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Abstract. This paper introduces matching logic, a novel framework for defin-
ing axiomatic semantics for programming languages, inspired from operational
semantics. Matching logic specifications are particular first-order formulae with
constrained algebraic structure, called patterns. Program configurations satisfy
patterns iff they match their algebraic structure and satisfy their constraints. Using
a simple imperative language (IMP), it is shown that a restricted use of the match-
ing logic proof system is equivalent to IMP’s Hoare logic proof system, in that any
proof derived using either can be turned into a proof using the other. Extensions
to IMP including a heap with dynamic memory allocation and pointer arithmetic
are given, requiring no extension of the underlying first-order logic; moreover,
heap patterns such as lists, trees, queues, graphs, etc., are given algebraically using
fist-order constraints over patterns.

1 Introduction

Hoare logic, often identified with axiomatic semantics, was proposed more than forty
years ago [15] as a rigorous means to reason about program correctness. A Hoare logic
for a language is given as a formal system deriving Hoare triples of the form {ϕ} s {ϕ′},
where s is a statement and ϕ and ϕ′ are state properties expressed as logical formulae,
called precondition and postcondition, respectively. Most of the rules in a Hoare logic
proof system are language-specific. Programs and state properties in Hoare logic are
connected by means of program variables, in that properties ϕ, ϕ′ in Hoare triples
{ϕ} s {ϕ′} can and typically do refer to program variables that appear in s. Moreover,
Hoare logic assumes that the expression constructs of the programming language are
also included in the logical formalism used for specifying properties, typically first-
order logic (FOL). Hoare logic is deliberately abstract, in that it is not concerned with
“low-level” operational aspects, such as how the program state is represented or how
the program is executed.

In spite of serving as the foundation for many program verification tools and frame-
works, it is well-known that it is difficult to specify and prove properties about the heap
(i.e., dynamically allocated, shared mutable objects) in Hoare logic. In particular, local
reasoning is difficult because of the difficulty of frame inference [23, 25, 29]. Also, it
is difficult to specify recursive predicates, because they raise both theoretical (consis-
tency) and practical (hard to automatically reason with) concerns. Solutions are either
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ad hoc [18], or involve changing logics [21]. Finally, program verifiers based on Hoare
logic often yield proofs which are hard to debug and understand, because these typically
make heavy use of encoding (of the various program state components into a flat FOL
formula) and follow a backwards verification approach (based on weakest precondition).

Separation logic takes the heap as its central concern and attempts to address the
limitations above by extending Hoare logic with special logical connectives, such as
the separating conjunct “∗” [23, 25], allowing one to specify properties that hold in
disjoint portions of the heap. The axiomatic semantics of heap constructs can be given in
a forwards manner using separation connectives. While program verification based on
separation logic is an elegant approach, it is unfortunate that one would need to extend
the underlying logic, and in particular theorem provers, to address new language features.

In an effort to overcome the limitations above and to narrow the gap between opera-
tional semantics (easy) and program verification (hard), we introduce matching logic,
which is designed to be agnostic with respect to the underlying language configuration,
as long as it can be expressed in a standard algebraic way. Matching logic is similar
to Hoare logic in many aspects. Like Hoare logic, matching logic specifies program
states as logical formulae and gives axiomatic semantics to programming languages
in terms of pre- and post-conditions. Like Hoare logic, matching logic can generically
be extended to a formal, syntax-oriented compositional proof system. However, unlike
Hoare logic, matching logic specifications are not flattened to arbitrary FOL formulas.
Instead, they are kept as symbolic configurations, or patterns, i.e., restricted FOL= (FOL
with equality) formulae possibly containing free and bound (existentially quantified)
variables. This allows the logic to stay the same for different languages—new symbols
can simply be added to the signature, together with new axioms defining their behavior.

Matching Logic Patterns. Patterns (Sec. 3) can be defined on top of any algebraic
specification of configurations. In this paper, the simple language IMP (Sec. 2) uses
two-item configurations 〈〈. . .〉k 〈. . .〉env〉, where 〈. . .〉k holds a fragment of program and
〈. . .〉env holds an environment (map from program variables to values). The order of
items in the configuration does not matter, i.e., the top 〈. . .〉 cell holds a set. We use the
typewriter font for code and italic for logical variables. A possible configuration γ is:

〈〈x := 1; y := 2〉k 〈x 7→ 3, y 7→ 3, z 7→ 5〉env〉

One pattern p that is matched by the above configuration γ is the FOL= formula:

