
Behavioral Rewrite Systems and
Behavioral Productivity

Grigore Roşu1,2 and Dorel Lucanu2

1 University of Illinois at Urbana-Champaign, USA, grosu@illinois.edu
2 Alexandru Ioan Cuza University, Iaşi, Romania, dlucanu@info.uaic.ro

Abstract. This paper introduces behavioral rewrite systems, where rewrit-
ing is used to evaluate experiments, and behavioral productivity, which
says that each experiment can be fully evaluated, and investigates some
of their properties. First, it is shown that, in the case of (infinite) streams,
behavioral productivity generalizes and may bring to a more basic rewrit-
ing setting the existing notion of stream productivity defined in the con-
text of infinite rewriting and lazy strategies; some arguments are given
that in some cases one may prefer the behavioral approach. Second,
a behavioral productivity criterion is given, which reduces the prob-
lem to conventional term rewrite system termination, so that one can
use off-the-shelf termination tools and techniques for checking behav-
ioral productivity in general, not only for streams. Finally, behavioral
productivity is shown to be equivalent to a proof-theoretic (rather than
model-theoretic) notion of behavioral well-specifiedness, and its difficulty
in the arithmetic hierarchy is shown to be Π0

2 -complete. All new concepts
are exemplified over streams, infinite binary trees, and processes.

1 Introduction

Behavioral abstraction, or the process of understanding how a system behaves
under a given set of relevant observations or experiments, is a fundamental prob-
lem in formal methods: like information hiding, behavioral abstraction provides
the capability to abstract away from internal implementation details to better
capture and reason about the actual system behavior.

Behavioral equivalence, also informally called indistinguishability under ex-
periments in the literature [18, 13, 2, 19], is an important example of behavioral
abstraction. CafeOBJ [4], an executable specification language developed under
the leadership and vision of Kokichi Futatsugi, was one of the first systems that
provided explicit support for specifying and verifying behavioral equivalence.

We briefly explain behavioral equivalence using a very simple example. The
two (infinite) processes represented in Figure 1 can be behaviorally specified
by the following terminating term rewriting system R (behavioral specifications
typically use equations, but we here tacitly use rewriting instead):

out(a)→ 0 out(b)→ 1 next(a)→ b next(b)→ a

out(si)→ i mod 2 next(si)→ si+1

Each state has an output value, represented in the figure by a pair state/output.
The output is modeled by the operation out(state) and the transitions are mod-
eled by the operation next(state). We can observe that the states a and s0 are
behaviorally indistinguishable by experimenting with them:



a/0 b/1 s0/0 s1/1 s2/0 s3/1 . . .

Fig. 1. Two behavioraly equivalent processes.

1. We first check if the output values for the two states are equal:
out(a)

∗−→R 0 and out(s0)
∗−→R 0.

2. We check the equality of the output values after one transition:
out(next(a))

∗−→R 1 and out(next(s0))
∗−→R 1.

3. We check the equality of the output values after two transitions:
out(next2(a))

∗−→R 0 and out(next2(s0))
∗−→R 0. And so on.

So, for each experiment out(next i(∗)) respectively applied on the two states, we

obtain out(next i(a))
∗−→R v and out(next i(s0))

∗−→R v for certain v ∈ {0, 1} and
thus conclude that a and s0 are indistinguishable under experiments. Obviously,
a and s1 are distinguishable under experiments (e.g., out(s1)

∗−→R 1).
Lazy rewriting is an alternative, more operational approach to study infinite-

behavior objects. The idea here is to use lazy rewriting to only extract as much
information from the infinite behavior of an object or data-structure as needed
in the given context, this way avoiding the infinite nature of the object or data-
structure. In this approach, the notion of productivity [5, 10, 24] plays a crucial
rule. It captures the intuition of unlimited progress, that is, that the term under
analysis can be continuously evaluated (or rewritten) in such a way that its
infinite behavior is uniquely determined as the limit of this evaluation process.

Both behavioral equivalence and productivity were proposed in the early
1980’s, the former by Reichel [18] and the later by Dijkstra [5]. Since then, at-
tracted by the benefits and elegance of each of the two approaches, there have
been many related approaches, reasoning techniques and tool prototypes pro-
posed for each of them, e.g. [2, 4, 7–10, 13, 14, 16, 17, 19, 22, 24–26, 28, 29] among
many others. However, up to now, in spite of common intuitions and ultimate
goals, these two approaches to infinite behavior have lived separate lives. In this
paper we make a first step towards bringing the two approaches closer. To make
this possible, we first introduce the general notion of a behavioral rewrite system,
and then formally define our notion of behavioral productivity for such systems.
Note that almost any two papers in the aforementioned lists defines different
variants of behavioral equivalence or productivity. We are not attempting to
consolidate all these different variations in this paper. Instead, our objective is
to capture the essence of these important concepts in order to highlight their
relationships. We believe that our results can be adapted to each particular
approach, but this is beyond our scope here.

A behavioral rewrite system (BRS) is a term rewrite system (TRS) together
with a set of derivative operations (or observers) which are used to formally de-
fine experiments, where the rewriting relation is used to compute the results of
the experiments. The usual productivity makes sense for those TRS’s defining
infinite data structures3: R is productive for a ground term t, intended to rep-
resent an infinite data structure [[t]], if the rewriting relation →R can be used to

3 Again, formal definitions of productivity differ from paper to paper, mixing the
conceptual notion with operational or technical limitations (e.g., requiring the terms

2



obtain any approximation of [[t]] starting from t. We propose behavioral productiv-
ity as another example of a behavioral abstraction: it says that each experiment
applied on t can be computed in finite time by means of ordinary rewriting. Be-
havioral productivity captures the idea that the behavior of a given term can be
gradually “produced”; since the set of experiments that need to be applied on the
term in order to potentially yield the term’s behavior is recursively enumerable,
behavioral productivity means, in fact, that each of the experiments applied on
the term can be “evaluated”, or in our rewrite context, can be rewritten to a
data term. For the above process example, R is behaviorally productive for a
state s if and only if each experiment of the form out(next i(∗)) can be rewritten
to a data value term (here 0 or 1) when applied in any state. It is easy to see
that R is behaviorally productive for all states of the two processes. However, if
we add a new state c and only the transition next(b)→ c, then we observe that
R is not behaviorally productive for c because out(next i(c)) is irreducible.

We show that for streams, behavioral productivity for BRS’s generalizes the
productivity for TRS’s in several ways: it can be defined for a larger class of
specifications, there are non-productive TRS’s for which their behavioral versions
are behaviorally productive, and it can be defined for non-ground terms as well.
Behavioral productivity plays for coinductive specifications a role which is dual
to that played by sufficient completeness for inductive specifications. We show
that if a BRS (not necessarily defining streams) is productive for a term t,
then it behaviorally well-specifies the object represented by t; moreover, under
mild conditions the two notions coincide. We also show that the problem of
saying whether a given BRS is behaviorally productive is Π0

2 -complete. Our main
practical result in this paper is a criterion that reduces the checking of behavioral
productivity of a “coinductive” BRS to the termination of the rewriting relation
(in the usual sense) of its underlying TRS. That means that one can use off-the-
shelf termination techniques and tools developed and continuously improved by
the rewriting community (see, e.g., [12, 6]) to test for behavioral productivity.

