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Abstract

This paper gives an overview of the tool-supported K framework for semantics-based programming language
design and formal analysis. K provides a convenient notation for modularly defining the syntax and the
semantics of a programming language, together with a series of tools based on these, including a parser and
an interpreter. A case study is also discussed, namely the K definition of the dynamic and static semantics
of SIMPLE, a non-trivial imperative programming language. The material discussed in this paper was
presented in an invited talk at the K’11 workshop.
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1 Introduction

Introduced by the first author in 2003 [40] for teaching a programming languages

class, and continuously refined and developed ever since, the K framework [43,52] is

a programming language definitional framework based on rewriting which brings

together the strengths of existing frameworks (expressiveness, modularity, concur-

rency, and simplicity) while avoiding their weaknesses. The K framework consists

of (1) the K technique, which can be, and has already been used to define real-life

programming languages, such as Java, C, and Scheme, and program analysis tools

(see Section 5 and the references there), and of (2) K rewriting, a rewriting semantics

allowing K definitions to capture true concurrency with sharing of resources.

To give semantics to programming language constructs, the K framework relies

on computational structures, configurations, and K rules. Computational structures,

which are more simply called computations and which inspired the name “K” of the

framework, are sequences of computational tasks, where each computational task is
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a term over the possibly extended language syntax; computations are typically used

to handle the sequential fragment of the defined programming language and the

evaluation strategies of the various language constructs. Configurations of running

programs are represented as bags (multisets) of nested cells, with a great potential

for concurrency and modularity. K rules distinguish themselves by specifying only

what is needed from a configuration and by clearly identifying what changes; thus,

they are more concise, more modular, and more concurrent than regular rewrite

rules.

If one ignores its concurrent semantics, K can be seen as a notation within

rewriting logic [31], the same as most other semantic frameworks, such as natural

(or big-step) semantics, (small-step) SOS, Modular SOS, reduction semantics with

evaluation contexts, and so on [55]. However, unlike these other semantic frameworks

enumerated above, K cannot be easily captured step-for-step in rewriting logic, due

to its enhanced concurrency which is best described in terms of ideas from graph

rewriting [43,52].

We will only focus on the essential/fundamental aspects of the K framework,

not on particular implementations of it; the K Primer included in this volume [53]

provides a more in-depth view of the current implementation. Thus, we do not insist

on implementation-specific annotations of a K definition in what follows. Instead,

we refer the reader interested in implementation details to the current distribution

of the K tool (reachable from k-framework.org), where commented versions of the

subsequent K definitions can be found. Moreover, we do not insist on executability

aspects of K either, that is, on foundational aspects of a definition which make

it (efficiently) executable. We limit ourselves to purely theoretical and high-level

aspects of K in this paper.

The overview of the K framework presented in Section 2 is complemented by the

complete literate definitions of the dynamic (Section 3) and static (Section 4) seman-

tics of SIMPLE, a non-trivial programming language characteristic of the imperative

programming paradigm. These sections demonstrate both the expressiveness and

the modularity of the framework, as well as give compelling evidence that K can

scale to larger languages. References to other research projects making use of K in

achieving their goals are presented in Section 5. Section 6 concludes.

2 Overview of the K Framework

Here we give an overview of K, focusing on its overall capabilities and objectives. As

one may expect, a relatively new and actively used framework changes often due to

user requests/complaints. K is no exception. In this section we also focus on recent

developments, notations and terminology. We will attempt to justify our design

decisions where appropriate, because we believe that other semantic framework

designers may need to take similar or related decisions. For a more technical (but

older) presentation of K we refer the reader to [43]. Sections 3 and 4 discuss the

complete K definitions of the SIMPLE programming language and of its type system,

both part of the K tool distribution, which we will also use in this section to illustrate

K’s features.

K is a programming language definitional framework based on context insensitive
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term rewriting. K builds upon the following three main ideas:

(i) Flatten syntax into special computational structures, called computations for

simplicity, which include abstract syntax and are reminiscent of refocusing [14]

in reduction semantics with evaluation contexts [20], of continuations [39], and

to computations in monads [34].

(ii) Represent the state, or the configuration, of an executing program as a poten-

tially nested structure of labeled cells. This is reminiscent of solutions in the

chemical abstract machine (CHAM) [10]. K rewrite rules (explained next) then

iteratively transform such configurations, starting with a configuration holding

the original program and ending with a configuration holding the result.

(iii) Give semantics to language constructs using K rewrite rules, typically a small

number of independent rules for each language construct. The precise semantics

of K is given in terms of graph rewriting intuitions, in order to properly yield

truly concurrent language semantics (see Section 2.5 for more details). Moreover,

K rules are split into structural and computational, the former’s role being only

to rearrange the configuration so that the latter can match and apply. This is

reminiscent of rewriting logic’s split of sentences into equations and rules [32],

and also to the distinction between heating/cooling and reaction rules in the

CHAM [10].

K additionally brings a series of semantic innovations and notations dictated by

practical needs. For example, K rules are regarded as transactions, stating what is

only read, what is both read and written, and what is irrelevant. This allows for

true concurrency even in the presence of sharing. Also, a configuration abstraction

mechanism allows definitions to be both compact and modular, often requiring no

changes to existing rules when the configuration changes.

2.1 Case study: the SIMPLE language

Throughout this paper, we will introduce and exemplify K using the definition of

the SIMPLE language, which we briefly describe here. SIMPLE is intended to be a

pedagogical and research language that captures the essence of the imperative pro-

gramming paradigm, extended with several features often encountered in imperative

languages. A program consists of a set of global variable declarations and function

definitions. Like in C, function definitions cannot be nested and each program must

have one function called main, which is invoked when the program is executed. To

make it more interesting and to highlight some of K’s strengths, SIMPLE includes

the following features in addition to the conventional imperative expression and

statement constructs:

• Multidimensional arrays and array references. An array evaluates to an array

reference, which is a special value holding a location (where the elements of the

array start) together with the size of the array; the elements of the array can be

array references themselves (particularly when the array is multi-dimensional).

Array references are ordinary values, so they can be assigned to variables and

passed/received by functions.

• Functions and function values. Functions can have zero or more parameters and

3



Ros,u and S, erbanut, a

can return abruptly using a return statement. SIMPLE follows a call-by-value

parameter passing style, with static scoping. Function names evaluate to function

abstractions, which are ordinary values in the language, like the array references.

• Blocks with locals. SIMPLE variables can be declared anywhere, their scope being

from their declaration place until the end of the enclosing block.

• Input/Output. The expression read() evaluates to the next value in the input

buffer, and the statement print(e) evaluates e and outputs its value to the output

buffer. The input and output buffers are lists of values.

• Exceptions. SIMPLE has parametric exceptions (the value thrown as an exception

can be caught and bound).

• Concurrency via dynamic thread creation/termination and synchronization. One

can spawn a thread to execute any statement. The spawned thread shares with its

parent its environment at creation time. Threads can be synchronized via a join

command which blocks the current thread until the joined thread completes, via

re-entrant locks which can be acquired and released, as well as through rendezvous

commands.

2.2 K Syntax

The K syntax of languages, calculi or systems, as well as the additional syntax

needed for the semantics of these, is defined using context-free grammars (CFG) or,

equivalently, algebraic signatures written using the mixfix notation (i.e., operation

names include underscores “ ” as argument placeholders) [23,22,12]. We take the

freedom to borrow from the algebraic universe any structures of interest on a by-need

basis. In this paper we use List{Nonterminal, terminal} to refer to the nonterminal

corresponding to terminal -separated lists of Nonterminal elements; for example,

List{Exp,@} stands for @-separated lists of expressions. We skip the terminal when

it is a comma; e.g., List{Exp} stands for comma-separated lists of expressions. In

this paper and in K in general, we uniformly use a dot “•”, read “nothing” and

possibly tagged with its type as a subscript, as the unit of all structures mentioned

above. If one prefers a different unit then one should mention it as an additional

argument to List, e.g., List{Exp,@, nil}, etc.

Syntax definition and parsing are difficult topics in their full generality, which have

been extensively researched and implemented over several decades. Implementations

of K would likely make use of existing techniques and tools for defining syntax and

for parsing. However, at its very core, K is actually not concerned with concrete

syntax at all. More precisely, the syntax of K currently consists of one syntactic

category K for computational structures, or compactly just computations 3 , i.e.,

structures which have the capability to compute when put in the right context,

together with another syntactic category, KLabel, for abstract syntax tree labels:

K ::= KLabel ( List{K} ) | List{K,y} (generic)

KLabel ::= 0 | 1 | 2 | · · · | while(_)_ | {_} | · · · (language-specific)

3 The syntax of K can be extended to include other syntactic categories besides K. There are several current
K projects which appear to need such extensions, but here we limit ourselves to a minimal setting.
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A programming language, calculus or system syntax, including constants such as

primitive values, is eventually regarded as a set of K labels by simply associating

a unique K label to each production and discarding all the concrete syntactic

categories. This way, any program or fragment of program can be regarded (for

semantic reasons) as a K abstract syntax tree (KAST) whose nodes are K labels and

whose leaves are “•”. By default, we follow the mixfix notational philosophy [23,22,12]

when choosing the label names, but one is free to use any naming conventions. With

our convention, for example, the fragment of SIMPLE program “while(x > 0) {x

= x - 1;}” is regarded as the KAST “while(_)_(_>_(x(•), 0(•)), {_}(_=_(x(•),

_-_(x(•), 1(•)))))”.

The KAST notation is convenient for both theoretical and practical reasons.

Theoretically, it allows one to give language-independent and thus modular semantics

to constructs that require one to visit the entire language syntax, such as substitution

or code generation, by simply giving their semantics in terms of KASTs and thus

not worrying about the concrete language syntax. Practically, it gives a uniform

means to separate syntactic concerns from semantic ones, leaving the translation

from concrete syntax to KAST to tools. K tools may (and do [53]) provide more

user-friendly means to define language syntax than as sets of K labels.

In addition to capturing language/calculus/system syntax as KAST structures

as explained above, the K syntactic category also provides a task sequentialization

list construct, written “y” and read “followed by”. If t1, t2, ..., tn are computations,

then t1 y t2 y · · · y tn can be thought of as the computation consisting of t1
followed by t2 followed by . . ., followed by tn. As seen shortly in Section 2.4, “y”

plays a crucial role in defining evaluation strategies for language constructs. For

example, if s1, s2 ∈ K are KASTs corresponding to two statements in SIMPLE, then

the semantics of sequential composition will reduce “s1 s2” to “s1 y s2”, which will

further be processed using other rules as expected: first s1 will be fully evaluated

and then s2 will be evaluated. Similarly, if e1, e2 ∈ K are KASTs corresponding to

two expressions in SIMPLE, then the rewrite rules defining the evaluation strategy

of addition will allow the expression “e1+e2” to non-deterministically rewrite to either

“e1 y � +e2” or “e2 y e1+�”, where +� and � + are two new K labels specifically

added for this purpose (in other words, � is part of a label name and not an explicit

“hole” terminal). Other evaluation strategies are also possible and easy to imagine,

as well as techniques reminiscent of refocusing [14] to support defining evaluation

contexts.

2.3 K Configurations

A programming language semantics is typically driven by the syntax, but it often

needs additional semantic data in order to properly capture the desired semantics of

each language construct. Such data may include a program environment mapping

program variables to memory locations, a store mapping memory locations to values,

one or more stacks for functions and exceptions, a multi-set (or bag) of threads, a set

of held locks associated to each thread, and so on. Such list, set, multi-set, and map

structures are well-known algebraic structures, with many papers describing various

ways to define them as algebraic or logical structures (see, e.g., the CASL [35] and

Maude [12] manuals). To distinguish the various semantic components from each
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configuration:
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Fig. 1. The K configuration of SIMPLE

other, in K we “wrap” them within suggestively named cells when we structure them

together in a configuration. These cells are nothing but constructors taking the

desired structure and yielding a configuration item. For example, a cell called store
can be defined as an operation

store : Map→ CfgItem

where Map is the sort of maps from say natural numbers to integer numbers. Cells can

be nested. We do not insist on how one can/should define configurations, as different

implementations/realizations/encodings of K may choose different representations

and notations. The important point is that configurations, no matter how complex,

can be defined as appropriate algebraic specifications. Moreover, K assumes such

configurations to be defined upfront, before the semantic rules are given, since

the structure of program configurations is an important aspect that gives K its

modularity (as discussed in the next section).