∃a, ρ.((� = 〈〈x := 1; y := 2〉k 〈x 7→ a, y 7→ a, ρ〉env〉) ∧ a ≥ 0)

where “�” is a placeholder for configurations (regarded as a special variable). To see
that γ matches p, we replace � with γ and prove the resulting FOL= formula (bind ρ to
“z 7→ 5” and a to 3). For uniformity, we prefer to use the notation (described in Sec. 3)

〈〈x := 1; y := 2〉k 〈x 7→?a, y 7→?a, ?ρ〉env 〈?a ≥ 0〉form〉

for patterns, which includes pattern’s constraints as an item 〈. . .〉form in its structure
〈. . .〉, at the same time eliminating the declaration of locally bound variables but tagging
them with ? to distinguish them from other variables; we also allow free variables in
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patterns, acting as proof parameters (like in Hoare logic). It is this notation for patterns
that inspired us to call their satisfaction matching, which justifies the name of our logic.

Extending IMP with a heap gives us the language HIMP (Sec. 5), which uses
configurations of the form 〈〈. . .〉k 〈. . .〉env 〈. . .〉mem〉; one possible HIMP configuration is:

〈〈[x] := 5; z := [y]〉k 〈x 7→ 2, y 7→ 2〉env 〈2 7→ 7〉mem〉

describing a program that will first assign 5 to the location pointed to by x, then assign
the value pointed to by y to z. Note that pointers x and y are aliased here, so z will
receive 5. One of many patterns that are matched by the above configuration is:

〈〈[x] := 5; z := [y]〉k 〈x 7→?a, y 7→?a, ?ρ〉env 〈?a 7→?v, ?σ〉mem 〈?a ≥ 0〉form〉

The above pattern specifies all the configurations where x and y are allocated and aliased.
Matching logic can therefore express separation at the term level instead of at the formula
level; in particular, no disjointness predicate is needed (see Sec. 5 and 6). Note that the
constraint ?a ≥ 0 is redundant in the pattern above, because one can infer it from the
fact that the binding ?a 7→?v appears in 〈. . .〉mem (the cell 〈. . .〉mem wraps a map structure
whose domain is the non-negative integers). To simplify the presentation, in general we
assume that the 〈. . .〉form cell appearing in a pattern includes all the current constraints
of the pattern, i.e., not only those related to the program itself (like the ?a ≥ 0 on the
previous page) but also those pertaining to or resulting from the background mathematical
theories; in our implementation, for practical reasons we actually keep the two distinct
and only derive consequences of the background theories (like the ?a ≥ 0 above) by need.

Assignment in Matching vs. Hoare/Floyd Logic. Both Hoare logic and matching logic
are defined as language-specific proof systems, the former deriving triples {ϕ} s {ϕ′}
as explained and the latter deriving pairs of patterns Γ

V

Γ′, with the intuition that if
program configuration (which includes the code) γ matches Γ then the configuration γ′

obtained after completely reducing γ matches Γ′; we only discuss partial correctness
in this paper. To highlight a fundamental difference between Hoare logic and matching
logic, let us examine the assignment rules for each. The Hoare logic assignment rule,

{ϕ[e/x]} x := e {ϕ}

or (HL-asgn) in Fig. 1, is perhaps the most representative rule of Hoare logic, showing
how program variables and expressions are mixed in formulae: if the program state satis-
fies the formula ϕ[e/x] (i.e., ϕ in which all free occurrences of variable x are replaced by
expression e) before the assignment statement “x:=e”, then the program state will satisfy
ϕ after the execution of the assignment statement (IMP has side-effect-free expressions).

In contrast, the matching logic rule for assignment,

〈〈e〉k C〉

V

〈〈v〉k C〉
〈〈x := e〉k C〉

V

〈〈·〉k C[x← v]〉

or (ML-asgn) in Fig. 2, says that if e reduces to v in a program configuration matching
pattern 〈〈e〉k C〉 (for IMP, C only contains an environment item; however, we prefer
to use a meta-variable C to increase the modularity of our proof system), then after

3

AMAST'10, LNCS 6486, pp 142-162. 2010



executing the assignment “x := e” the configuration matches 〈〈·〉k C[x← v]〉, where the
“·” stands for the empty or completed computation and where C[x←v] is some operation
in the algebraic data type of configurations which updates the binding of x to v in C’s
environment; in the case of IMP, for example, this latter operation can be defined using
an equation 〈ρ〉env[x← v] = 〈ρ[v/x]〉env (we assume the map update operation _[_/_]
already defined as part of the mathematical background theory). The most apparent
difference is the forward proof style used. The proof proceeds in the order of execution,
and the environment is explicit (as an item in C), instead of encoded in a flat formula, like
in Hoare logic. In fact, replacing the patterns with actual configurations that match them
gives a rule that would not be out of place in standard big-step operational semantics.