All results reported in this paper lead us to the belief that behavioral rewrite
systems may be more suitable than term rewrite systems when we want to ana-
lyze the behavioral properties of infinite data structures/processes. We summa-
rize the arguments supporting this idea: 1) behavioral productivity is uniformly
defined for all BRS’s , 2) a TRS can be associated with various BRS’s and
hence we can capture various definitions for the productivity of TRS’s , 3) some
anomalies like ”productive for t but does not well-specify t” are avoided, and 4)
productivity can be defined for a larger class of terms.

Section 2 introduces the notation used in the paper and recalls the definitions
of stream productivity and of behavioral specifications. Section 3 introduces be-
havioral rewrite systems and behavioral productivity. Section 4 discusses how
behavioral productivity captures stream productivity as a special instance. Two
main properties of the behavioral productivity are studied in the next two sec-
tions: Section 5 shows that the termination in the standard sense of the term

to only be streams, or requiring orthogonality of the TRS, or both). We drop all
those limitations here and focus on the essence of the concept.

3



rewriting relation of a coinductive BRS yields behavioral productivity; Section 6
shows that behavioral productivity implies behavioral well-definedness and that,
under some reasonable conditions, the two notions coincide. The hardness of of
the behavioral productivity problem is studied in Section 8.

2 Background, Preliminary Notions, and Notations

A many-sorted signature (S,Σ), or just signature Σ, is a set of sorts S together
with a set Σ of operations σ : s1 × · · · × sn → s, where s1, . . . , sn, s ∈ S. We
let TΣ(X) denote the set of Σ-terms built with operation symbols in Σ and
with variables in the S-indexed set X. A Σ-context for sort s ∈ S is a Σ-term
C ∈ TΣ(X ∪ {∗ : s}) having precisely one occurrence of the special variable ∗ of
sort s; to emphasize that C is such a context we may write C[∗:s], and if t is a
term of sort s then we let C[t] denote the term obtained replacing ∗ by t in C.

Fix a set X of S-sorted variables. A Σ-rewrite rule is a triple (∀X) l → r,
where X ⊆ X is an S-indexed set of variables and l, r ∈ TΣ(X) such that l is not
a variable and each variable in r also occurs in l. We often simply write l → r
for a rewrite rule and then X is the set of the variables occurring in l. A term
rewriting system (TRS) is a pair (Σ,R), where Σ is a many-sorted signature
and R is a set of Σ-rewrite rules. The rewrite relation →R is defined as usual:
t→R t

′ for t, t′ ∈ TΣ(X ) iff there exists a Σ-context C, a rule (∀X) l→ r, and a

substitution θ : X → TΣ(X ) such that t = C[θ(l)] and t′ = C[θ(r)]. We let
∗−→R

denote the reflexive and transitive closure of →R, and ←R the inverse of →R.

A Σ-equation is a triple (∀X) t = t′, where X has the same meaning as that
for rewrite rules and t, t′ ∈ TΣ(X). A many-sorted equational specification is a
pair (Σ,E), where Σ is a many-sorted signature and E a set of Σ- equations.

2.1 Stream Productivity

Although there are attempts to define productivity more generally, e.g. [10], so
far productivity was mainly used for streams (or infinite lists), with lazy (infinite)
rewriting [5, 24, 7–10, 26, 28, 29]. Here we remind the reader this particular but
conventional notion of productivity. To clearly emphasize its limited scope to
stream rewrite systems and to distinguish it from our more general notion of
behavioral productivity, we will call it stream productivity from here on. Also,
to avoid the difficult task of unifying the various definitions of streams and
productivity in the papers listed above, we adopt the least restricted definition
that we were able to find in the literature, which in our view best captures the
intuition underlying the concept originally proposed by Dijskstra in [5]. This
is the definition proposed in [10], but without the orthogonally requirement.
Orthogonality ensures unique normal forms, so well-definedness, but that seems
to be unnecessary for productivity. In our view, productivity is the capability of
producing an element of the stream on any position, not necessarily of producing
a unique such element. Adding the orthogonality restriction brings no technical

4



difficulty, but since some of the papers above do not require it, we find it more
appropriate to keep our notions and results as unrestricted as possible.

A stream-TRS [10] is a TRS (Σ,R) having a special sort Data for stream
elements, a sort Stream for streams, and an “implicit” operation : : Data ×
Stream → Stream that allows to regard a stream as its “head” element followed
by its “tail” stream. A stream-TRS may contain operations together with rewrite
rules defining the data and may contain operations together with rewrite rules
defining the streams of interest and desired operations on them. For instance,
the constant stream zeros := 0 : 0 : 0 : . . . containing only 0’s, the sub-stream
consisting only of the elements on odd positions of a stream, and the stream
obtained by zipping two streams can be defined by the following rewrite rules:

zeros → 0 :zeros odd(B1 :B2 :S )→ B1 :odd(S ) zip(B :S,S ′)→ B :zip(S ′,S )

where B,B1, B2 are variables of sort Data and S, S′ are variables of sort Stream.
The above TRS is non-terminating, so termination is not the right concept for
stream-TRS’s. Stream productivity aims at capturing the notion of unlimited
progress. Informally, a stream is productive iff it can be continuously evaluated
(or rewritten), element by element. Formally, a stream-TRS (Σ,R) is stream
productive [10] for the stream (ground term) s iff ProdR(s) = ∞, where the

stream production function ProdR is defined by ProdR(s) = sup{n | s ∗−→R d1 :
d2 : . . . : dn : t}, where di are data terms. In practice, to avoid non-termination,
stream productivity is typically used in combination with lazy rewriting.

2.2 Behavioral Signatures, Experiments and Behavioral Equivalence

Here we recall several folklore behavioral concepts, following for uniformity the
notation and approach in [22] but without claiming any novelty or ownership.
These concepts have been introduced under various names and notations in
earlier works by fathers of behavioral specification, such as Sannella, Tarlecki,
Wirsing, Reichel, Goguen, Futatsugi, Bidoit, Hennicker, to only mention a few.

