reasoning within the mathematical domains that

provided the data stored in the heap patterns above. The equations above are self-explanatory; we
only mention that rewrite engines like Maude are quite suitable for handling such axiomatizations:

rev(nil) = nil
rev([a]) = [a]

rev(A1@A2) = rev(A1)@rev(A2)

tree2list(empty) = nil
tree2list(tree(a, τl, τr)) = tree2list(τl)@[a]@tree2list(τr)

list{tree}2list(nil) = nil
list{tree}2list([τ ]) = tree2list(τ)

list{tree}2list(A1@A2) = list{tree}2list(A1)@list{tree}2list(A2)

References

[1] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and C. Talcott. All
About Maude, A High-Performance Logical Framework, volume 4350 of LNCS. Springer, 2007.

[2] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Proceedings of the
Symposium on Applied Mathematics, volume 19, pages 19–32. AMS, 1967.

[3] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. In Handbook of Philosophical
Logic, pages 497–604, 1984.

[4] C. A. R. Hoare. An axiomatic basis for computer programming. CACM, 12(10):576–580, 1969.

[5] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5:215–244, 1999.

[6] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS’02,
pages 55–74, 2002.

[7] Grigore Roşu, Chucky Ellison, and Wolfram Schulte. Matching logic: An alternative to
Hoare/Floyd logic. In Thirteenth International Conference on Algebraic Methodology And Soft-
ware Technology (AMAST ’10), volume 6486. LNCS, 2010.

[8] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

5