Even though the matching rule above is a forward rule, it is not the Floyd rule [10]:

{ϕ} x := e {∃v. (x = e[v/x]) ∧ ϕ[v / x]}

The Floyd rule above is indeed forward, but the reader should notice that its use results
in the addition of an existential quantifier. For a given program, this rule might result in
the introduction of many quantifiers, which are often hard for verification tools to handle
tractably. Looked at in this light, the matching logic rule offers the best of both worlds—
the rule is both forwards and does not introduce quantifiers. Indeed, none of the matching
logic proof rules introduce quantifiers. Working forward is arguably more “natural”.
Additionally, as discussed in [12], working forward has a number of other concrete
advantages related to reverse engineering, testing, debugging, model-checking, etc.

Contributions. The main contribution of this paper is the formal introduction of match-
ing logic. We show that for the simple imperative language IMP, a restricted use of the
matching logic proof system is equivalent to a conventional Hoare logic proof system.
The translation from Hoare to matching logic is generic and should work for any lan-
guage, suggesting that any Hoare logic proof system admits an equivalent matching logic
proof system. However, the other translation, going from matching logic to Hoare logic,
appears to be language specific because it relies on finding appropriate encodings of pro-
gram configuration patterns into Hoare specifications; it is not clear that they always exist.

Section 2 discusses preliminaries and IMP. Secion 3 describes the details of matching
logic and gives a matching logic semantics to IMP. Using IMP, Section 4 establishes the
relationship between matching logic and Hoare logic. Section 5 shows how easily the
concepts and techniques extend to a language with a heap. Finally, Sec. 6 discusses an
example and our experience with a matching logic verifier implemented in Maude.

2 Preliminaries, the IMP Language, and Hoare Logic

Here we introduce material necessary to understand the contributions and results of this
paper. First we discuss background material, then the configuration and notations we
use for IMP, and finally Hoare logic by means of IMP.

Preliminaries. We assume the reader is familiar with basic concepts of algebraic spec-
ification and first-order logic with equality. The role of this section is to establish our
notation for concepts and notions used later in the paper. An algebraic signature (S, Σ) is
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a finite set of sorts S and a finite set of operation symbols Σ over sorts in S. For example,
Smay include sorts E for expressions and S for statements, and Σ may include operation
symbols like “if(_)_else_ : E×S ×S → S ”. Here we used the mixfix notation for oper-
ation symbols, where underscores are placeholders for arguments, which is equivalent to
the context-free or BNF notation. Since the latter is more common for defining program-
ming language syntax, we prefer it from here on; so we write “S F if (E) S else S ”.
We write Σ instead of (S, Σ) when S is understood or irrelevant. We let TΣ denote the
initial Σ-algebra of ground terms (i.e., terms without variables) and TΣ(X) denote the
free Σ-algebra of terms with variables in X, where X is an S-indexed set of variables.

We next briefly recall first-order logic with equality (FOL=). A first-order signature
(S, Σ, Π) extends an algebraic signature (S, Σ) with a finite set of predicate symbols Π .
FOL= formulae have the syntax ϕF t = t′ | π(t) | ∃X.(ϕ) | ¬ϕ | ϕ1 ∧ ϕ2, plus the usual
derived constructs ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, ∀X.(ϕ), etc., where t, t′ range over Σ-terms of the
same sort, π ∈ Π over atomic predicates, t over appropriate term tuples, and X over
finite sets of variables. Σ-terms can have variables; all variables are chosen from a fixed
sort-wise infinite S-indexed set of variables, Var. We adopt the notation ϕ[e/x] for the
capture-free substitution of all free occurrences of variable x by term e in formula ϕ. A
FOL= specification (S, Σ, Π,F ) is a FOL= signature (S, Σ, Π) plus a set of closed (i.e.,
no free variables) formulae F . A FOL= model M is a Σ algebra together with relations
for the predicate symbols in Π . Given any closed formula ϕ and any model M, we write
M |= ϕ iff M satisfies ϕ. If ϕ has free variables and ρ : Var ⇁ M is a partial mapping
defined (at least) on all free variables in ϕ, also called an M-valuation of ϕ’s free variables,
we let ρ |= ϕ denote the fact that ρ satisfies ϕ. Note that ρ |= ϕ[e/x] iff ρ[ρ(e)/x] |= ϕ.