A behavioral signature is a pair (Σ,∆), where Σ is a signature and ∆ is
a set of Σ-contexts, which we call derivatives. If δ[∗:h] ∈ ∆ then the sort h
is called a hidden sort. Let H ⊆ S be the set of all hidden sorts of (Σ,∆).
The remaining sorts in V = S − H are called data, or visible sorts. A data
operation is an operation in Σ taking and returning only visible sorts; we let
Σ�V⊆ Σ denote the sub-signature of data sorts and operations. A Σ-sentence/-
equation is called a data sentence/equation iff it is a Σ�V -sentence/-equation. A
Σ-equation (∀X) t = u is called a hidden equation when the sort of t, u is hidden.
A behavioral (equational) specification B is a pair ((Σ,∆), E), where (Σ,∆) is
a behavioral signature and E is a set of Σ-equations. A ∆-experiment is a ∆-
context (i.e., one formed only with contexts in ∆) of visible result sort. If ∆ is
clear, we may write experiment for ∆-experiment and context for ∆-context.

In the case of streams, the most straightforward choice for derivatives is
∆ = {hd [∗:Stream], tl [∗:Stream]}, which is the one we will consider for our
stream examples in the rest of the paper. However, the following are also possible
choices for derivatives, as they allow to reach any element of a stream:

5



{hd [∗:Stream], hd(tl [∗:Stream]), tl(tl [∗:Stream])},
{hd [∗:Stream], odd [∗:Stream], even[∗:Stream]},
{hd [∗:Stream], zip(tl([∗:Stream]),S )}, {hd(tln [∗:Stream]) | n ∈ Nat}, etc.

Many examples of derivative sets are discussed in [19], there called cobases.
Given a behavioral signature (Σ,∆), the ∆-experiments allow us to “ob-

serve” hidden terms, and thus state and prove behavioral properties. A common
behavioral property is the behavioral equivalence, stating that two hidden terms
are behaviorally equivalent iff they are indistinguishable under experiments: B
behaviorally satisfies hidden equation e, written B � e, iff B ` C[e] for each
experiment C, where C[t = u] is C[t] = C[u]. Another behavioral property is the
behavioral productivity, which is the main concept introduced and investigated
in this paper, stating that a hidden term has “producible” behaviors, that is, it
rewrites to some data element under each experiment.

3 Behavioral Rewrite Systems and Productivity

In this section we introduce our main notions in this paper and discuss them
by means of examples. Our first notion, that of a behavioral rewrite system, has
the same relationship to behavioral equational specifications as rewrite systems
have to equational specifications: they orient the equations into rewrite rules.

Definition 1. A behavioral rewrite system (BRS) B is a pair ((Σ,∆), R),
where (Σ,∆) is a behavioral signature and (Σ,R) is a TRS. B terminates iff
(Σ,R) terminates as a TRS, and is coinductive iff δ[f(x)] is not a normal
form for any f : s→ h in Σ −∆ and δ[∗:h] in ∆ (x are variables of sort s).

Our notion of coinductive rewrite system is reminiscent of earlier beahavioral
concepts, such as “observer completeness” in [1] and “cobasis” in [21]. It is in fact
dual to the folklore notion of “inductive rewrite system”, that is, one where there
is a subset of operations called “constructors” such that f(γ(x)) is rewritable
(typically the left-hand side term of some rewrite rule) for any non-constructor
(or defined) operator f and any constructor γ; such rules guarantee that, in the
presence of termination, each non-constructor operation is fully defined in terms
of constructors. Dually, the fact that the terms δ[f(x)] in a coinductive rewrite
system are rewritable will guarantee that, in the presence of termination, each
non-derivative operation can be fully observed (Theorem 3). We next introduce
our general notion of behavioral productivity, inspired from the more particular
but insightful notion of stream productivity [5, 10, 24]:

Definition 2. BRS B = ((Σ,∆), R) is productive for a hidden term t iff

for each ∆-experiment C there is some (Σ�V ∪∆)-term d such that C[t]
∗−→R d.

B is productive iff it is productive for any hidden term, and it is ground
productive iff it is productive for any ground hidden term.

Therefore, productivity for a hidden term t means that a result of apply-
ing any experiment C on t can be eventually “produced”, or in other words,

6



since the experiments can typically be easily enumerated, that a behavior of
t can be incrementally approximated without getting stuck on any particular
experiment. Following the duality induction/coinduction above, note that pro-
ductivity plays the dual role of sufficient completeness [15]. Indeed, sufficient
completeness implies that a term u[x] (for simplicity, suppose that u has only
one variable, x) can be shown equal to a constructor ground term under any
substitution of its variable x by a constructor ground term c, that is, all the
non-constructor operations in u[c] can be eventually eliminated; dually, produc-
tivity implies that a term t can be shown equal to a derivative term under any
derivation (or experiment) C of it, that is, all the non-derivative operations in
C[t] can be eventually eliminated. This duality between productivity and suf-
ficient completeness is technically irrelevant in this paper, therefore we do not
bother to formalize it, but we find it interesting and thus worthwhile noting.

Note that the “result” (Σ�V ∪∆)-term d in Definition 2 can use the opera-
tions in ∆ only as ∆-experiments applied to variables of hidden sort, because no
other non-data operations are allowed in d and because the sort of d is visible. In
particular, if t has no hidden variables then d is a Σ�V -term. To avoid confusion
with “stream productivity”, we take the freedom to tacitly call our productivity
for BRS’s behavioral productivity whenever we feel that clarifies the presentation.

In the sequel we illustrate the notions above on several examples.

Example 1. (Streams) A behavioral rewrite system of bit streams (or infinite
lists) may include a sort Bit with two constants 0 and 1, a sort Stream for bit
streams with operations hd : Stream → Bit (head) and tl : Stream → Stream
(tail), and as many stream operations and defining rewriting rules as desired.
For instance, the constant stream zeros, the sub-stream on odd positions odd,
and the stream merging zip can be behaviorally defined as:

hd(zeros)→ 0

tl(zeros)→ zeros

hd(odd(S ))→ hd(S )

tl(odd(S ))→ odd(tl(tl(S )))

hd(zip(S ,S ′))→ hd(S )

tl(zip(S ,S ′))→ zip(S ′, tl(S ))

One can also define a stream operation returning the sub-stream on even po-
sitions as even(S ) → odd(tl(S )). The set ∆ of derivatives consists of the two
contexts hd [∗:Stream] and tl [∗:Stream]. Thus, Stream is a hidden sort and Bit
is visible. The stream experiments are contexts of the form hd(tl i [∗:Stream]),
where i ≥ 0. It is not hard to check that this behavioral rewrite system for
streams is terminating, coinductive, and behaviorally productive. For instance,
zeros is behaviorally productive because hd(tl i(zeros)) = 0 for any i > 0. Also,

odd(S ) is productive because hd(tl i(odd(S )))
∗−→ hd(tl2i(S )) for any i > 0.

Example 2. (Non-Deterministic Streams) Consider now a bit stream random,
which can produce any sequence of 0 and 1 bits. It can be defined as follows:

hd(random)→ 0 hd(random)→ 1 tl(random)→ random

This BRS terminates and is both coinductive and productive. The stream ran-
dom is not productive according to existing formal definitions of stream produc-
tivity [10], as those require, in our view unjustified, that the stream elements are
not only producible, but also unique. We believe that productivity and unique
normal forms of experiments are orthogonal issues, so we do not mix them.