We next informally discuss the K configuration of the SIMPLE language, depicted

graphically in Figure 1. Recall from Section 2.1 that SIMPLE has functions with

abrupt termination, exceptions, dynamic threads with lock synchronization and

with memory sharing, and input/output. Its configuration consists of a top level

cell, T, holding a threads cell, a global environment map cell genv mapping the

global variables and function names to their locations, a shared store map cell store
mapping each location to some value, a set cell busy holding the locks which have

been acquired but not yet released by threads, a set cell terminated holding the

unique identifiers of the threads which already terminated (needed for join), input
and output list cells, and a nextLoc cell holding a natural number indicating the next
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available location. Unlike in smaller languages, in SIMPLE we prefer to explicitly

manage memory. The location counter in nextLoc models an actual physical location

in the store; for simplicity, we assume arbitrarily large memory and no garbage

collection. The threads cell contains one thread cell for each existing thread in the

program, signified graphically in the configuration by the “*” attached to the thread
label, which specifies the multiplicity of the cell, i.e., that at any given moment

there could be either zero, one, or more thread cells. Each thread cell contains a

computation cell k, a control cell holding the various control structures needed to

jump to certain points of interest in the program execution, a local environment

map cell env mapping the thread local variables to locations in the store, and finally

a holds map cell indicating what locks have been acquired by the thread and not

released so far and how many times each lock has been acquired without being

released (SIMPLE’s locks are re-entrant). The control cell currently contains only two

subcells, a function stack fstack which is a list and an exception stack xstack which is

also a list. One can add more control structures in the control cell, such as a stack for

break/continue of loops, etc., if the language is extended with more control-changing

constructs. Note that all cells except for k are also initialized, in that they contain a

ground term of their corresponding sort. The k cell is initialized with the (KAST of

the) program to be executed, as indicated by the $PGM placeholder, followed by

the execute task (whose semantics will be given in Section 3).

A configuration declaration in K does several things at the same time, in a

compact and intuitive way:

(i) It defines an algebraic signature for configurations, as explained in the first

paragraph of this section;

(ii) It tells how to initialize the configuration;

(iii) It gives a basis for concretizing semantic rewrite rules, which for modularity

reasons can be given more abstractly, as seen in the next section.

Implementations of K may choose different ways to define configurations, and

additional ways to initialize them. For example, our current implementation uses

XML to delimit cells (e.g., <threads>...</threads>), it allows users to further

initialize the configuration by means of custom $PGM -like placeholders, and even

allows for connecting certain cells to the standard input/output in order to obtain

realistic interpreters when executing K definitions [53].

K provides support for defining complex configurations, but that does not mean

that K definitions are always expected to use it, not even that K encourages

environment-based semantics. For example, to define a purely syntactic, substitution-

based semantics of a language or calculus, we only need a one-cell configuration

initialized with $PGM. The reader is referred to the K tool distribution for several

substitution-based definitions.

2.4 K Rules

As seen in Section 2.3, the configuration is initialized by placing the target program at

its specified position and initializing any other cell with its declared contents. From

here on, the K rewrite rules giving the language semantics (non-deterministically
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and concurrently) match and apply, potentially generating any possible behavior

of the target program. There are two types of rules in K, namely structural and

computational rules. Intuitively, structural rules decompose and eventually push

the tasks that are ready for processing to the top (or the left) of the computation.

Semantic rules then tell how to process the atomic tasks. In other words, the

structural rules do not count as observable steps, while the computational rules do.

The formal semantic difference between the two is discussed in Section 2.5. Unless

explicitly tagged “structural”, we assume K rules to be computational by default.

Structural rules

We start by discussing an important category of structural K rules, the heating/cooling

rules. Our terminology for these rules is inspired from the chemical abstract machine

(CHAM) [10]. One is free to use different arrows for heating/cooling in particular or

for structural rules in general, for example ⇀ or ⇁ instead of ⇒ like in the CHAM,

but we prefer to not enforce any particular notation. In our current K tool, for

example, we use the rule tag called “structural”. Heating/cooling rules have the role

to re-arrange the computation according to the desired evaluation strategies, so that

the “hot spots” are pushed to the front of the computation structure. The overall

effect of this structural process is that, unlike in reduction semantics with evaluation

contexts [20], rewriting in K needs not be context-sensitive. Consider, for example,

the addition operation in SIMPLE, which is intended to be non-deterministic. We

then add two pairs of reversible structural rules for it, namely

rule

E1 + E2

E1 y � + E2

[structural]

rule

E1 y � + E2

E1 + E2

[structural]

rule

E1 + E2

E2 y E1 + �

[structural]

rule

E2 y E1 + �

E1 + E2

[structural]

Note that we used a two-dimensional notation for rules, with the left term of the

rewrite rule above a horizontal line and the right term underneath the line. This

notation is an instance of a more general principle that will be explained shortly. The

first and third rules say that we can at any moment “heat” an addition by pulling

any of its two arguments and schedule it for reduction, thus splitting syntax into an

evaluation context (the tail of the resulting sequence of computational tasks) and

a redex (the head of the sequence); we call such rules “heating” rules. The second

and fourth rules say that we can at any moment “cool” the addition by plugging

its heated argument back into its context. This way, we can non-deterministically

explore all possible orders in which the two arguments of a sum can be reduced (all

their evaluation interleavings).

There are two problems with writing rules like the ones above. First, writing

such rules is tedious, boring and error-prone. To address this problem, in K we
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adopted a simple and intuitive syntactic annotation:

syntax Exp ::= Exp + Exp [strict]

The “strict” annotation, or attribute, associated to a syntactic construct states that

it is intended to be (non-deterministically) strict in its arguments, and is equivalent

to giving the four rules above. If one wants a construct to be strict only in some of

its arguments, then one is expected to enumerate the positions of those arguments

in parentheses after the “strict” attribute; for example, a construct which is intended

to be strict only in its first and third arguments would be annotated with “strict(1

3)”. Sometimes one needs to evaluate the arguments of a construct in a given order,

say from left to right. Then one can use the attribute “seqstrict” (from sequentially

strict) instead of “strict”. It is not hard to see how all these can be easily translated

into structural heating/cooling rules like those shown above. For example, if the sum

construct were annotated “seqstrict”, then the last two rules above would require E1

to be evaluated (that is, to be an integer):

rule

V1 + E2

E2 y V1 + �

[structural]

rule

E2 y V1 + �

V1 + E2

[structural]

The second problem with writing heating/cooling rules like above is that they are

not immediately executable, as they lead to non-termination. This is similar to how

rules stating the commutativity of certain constructs may lead to non-termination if

executed naively. The same way the theory of term rewriting allows for rewriting

modulo axioms like commutativity (and associativity, idempotency, etc.) and rewrite

engines provide decision procedures to implement it, in the theory of K we assume

that rewriting with computational rules takes place modulo the structural rules and

that implementations of K provide heuristics or procedures to deal with structural

rules. Such procedures are beyond the scope of this paper. We only mention that if

one is willing to trade (some) non-determinism for performance, then one can break

the circularity of heating/cooling rules like above by adding side-conditions saying

that the heated expression is always a non-value (e.g., E1 in the first rule) and that

the cooled expression is always a value (e.g., E1 in the second rule).

More generally, we can specify any evaluation context in terms of heating/cooling

structural rules like above, by simply pulling the “hole” from the context and

scheduling it in front of the context. Consider, for example, the following K evaluation

context in the definition of SIMPLE stating that in order to calculate the lvalue of

an array element we need to evaluate the index of that element (here A ranges over

array expressions):

context

lvalue (A[2])

This context can be represented with the following two structural rules:
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rule

lvalue(A[E] )

E y lvalue(A[�] )

[structural]

rule

E y lvalue(A[�] )

lvalue(A[E] )

[structural]

Note: In reduction semantics, the evaluation context above would be specified

using a syntactic declaration of the form “Cxt ::= lvalue(A(Cxt))” Our current

implementation of K allows users to specify evaluation contexts using a notation like

the lvalue (A[2]) above, in addition to specifying the more particular strictness

attributes. Such declarations of evaluation contexts are then automatically translated

into heating/cooling rules like above.

The heating/cooling rules are not restricted to only defining evaluation strategies

by means of conventional evaluation contexts. For example, stimulated by practical

needs, the current K tool allows users to also specify “contexts” like the following

three:

context

I * �
when I 6=Int 0

context

� .M

when � 6=K super

context

++ �

lvalue( � )

The first context above states that the second argument of a multiplication operation

is evaluated only if the value of the first argument is different from zero (since one

may want to give a shortcircuited semantics to multiplication and to reduce the

amount of unnecessary non-determinism). The second states that the object in a

member access expression is evaluated whenever it is different from super (since

super member accesses are resolved statically, so they have a different semantics).

The third context declaration above is more special and makes use of K’s in-place

rewriting notation which will be explained shortly in more detail. It basically says

that when the argument of the increment construct is evaluated, it should be wrapped

with the lvalue construct. The role of the wrapper is to allow a special treatment

for the expression being evaluated. This is precisely what is needed in the case of

l-values, as we want to “almost” evaluate the expressions (which could be variables,

array elements, object fields), but stop once we compute the location. The heating

rules corresponding to the three contexts above are, respectively:

rule

I *E

E y I*�

when I 6=Int 0

[structural]

rule

E.M

E y �.M

when E 6=K super

[structural]

rule

++ E

lvalue( E )y ++ �

[structural]

The corresponding cooling rules reverse the above rules. Note that, in particular,

the cooling rule for the third context expects the wrapper to still be wrapping the

expression, and it removes it upon plugging the expression back. This is to say that

this wrapper should only have contextual meaning, used for altering the semantics,

but being preserved by it. In some sense, these wrappers are actually providing

locally typed evaluation contexts. One can devise other similar notations and it is
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likely that the K tool will incorporate new ones or different ones in the future. The

point here is that the heating/cooling rules are quite powerful, giving K flexibility in

defining complex evaluation strategies.

Not all structural rules need to be heating/cooling rules like above. Sometimes

we want to desugar some language constructs into others or into built in K constructs

and we do not want such steps to be observable. For example, one may want to

desugar a “for” loop into a while loop, or one may want to eliminate the sequential

composition construct replacing it with the K built-in y construct. A language

designer may not want such structural rules to be reversible. In fact, making all

structural rules reversible may yield undesirable non-determinism in the language.

Computational rules

Many K rules, particularly those which are computational, involve more than one

cell. For example, the variable lookup rule of SIMPLE (presented below) grabs the

program variable to lookup from the k cell, then grabs its location from the env cell,

then accesses the value at that location in the store cell, and finally rewrites the

program variable to that value. Thus, a significant amount of configuration structure

needs be specified in the rule for variable lookup and in the end only a little bit of

that structure gets changed, while the rest remains the same. Conventional rewrite

rules of the form left⇒ right have two drawbacks, one practical and one theoretical.

On the practical side, one has to mention the entire configuration context in both the

left- and the right-hand-side terms of the rules, which is tedious, error-prone, and

non-modular. On the theoretical side, such rules enforce an interleaving semantics

for concurrency where one may want a true concurrency semantics; for example,

two threads reading the same location in the store would have to interleave, simply

because the left-hand-sides of the corresponding variable lookup rule instances

overlap. K addresses these problems by introducing an in-place style for writing

rewrite rules, which we discuss next, and a semantics for it which is not based on

translation to conventional rules, which we briefly discuss in Section 2.5.

Here is the K rule for variable lookup in SIMPLE:

rule

X

V

k

X 7→ L

env

L 7→ V

store

Thus, the configuration context is mentioned only once, and the parts which change

are underlined with the changes written underneath. A conventional rule left⇒ right

is a particular K rule where the entire left term is underlined, with right underneath

(like the structural rules shown above).

There are two additional K-specific aspects in the rule above that need to be

discussed. First, note that the cells involved are either round or torn on their sides. A

torn cell side means that it may contain more data there, but that data is irrelevant.

For example, the variable X to be looked up is required to appear first in the

computation cell k, but the remaining computation context is irrelevant. Similarly,

the remaining bindings in the environment as well as the remaining locations in the

11



Ros,u and S, erbanut, a

store are irrelevant. We assumed a definition of maps as sets of pairs key 7→ value.

A second K-specific aspect to note in the rule above is that the configuration

context does not match. Indeed, as the configuration of SIMPLE in Figure 1 shows,

the cell store is not located within the same cell as k and env, so the three cells cannot

be matched together as the lookup rule states. This rule takes advantage of K’s

configuration abstraction mechanism (previously called context transforming [43]),

which allows us to only specify the needed cells in each rule, with the rest of the

configuration context being inferred from the defined configuration (e.g., the one in

Figure 1 for SIMPLE). The concretization of such abstract configuration rule contexts

is based on several principles and criteria that help disambiguate among possible

concrete rules. They are thoroughly discussed in [43]. Here we only mention that one

of them, the locality principle, states that the configuration will be completed such

that a minimum number of cells will be added. This ensures that, in a multithreaded

SIMPLE program, the cells k and env in the rule above will not be assigned to

different thread cells. Although that would be consistent with the configuration

structure, having them in the same thread is “more local”.

The motivation for configuration abstraction comes from the practical need

for modular language semantics, more precisely from desired modularity under

changes of configuration. As new features are added to a programming language, its

configuration tends to changes its structure many times. In the case of SIMPLE, for

example, it is natural to start with a non-concurrent fragment of it (in order to first

focus on the sequential language constructs), where one does not include the threads
and thread cells, their now inner cells being at the same top-level as the now shared

cells. Then the lookup rule above matches as is, as its three cells are located at the

same level in the cell structure. When we add threads, we realize that we need a

more structured configuration, so we reorganize it as in Figure 1. In a conventional

structural operational semantics (SOS) [37], changes of the configuration structure

require revisiting all the existing rules, which is very inconvenient. Modular SOS [36]

fixes this problem of SOS when the configuration consists of a flat (not nested) set

of semantic cells, allowing rules to only grab from the configuration those cells that

are needed. K pushes this idea further, allowing the same to also happen across cell

boundaries. This way, we do not have to change the rule for variable lookup when

threads are added to the SIMPLE language.