IMP. Here is the syntax of our simple imperative language IMP, using BNF:

NatF naturals, Nat+ F positive naturals, IntF integers
PVarF identifiers, to be used as program variable names

E F Int | PVar | E1 op E2
S F skip | PVar := E | S 1;S 2 | if (E) S 1 else S 2 | while (E) S

Like C, IMP has no boolean expressions (0 means “false” and , 0 means “true”).

CfgF 〈Set[CfgItem]〉
CfgItemF 〈E | S 〉k | 〈Env〉env

EnvF Map[PVar, Int]

To give a matching logic semantics to a language,
one needs a rigorous definition of program configura-
tions, like in operational semantics. Besides a syntactic
term, a configuration may typically contain pieces of
semantic data that can be defined as conventional algebraic data types, such as associative
lists (e.g., for stacks, queues), sets (e.g., for resources held), maps (e.g., for environments,
stores), etc. There is no standard notation for configurations. We use the generic notation
from the K framework and rewrite logic semantics [20, 28], where configurations are
defined as potentially nested cell terms 〈contents〉label (the label may be omitted). The
cell contents can be any data-structure, including, e.g., sets of other cells. Here IMP’s
configurations are cells of the form 〈〈. . .〉k 〈. . .〉env〉 over the syntax in the box to the right.

How to define such cell configurations as algebraic data-types and then use them
to give operational semantics to languages is explained in detail in [20, 28]. The reader
may have noticed that our formal notion of configuration above is more “generous” than
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one may want it to be. Indeed, the syntax above allows configurations with arbitrarily
many 〈. . .〉k and 〈. . .〉env cells. While multiple 〈. . .〉k cells may make sense in the context
of concurrent languages (where each cell 〈. . .〉k would represent a concurrent thread or
process; see [20, 28]), having multiple environment cells at the same level with multiple
computation cells may indeed be confusing. If one wants to disallow such undesirable
configurations syntactically, then one can change the grammar above accordingly; for
example, one can replace the first two productions with “C ::= 〈〈E | S 〉k 〈Env〉env〉”, etc.

However, as argued in [28], allowing configurations with arbitrarily many and un-
typed nested cells has several advantages that are hard to ignore, particularly with regards
to the modularity and extendability of language definitions, so we (admittedly subjec-
tively) prefer them in general. To ensure that bad configurations are never produced, one
can check that the initial configuration is well-formed and that none of the subsequent
rewrite rules changes the structure of the configuration. As an analogy, language design-
ers often prefer to define language syntax grammars which are rather permissive, and
then prove that all the semantic reduction/rewrite rules preserve a carefully chosen notion
of well-definedness of the original program; this approach of not using the language
syntax grammar to define well-definedness allows more flexibility in designing various
type systems or abstractions over the language syntax. Configuration well-definedness
“preservation” proofs would be rather easy, but we do not address them in this paper.

We do not give IMP an operational semantics here, despite being trivial, since we
give it a Hoare logic semantics shortly, which suffices to later prove the soundness of
our matching logic semantics as well as its relationship to Hoare logic (Thm. 1). In our
companion report [27] we provide an operational semantics, together with direct proofs
of soundness for the Hoare logic (Fig. 1) and matching logic (Fig. 2).

·

{ϕ[e/x]} x := e {ϕ}
(HL-asgn)

{ϕ1} s1 {ϕ2}, {ϕ2} s2 {ϕ3}

{ϕ1} s1;s2 {ϕ3}
(HL-seq)

{ϕ ∧ (e , 0)} s1 {ϕ′},
{ϕ ∧ (e = 0)} s2 {ϕ′}

{ϕ} if (e) s1 else s2 {ϕ′}
(HL-if)

{ϕ ∧ (e , 0)} s {ϕ}
{ϕ} while (e) s {ϕ ∧ (e = 0)}

(HL-while)

Fig. 1. Hoare logic formal system for IMP.

Hoare Logic Proof System for IMP.
Fig. 1 gives IMP an axiomatic semantics
as a Hoare logic proof system deriving
(partial) correctness triples of the form
{ϕ} s {ϕ′}, where ϕ and ϕ′ are FOL formu-
lae called the pre-condition and the post-
condition respectively, and s is a state-
ment; the intuition for {ϕ} s {ϕ′} is that if
ϕ holds before s is executed, then ϕ′ holds
whenever s terminates. In addition to the
specific rules for IMP, there are generic
Hoare logic rules, such as consequence or
framing, that can be considered part of all Hoare logic proof systems.

In Hoare logic, program states are mappings from variables to values, and are
specified as FOL formulae—environment ρ “satisfies” ϕ iff ρ |= ϕ in FOL. Because
of this, program variables are regarded as logical variables in specifications; moreover,
because of the rule (HL-asgn) which may infuse program expression e into the pre-
condition, specifications in Hoare logic actually extend program expressions.