7



Example 3. (Non-Terminating Streams) Let us extend the stream BRS in Ex-
ample 1 with a new constant ones, an operation : : Bit × Stream → Stream,
and the rewrite rules:

ones → 1 : ones hd(B : S) = B tl(B : S) = S

Obviously, the resulting BRS is not terminating. It is coinductive, however, be-
cause hd(ones)→ hd(1 : ones) and tl(ones)→ tl(1 : ones). It is also productive,

because there is some rewriting sequence hd(tl i(ones))
∗−→ 1 for each i ≥ 0; even

though a lazy strategy may be needed in order to generate such rewriting se-
quences, it is important to note that for each experiment on ones there is some
finite rewriting sequence computing it, so the BRS is productive on ones.

Example 4. (Non-Coinductive Streams) Let us replace the two defining rules of
zeros in the stream BRS in Example 1 with the following three rules:

hd(zeros)→ 0 hd(tl(zeros)) = 0 tl(tl(zeros)) = zeros

Obviously, the resulting BRS is not coinductive, because tl(zeros) is now a nor-
mal form. It remains both terminating and productive, though. However, if we
instead choose ∆ to be {hd [∗:Stream], hd(tl [∗:Stream]), tl(tl [∗:Stream])}, then
the stream BRS becomes also coinductive.

Example 5. (Non-Productive Streams) All the example BRS’s above were pro-
ductive. One can also have non-productive BRS’s ; however, since Theorem 3
tells us that coinductive and terminating BRS’s are also productive, it must
be the case that any non-productive BRS must either not be coinductive or
not terminate. We show an example of each. An example of non-coinductive
non-productive BRS can be obtained from the BRS in Example 1 by drop-
ping any of its rules. The other case is trickier. Let us extend the stream
BRS in Example 1 with a stream a (constant of sort Stream) defined with
the rules hd(a) → 0 and tl(a) → odd(a). Then the resulting BRS is not
productive for a, because there is no way to “evaluate” hd(tl2(a)): indeed,
hd(tl2(a)) → hd(tl(odd(a))) → hd(odd(tl2(a))) → hd(tl2(a)) → . . .. This
rewrite sequence shows that this stream BRS is also non-terminating. Note,
however, that it is coinductive.

Let us next also discuss some non-stream examples of BRS’s .

Example 6. (Infinite Binary Trees) A BRS defining infinite binary trees over
bits consists of a definition of bits (similar to that of streams), a sort Tree for
infinite binary trees together with the operations root : Tree → Bit (the root of
the tree), left : Tree → Tree (the left subtree), right : Tree → Tree (the right
subtree), and other operations over trees and their defining rewriting rules. Here
are several examples of such operations inspired from [25]:

root(ones)→ 1

left(ones)→ ones

right(ones)→ ones

root(¬T )→ root(T )

left(¬T )→ ¬left(T )

right(¬T )→ ¬right(T )

root(thue)→ 0

left(thue)→ thue

right(thue)→ thue + ones

8



root(T1 + T2 )→ root(T1 )⊕ root(T2 )

left(T1 + T2 )→ left(T1 ) + left(T2 )

right(T1 + T2 )→ right(T1 ) + right(T2 )

where the addition (⊕) and the negation (·) over bits are defined as usual:
0⊕B → B, 1⊕ 1→ 0, 0→ 1, 1→ 0. The set ∆ of derivatives consists of three
contexts: root(∗:Tree), left(∗:Tree), and right(∗:Tree). So, the sort Tree is hidden
and the sort Bit is visible. This behavioral rewrite system for infinite binary trees
is terminating, coinductive and productive. Moreover, one can show that, for
example, the infinite binary trees thue + ones and ¬thue are indistinguishable
under ∆-experiments; indeed, the behavioral prover CIRC [16] can prove them
behaviorally equivalent, but this is beyond our scope in this paper.

Example 7. (Processes) The BRS defining the processes presented in Section 1
consists of a visible sort Int for integers, visible operations over integers and
their defining rewriting rules, a hidden sort State for the states, two hidden
constants a, b of sort State describing the states of the first process, an operation
(generalized hidden constant) s : Int → State for the states of the second process,
and two operations out : State → Int and next : State → State, which together
with their rewrite rules describe the behaviors of the two processes. The set of
derivatives ∆ consists of two contexts: out(∗:State) and next(∗:State). It is easy
to see that this BRS of processes is terminating, coinductive and productive.

Example 8. (Non-Deterministic, or Non-Confluent Processes) Here is an exam-
ple of BRS which is productive but is not confluent. Add to the BRS in Example
7 one more hidden constant of sort State, say c, together with the following rules:

next(a)→ c next(c)→ a out(c)→ 1

The resulting BRS is productive (for each of a, b, c) but is not confluent (the

critical pair b ←− next(a) −→ c is not join-able). However, out(next i(b))
∗−→R vi

and out(next i(c))
∗−→R vi for some vi ∈ {0, 1}, so b and c are indistinguishable

under experiments. Hence each experiment on a is uniquely determined, in spite
of the lack of confluence of this BRS.

The various examples above showed that neither termination, nor coinduc-
tivity, nor confluence is a requirement for productivity. As shown in Section 5,
termination and coinductivity imply productivity; confluence, however, appears
to play no role for productivity.

4 Behavioral Productivity Generalizes Stream Productivity

In this section we discuss the relationship between productivity in the usual sense
of stream-TRS definitions and behavioral productivity of stream BRS definitions,
essentially showing that nothing is lost wrt productivity when using the latter.
On the contrary, the BRS approach to define streams has the benefit that one can
use our termination-based technique in Theorem 3 to prove stream productivity.

9



We start by defining a transformation, given in Definition 3, which shows the
immediate correspondence between stream productivity and behavioral produc-
tivity, namely that the former falls as a special case of the latter for particular
behavioral rewrite systems, namely ones of streams.

Definition 3. Let R = (Σ,R) be a stream-TRS (see Section 2.1). We let B0(R)
be the BRS ((Σ ∪ {hd , tl}, {hd , tl}), R ∪ {hd(B : S)→ B, tl(B : S)→ S}).

To avoid interfering with the head/tail operations that may already be de-
fined and used in the original stream-TRS R, we assume that the hd/tl added
to the BRS B0(R) are fresh. To achieve this, one may need to rename the po-
tentially homonymous operations in R.

Theorem 1. Let R be a stream-TRS and let s be a ground stream term. Then
s
∗−→R d1 : d2 : . . . : dn : t iff hd(s)

∗−→B0 (R) d1 , . . . , hd(tln−1(s))
∗−→B0(R) dn,

and tln(s)
∗−→B0(R) t. Therefore, R is productive for s if and only if B0(R) is

behaviorally productive for s.