The overall principle underlying the abstraction capabilities above, as well as

much of K’s design in general, has always been the following:

Everything we write in a rule may work against us when the language is extended.

The more the framework can automatically infer for us, the better.

Informally, the cell and configuration abstractions above can be thought of as

K’s rewriting applying “modulo the configuration”. Implementation-wise, this rule

completion process can be applied statically or dynamically. In our current imple-

mentation based on translation to Maude [53], we apply them statically; e.g., the K
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rule above translates into a conventional rewrite rule:

rule threads(thread(k(X y K) env(X 7→ L, Env) Thread) Threads)

store(L 7→ V, Store)

⇒

threads(thread(k(V y K) env(X 7→ L, Env) Thread) Threads)

store(L 7→ V, Store)

K, Env, Thread, Threads, and Store are cell frame variables corresponding to the

tears. Our current K tool makes use of Maude’s strengths, such as its multi-set and

context-insensitive rewriting. Other backends may require more complex translations.

For example, one may need to complete the configuration context all the way to the

top (if the target language does not support context-insensitive rewriting) or to add

both left and right frames to cells holding maps, sets or multi-sets (when multi-set

rewriting is not available).

In the remainder of this section we discuss two more K rules, also part of

the semantics of SIMPLE, which illustrate two more features of K’s configuration

abstraction. The former is motivated by the need to add new cell instances to the

configuration dynamically, and the latter is motivated by the need to match items

which reside in different instances of the same cell.

Let us first consider the rule which gives the semantics of thread spawning:

rule

spawn S

T

k

Env

env

thread

•Bag

S

k

Env

env

T

id

thread

when fresh (T )

The spawning thread evaluates the spawn expression to the fresh (thread) identifier

T while adding a child thread to the pool of threads; recall that “•” is the unit of

any collection data-type in K and it reads “nothing”. The spawned thread is given

its parent thread’s environment, but nothing else is said about the other cells within

the spawned thread. However, note that the spawned thread cell is torn. That tells

K to fill in the missing parts with the default cells and with their default contents, as

defined in the configuration. This is another reason why the user is asked to provide

default cell contents when defining the configuration (the other reason is to initialize

the configuration).

The next rule gives the semantics of rendezvous synchronization, stating that two

threads whose next statement is a same-value rendezvous synchronization request

13
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can discard their rendezvous statements and continue their execution:

rule

rendezvous V ;

•K

k

rendezvous V ;

•K

k

[rendezvous]

How does K know that the two k cells above are meant to appear in two different

threads and not in the same thread? Again, the defined configuration in Figure 1 tells

us how to disambiguate this rule: the thread cell is declared to have its multiplicity

“*”, which means that at any given moment during the execution of the semantics we

may have zero, one or more thread cells within the threads cell. No other cells have

multiplicity “*”, so the only way for the rule above to match the configuration is

for the two k cells to appear each inside a thread cell. K’s configuration abstraction

mechanism takes all these into account [43]. Moreover, as the semantics of K is given

through rewriting, the rendezvous rule needs to match two distinct cells, requiring

at that at least two threads have reached a rendez-vous point before applying.

2.5 The Semantics of K

The semantics of K is given in terms of transition systems. Any K definition can be

regarded as a generator of transition systems, one for each program in the defined

language. As expected, the states of these transition systems are given by program

configurations and the transitions are given by instances of computational rules.

The structural rules do not yield transitions, their role is to structurally rearrange

the configuration so that computational rules match and apply. What is less obvious

is that K allows (but does not enforce) more rule instances to apply concurrently on

a given configuration as part of the same transition, even if they overlap; the only

restriction is that a rule instance is not allowed to rewrite a subterm that another

concurrent rule instance needs to access. This is reminiscent of how transactions

work: concurrent reads are allowed, but no read/write or write/write conflicts.

For the time being, we leave K’s configuration abstraction without a semantics.

Instead, we prefer to think of it as how we are currently implementing it in our K
tool, namely as syntactic sugar which is desugared statically. We do this for several

reasons: first, configuration abstraction has no effect on the resulting transition

systems, its role being to simply adapt the rules to fit the configuration as intended;

second, it buys us and others time to better understand, evaluate and converge on

what configuration abstraction should mean in its full generality; and finally and

perhaps relatedly, configuration abstraction as it is now seems hard to formalize

any other way than algorithmically. Thus, a rigorous formalization of configuration

abstraction would currently give us little or no benefits, so it is not worth the effort.

K rules describe how terms can be transformed by altering some of their parts.

K shares the idea of match-and-replace with standard term rewriting, but each K
rule also specifies which part of the pattern is read-only. Let us next formally define

the notion of a K rule and the desired concurrent K semantics.

14



Ros,u and S, erbanut, a

Given a signature Σ and a (potentially infinite) set of variables X, let TΣ(X)

denote the universe of Σ-terms with variables from X. Given W = {�1, . . . ,�n},
named context variables, or holes, a W-context over Σ(X) (assume that X ∩W = ∅)
is a term k ∈ TΣ(X ∪W) in which each variable in W occurs once. The instantiation

of a W-context k with an n-tuple t = (t1, . . . , tn), written k[t] or k[t1, . . . , tn], is

the term k[t1/�1, . . . , tn/�n]. One can regard t as a substitution t :W → TΣ(X),

defined by t(�i) = ti, in which case k[t] = t(k). In what follows we fix a signature Σ

and a set of variables X.

Definition 2.1 [43,54,52] A K rule ρ : k[ L

R

] is a triple where: k is a W-context

over Σ(X), called the rule pattern, where W are the holes of k; k can be thought of

as the “read-only” part or the “local” context of ρ; and L,R :W → TΣ(X) associate

to each hole in W the original term and its replacement term, resp.; L, R can be

thought of as the “read/write” part of ρ. When W = {�1, · · · ,�n} and L(�i) = li
and R(�i) = ri, we may write

k[ l1

r1

, . . . , ln

rn

]

instead of k[ L

R

], since the holes are implicit and need not be mentioned.

The variables in W are only used to identify the positions in k where rewriting

takes place; in practice we typically use the compact notation above, that is, underline

the to-be-rewritten subterms in place and write their replacement underneath.

Σ includes all the needed syntactic categories, that is, the language syntax, the

configuration syntax, auxiliary operations, etc.

We can associate to any K rule ρ : k[ L

R

] a regular rewrite rule K2R(ρ) :

L(k)→ R(k). This translation is used, for example, in our current implementation of

K (by translation to Maude; see Section 2.6). Although the potential for concurrency

with sharing of resources is reduced by this translation (as concurrent applications of

rules in rewriting logic are only allowed if the rules do not overlap), it is acceptable

in many cases. Conversely, given a conventional rewrite rule τ : left → right , we

can generate an obvious (zero-sharing) K rule R2K (τ) : �[ left

right

]. For this reason,

we sometimes take the liberty to write zero-sharing K rules using the conventional

rewrite rule notation. If τ is a rewriting logic rule, then t
τ−→ t′ denotes the binary

rewrite relation generated by τ , i.e: t rewrites to t′ via an instance of τ . As usual,
τ∗−→ is the reflexive and transitive closure of

τ−→.

The concurrent K rewriting relation is more complex to define than the con-

ventional concurrent term rewriting relation. That is because we want it to be as

concurrent as possible, so that concurrent languages or calculi defined in K do not

just have the standard concurrent semantics of rewriting logic, which forbids overlaps
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between concurrent redexes, but instead have greater concurrency by allowing over-

laps between redexes, provided the overlaps only happen in their read-only portions.

This means that two or more concurrent rewrites can simultaneously share some

common portion of the state.

The key to achieving the above is to take into account the specifics of the K
rules, namely the fact that they are explicit about which parts are shared and

which parts are rewritten. Non-conflicting K rules are expected to possibly be

applied concurrently, like transactions, where by “non-conflicting” rules we mean

that neither of them rewrites portions of the term that are accessed (shared or

written) by the other. We currently define K’s concurrent rewrite relation in terms

of graph rewriting (the double pushout approach), making crucial use of the notion

of parallel independence [13]. We refer the interested reader to [54,52] for details.

What is relevant here is that a K concurrent rewrite relation that captures the

desired rules-as-transactions informal semantics above can be defined; we denote it
≡� instead of →.

If cfg is a SIMPLE configuration term (following the signature in Figure 1)

holding two threads whose computations start with variables x and y, respectively,

which therefore need to be looked up, then the two instances of the lookup rule (see

Section 2.4) can be applied concurrently and the two occurrences of x and y get

rewritten to their store values in one step; that is, if cfg’ is the new configuration

then cfg ≡� cfg’. Note that this is not possible when the K rule for lookup is

regarded as a conventional rewrite rule (like in the K2R map): the two rule instances

overlap on the store cell, so they need to interleave yielding either cfg⇒ cfgx ⇒ cfg’

or cfg ⇒ cfgy ⇒ cfg’, where cfgx is the configuration replacing only the x in the

first thread with its value (and similarly for cfgy). Moreover, cfg ≡� cfg’ (in one

concurrent step) also when x and y are the same (shared) variable, as the two rule

instances read but do not change the store location corresponding to x (a read/read

access). On the other hand, if one thread reads and another writes (see the rule for

variable assignment in Section 3) the same variable, then the two accesses are not

allowed to proceed concurrently, they need to interleave. If the read and the written

variables are distinct, then the two accesses can proceed concurrently.

K’s rewriting has the following properties, where t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′ means that t can

be rewritten in one concurrent step to t′ using rules ρ1, . . . , ρn:

Theorem 2.2 [54,52] Let ρ, ρ1, . . . , ρn be not necessarily distinct K rules.

Completeness: If t
K2R(ρ)−−−−→ t′ then t

ρ
≡� t′.

Soundness: If t
ρ
≡� t′ then t

K2R(ρ)∗−−−−−→ t′.

Serializability: If t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′, then there exists a sequence of terms t0, · · · , tn,

such that t0 = t, tn = t′, and ti−1

ρ∗i
≡� ti.

Completeness says that any steps made using rewriting logic can also be made

using K rewriting. Soundness states that any non-concurrent step made using K
rewriting corresponds to zero, one or more rewriting logic steps; this is due to the

fact that the term to be rewritten is represented as a graph in K, and zero, one

or more term-rewrite steps are needed to mimic a graph rewrite step (zero when
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the rewritten part is unreachable). Serializability says that the concurrent rewrite

relation ≡� does not reach any other terms than the rewrite relation →: it just

reaches them in a possibly smaller number of steps.

From a practical viewpoint, the theorem above tells us that it may be acceptable,

in many situations, to translate K rules into conventional rewrite rules using the K2R

map. The only thing lost in translation is the amount of true concurrency available

in the original K definition. Note, however, that most semantic frameworks for

programming languages follow an interleaving philosophy by their nature, so “losing

some true concurrency”cannot even be formulated in those frameworks. Nevertheless,

we believe that with the advance of massively parallel architectures, maximizing the

true concurrency capability of a semantic framework will be increasingly desirable,

so K makes no compromises w.r.t. its theoretical support for concurrency. That

being said, the reader who thinks that K’s concurrent rewrite relation ≡� is hard to

realize, or who does not want to get into the technicalities of graph rewriting, or

who simply does not believe in true concurrency, is free to replace it in the rest of

this section with the (still truly concurrent but not structure-sharing) rewriting logic

relation → associated to it via K2R. The remainder of this section is parametric in

the relation ≡�.

Definition 2.3 A K (rewrite) system (or K theory or K definition) is a triple K =

(Σ,S, C), where Σ is its signature and S and C are sets of structural and computational

K rules, respectively. Let ≡�S and ≡�C be the corresponding concurrent rewrite

relations, and let ≡�K be the relation ≡�∗S ◦ ≡�C ◦ ≡�
∗
S .

Note that ≡�S is not necessarily symmetric. Moreover, note that t ≡�∗S u and

t ≡�K t′ and u ≡�K u′ do not necessarily imply t′ ≡�∗S u′ (i.e., we do not enforce

coherence [57]). To see that this makes practical sense, consider a hypothetical

programming language which already provides a statement halt for abrupt termi-

nation whose semantics is given with a computational rule (dissolving the entire

contents of the k cell) and suppose that we want to add a non-deterministic halting

statement, say ndhalt. One way to do it is to add a structural rule rewriting ndhalt

to halt and a computational rule dissolving the ndhalt statement (as if it was the

empty statement). Then take t to be some configuration cfg[ndhalt;rest], u to

be cfg[halt;rest], t′ to be cfg[rest], and u′ to be cfg[•] (i.e., cfg with an emptied

computation cell). Similarly, t ≡�∗S u and t ≡�K t′ and t′ ≡�∗S u′ do not necessarily

imply u ≡�K u′. For example, take the same t, u and t′ as above, but u′ = t′.