Proof. Straightforward by induction on n, noting that s
∗−→R h : t if and only if

hd(s)
∗−→B0 (R) h and tl(s)

∗−→B0 (R) t . ut

The transformation R 7→ B0(R) above is so trivial that it should not be sur-
prising that B0(R), in spite of capturing stream productivity as an instance of
the more general concept of behavioral productivity, does not add much behav-
ioral value; in particular, it is not coinductive and, if the original stream-TRS R
does not terminate, B0(R) does not terminate either. Therefore, our termination-
based technique in Theorem 3 cannot be applied to prove stream productivity
if we follow this simplistic approach.

We next give a converse transformation, from stream-BRS’s to stream-TRS’s,
also trivial and also productivity preserving:

Definition 4. Let B be a stream-BRS. We let R0(B) be the stream-TRS ob-
tained from B by adding the lazy constructor4 : and the rule S → hd(S ) : tl(S ).

Like in the previous transformation, to avoid interfering with the stream
construct that may already be defined and used in the original stream-BRS B,
we assume that the : added to the TRS R0(B) is fresh. If one does not like the
fact that the rule added to R0(B) has a variable (S, of sort Stream) as left hand
side, then one can instantiate the rule above for the stream operations defined
in B. This rule, however, is not problematic for lazy rewriting, because it is not
applied indefinitely under the hd/tl operations that it generates.

Theorem 2. Let B be a stream-BRS. Then s
∗−→R0(B) d1 : d2 : . . . : dn : t

iff hd(s)
∗−→B d1 , . . . , hd(tln−1(s))

∗−→B dn, and tln(s)
∗−→B t. Therefore, B

is behaviorally productive for a ground stream term s if and only if R0(B) is
stream productive for s.

4 We refer the reader to [10] for precise stream-TRS definitions and terminology.

10



Proof. Straightforward again, by induction on n, noting that s
∗−→R0(B) h : t if

and only if hd(s)
∗−→B h and tl(s)

∗−→B t . ut

As explained in Section 2.1, existing variants of stream-TRS and stream
productivity definitions are more restricted than ours. If one wants to adapt
our results above to those variants, then one needs to add similar restrictions
to the corresponding stream-BRSes. For example, if one strongly believes that
or absolutely needs that stream-TRSes must be orthogonal (in order to ensure
unique normal forms), as it is the case in several stream-TRS variants, then one
can require that same orthogonality restriction on the stream-BRS.

In addition to its theoretical significance, the transformation above may also
have practical value. Supposing that one prefers to use lazy rewriting to define
streams, one may admittedly be reluctant to use our “behavioral style” because,
even if one proves productivity using behavioral techniques (e.g., Theorem 3),
one still cannot directly use the BRS in one’s lazy rewriting framework. The
transformation B 7→ R0(B) above says that all one needs to do to take advantage
of both our behavioral approach and one’s lazy rewriting framework is to define
one’s streams as a BRS B, prove it behaviorally productive, then transform it into
the stream-TRS R0(B) by adding the lazy construct and rule as in Definition 4,
and finally use it in one’s lazy rewrite framework knowing that it is productive.

While we agree that the stream-TRS definitional style is compact, elegant,
and the required lazy rewriting strategy to evaluate them is well supported by
several programming languages, we conclude this section by warning the reader
that the more conventional stream-TRS style may sometimes, rather unexpect-
edly, lead to situations of what one may call accidental non-productivity. Con-
sider, for example, the following stream-TRS from [29]:

zeros → 0 : zeros f (x : s)→ g(f (s)) g(x : s)→ zeros

This stream-TRS follows the lazy definitional style and it is easy to see that
f (zeros) can only be the stream zeros, which is productive. However, unfor-
tunately, f (zeros) is not productive in the original sense, because f (zeros) →
f (0 :zeros)→ g(f (zeros))→∗ g2(f (zeros))→ . . . and there is no way to produce
a first 0 element. The problem here is that the lazy stream construct in the
definition of g prevents the rule from matching, because f (zeros) cannot be split
in a head and tail. Such a situation would have not appeared if one followed
a behavioral rewriting style, aiming at defining a terminating and coinductive
BRS like the following, which is immediately productive by Theorem 3:

hd(zeros)→ 0

tl(zeros)→ zeros

hd(f (s))→ hd(g(f (tl(s))))

tl(f (s))→ tl(g(f (tl(s))))

hd(g(s))→ 0

tl(g(s))→ zeros

One could argue that accidental non-productive situations like above are not an
artifact of lazy TRS rewriting as we are implying, but instead desirable. Even if
one agrees with that, we think that one may still want to eliminate accidental
non-productivity whenever possible, preferably even through automatic equiv-
alent TRS-transformations. We believe that the behavioral rewriting approach

11



proposed in this paper could help with this aspect, but our results in this direc-
tion are preliminary and so are only informally discussed in Section 7.

The idea is to devise more involved (stream-semantics preserving) transfor-
mations R 7→ Bi(R) (for different i indexes - i = 0 is the most basic, starting
point transformation) from stream-TRS’s into BRS’s , more precisely ones where
Bi(R) may be behaviorally productive also in situations where R is not necessar-
ily productive. Then one can use Theorem 3 and termination tools to check the
behavioral productivity of Bi(R), and finally report back the equivalent stream-
TRS R0(Bi(R)) which is now stream productive. One can also devise different
transformations B 7→ Ri(B) that make the resulting stream-TRS follow the more
common style that one uses when defining stream-TRS’s (e.g., replacing pairs
of behavioral rules hd(l) → h and tl(l) → t by lazy rules l → h : t ,etc.). Such
transformations are beyond our scope in this paper.

5 Termination and Coinductivity Imply Productivity

Productivity is an inherently difficult problem (see Section 8) and there are no
tools available that can check productivity in general. It is therefore important
to reduce the problem of checking productivity to other problems with better
tool support. In this section we give a practical criterion that reduces behavioral
productivity to termination in the standard sense, so that one can use off-the-
shelf termination tools to check productivity.

Theorem 3. Let B = ((Σ,∆), R) be a BRS such that Σ − (Σ�V ∪∆) contains
only operations of hidden result sort. Then B terminating and coinductive implies
B productive.