The rewrite relation ≡�K associated to a K rewrite system K = (Σ,S, C) gives

us an obvious transition system on TΣ, which can be regarded as the semantics of

K. Alternatively, one can use the Kripke structure, or the graph representation

of the transition system, as the semantics. If K is a language definition whose

initial configuration pattern has the form cfg[$PGM], e.g., the one in Figure 1,

then this transition system gives us for any program pgm a transition subsystem

formed with all the configurations reachable from cfg[pgm] with the relation ≡�K.

This transition system, or its Kripke or graph representation, can be regarded

as the semantics of pgm. Figure 2 illustrates the K semantics of pgm. Each box

represents a reachable configuration term. The thin arrows inside the box represent

applications of structural rules, or structural rearrangements of the configuration,
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State-space exploration (search and model-checking) 

Efficient and interactive execution (interpreters) 

…
 

cfg[pgm] 

What does the K Tool Offer? 

t1 t2 
t3 

t4 
… 

tn 

… 

… 

Fig. 2. The state space associated to a program.

and the thick arrows between boxes represent actual computational steps. Here

we are not concerned with minimizing transition systems (by collapsing equivalent

configurations).

To conclude, the semantics of K is given in terms of transition systems, based on

a concurrent rewrite relation that takes the specific nature (e.g., explicit sharing) of

the K rules into account. If one forgets the specific nature of the K rules then one still

gets a valid semantics, amenable for execution on existing rewrite engines like Maude,

but one which looses some of the true concurrency of the original K definition. K
tools can implement different techniques and algorithms that work with K definitions.

For example, thanks to excellent support from the underlying Maude system, our

current implementation provides support for execution (highlighted as a bold path

in Figure 2), for state-space search, and for explicit-state LTL model-checking.

2.6 The K Tool

This section only describes the current implementation choices made by the K tool

to provide a meaningful, yet not prohibitively expensive (in terms of time and

resources) implementation of the theoretical ideas explained above. We refer the

reader interested in details on using the K tool to [53].

Currently, the K tool translates K specifications into rewrite theories to be

executed, explored, and analyzed using the Maude [12] rewrite engine. Therefore,

let us first briefly give some context about the differences between K and rewriting

logic, and the implementation of rewriting logic in Maude, and then present the

challenges posed to our implementation by these differences.

Rewriting Logic and Maude

Similarly to K, rewriting logic [32] also exhibits two categories of sentences. Equations

are akin to K structural rules: they specify deterministic behavior, defining classes

of states on which transitions occur. However, unlike structural rules, equations are

thought of as always applying both ways, and thus defining an equivalence class of

states. Rewrite rules, similar to K computational rules, specify transitions between

classes of states.
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To guarantee that the semantics obtained through rewriting corresponds to the

initial model semantics for a rewrite theory, Maude requires rewrite theories to satisfy

certain properties. First it assumes that the equations, when oriented from left to

right are (ground) confluent and terminating; this ensures that for each equivalence

class of states one can obtain a unique canonical form, thus enabling one to easily

check equality between states by rewriting to normal form. Moreover, rewrite rules

are assumed coherent [57] with respect to the equations, this allowing Maude to

always reduce a state to the equational normal form before applying a rule without

losing any possible behaviors.

Restricting concurrency

One theoretically significant implementation choice, more or less dictated by our

implementation target, was to restrict the potential for concurrency by using the

straight-forward K2R translation of K rules into rewrite rules described in Section 2.5,

which disregards the potential for sharing provided by the K rules. We see this as a

reasonable restriction, with the immediate benefit of being able to use the state-of-art

state space exploration and model checking capabilities offered by Maude without

additional development effort.

Restricting heating/cooling

As the heating and cooling rules used for defining evaluation strategies in Section 2.4

are structural rules, and, moreover, bidirectional, the above comparison with rewriting

logic would suggest that they should be represented directly as equations. However,

this would be problematic in the context of the Maude implementation because,

while Maude (assuming confluence) simply orients equations from left to right, both

heating (left-to-right) and cooling (right-to-left) rules need to be applied during an

execution.

To address that, the default behavior of the K tool is to generate two equations,

one for heating and the other for cooling; however, to ensure termination the type of

the computations which are allowed to be heated/cooled by these rules need to be

restricted. To achieve that, the K tool requires the user to define values, and only

applies heating rules to schedule for evaluation computations which are not already

values. Also, by default, it only applies cooling rules when the computation to be

cooled is a value. This behavior is very useful when interpreting programs, as having

a redex always at the top of the computation is usually enough; however, it can miss

behaviors in the case that the evaluation order is non-deterministic and expressions

have side-effects. Some ways to address that are presented in the paragraphs below.

Additionally, for efficiency reasons, the K tool only applies heating/cooling rules

at the top of a computation cell. We consider this restriction reasonable, as most of

the redexes must rise to the top of the computation cell to reduce.

Restricting the transition system

Again, from the above comparison with rewriting logic, it would seem natural to

encode computational rules as rewrite rules in Maude, to capture them in the

transition system. Nevertheless, our experience of working with the K tool shows

that in the presence of concurrency, the transition systems are too large to be
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explored and analyzed. Moreover, most of the computational transitions play no

role in testing/verifying important concurrency properties. Therefore, the default

behavior of the K tool is to require the user to annotate the rules which should

generate transitions in the Maude transition system, and represent all other rules

through equations, assuming they are deterministic.

Modeling all behaviors?

With the above restrictions in place, a reasonable question to be asked is whether

the transition system generated by the K tool for a K definition and a term captures

the K transition system associated to that definition and term. In particular, is the

K tool transition system sound and complete with respect to checking properties of

the K transition system?

We can answer this positively for the soundness half of this question with respect

to reachability properties. As most of the structural rules are encoded as equations

without being changed, and as the K tool heating/cooling rules are only restricted

versions of the corresponding rules in the definition, the transition system generated

by the K tool is a collapsed version of the K transition system associated to the

definition. In this transition system multiple states may be collapsed through what

in rewriting logic is called equational abstractions [33], obtained by encoding some

of the computational rules as equations. Moreover, some additional transitions

observable in the K transition system might be inhibited here by the rule not being

applicable on the particular normal form obtained by orienting the equations.

Capturing all the transitions of the K transition system using Maude would be

possible (modulo interleaving some K concurrent transitions) by encoding all rules

(both structural and computational) as rewrite rules. However, although providing

completeness, this approach would have two drawbacks. First, to obtain the intended

transition system from the one generated by Maude, all transitions obtained by

applying structural rules will have to be regarded as internal transitions, hence

the states they relate would have to be collapsed into a single state. Second, as

mentioned above, even without the structural rules, the transition system quickly

grows unfeasible to explore; with the addition of the structural rules (some of which

are inverses of each other), this state space would become too large even for small

and deterministic programs.

Support for non-deterministic evaluation order

When defining languages with non-deterministic evaluation orders for certain opera-

tors, encoding heating/cooling rules as equations leads to non-confluent specifications

(as the rules for heating different arguments compete). This leads to certain tran-

sitions being potentially missed, which becomes even more problematic when side

effects are permitted in expressions, as this leads to observable behaviors being

missed. For example, assuming that “‖” is an operation with non-deterministic order

of evaluation, and print is a function for printing a value to the standard output,

the observable behavior of the program print "a" ‖ print "b" would be to display

either “ab” or “ba”. However, with the mechanisms described above, the K tool

could only capture one of these behaviors in the transition system. To alleviate that,

the K tool allows certain heating rules to “superheat” the computation, forcing all
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superheat rules to be considered when building the transition system.

However, this only partially solves the problem. Consider the program print "a" ‖
(print "b" ‖ print "c"), whose observable behavior is to display any permutation

of “a”, “b”, and “c”. Assuming that the heating rules for “‖” are superheat rules, the

K tool would only generate as observable behaviors the permutations “abc”, “acb”,

“bca”, and “cba”, missing “bac” and “cab”. The reason is that the restriction of the

cooling rules to only apply when the computation to be cooled is already a value,

meaning that once the evaluation of the (print "b" ‖ print "c") subexpression

has started, it must be evaluated until completion. To alleviate that, the K tool

allows the user to annotate certain rules (typically those exhibiting side effects) as

“supercool”, which will force cooling rules to apply without the restriction that the

computation is a value, and thus (in combination with the superheat rules) to allow

the choice of another redex.

Typesetting the definition in LATEX

The rules and configurations displayed throughout this paper were generated from

LATEX code produced by the K tool from their ASCII representations. Following the

literate programming paradigm, the K tool allows users to annotate definitions with

comments. The definitions in Sections 3 and 4 are only slight adaptations of the

LATEX code obtained through the K tool.

The K LATEX style also provides a mathematical mode, which may be preferred

in formal writing. For example, here is how the rule for spawning a thread presented

above is typeset using the mathematical notation:

rule〈
···

〈
spawn S

T
···

〉
k

〈
Env

〉
env ···

〉
thread •Bag〈

···
〈

S
〉

k

〈
Env

〉
env

〈
T
〉

id ···
〉

thread

when fresh (T )

Note that the contents of a cell are wrapped using angle brackets and that the

label of the cell is added as a subscript to the right side angle bracket. Moreover,

“torn” cells, i.e., the fact that some contents of the cell were omitted, is represented

here using the ellipses symbol.

3 K Formal Semantics of Untyped SIMPLE

This section presents the full semantic definition of the untyped SIMPLE language

(introduced in Section 2.1) in K.

3.1 Syntax

We start by defining the SIMPLE syntax. The SIMPLE language constructs have

the expected syntax and evaluation strategies. Recall that in K we annotate the

syntax with appropriate strictness attributes, thus giving each language construct

the desired evaluation strategy.
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Identifiers

Identifiers are built in and come under the syntactic category Id. The special

identifier for the function main belongs to all programs, and plays a special role

in the semantics, so we declare it explicitly for convenience. This would not be

necessary if the identifiers were all included automatically in semantic definitions,

but that is not possible because of parsing reasons (e.g., K variables used to match

concrete identifiers would then be ambiguously parsed as identifiers). They are

only included in the parser generated to parse programs. Consequently, we have to

explicitly declare all the concrete identifiers that play a special role in the semantics,

like main below.

syntax Id ::= main

Declarations

There are two types of declarations: for variables (including arrays) and for functions.

We are going to allow declarations of the form “var x=10, a[10,10], y=23;”, so

we allow the var keyword to take a list of expressions. The non-terminals used in

the two productions below are defined shortly.

syntax Decl ::= var Exps ;

| function Id(Ids)Block

Expressions

The expression constructs below are standard. Increment (++) takes an expression

rather than a variable because it can also increment an array element. Recall that the

syntax we define in K is what we call “the syntax of the semantics”: while powerful

enough to define non-trivial syntax (thanks to the underlying SDF technology that

we use), we typically refrain from defining precise syntaxes, that is, ones which

accept precisely the well-formed programs (that would not be possible anyway in

general). That job is deferred to type systems, which can also be defined in K.

In other words, we are not making any effort to guarantee syntactically that only

variables or array elements are passed to the increment construct, we allow any

expression. Nevertheless, we will only give semantics to those, so expressions of the

form ++5, which parse (but which will be rejected by our type system in the typed

version of SIMPLE later), will get stuck when executed.

Arrays can be multidimensional and can hold other arrays, so their lookup

operation takes a list of expressions as an argument and applies to an expression

(which can in particular be another array lookup), respectively. The construct

sizeOf gives the size of an array defined as the number of elements of its first

dimension. Note that almost all constructs are strict in all their arguments. The

only constructs which are not fully strict are the increment (since its first argument

gets updated, so it cannot be evaluated), the input read which takes no arguments so

strictness is irrelevant for it, the binary Boolean constructs which are short-circuited

(and thus are strict only in the first argument), the thread spawning construct which

creates a new thread executing the argument block and returns its unique identifier

to the creating thread (so it cannot just evaluate its argument in place), and the
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assignment which is only strict in its second argument (for the same reason as the

increment). The bracket specifies that the corresponding syntactic production is

only used for grouping purposes (like a bracket) and should not be included in the

abstract syntax tree.

syntax Exp ::= Int | Bool | String | Id

| (Exp) [bracket]

| ++ Exp

| Exp[Exps] [strict]

| Exp(Exps) [strict]

| - Exp [strict]

| sizeOf (Exp) [strict]

| read ()

| Exp * Exp [strict]

| Exp / Exp [strict] | Exp % Exp [strict]

| Exp + Exp [strict] | Exp - Exp [strict]

| Exp < Exp [strict] | Exp <= Exp [strict]

| Exp > Exp [strict] | Exp >= Exp [strict]

| Exp == Exp [strict] | Exp != Exp [strict]

| ! Exp [strict]

| Exp && Exp [strict(1)] | Exp || Exp [strict(1)]

| spawn Block

| Exp = Exp [strict(2)]

We also need comma-separated lists of identifiers and of expressions. Moreover,

we want them to be strict, that is, to evaluate to lists of results whenever requested

(e.g., when they appear as strict arguments of the constructs above).

syntax Ids ::= List{Id,“, ”}

syntax Exps ::= List{Exp,“, ”} [strict]

Statements

Most of the statement constructs are standard for imperative languages. We syntac-

tically distinguish between empty and non-empty blocks, because we chose Stmts

not to be a list of Stmt. Variables can be declared anywhere inside a block, their

scope ending with the block. Expressions are allowed to be used for their side

effects only (followed by a semicolon “;”). Functions are allowed to abruptly return.