Proof. Let t be a hidden term and let C be a ∆-experiment for t. If t is a
(Σ�V ∪∆)-term then we are done. If t contains some operation in Σ−(Σ�V ∪∆),
which by hypothesis must be of hidden result sort, then since the result sort of
C[t] is visible it must be the case that C[t] contains a subterm of the form δ[f(u)]
for some f : s → h in (Σ�V ∪∆), some δ[∗:h] in ∆, and some tuple term u of
tuple sort s. Hence, by coinductivity, C[t] cannot be in normal form, so it can
be rewritten to some other term of visible sort. If the resulting term contains
any operation in Σ − (Σ�V ∪∆), then we can apply the same arguments above
and reduce it to another term of visible sort. Since R terminates, eventually the
resulting term will contain no operations in Σ − (Σ�V ∪∆), which proves that
B is productive for t. ut

The condition “Σ−(Σ�V ∪∆) contains only operations of hidden result sort”
in Theorem 3 is, unfortunately, necessary. Indeed, consider a stream BRS defining
a stream a with rules hd(a) → vis(a) and tl(a) → a, where vis : Stream → Bit
is some artificially included operation of visible result in Σ − (Σ�V ∪∆). This
BRS obviously terminates and is coinductive, but it is not productive because
hd(a) cannot be evaluated.

12



Fortunately, both this condition and the coinductivity of a BRS are trivial
syntactic checks. The only non-trivial hypothesis of Theorem 3 is the termina-
tion, but since all that is required is standard termination of a TRS, this theorem
allows for the use of off-the-shelf termination tools (e.,g., [12, 6]) for checking pro-
ductivity of behavioral rewrite systems. Note that this would not be possible if
we allowed rules of the form zeros → 0 : zeros; the point here is that such
non-terminating rules are unnecessary, because they can be replaced with their
coinductive variants and then productivity can be checked using conventional
termination techniques and tools.

Theorem 3 is reminiscent of a recent result by Zantema [29] which states
that, for some restricted variants of stream rewrite systems, termination implies
well-definedness; however, well-definedness of streams is formalized as a rather
intricate, model-theoretical concept in [29], while our formalization is based on
simple proof-theoretical/operational arguments.

Finally, Theorem 3 may find applications in deciding that certain classes of
stream TRS-es are productive, provided that one can decide termination for the
corresponding BRS-es; it would be interesting to see whether one can find this
way an alternative proof for the decidability of productivity result by Endrullis
et al. [10] for the particular class of stream constant specifications.

6 Behavioral Productivity Means Well-Specified Behavior

Behavioral productivity suggests, intuitively, well-specified behavior, that is, be-
havior which is not under-specified. However, it is not immediate what it means
for a term to be well-specified in our general behavioral context. To avoid the
complications and diversity that come with particular choices of models over
behavioral signatures (see [19] for several of them), we prefer to take an opera-
tional, or proof-theoretical approach here: we say that a term t is well-specified
iff it is indistinguishable by means of experiments (and rewriting) from a clone
t′ of it using cloned operations defined the same way as the original operations.
This notion of behavioral well-specifiedness is somehow dual to constructor-
based well-definedness. In this section we give an alternative but equivalent way
to understand productivity by means of well-specified behavior.

Definition 5. Given BRS B, let B �� t = t′ denote the behavioral join equiv-
alence of B: for any experiment C there is some term u with C[t]→∗ u←∗ C[t′].

Consider the stream term zeros in Example 1. BRS STREAM behaviorally well-
specifies zeros because one can show that STREAM �� zeros = zeros ′ for any other
stream zeros ′ specified the same way as zeros (i.e., STREAM includes hd(zeros ′)→
0 and tl(zeros ′)→ zeros ′). Similarly, STREAM well-specifies the stream operation
odd in Example 1, because one can behaviorally prove STREAM �� (∀S ) odd(S ) =
odd ′(S ) for any operation odd ′ defined the same way as odd (i.e., hd(odd ′(S ))→
hd(S ) and tl(odd ′(S )) → odd ′(tl2 (S ))). The CIRC tool [16] can prove these
properties automatically by circular coinduction. However, STREAM does not well-
specifies a constant stream a specified without any rule, because there is no way

13



to show that a = a′ for another constant a′. Also, it does not well-specifies a
constant stream a specified with rules hd(a) → 0 and tl(a) → odd(a), since
hd(tl2(a)) → hd(tl(odd(a))) → hd(odd(tl2(a))) → hd(tl2(a)) → . . . and simi-
larly for a clone a′ of a, with no chance to show that hd(tl2(a)) = hd(tl2(a′)).

Interestingly and perhaps intriguingly at first, the random stream in Exam-
ple 2 defined as hd(random)→ 0, hd(random)→ 1, and tl(random)→ random
is in fact well-specified. It is non-deterministic, but that is intended in its specifi-
cation; its non-determinism is not a consequence of under- or lack of specification.

As it is usually the case with “equality” relations defined in terms of joint
rewriting, one should be aware of the fact that non-confluent rewriting might
lead to equalities which are not semantically valid. For example in our case here,
since random can rewrite its bits to either 0 or 1, it is behaviorally join equivalent
to any other stream, in particular to zeros. To avoid such phenomena, we advice
the reader to only use the notion of behavioral join equivalence in combination
with term cloning, which is described below.

Definition 6. Given behavioral specification B = ((Σ,∆), R), let B′ extend B by
adding to Σ a copy σ′ of each σ ∈ Σ−(Σ�V ∪∆) and to R a copy l′ → r′ of each
l → r ∈ R, where l′ (resp. r′) is obtained by replacing each σ ∈ Σ − (Σ�V ∪∆)
in l (resp. r) with σ′. B (behaviorally) well-specifies term t iff B′ �� t = t′,
where t′ is obtained by replacing each σ ∈ Σ − (Σ�V ∪∆) in t with σ′.

Hence, B′ ”clones” each operation which is not a data operation or a deriva-
tive, as well as all the rules referring to those operations. Behavioral well-
specifiedness of a term t states that t is behaviorally equivalent to its correspond-
ing clone t′, so from a behavioral point of view, t can have only one meaning.

Theorem 4. B = ((Σ,∆), R) productive for t implies B well-defines t. Con-
versely, if the rules in R “do not introduce” operations in Σ − (Σ�V ∪∆), that
is, if for each (l → r) ∈ R it is the case that if l does not contain operations in
Σ− (Σ�V ∪∆) then r does not contain operations in Σ− (Σ�V ∪∆) either, then
B well-defines t implies B productive for t.

Proof. Suppose that B = ((Σ,∆), R) is productive on term t and let B′ =
((Σ′, ∆), R′) and t′ be the clone extension of B and the clone of t, respectively,
as explained in Definition 6. Let C be a ∆-experiment for t. Since B is productive,
there is some (Σ�V ∪∆)-term d such that C[t]

∗−→R d. We get C[t′]
∗−→R′ d using

the copies of the rules used in the above reduction. Hence, B ` C[t] = C[t′].
Since the experiment C is arbitrary, B′ �� t = t′.

Suppose now that B well-defines t and let B′ and t′ be the clone extension
of B and the clone of t, respectively, as explained in Definition 6. Let C be
a ∆-experiment for t. Since B well-defines t, there is some term u such that
C[t]→∗R u and C[t′]→∗R u. Since C[t]→∗R u and the rules of R do not introduce
operations in Σ−(Σ�V ∪∆), it follows that u cannot contain any clone operation
in Σ′−(Σ�V ∪∆). For the same reason, since C[t′]→∗R u, it follows that u cannot
contain any operation in Σ − (Σ�V ∪∆). The only possibility is then that u is a
(Σ�V ∪∆)-term, which proves that B is productive for t. ut

Note that all the productivities in Section 3 follow by Theorem 4.

14



7 Towards More Pragmatic Transformations

We have the following situation: on the one hand, term rewriting systems are
more compact and elegant for specifying infinite data structures or systems; on
the other hand, behavioral rewrite systems are more suitable for analyzing the
behavioral well-definedness (which is implied by the behavioral productivity).
The question is whether we can have the advantages of both approaches. We
strongly believe that the answer is yes, provided that we are able to define
appropriate mechanisms to safely translate from one approach to the other. In
this section we discuss some initial steps towards such mechanisms.

The transformation R 7→ B0(R) taking a stream-TRS into a BRS (see Defi-
nition 3) typically yields neither terminating nor coinductive BRS’s , so it is not
very practical. However, we have seen in Section 4 that there are non-productive
stream-TRS’s R for which we can find behavioral versions B(R) which are pro-
ductive. So, we may aim at finding transformations R 7→ B(R) which avoid the
accidental non-productivity. A partial positive answer is given by the algorithm
described in [29, 28]. That algorithm works fine only on a particular subclass of
stream-TRS’s and associates a BRS B1(R) with a stream-TRS R such that R
is well-defined (has a unique model) if and only if B1(R) is terminating. The
conditions on R ensures the fact B1(R) is coinductive and, by Theorem 3, we
obtain that if B1(R) is terminating then it is productive. We may further assume
that we have a transformation R1 associating a stream-TRS R1(B) with each
coinductive and terminating stream-BRS B such that the productivity is pre-
served. Then the composition of the two transformations R 7→ R1(B1((R))) may
transform a non-productive stream-TRS into a productive one. For instance, if
R1(B) includes rules of the form f(x : s) → h : t with h and t B-normal forms
of hd(f(x : s)) and respectively tl(f(x : s)), then the stream-TRS considered in
Section 4 is transformed in

zeros → 0 : zeros f (x : s)→ 0 : zeros g(x : s)→ 0 : zeros

which is productive (the anomalies are away).
Not only the streams can be specified as TRS’s with infinite rewriting. For

instance, the infinite binary trees defined in Example 6 are specified by the fol-
lowing TRS: ones → 1/ones, ones\

¬B/T1, T2\ → B/¬T1,¬T2\
B/T1, T2\+B′/T ′′1 , T

′
2\ → B⊕B′/T1+T ′1, T2+T ′2\

thue → 0/thue, thue + ones\

where / , \ : Bit Tree Tree → Tree is a constructor. Similarly, the two processes
defined in Section 1 can be specified by the rewrite rules

a→ 0; b b→ 1; a s2i → 0; s2i+1 s2i+1 → 0; s2i+2

where ; : Int State → State is a constructor.
The algorithm defining the transformation B1 can be adapted, e.g., for trees

or for processes. Like for streams, only a subclass of tree-TRS’s or process-TRS’s
can be transformed with such an algorithm; these subclasses can be defined by

15



adapting the conditions from Definition 1 in [29]. Unfortunately, a transforma-
tion which can be applied in the general case may be hard or impossible to
define. The main reason is given by the fact that it is hard or impossible to for-
mally state at this level of generality what it means for a BRS to be a “correct
behavioral version” of a given TRS.

We suggest the following methodology in order to have both the compactness
and the elegance of the TRS definitional style, as well as the behavioral well-
definedness/productivity for a given class of specifications:

1. formally define when a BRS is a correct behavioral version (e.g., specifies
the same data structure or system) of a given TRS from your class;

2. define a transformation B which associate a BRS B(R) with a given TRS R
from your class and prove that B(R) is a correct version of R;

3. when checking if a given TRS R is behaviorally productive, show that B(R)
is coinductive and terminating;

4. eventually, define a transformation R which associate a TRS with each coin-
ductive and terminating TRS in order to have a way to transform non-
productive TRS’s into productive ones.

8 Behavioral Productivity is a Π0
2 -Complete Problem

Behavioral equivalence is known to be a Π0
2 -complete problem, both for streams

[20] and in general [3]. Also, a series of recent results show that many rewriting
problems, including termination and stream productivity, are Π0

2 -complete [9, 7,
26, 11]. Here we show that the behavioral productivity problem is no exception.

Π0
2 is the class, or degree, in the arithmetic hierarchy consisting of predicates

π(z) of the form (∀x)(∃y) r(x, y, z), where r is a recursive (or decidable) pred-
icate and x, y, z range over natural numbers (or, equivalently, over recursively
enumerable domains). Π0

2 contains predicates which are strictly harder than
recursively enumerable or co-recursively enumerable. A canonical Π0

2 -complete
problem is Totality(M) := (∀x)(∃n) Stop(x, n,M), asking whether compu-
tational device (Turing machine, program, rewrite system, etc.) M stops on all
its inputs; here Stop(x, n,M) is the recursive predicate saying that machine M
stops in at most n steps on input x. The reader is referred to [23] for more details
on the arithmetic hierarchy and the class Π0

2 .
To see why, for example, the terminating problem for a rewrite system is

Π0
2 -complete [9, 26], consider TRS’s computing r.e. functions (see, e.g., Section

3.2 in Terese book [27]) instead of Turing machines and interpret Stop(x, n,M)
by ”the TRS M finds in at most n steps” all normal forms of the term x; then
Totality becomes exactly the terminating problem for TRS’s .

Theorem 5. The behavioral productivity problem is Π0
2 -complete.

Proof. We first show the membership to the class Π0
2 . Let B = ((Σ,∆), R) be

a BRS and let t be a hidden term. The predicate Search(t
?−→u, n,R), telling

that there is a reduction t
∗−→R u of length at most n, is recursive. The set of

16



(Σ�V ∪∆)-terms d is r.e. and therefore the predicate (∃d)C[t]
∗−→R d is equivalent

to (∃〈n, d〉)Search(C[t]
?−→d, n,R). Then the productivity problem is equivalent

to (∀C)(∃〈n, d〉)Search(C[t]
?−→d, n,R).