The exceptions are parametric, i.e., one can throw a value which is bound to the

variable declared by catch. Threads can be dynamically created and terminated,

and can synchronize with join, acquire, release and rendezvous. Note that the

strictness attributes obey the intended evaluation strategy of the various constructs.

In particular, the if-then-else construct is strict only in its first argument (the if-then

construct will be desugared into if-then-else), while the loop constructs are not strict

in any arguments. The avoid attribute of if-then-else informs the parser to avoid

using this production when parsing ambiguities involving it arise, which in this case
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means whenever the simpler if-then can be used. The print statement construct is

variadic, that is, it takes an arbitrary number of arguments.

syntax Block ::= {} | {Stmts}

syntax Stmt ::= Decl | Block

| Exp ; [strict]

| if (Exp)Block else Block [avoid, strict(1)]

| if (Exp)Block

| while (Exp)Block

| for (Stmt Exp ; Exp)Block

| print (Exps) ; [strict]

| return Exp ; [strict] | return;
| try Block catch (Id)Block | throw Exp ; [strict]

| join Exp ; [strict]

| acquire Exp ; [strict] | release Exp ; [strict]

| rendezvous Exp ; [strict]

syntax Stmts ::= Stmt | Stmts Stmts

3.2 Desugared Syntax

Like in many other languages, some of SIMPLE’s constructs can be desugared into

a smaller set of basic constructs. We only want to give semantics to core constructs,

so we first eliminate the derived ones before we start the semantics. All desugaring

macros below are straightforward.

Note that all the rules in this subsection are tagged with the macro attribute.

That signals that they are to be regarded as AST manipulation rules preprocessing

the program before being executed using the other rules provided by the definition.

rule

if (E )S

if (E )S else {}
[macro]

rule

for (Start Cond ; Step){S}
{Start while (Cond){S Step ;}}

[macro]

rule

var E1,E2,Es ;

var E1 ; var E2,Es ;

[macro]

rule

var X = E ;

var X ; X = E ;

[macro]

For the semantics, we can therefore assume from now on that each conditional has

both branches, that there are only while loops, and that each variable is declared

alone and without any initialization as part of the declaration. Our semantics for

desugaring initialized declarations “var X = E ;” is inspired from C, where any

occurrence of X in E refers to the X in the same declaration and not to an X in

an outer scope shadowed by the current declaration. Other dynamic semantics are
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also possible, as well as static semantics that reject uses of variables in their own

declarations.

3.3 Basic Semantic Infrastructure

Before one starts adding semantic rules to a K definition, one needs to define the

basic semantic infrastructure consisting of definitions for configuration and values.

As the configuration of SIMPLE, depicted in Figure 1, was thoroughly explained in

Section 2.3, we only discuss values in this section.

Values

The values are needed to know when to stop applying the heating rules and when to

start applying the cooling rules corresponding to strictness or context declarations.

We here define the values that the various fragments of programs evaluate to.

First, integers and Booleans are values. As discussed, arrays evaluate to special

array reference values holding (1) a location from where the array’s elements are

contiguously allocated in the store, and (2) the size of the array. Functions evaluate

to function values as λ-abstractions (we do not need to evaluate functions to closures

because each function is executed in the fixed global environment and function

definitions cannot be nested). The last line indicates that values are K results.

syntax Val ::= Int | Bool | String

| array (Int, Int)

| lambda (Ids,Stmt)

syntax Vals ::= List{Val,“, ”}

syntax Exp ::= Val

syntax KResult ::= Val

The inclusion of values in expressions follows the methodology of syntactic

definitions (like, e.g., in SOS): extend the syntax of the language to encompass

all values and additional constructs needed to give semantics. In addition to that,

it allows us to write the semantic rules using the original syntax of the language,

and to parse them with the same (now extended with additional values) parser. If

writing the semantics directly on the K AST, using the associated labels instead of

the syntactic constructs, one would not need to include values in expressions.

3.4 Declarations and Initialization

We start with the semantics of declarations (for variables, arrays and functions).

Variable Declaration

The SIMPLE syntax was desugared above so that each variable is declared alone and

its initialization is done as a separate statement. The semantic rule below matches

resulting variable declarations of the form “varX;” on top of the k cell (indeed,

note that the k cell is complete, or round, to the left, and is torn, or ruptured, to
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the right), allocates a fresh location L in the store which is initialized with a special

value ⊥ (indeed, the unit “•”, or nothing, is matched anywhere in the map—note the

tears at both sides—and replaced with the mapping L 7→ ⊥), and binds X to L in

the local environment shadowing previous declarations of X, if any. This possible

shadowing of X requires us to therefore update the entire environment map, which

is expensive and can significantly slow down the execution of larger programs. On

the other hand, since we know that L is not already bound in the store, we simply

add the binding L 7→ ⊥ to the store, thus avoiding a potentially complete traversal

of the store map in order to update it. We prefer the approach used for updating

the store whenever possible, because, in addition to being faster, it offers more true

concurrency than the latter; indeed, according to the concurrent semantics of K,

the store is not frozen while L 7→ ⊥ is added to it, while the environment is frozen

during the update operation Env[L/X].

The variable declaration command is also removed from the top of the compu-

tation cell and the fresh location counter is incremented. All the above happen in

one transactional step, with the rule below. Note also how configuration abstraction

allows us to only mention the needed cells; indeed, the k and env cells are actually

located within a thread cell within the threads cell, but one needs not mention these.

The configuration context of the rule is automatically transformed to match the

declared configuration structure.

syntax K ::= ⊥
rule

var X ;

•K

k

Env

Env [L / X ]

env

•Map

L 7→ ⊥

store

L

L +Int 1

nextLoc

Array Declaration

The K semantics of the uni-dimensional array declaration is similar to the above

declaration of ordinary variables. First, we use a context declaration, which requests

the evaluation of the array dimension. Once evaluated, say to a natural number N ,

N +Int 1 locations are allocated in the store for an array of size N , the additional

location (chosen to be the first one) holding the array reference value. The array

reference value array(L,N) states that the array has size N and its elements

are located contiguously in the store starting with location L. The operation

L . . . L′ 7→ V , defined at the end of this definition in the auxiliary operation section,

initializes each location in the list L . . . L′ to V . Note that, since the array dimensions

can be arbitrary expressions, we can dynamically allocate memory in SIMPLE by

means of array declarations.

context

var X [2] ;
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rule

var X [N ] ;

•K

k

Env

Env [L / X ]

env

L

L +Int 1 +Int N

nextLoc

•Map

L 7→array (L +Int 1,N ) L +Int 1 . . .L +Int N 7→ ⊥

store


when N ≥Int 0

SIMPLE allows multi-dimensional arrays. For semantic simplicity, we desugar

them all into uni-dimensional arrays by code transformation. This way, we only need

to give semantics to uni-dimensional arrays. First, note that the context rule above

actually evaluates all the array dimensions (that’s why we defined the expression

lists strict!): Upon evaluating the array dimensions, the code generation rule below

desugars multi-dimensional array declarations to uni-dimensional declarations. To

this aim, we introduce two special unique variable identifiers, $1 and $2. The first,

$1, is assigned the array reference value of the current array, so that we can redeclare

the array inside the loop body with fewer dimensions. The second variable, $2,

iterates through and initializes each element of the current dimension:

syntax Id ::= $1 | $2

rule

var X [N1,N2,Vs] ;

var X [N1 ] ;

{

var $1 = X ;

for (var $2 = 0 ; $2 <= N1 - 1 ; ++ $2){

var X [N2,Vs] ; $1[$2] = X ;

}

}
[structural]

Ideally, one would like to perform syntactic desugarings like the one above before

the actual semantics. Unfortunately, that is not possible in this case because the

dimension expressions of the multi-dimensional array need to be evaluated first.

Indeed, the desugaring rule above does not work if the dimensions of the declared

array are arbitrary expressions, because they can have side effects (e.g., a[++x,++x])

and those side effects would be propagated each time the expression is evaluated in the
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desugaring code (note that both the loop condition and the nested multi-dimensional

declaration would need to evaluate the expressions given as array dimensions).

Function declaration

Functions are evaluated to λ-abstractions and stored like any other values in the store.

A binding is added into the environment for the function name to the location holding

its body. Similarly to the C language, SIMPLE only allows function declarations at

the top level of the program. More precisely, the subsequent semantics of SIMPLE

only works well when one respects this requirement. Indeed, the simplistic context-

free parser generated by the grammar above is more generous than we may want, in

that it allows function declarations anywhere any declaration is allowed, including

inside arbitrary blocks. However, as the rule below shows, we are not storing the

declaration environment with the λ-abstraction value as closures do. Instead, as seen

shortly, we switch to the global environment whenever functions are invoked, which

is consistent with our requirement that functions should only be declared at the top.

Thus, if one declares local functions, then one may see unexpected behaviors (e.g.,

when one shadows a global variable before declaring a local function). The type

checker of SIMPLE, also defined in K (see Section 4), discards programs which do

not respect this requirement.

rule

function F (Xs)S

•K

k

Env

Env [L / F ]

env

•Map

L 7→lambda (Xs,S )

store

L

L +Int 1

nextLoc


When we are done with the first pass (pre-processing), the computation cell k

contains only the token execute (the computation item execute was placed right

after the program in the k cell of the initial configuration in Figure 1) and the

cell genv is empty. In this case, we have to call main() and to initialize the global

environment by transferring the contents of the local environment into it. We prefer

to do it this way, as opposed to processing all the top level declarations directly

within the global environment, because we want to avoid duplication of semantics:

the syntax of the global declarations is identical to that of their corresponding local

declarations, so the semantics of the latter suffices provided that we copy the local

environment into the global one once we are done with the pre-processing. We want

this separate pre-processing step precisely because we want to create the global

environment. All (top-level) functions end up having their names bound in the global

environment and, as seen below, they are executed in that same global environment;

all these mean, in particular, that the functions “see” each other, allowing for mutual

recursion, etc.
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syntax K ::= execute

rule

execute

main(•Exps) ;

k

Env

env

•Map

Env

genv

[structural]

3.5 Expressions

We next define the K semantics of all the expression constructs.

Variable lookup

When a variable X is the first computational task, and X is bound to some location

L in the environment, and L is mapped to some value V in the store, then we rewrite

X to V :

rule

X

V

k

X 7→ L

env

L 7→ V

store

[lookup]

Note that the rule above excludes reading ⊥, because ⊥ is not a value and V is

checked at runtime to be a value.

Variable/Array increment

This is tricky, because we want to allow both ++x and ++a[5]. Therefore, we need to

extract the lvalue of the expression to increment. To do that we use the special kind

of context specified in Section 2.4, stating that the expression to increment should

be wrapped by the auxiliary lvalue construct when evaluated. The semantics of

expressions wrapped by lvalue is defined at the end of this definition (Section 3.7).

For now, all we need to know is that, under the lvalue wrapper, an expression

and evaluates to a value representing its location. Location values, also defined in

Section 3.7, are integers wrapped with the construct loc, to distinguish them from

ordinary integers.

context

++ 2

lvalue (2)

rule

++ loc (L)

I +Int 1

k

L 7→ I

I +Int 1

store

[increment]
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Arithmetic operators

There is nothing special about the following rules. They rewrite the language

constructs to their library counterparts when their arguments become values of

expected sorts:

rule

I1 + I2

I1 +Int I2

rule

Str1 + Str2

Str1 +String Str2

rule

I1 - I2

I1 −Int I2

rule

I1 * I2

I1 ∗Int I2

rule

I1 / I2

I1 ÷Int I2

when I2 6=I nt 0

rule

I1 % I2

I1 %Int I2

when I2 6=I nt 0

rule

- I

0 −Int I

rule

I1 < I2

I1 <Int I2

rule

I1 <= I2

I1 ≤Int I2

rule

I1 > I2

I1 >Int I2

rule

I1 >= I2

I1 ≥Int I2

The equality and inequality constructs reduce to syntactic comparison of the two

argument values (which is what the equality on K terms does).

rule

V1 == V2

V1 =K V2

rule

V1 != V2

V1 6=K V2

The logical negation is clear, but the logical conjunction and disjunction are

short-circuited:

rule

! T

¬Bool T

rule

true && E

E

rule

false && —

false

rule

true || —

true

rule

false || E

E

Array lookup

Untyped SIMPLE does not check array bounds. The first rule below desugars the

multi-dimensional array access to uni-dimensional array access; recall that the array

access operation was declared strict, so all sub-expressions involved are already values

at this stage. The second rule rewrites the array access to a lookup operation at a

precise location; we prefer to do it this way to avoid locking the store. The semantics

of the auxiliary lookup operation is straightforward, and is defined towards the end
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of the definition.

rule

V [N1,N2,Vs]

V [N1 ][N2,Vs]

[structural, anywhere]

rule

array (L,—)[N ]

lookup (L +Int N )

[structural, anywhere]

The anywhere attribute attached to the two rules above instructs the K tool that

these rules should be applied in any context, not only at the top of the computation

cell as all other rules; this is needed for giving semantics to lvalues.

Size of an array

The size of the array is stored in the array reference value, and the sizeOf construct

was declared strict, so:

rule

sizeOf (array (—,N ))

N

Function call

Function application was strict in both its arguments, so we can assume that both

the function and its arguments are evaluated to values (the former expected to be

a λ-abstraction). The first rule below matches a well-formed function application

on top of the computation and performs the following steps atomically: it switches

to the function body followed by “return;” (for the case in which the function

does not use an explicit return statement); it pushes the remaining computation,

the current environment, and the current control data onto the function stack (the

remaining computation can thus also be discarded from the computation cell, because

an unavoidable subsequent return statement—see above—will always recover it

from the stack); it switches the current environment (which is being pushed on the

function stack) to the global environment, which is where the free variables in the

function body should be looked up; it binds the formal parameters to fresh locations

in the new environment, and stores the actual arguments in those locations in the

store (this latter step is easily done by reducing the problem to variable declarations,

whose semantics we have already defined; the auxiliary operation mkDecls is defined

at the end of the definition).

The second rule pops the computation, the environment and the control data

from the function stack when a return statement is encountered as the next compu-

tational task, passing the returned value to the popped computation (the popped

computation was the context in which the returning function was called). Note

that the pushing/popping of the control data is crucial. Without it, one may have

a function that contains an exception block with a return statement inside, which

would put the xstack cell in an inconsistent state (since the exception block modifies

it, but that modification should be irrelevant once the function returns). We add an

artificial nothing value to the language, which is returned by the nullary return;

statements.
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syntax ListItem ::= (Map,K,Bag)

rule

lambda (Xs,S )(Vs) y K

mkDecls (Xs,Vs) S return;

k

•List

(Env ,K ,C )

fstack

C

control

Env

GEnv

env

GEnv

genv


rule

return V ;y —

V y K

k

(Env ,K ,C )

•List

fstack

—

C

control

—

Env

env

syntax Val ::= nothing

rule

return;

return nothing ;

[macro]

Like for division-by-zero, it is left unspecified what happens when the nothing

value is used in domain calculations. For example, from the perspective of the

language semantics, 7 +Int nothing can evaluate to anything, or may not evaluate

at all (be undefined). If one wants to make sure that such artificial values are never

misused, then one needs to define a static checker (like the type checker in Section 4)

and reject programs that do. Unlike the undefined symbol ⊥ which had the sort

K instead of Val , we defined nothing to be a value. That is because, as explained,

we do not want the program to get stuck when nothing is returned by a function.

Instead, we want the behavior to be unspecified; in particular, if one is careful to

never use the returned value in domain computation, such as what happens when we

call a function for its side effects (e.g., with a statement “f(x);”), then the program

does not get stuck.

Read

The read() expression construct simply evaluates to the next input value, at the

same time discarding the input value from the in cell.
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rule

read ()

I

k

I

•List

in

[read]

Assignment

In SIMPLE, like in C, assignments are expression constructs and not statement

constructs. To make it a statement all one needs to do is to follow it by a semi-colon

“;” (see the semantics for expression statements below). Like for the increment, we

want to allow assignments not only to variables but also to array elements, e.g.,

e1[e2] = e3 where e1 evaluates to an array reference, e2 to a natural number, and

e3 to any value. Thus, we first compute the lvalue of the left-hand-side expression

that appears in an assignment, and then we do the actual assignment to the resulting

location:

context

2

lvalue (2)

= —

rule

loc (L) = V

V

k

L 7→ —

V

store

[assignment]

3.6 Statements

We next define the K semantics of statements.

Blocks

Empty blocks are simply discarded, as shown in the first rule below. For non-empty

blocks, we schedule the enclosed statement but we have to make sure the environment

is recovered after the enclosed statement executes. Recall that we allow local variable

declarations, whose scope is the block enclosing them. That is the reason for which

we have to recover the environment after the block. This allows us to have a very

simple semantics for variable declarations, as we did above. One can make the two

rules below computational if one wants them to count as computational steps.
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rule

{}
•K

[structural]

rule

{S}
S yenv (Env)

k

Env

env

[structural]

The basic definition of environment recovery is straightforward and given in the

section on auxiliary constructs at the end of the definition.

There are two common alternatives to the above semantics of blocks. One is to

keep track of the variables which are declared in the block and only recover those at

the end of the block. This way one does more work for variable declarations but

conceptually less work for environment recovery; we say “conceptually” because it is

not clear that it is indeed the case that one does less work when AC matching is

involved. The other alternative is to work with a stack of environments instead of a

flat environment, and push the current environment when entering a block and pop

it when exiting it. This way, one does more work when accessing variables (since

one has to search the variable in the environment stack in a top-down manner), but

on the other hand uses smaller environments and the definition gets closer to an

implementation. Based on experience with dozens of language semantics and other

K definitions, we have found that our approach above is the best trade-off between

elegance and efficiency (especially since rewrite engines have built-in techniques to

lazily copy terms, by need, thus not creating unnecessary copies), so it is the one

that we follow in general.

Sequential composition

Sequential composition is desugared into K’s built in sequentialization operation

(recall that, like in C, the semi-colon “;” is not a statement separator in SIMPLE—it

is either a statement terminator or a construct for treating an expression as a

statement). The rule below is structural, so it does not count as a computational

step. One can make it computational if one wants it to count as a step. Note that

K allows one to define the semantics of SIMPLE in such a way that statements

eventually dissolve from the top of the computation when they are completed; this

is in sharp contrast to (artificially) “evaluating” them to a special skip statement

value and then getting rid of that special value, as it is the case in other semantic

approaches (where everything must evaluate to something). This means that once

S1 completes in the rule below, S2 becomes automatically the next computation

item without any additional (explicit or implicit) rules.

rule

S1 S2

S1 y S2

[structural]
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Expression statements

Expression statements are only used for their side effects, so their result value is

simply discarded. Common examples of expression statements are ones of the form

++x;, x=e;, e1[e2]=e3;, etc.

rule

V ;

•K

Conditional

Since the conditional was declared with the strict(1) attribute, we can assume that

its first argument will eventually be evaluated. The rules below cover the only two

possibilities in which the conditional is allowed to proceed (otherwise the rewriting

process gets stuck).

rule

if (true)S else —

S

rule

if (false)— else S

S

While loop

The simplest way to give the semantics of the while loop is by unrolling. Note,

however, that its unrolling is only allowed when the while loop reaches the top of

the computation (to avoid non-termination of unrolling). We prefer the rule below

to be structural, because we don’t want the unrolling of the while loop to count

as a computational step; this is unavoidable in conventional semantics, but it is

possible in K thanks to its distinction between structural and computational rules.

The simple while loop semantics below works because our while loops in SIMPLE

are indeed very basic. If we allowed break/continue of loops then we would need a

completely different semantics, which would also involve the control cell.

rule

while (E )S

if (E ){S while (E )S}
[structural]

Print

The print statement was strict, so all its arguments are now evaluated (print is

variadic). We append each of its evaluated arguments to the output buffer, and

discard the residual print statement with an empty list of arguments.
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rule

print (V ,Es

Es

) ;

k

•List

V

out

[print]

rule

print (•Vals) ;

•K

[structural]

Exceptions

SIMPLE allows parametric exceptions, i.e., one can throw and catch a particular

value. The statement “try S1 catch(X) S2” proceeds with the evaluation of S1.

If S1 evaluates normally, i.e., without any exception thrown, then S2 is discarded

and the execution continues normally. If S1 throws an exception with a statement of

the form “throw E”, then E is first evaluated to some value V (throw was declared

to be strict), then V is bound to X, then S2 is evaluated in the new environment

while the reminder of S1 is discarded, then the environment is recovered and the

execution continues normally with the statement following the “try S1 catch(X)

S2” statement.

Exceptions can be nested and the statements in the “catch” part (S2 in our

case) can throw exceptions to the upper level. One should be careful with how one

handles the control data structures here, so that the abrupt changes of control due

to exception throwing and to function returns interact correctly with each other.

For example, we want to allow function calls inside the statement S1 in a “try

S1 catch(X) S2” block which can throw an exception that is not caught by the

function but instead is propagated to the “try S1 catch(X) S2” block that called

the function. Therefore, we have to make sure that the function stack as well as

other potential control structures are also properly modified when the exception is

thrown to correctly recover the execution context. This can be easily achieved by

pushing/popping the entire current control context onto the exception stack. The

three rules below modularly do precisely the above.

syntax ListItem ::= (Id,Stmt,K,Map,Bag)

syntax K ::= popx
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rule

try S1 catch (X ){S2}
S1 ypopx

y K

k

•List

(X ,S2 ,K ,Env ,C )

xstack

C

control

Env

env


rule

throw V ;y —

{var X = V ; S2}y K

k

(X ,S2 ,K ,Env ,C )

•List

xstack

—

C

control

—

Env

env


rule

popx

•K

k

—:ListItem

•List

xstack

The catch statement S2 needs to be executed in the original environment, but

where the thrown value V is bound to the catch variable X. We here chose to rely

on two previously defined constructs when giving semantics to the catch part of the

statement: (1) the variable declaration with initialization, for binding X to V ; and

(2) the block construct for preventing X from shadowing variables in the original

environment upon the completion of S2.

Threads

SIMPLE’s threads can be created and terminated dynamically, and can synchronize

by acquiring and releasing re-entrant locks and by rendezvous. We discuss the seven

rules giving the semantics of these operations below.

Thread creation

Threads can be created by any other threads using the “spawn S” construct. The

spawn expression construct evaluates to the unique identifier of the newly created

37



Ros,u and S, erbanut, a

thread and, at the same time, a new thread cell is added into the configuration,

initialized with the S statement and sharing the same environment with the parent

thread. Note that the newly created thread cell is torn. That means that the

remaining cells are added and initialized automatically as described in the definition

of SIMPLE’s configuration (Figure 1). This is part of K’s configuration abstraction

mechanism.

rule

spawn S

T

k

Env

env

thread

•Bag

S

k

Env

env

T

id

thread

when fresh (T )

Thread termination

Dually to the above, when a thread terminates its assigned computation (the contents

of its k cell is empty), the thread can be dissolved. However, since no discipline is

imposed on how locks are acquired and released, it can be the case that a terminating

thread still holds locks. Those locks must be released so other threads attempting

to acquire them do not deadlock. We achieve that by removing all the locks held by

the terminating thread in its holds cell from the set of busy locks in the busy cell

(keys H returns the domain of the map H as a set, that is, only the locks themselves

ignoring their multiplicity). As seen below, a lock is added to the busy cell as soon as

it is acquired for the first time by a thread. The unique identifier of the terminated

thread is also collected into the terminated cell, for the join construct.

rule

•K

k

H

holds

T

id

thread

•Bag

Busy

Busy −Set keys H

busy

•Set

T

terminated


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Thread joining

Thread joining is now straightforward: all we need to do is to check whether the

identifier of the thread to be joined is in the terminated cell. If yes, then the join

statement dissolves and the joining thread continues normally; if not, then the joining

thread gets stuck.

rule

join T ;

•K

k

T

terminated

Acquire lock

There are two cases to distinguish when a thread attempts to acquire a lock (in

SIMPLE any value can be used as a lock):

(i) The thread does not currently have the lock, in which case it has to take it

provided that the lock is not already taken by another thread (see the side

condition of the first rule).

(ii) The thread already has the lock, in which case it just increments its counter for

the lock (the locks are re-entrant).

These two cases are captured by the two rules below:

rule

acquire V ;

•K

k

•Map

V 7→ 0

holds

Busy •Set

V

busy

when ¬Bool V in Busy

[acquire]

rule

acquire V ;

•K

k

V 7→ N

N +Int 1

holds

Release lock

Similarly, there are two corresponding cases to distinguish when a thread releases a

lock:

(i) The thread holds the lock more than once, in which case all it needs to do is to

decrement the lock counter.