The Π0
2 -hardness of the behavioral productivity problem over behavioral

rewrite systems is proved using the reduction given by the transformation R 7→
B0(R), defined over stream-TRS’s in Section 4: The productivity problem for
stream-TRS’s is Π0

2 -hard [9] and this problem is reduced to the productivity
problem for the stream behavioral specifications by Theorem 1. We can now
conclude with the main result. ut

9 Conclusion

This paper investigates the role of term rewriting in behavioral reasoning. The
notion of term rewriting system is extended to that of behavioral rewrite system,
and a proper notion of productivity, called behavioral productivity, is given for
the new systems. Various aspects of the new notion are largely exemplified on
streams, infinite binary trees and processes. It is shown that behavioral produc-
tivity plays a similar role for coinductive specifications to that played by sufficient
completeness for inductive specifications. Behavioral productivity generalizes the
existing notion of productivity defined over stream rewriting systems. Two main
properties of the proposed behavioral approach are proved (under mild condi-
tions): termination yields behavioral productivity, and behavioral productivity is
equivalent to behavioral well-specification. The former property allows us to use
the existing tools for rewrite termination [12, 6] for checking behavioral produc-
tivity. It was also shown that behavioral productivity has the same complexity
as many other rewriting-related problems, namely it is Π0

2 -complete.

Even if behavioral productivity is defined for behavioral rewrite systems, it
can be extended to term rewrite systems by means of algorithms similar to that
described in [29], which associate behavioral versions to term rewrite systems.
Finding such algorithms for more general cases than that of streams is one of
the future work directions.

Productivity was defined for the first time for streams [5]. Then it was ex-
tended for infinite data structures used in functional programming [24]. See,
e.g., [8] for a review of the main approaches dealing with productivity. Recently,
productivity was intensively studied in the context of term rewriting systems
[10, 26]. Behavioral specifications were first introduced in [18]. Then behavioral
reasoning was intensively studied in different algebraic/logic frameworks [13, 2,
4, 19, 17, 14]. The behavioral rewrite systems introduced in this paper are an
instance of the parametric definition given in [22].

Acknowledgment. The work presented in this paper was supported by the
Romanian Contract 161/15.06.2010, SMISCSNR 602-12516 (DAK), and by the
USA grants NSF CCF-1218605, NSA H98230-10-C-0294, DARPA HACMS (SRI
subcontract) 19-000222, and Rockwell Collins 4504813093.

17



References

1. M. Bidoit and R. Hennicker. Observer complete definitions are behaviourally co-
herent. In OBJ/CAFEOBJ/MAUDE AT FORMAL METHODS ’99, pages 83–94.
THETA, 1999.

2. M. Bidoit, R. Hennicker, and A. Kurz. Observational logic, constructor-based logic,
and their duality. Theoretical Computer Science, 3(298):471–510, 2003.

3. S. Buss and G. Roşu. Incompleteness of behavioral logics. In Proceeding of
CMCS’00, volume 33 of ENTCS, pages 61–79. Elsevier, 2000.

4. R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of AMAST Series in
Computing. World Scientific, 1998.

5. E. W. Dijkstra. On the productivity of recursive definitions. EWD749, Sept. 1980.
6. F. Durán, S. Lucas, and J. Meseguer. Mtt: The maude termination tool (system

description). In IJCAR, pages 313–319, 2008.
7. J. Endrullis, J. Geuvers, and H. Zantema. Degrees of undecidability in term rewrit-

ing. In R. K. E. Grädel, editor, Computer Science Logic (23rd international work-
shop, CSL 2009, 18th annual conference of the EACSL, volume 5771 of LNCS,
pages 255–270. Springer, 2009.

8. J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity.
In LPAR ’08: Proceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, pages 79–96, Berlin, Heidelberg,
2008. Springer-Verlag.

9. J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of fractran and produc-
tivity. In Proceedings of the 22nd International Conference on Automated Deduc-
tion, CADE-22, pages 371–387, Berlin, Heidelberg, 2009. Springer-Verlag.

10. J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity
of stream definitions. Theor. Comput. Sci., 411(4-5):765–782, 2010.

11. J. Endrullis, D. Hendriks, and R. Bakhshi. On the Complexity of Equivalence of
Specifications of Infinite Objects. In Proc. ACM SIGPLAN Int. Conf. on Func-
tional Programming (ICFP 2013), pages 153–164. ACM, 2012.

12. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated Termination
Proofs with AProVE. In Proceedings of the 15th International Conference on
Rewriting Techniques and Applications (RTA-04), volume 3091 of Lecture Notes
in Computer Science, pages 210–220, 2004.

13. J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object
paradigm. In Recent Trends in Data Type Specification, number 785 in LNCS,
pages 91–126, 1994.

14. D. Hausmann, T. Mossakowski, and L. Schröder. Iterative Circular Coinduction
for CoCASL in Isabelle/HOL. In Proceedings of FASE’05, volume 3442 of LNCS,
pages 341–356. Springer, 2005.

15. D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang. Sufficient-completeness,
ground-reducibility and their complexity. Acta Inf., 28(4):311–350, 1991.

16. D. Lucanu, E.-I. Goriac, G. Caltais, and G. Roşu. CIRC : A behavioral verification
tool based on circular coinduction. In CALCO 2009, volume 5728 of LNCS, pages
433–442. Springer, 2009.

17. T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel. Algebraic-
coalgebraic specification in CoCASL. J. Log. Alg. Program., 67(1-2):146–197, 2006.

18. H. Reichel. Behavioural equivalence – a unifying concept for initial and final spec-
ifications. In the 3rd Hungarian Comp. Sci. Conference. Akademiai Kiado, 1981.

19. G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

18



20. G. Roşu. Equality of streams is a Π0
2 -complete problem. In Proceedgins of ICFP’06,

pages 184–191. ACM, 2006.
21. G. Roşu and J. Goguen. Hidden congruent deduction. In R. Caferra and G. Salzer,

editors, Automated Deduction in Classical and Non-Classical Logics, volume 1761
of Lecture Notes in Computer Science, pages 251–266. Springer, 2000. Papers from
First Order Theorem Proving 98 (FTP98), Vienna, November 1998.

22. G. Roşu and D. Lucanu. Circular Coinduction – A Proof Theoretical Foundation.
In CALCO 2009, volume 5728 of LNCS, pages 127–144. Springer, 2009.

23. H. Rogers. Theory of Recursive Functions and Effective Computability. The MIT
Press, paperback edition, 1987.

24. B. A. Sijtsma. On the productivity of recursive list definitions. ACM Trans.
Program. Lang. Syst., 11(4):633–649, 1989.

25. A. Silva and J. Rutten. Behavioural differential equations and coinduction for
binary trees. In WoLLIC 2007, volume 4576 of LNCS, pages 322–336, 2007.

26. J. G. Simonsen. TheΠ0
2 -completeness of most of the properties of rewriting systems

you care about (and productivity). In Proceedings of RTA’09, volume 5595 of
LNCS, pages 335–349, 2009.

27. Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

28. H. Zantema. A tool proving well-definedness of streams using termination tools. In
CALCO 2009, volume 5728 of Lecture Notes in Computer Science, pages 449–456.
Springer, 2009.

29. H. Zantema. Well-definedness of streams by termination. In RTA 2009, volume
5595 of LNCS, pages 164–178. Springer, 2009.

19