(ii) The thread holds the lock only once, in which case it needs to remove it from

its holds cell and also from the shared busy cell, so other threads can acquire it
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if they need to.

rule

release V ;

•K

k

V 7→ N

N −Int 1

holds

when N >Int 0

rule

release V ;

•K

k

V 7→ 0

•Map

holds

V

•Set

busy

Rendezvous synchronization

In addition to synchronization through acquire and release of locks, SIMPLE also

provides a construct for rendezvous synchronization. A thread whose next statement

to execute is rendezvous(V ) gets stuck until another thread reaches an identical

statement; when that happens, the two threads drop their rendezvous statements and

continue their executions. If three threads happen to have an identical rendezvous

statement as their next statement, then precisely two of them will synchronize and

the other will remain blocked until another thread reaches a similar rendezvous

statement. The rule below is as simple as it can be. Note, however, that, again, it is

K’s mechanism for configuration abstraction that makes it work as desired: since

the only cell which can multiply containing a k cell inside is the thread cell, the only

way to concretize the rule below to the actual configuration of SIMPLE is to include

each k cell in a thread cell.

rule

rendezvous V ;

•K

k

rendezvous V ;

•K

k

[rendezvous]

3.7 Auxiliary declarations and operations

In this section we define all the auxiliary constructs used in the above semantics.

Making declarations

The mkDecls auxiliary construct turns a list of identifiers and a list of values in a

sequence of corresponding variable declarations.

syntax Decl ::= mkDecls (Ids,Vals) [function]
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rule

mkDecls ((X ,Xs), (V ,Vs))

var X = V ; mkDecls (Xs,Vs)

rule

mkDecls (•Ids , •Vals)

{}

Location lookup

The operation below is straightforward. Note that we tag it with the same lookup

tag as the variable lookup rule defined above. This way we can specify that both

rules should be considered transitions when exploring the state space by mentioning

that the lookup tag defines transitions.

syntax K ::= lookup (Int)

rule

lookup (L)

V

k

L 7→ V

store

[lookup]

Environment recovery

The role of the following rule is to discard the current environment in the env cell

and replace it with the environment that it holds. This rule is structural: we do not

want it to count as a computational step in the transition system of a program.

syntax K ::= env (Map)

rule

env (Env)

•K

k

—

Env

env

[structural]

While theoretically sufficient, the basic definition for environment recovery alone

is suboptimal. Consider a loop while(E)S, whose semantics (see above) was given

by unrolling. S is a block. Then the semantics of blocks above, together with the

unrolling semantics of the while loop, will yield a computation structure in the k cell

that increasingly grows, adding a new environment recovery task right in front of the

already existing sequence of similar environment recovery tasks (this phenomenon

is similar to the “tail recursion” problem). Of course, when we have a sequence of

environment recovery tasks, we only need to keep the last one. The elegant rule

below does precisely that, thus avoiding the unnecessary computation explosion

problem:
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rule

env (—)

•K

yenv (—)

[structural]

lvalue and loc

For convenience in giving the semantics of constructs like the increment and the

assignment, that we want to operate the same way on variables and on array elements,

we used an auxiliary lvalue(E) construct which acts like a constraining context for

the expression E, forcing it to evaluate to its lvalue. More precisely, although lvalue

does not itself evaluate, it is used to constrain the evaluation of the expression it

wraps. The rules below specify semantics only when E is an l-value, that is, when

E is either a variable or evaluates to an array element. When that happens, E

evaluates in this l-value context to a value of the form loc(L), where L is the

location where the value of E can be found; for clarity, we use loc to structurally

distinguish natural numbers from location values. In giving semantics to expression

E in an lvalue context, there are two cases to consider. (1) If E is a variable,

then all we need to do is to grab its location from the environment. (2) If E is an

array element, then we first evaluate the array and its index in order to identify the

exact location of the element of concern, and then return that location; the last rule

below works because its preceding context declarations ensure that the array and its

index are evaluated, and then the rule for array lookup (defined above) rewrites the

evaluated array access construct to its corresponding store lookup operation.

syntax Exp ::= lvalue (K)

syntax Val ::= loc (Int)

context

lvalue (—[2])

context

lvalue (2[—])

rule

lvalue ( X

loc (L)

)

k

X 7→ L

env

[structural]

rule

lvalue (lookup (L)

loc (L)

)

[structural]
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Recall that, as mentioned in Section 2.4, the lvalue construct serves as a locally

typed evaluation context. Therefore, the rules above preserve the lvalue context

when evaluating expressions to their corresponding location values; the construct

can only be added/removed by the heating/cooling rules which introduce it. For

example, for the assignment evaluation context, the generated heating/cooling rules

are:

rule

E1 = E2

lvalue (E1) y 2 = E2

[structural]

rule

lvalue (E1) y 2 = E2

E1 = E2

[structural]

Initializing multiple locations

The following operation initializes a sequence of locations with the same value:

syntax Map ::= Int . . . Int 7→ K [function]

rule

N . . .M 7→—

•Map

when N >Int M

rule

N . . .M 7→ K

N 7→ K N +Int 1 . . .M 7→ K

when N ≤Int M

The semantics of SIMPLE is now complete.

4 K Type System of SIMPLE

Here we discuss the K static semantics of the SIMPLE language, or in other words,

a type system for it in K. Following the imperative paradigm, we assume that

all variables and functions explicitly declare their types. This is done by a slight

modification of the syntax of SIMPLE; we call the resulting language“typed SIMPLE”.

We here only focus on the new and interesting problems raised by the addition of

type declarations, and what it takes to devise a type system/checker for the language.

When designing a type system for a language, no matter in what paradigm, we

have to decide upon the intended typing policy. Note that we can have multiple type

systems for the same language, one for each typing policy. For example, should we

accept programs which don’t have a main function? Or should we allow functions

that do not return explicitly? Or should we allow functions whose type expects them

to return a value (say an int) to use a plain “return;” statement, which returns no

value, like in C? And so on.

Typically, there are two opposite tensions when designing a type system. On the

one hand, you want your type system to be as permissive as possible, that is, to

accept as many programs that do not get stuck when executed with the untyped

semantics as possible; this will keep the programmers using your language happy.

On the other hand, you want your type system to have a reasonable performance

when implemented; this will keep both the programmers and the implementers of

your language happy. For example, a type system for rejecting programs that could
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perform division-by-zero is not expected to be feasible in general. A simple guideline

when designing typing policies is to imagine how the semantics of the untyped

language may get stuck and try to prevent those situations from happening.

Before we give the K type system of SIMPLE formally, we discuss, informally,

the intended typing policy:

• Each program should contain a main() function. Indeed, the untyped SIMPLE

semantics gets stuck on programs without a main function.

• Each primitive value has its own type, i.e., int, bool, or string. There is also a

type void for nonexistent values, e.g., for the result of a function meant to return

no value (but only be used for its side effects, like a procedure).

• The syntax of untyped SIMPLE is extended to allow type declarations for all the

variables, including array variables. This is done in a C/Java-style. For example,

“int x;” or “int x=7, y=x+3;”, or “int[][] a[10,20];” (the latter defines a

10× 20 matrix of arrays of integers). Recall from untyped SIMPLE that, unlike in

C/Java, our multi-dimensional arrays use comma-separated arguments, although

they have the array-of-array semantics.

• Functions are also typed in a C/Java style. However, since in SIMPLE we allow

functions to be passed to and returned by other functions, we also need function

types. We will use the conventional higher-order arrow-notation for function types,

but will separate the argument types with commas. For example, a function

f returning an array of bool elements and taking as argument an array x of

two-integer-argument functions returning an integer is declared using a syntax of

the form

bool[] f(((int,int)->int)[] x) { ... }

and has the type ((int,int)->int)[] -> bool[].

• We allow any variable declarations at the top level. Functions can only be declared

at the top level. Each function can only access the other functions and variables

declared at the top level, or its own locally declared variables. SIMPLE has static

scoping.

• The various expression and statement constructs take only elements of the expected

types.

• Increment and assignment can operate both on variables and on array elements.

For example, if f has type int->int[][] and function g has the type int->int,

then the increment expression ++f(7)[g(2),g(3)] is valid.

• Functions should only return values of their declared type. To give the programmers

more flexibility, we allow functions to use “return;” statements to terminate

without returning an actual value, or to not explicitly use any return statement,

regardless of their declared return type. This flexibility can help when writing

programs using certain functions only for their side effects. Nevertheless, as the

dynamic semantics shows, a return value is automatically generated when an

explicit return statement is not encountered.

• For simplicity, exceptions only throw and catch integer values. We leave it as an

exercise to the reader to extend the semantics to allow throwing and catching
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arbitrary-type exceptions. To keep the definition simple, here we do not attempt

to reject programs which throw uncaught exceptions.

Like in untyped SIMPLE, some constructs can be desugared into a smaller set of

basic constructs. In general, it should be clear why a program does not type by

looking at the top of the k cells in its stuck configuration.

4.1 Syntax

The syntax of typed SIMPLE extends that of untyped SIMPLE with support for

declaring types for variables and functions.

Types

Primitive, array and function types, as well as lists (or tuples) of types are supported.

The lists of types are useful for function arguments.

syntax Type ::= void | int | bool | string
| Type[]

| Types -> Type

| (Type) [bracket]

syntax Types ::= List{Type,“, ”}

Declarations

Variable and function declarations have the expected syntax. For variables, we just

replaced the var keyword of untyped SIMPLE with a type. For functions, besides

replacing the function keyword with a type, we also introduce a new syntactic

category for typed variables, Param, and lists over it.

syntax Param ::= Type Id

syntax Params ::= List{Param,“, ”}

syntax Decl ::= Type Exps ;

| Type Id(Params)Block

Expressions

The syntax of expressions is identical to that in untyped SIMPLE, except for the

logical conjunction and disjunction which have different strictness attributes, because

they now have different evaluation strategies.

syntax Exp ::= Int | Bool | String | Id

| (Exp) [bracket]

| ++ Exp

| Exp[Exps] [strict]

| Exp(Exps) [strict]

| - Exp [strict]

| sizeOf (Exp) [strict]
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| read ()

| Exp * Exp [strict]

| Exp / Exp [strict] | Exp % Exp [strict]

| Exp + Exp [strict] | Exp - Exp [strict]

| Exp < Exp [strict] | Exp <= Exp [strict]

| Exp > Exp [strict] | Exp >= Exp [strict]

| Exp == Exp [strict] | Exp != Exp [strict]

| ! Exp [strict]

| Exp && Exp [strict] | Exp || Exp [strict]

| spawn Block

| Exp = Exp [strict(2)]

Note that spawn has not been declared strict. This may seem unexpected,

because the child thread shares the same environment with the parent thread, so

from a typing perspective the spawned statement makes the same sense in a child

thread as it makes in the parent thread. The reason for not declaring it strict is

because we want to disallow programs where the spawned thread calls the return

statement, because those programs would get stuck in the dynamic semantics. The

type semantics of spawn below will reject such programs.

We still need lists of expressions, defined below, but we do not need lists of

identifiers anymore. They have been replaced by the lists of parameters.

syntax Exps ::= List{Exp,“, ”} [strict]

Statements

The statements have the same syntax as in untyped SIMPLE, except for the excep-

tions, which now type their parameter. Unlike in untyped SIMPLE, all statement

constructs which have arguments and are not desugared are strict, including the

conditional and the while. Indeed, from a typing perspective, they are all strict:

first type their arguments and then type the actual construct.

syntax Block ::= {} | {Stmts}

syntax Stmt ::= Decl | Block

| Exp ; [strict]

| if (Exp)Block else Block [ strict] | if (Exp)Block

| while (Exp)Block [strict]

| for (Stmt Exp ; Exp)Block

| return Exp ; [strict] | return;
| print (Exps) ; [strict]

| try Block catch (Param)Block [strict(1)]

| throw Exp ; [strict]

| join Exp ; [strict]

| acquire Exp ; [strict] | release Exp ; [strict]

| rendezvous Exp ; [strict]
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Statement composition is now sequentially strict, because, unlike in the dynamic

semantics where statements dissolved, they now reduce to a type.

syntax Stmts ::= Stmt | Stmts Stmts [seqstrict]

Desugaring macros

We use the same desugaring macros like in untyped SIMPLE, but, of course, adapted

to the new syntax (e.g., including the types of the declared variables).

rule

if (E )S

if (E )S else {}
[macro]

rule

for (Start Cond ; Step){S}
{Start while (Cond){S Step ;}}

[macro]

rule

T E1,E2,Es ;

T E1 ; T E2,Es ;

[macro]

rule

T X = E ;

T X ; X = E ;

[macro]

4.2 Static semantics

Here we define the type system of SIMPLE. Like concrete semantics, type systems

defined in K are also executable. However, K type systems turn into type checkers

instead of interpreters when executed.

The typing process is done in two (overlapping) phases. In the first phase the

global environment is built, which contains type bindings for all the globally declared

variables and functions. For functions, the declared types will be “trusted” during the

first phase and simply bound to their corresponding function names and placed in

the global type environment. At the same time, type-checking tasks that the function

bodies indeed respect their claimed types are generated. All these tasks are verified

during the second phase. This way, all the global variable and function declarations

are available in the global type environment and can be used to type-check each

function body. This is consistent with the semantics of untyped SIMPLE, where

functions can access all the global variables and can call any other function declared

in the same program. The two phases may overlap because of the K concurrent

semantics. For example, a function task can be started while the first phase is still

running; moreover, it may even complete before the first phase does, namely when

all the global variables and functions that it needs have already been processed and

made available in the global environment by the first phase task.

Extended syntax and results

The idea is to start with a configuration holding the program to type in one of its

cells, then apply rewrite rules on it mixing types and language syntax, and eventually

obtain a type instead of the original program. In other words, the program reduces to
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its type using the K rules giving the type system of the language. Additional typing

tasks for function bodies are generated and solved the same way. If this rewriting

process gets stuck, then the program is not well-typed; otherwise the program is

well-typed (by definition). We did not need types for statements and blocks as part

of the typed SIMPLE syntax, since programmers are not allowed to use such types

explicitly. However, we need them in the type system, as blocks and statements

reduce to them.

We start by allowing types to be used inside expressions and statements in our

language. This way, types can be used together with language syntax in subsequent

K rules without any parsing errors. We prefer to group the block and statement

types under one syntactic sub-category of types, because this allows us to more

compactly state that certain terms can be either blocks or statements. Also, since

programs and fragments of program will reduce to their types, in order for the

strictness and context declarations to be executable we state that types are results.

syntax BlockOrStmtType ::= block | stmt

syntax Type ::= BlockOrStmtType

syntax Exp ::= Type

syntax KResult ::= Type

Configuration

The configuration of our type system consists of a tasks cell holding various typing

task cells, and a global type environment.

configuration:

$PGM

k

•Map

tenv?

void

return?

task*

tasks

•Map

gtenv

T

Each task includes a k cell holding the code to type, a tenv cell holding the local

type environment, and a return cell holding the return type of the currently checked

function. The latter is needed in order to check whether return statements return

values of the expected type. Initially, the program is placed in a k cell inside a task
cell. Since the cells with multiplicity “?” are not included in the initial configuration,

the task cell holding the original program in its k cell will contain no other subcells.
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Variable declarations

Variable declarations type as statements, that is, they reduce to the type stmt.

There are only two cases that need to be considered: when a simple variable is

declared and when an array variable is declared. The macros at the end of the

syntax above take care of reducing other variable declarations, including ones where

the declared variables are initialized, to only these two cases. The first case has two

subcases: when the variable declaration is global (i.e., the task cell contains only

the k cell), in which case it is added to the global type environment checking at the

same time that the variable has not been already declared; and when the variable

declaration is local (i.e., a tenv cell is available), in which case it is simply added

to the local type environment, possibly shadowing previous homonymous variables.

The third case reduces to the second, incrementally moving the array dimension into

the type until the array becomes a simple variable.

rule

T X ;

stmt

k

task

ρ •Map

X 7→ T

gtenv

when ¬Bool X in keys ρ

rule

T X ;

stmt

k

ρ

ρ[T / X ]

tenv

context

T X [2] ;

rule

T E [int,Ts] ;

T [] E [Ts] ;

[structural]

rule

T E [•Types ] ;

T E ;

[structural]

Function declarations

Functions are allowed to be declared only at the top level (the task cell holds only

its k subcell). Each function declaration reduces to a variable declaration (a binding

of its name to its declared function type), but also adds a task into the tasks cell.

The task consists of a typing of the statement declaring all the function parameters

followed by the function body, together with the expected return type of the function.

The types and mkDecls functions, defined at the end of the definition in the section
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on auxiliary operations, extract the list of types and make a sequence of variable

declarations from a list of function parameters, respectively. Note that, although

in the dynamic semantics we include a terminating return statement at the end of

the function body to eliminate from the analysis the case when the function does

not provide an explicit return, we do not need to include such a similar return

statement here. That’s because the return statements type to stmt anyway, and

the entire code of the function body needs to type.

rule

T F (Ps)S

types (Ps) -> T F ;

k

task

•Bag

mkDecls (Ps) S

k

•Map

tenv

T

return

task


[structural]

Checking if main() exists

Once the entire program is processed (generating appropriate tasks to type check

its function bodies), we can dissolve the main task cell (the one holding only a k
subcell). Since we want to enforce that programs include a main function, we also

generate a function task executing main() to ensure that it types (remove this task

creation if you do not want your type system to reject programs without a main

function).

rule

stmt

main(•Exps) ;

k

•Bag

•Map

tenv

task

[structural]
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Collecting the terminated tasks

Similarly, once a non-main task (i.e., one which contains a tenv subcell) is completed

using the subsequent rules (i.e., its k cell holds only the block or stmt type), we

can dissolve its corresponding cell. Note that it is important to ensure that we only

dissolve tasks containing a tenv cell with the rule below, because the main task

should not dissolve this way! It should do what the above rule says. In the end,

there should be no task cell left in the configuration when the program correctly

type checks (—:Sort stands for an anonymous variable, —, enforced to have the sort

Sort in order for the rule to apply).

rule

—:BlockOrStmtType

k

—

tenv

task

•Bag

Basic values

The first three rewrite rules below reduce the primitive values to their types, as we

typically do when we define type systems in K.

rule

—:Int

int

rule

—:Bool

bool

rule

—:String

string

Variable lookup

There are three cases to distinguish for variable lookup: (1) if the variable is

bound in the local type environment, then look its type up there; (2) if a local

environment exists and the variable is not bound in it, then look its type up in

the global environment; (3) finally, if there is no local environment, meaning that

we are executing the top-level pass, then look the variable’s type up in the global

environment, too.

rule

X

T

k

X 7→ T

tenv
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rule

X

T

k

ρ

tenv

X 7→ T

gtenv

when ¬Bool X in keys ρ

rule

X

T

k

task

X 7→ T

gtenv

Increment

We want the increment operation to apply to any lvalue, including array elements,

not only to variables. For that reason, we define a special context evaluating the

type of the argument of the increment operation only if that argument is an lvalue.

Otherwise the rewriting process gets stuck. The ltype context is defined in the

auxiliary operations section at the end of this definition. It essentially acts as a

filter, getting stuck if its argument is not an lvalue and letting it reduce otherwise.

The type of the lvalue is expected to be an integer in order to be allowed to be

incremented, as seen in the rule “++ int => int” below.

context

++ 2

ltype (2)

rule

++ int

int

Common expression constructs

The rules below are straightforward and self-explanatory:

rule

int + int

int

rule

string + string

string

rule

int - int

int

rule

int * int

int

rule

int / int

int

rule

int % int

int

rule

- int

int

rule

int < int

bool

rule

int <= int

bool
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rule

int > int

bool

rule

int >= int

bool

rule

T == T

bool

rule

T != T

bool

rule

bool && bool

bool

rule

bool || bool

bool

rule

! bool

bool

Array access and size

Array access requires each index to type to an integer, and the array type to be at

least as deep as the number of indexes:

rule

T [][int,Ts]

T [Ts]

rule

T [•Types ]

T

sizeOf only needs to check that its argument is an array:

rule

sizeOf (T [])

int

Input/Output

The read expression construct types to an integer, while print types to a statement

provided that all its arguments type to integers or strings.

rule

read ()

int

rule

print (T,Ts

Ts

) ;

when T =K int ∨Bool T =K string

rule

print (•Types) ;

stmt

Assignment

The special context and the rule for assignment below are similar to those for

increment: the left-hand-side of the assignment must be an lvalue and, in that case,

it must have the same type as the right-hand-side, which then becomes the type of

the assignment.
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context

2

ltype (2)

= —

rule

T = T

T

Function application and return

Function application requires the type of the function and the types of the passed

values to be compatible. Note that a special case is needed to handle the no-argument

case:

rule

(Ts -> T )(Ts)

T

when Ts 6=K •Types

rule

(void -> T )(•Types)

T

The returned value must have the same type as the declared function return type.

If an empty return is encountered, then we should check that we are in a function

(and not a thread) context, that is, a return cell must be available:

rule

return T ;

stmt

k

T

return

rule

return;

stmt

k

—

return

Blocks

To avoid having to recover type environments after blocks, we prefer to start a

new task for block body, making sure that the new task is passed the same type

environment and return cells.

rule

{}
block
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rule

{S}
block

k

ρ

tenv

R

task

•Bag

S

k

ρ

tenv

R

task

Expression statement

rule

T ;

stmt

Conditional and while loop

rule

if (bool)block else block

stmt

rule

while (bool)block

stmt

Exceptions

Recall that the try-catch block was declared strict in its first argument. Therefore,

we expect that the first argument has evaluated to the type value stmt. We currently

force the parameters of exceptions to only be integers. Moreover, for simplicity,

we assume that integer exceptions can be thrown from anywhere, including from

functions which do not define any try-catch block (with the currently unchecked—also

for simplicity—expectation that the caller functions would catch those exceptions).

rule

try block catch (int X ){S}
{int X ; S}

[structural]

rule

throw int ;

stmt

Concurrency

When typing concurrency constructs we do not want the spawned thread to return,

so we do not include any return cell in the new task cell for the thread statement. As

with the functions semantics defined above, we do not check for thrown exceptions

which are not caught.
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rule

spawn S

int

k

ρ

tenv

•Bag

S

k

ρ

tenv

task

rule

join int ;

stmt

rule

acquire T ;

stmt

rule

release T ;

stmt

rule

rendezvous T ;

stmt

rule

—:BlockOrStmtType —:BlockOrStmtType

stmt

Auxiliary constructs

The function mkDecls turns a list of parameters into a list of variable declarations.

syntax Decl ::= mkDecls (Params) [function]

rule

mkDecls (T X ,Ps)

T X ; mkDecls (Ps)

rule

mkDecls (•Params)

{}

The ltype context allows only expressions which can evaluate to an lvalue. To

achieve this, we define a sort LValue to consist of program variables and array

accesses and semantically constrain the hole of the ltype context to have the LValue

sort.

syntax LValue ::= Id

| Exp[Exp]

syntax Exp ::= ltype (Exp)

context

ltype (2:LValue)

Note that there is no explicit rule for the ltype construct. One reason is that

ltype’s function as a filter is enough: once an expression is allowed to be evaluated,

its corresponding type will be obtained using the other rules in the definition. The

second reason is that, similarly to the lvalue construct from the dynamic semantics

of SIMPLE, discussed in Sections 2.4 and 3.7, ltype is added as a wrapper by the

heating rule generated by one of the context declarations introducing it, and it is

removed by the corresponding cooling rule. For increment, those rules are:
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rule

++ E

ltype (E) y ++ 2

[structural]

rule

ltype (E) y ++ 2

++ E

[structural]

The function types returns the list of types for a list of parameters.

syntax Types ::= types (Params) [function]

rule

types (T —:Id)

T, •Types

rule

types (T —:Id,P,Ps)

T, types (P,Ps)

rule

types (•Params)

void, •Types

This concludes the static definition of SIMPLE.

5 Language Definitions and Tools using K

Besides didactic and prototypical languages (such as the lambda calculus, System F,

and Agents), the K tool has been used to formalize several existing programming

languages or paradigms and to design and develop (language-parametric) analysis

and verification tools.

Programming languages research

K has been successfully used to formally and completely define the C programming

language [17] and Scheme [29]. Additionally, K has been used in formalizing various

aspects of features of languages like Haskell [27], Javascript, X10 [21], a RISC

assembly language [7,6], and LLVM [16], as well as a framework for domain specific

languages [50,51].

K’s ability to easily express concurrent computations has been used in researching

safe models for concurrency [24], synchronization of agent systems [15], models for

P-Systems [56,11], and for the relaxed memory model of x86-TSO [52].

Analysis tools

Regarding analysis tools, K has been used for designing type checkers and type

inferencers [18], for model checking executions with predicate abstraction [4,2] and

heap awareness [49], for symbolic execution [5,3,1], computing worst case execution

times [9,8], studying program equivalence [28], or researching runtime verification

techniques [42,52]. Additionally, the C definition mentioned above has been used as

a program undefinedness checker to analyze C programs [38].

Program Verification

K served as an inspiration for the design of Reachability Logic [48,45], a new logic

for verification based on matching logic [41], unifying operational and axiomatic

semantics [47], generalizing both Hoare logic and separation logic [46], which serves

as basis for a new program verification tool for K definitions using Hoare-like

assertions [44].
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All these definitions and analysis tools can be found on the K tool website [26].

Other language definitions and analysis tools developed using the K technique before

the development of the K tool include definitions of Java [19] and Verilog [30], as

well as a static policy checker for C [25].

6 Conclusion

The K semantic framework, consisting of a general-purpose concurrent rewriting

approach together with a definitional technique specialized for concurrent program-

ming languages and systems, brings together the advantages of existing language

definitional frameworks while avoiding their limitations.

In spite of its youth, the K framework has already proven to be practical, as

it has been used with relatively little effort to define complex languages like Java,

Scheme, Verilog, or C, and to use those definitions for analyzing programs written

in those languages. K is currently under heavy development, with bugs being fixed

and new features and capabilities added on a regular basis. This is all possible

due to the enthusiasm and strong belief of its designers and developers that K
can be not only an academic exercise but also a solid, practical and scalable tool

for programming language design and analysis, as well as due to generous funding

under the NSA contract H98230-10-C-0294, the NSF grant CCF-0916893, and the

(Romanian) SMIS-CSNR 602-12516 contract no. 161/15.06.2010.
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