The signature of the underlying FOL is the subsignature of IMP including only the
expressions E and their subsorts. Its universe of variables, Var, is PVar. Assume some
background theory that can prove i1 op i2 = i1 opInt i2 for any i1, i2 ∈ Int, where opInt
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is the mathematical variant of the syntactic op; e.g., 7+Int2 = 9. Expressions e are allowed
as formulae as syntactic sugar for ¬(e = 0). Here are two examples of correctness triples:

{x > 0 ∧ z = old_z} z := x + z {z > old_z}
{∃z.(x = 2 ∗ z + 1)} x := x ∗ x + x {∃z.(x = 2 ∗ z)}

The first sequent says that the new value of z is larger than the old value after the
assignment, and the second says that if x is odd before the assignment then it is even after.

3 Matching Logic

We now describe matching logic and use it to give an axiomatic semantics to IMP.

Notions and Notations. To define a matching logic proof system, one needs to start with
a definition of configurations. Section 2 discussed IMP’s configuration as an example of
a two-subcell configuration, but one can have arbitrarily complex configurations. Let
L = (ΣL,FL) be a FOL= specification defining the configurations of some language. ΣL
is the signature of the language together with desired syntax for the semantic domains
and data-structures, such as numbers and operations on them, lists, sets, maps, etc., as in
Sec. 2, while the formulae in FL capture the desired properties of the various semantic
components in the configurations, such as those of the needed mathematical domains.
We may call L = (ΣL,FL) the background theory, because the formulae in FL are by
default assumed to hold in any context. Let Cfg be the sort of configurations in L.

Let us fix a modelTL ofL, written more compactly T . We think of the elements of T
as concrete data, and in particular of the elements of sort Cfg as concrete configurations.
Even though it is convenient to think of configurations and data as ground ΣL-terms, in
this paper we impose no initiality constrains on configurations or on their constituent
components; in other words, the formulae in FL are all the FOL= properties that we
rely on in subsequent proofs. If one needs properties of configuration components that
can only be proved by induction (e.g., commutativity of addition, associativity of list
append, etc.), then one is expected to add those properties as part of FL. In fact, we
can theoretically assume that FL is not finite, not even enumerable. In our automated
matching logic prover (see Sec. 6), FL consists of a finite set of equations, namely those
that turned out to be useful in the experiments that we’ve done so far (our current FL is
open to change and improvement); therefore, in our case we can conveniently pick T to
be the initial model of L, but that is not necessary. Let Var be a sortwise infinite set of
logical, or semantical variables, and let “�” be a fresh (� < Var) variable of sort Cfg.

While in provers it is useful to make a distinction between program variables and
logical variables, there is no theoretical distinction between these in Hoare logic. By
contrast, in matching logic these are completely different mathematical objects: the
former are syntactic constants in ΣL, while the latter are logical variables in Var.

Definition 1. (Simple) matching logic specifications for L, called configuration pat-
terns or more directly just patterns, are particular FOL= formulae over the configuration
signature ΣL above of the form ∃X.((� = c) ∧ ϕ), where:

– X ⊂ Var is the set of (pattern) bound variables; the remaining variables either in c
or free in ϕ are the (pattern) free variables; “�” appears exactly once in a pattern;
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– We call c the pattern structure; it is a term of sort Cfg that may contain logical
variables in Var (bound or not); it may (and typically will) also contain program
variables in PVar (e.g., in an environment cell), but they are constants, not variables;

– ϕ is the (pattern) constraint, an arbitrary FOL= formula.

We let Γ, Γ′, . . . , range over patterns. For example, the IMP pattern

∃x, y.((� = 〈〈x := y/x〉k 〈x 7→ x, y 7→ y, ρ〉env〉) ∧ x , 0 ∧ y = x ∗Int z)

specifies configurations whose code is “x := y/x” and the value held by x is not 0 and
is precisely z times smaller than the value held by y; variables ρ and z are free, so they
are expected to be bound by the proof context (like in Hoare logic, free variables in
specifications act as proof parameters).

Note that we optionally called our matching logic specifications in Def. 1 “simple”.
The reason for doing so is because one can combine such specifications into more
complex ones. For example, in our implementation briefly discussed in Sec. 6 we also
allow disjunctive patterns Γ∨Γ′, which are useful for case analysis. In this paper we limit
ourselves to simple matching logic specifications and we drop the adjective “simple”.

Let Var� be the set Var∪ {�} of variables Var extended with the special variable � of
sort Cfg. Valuations Var� → T then consist of a concrete configuration γ corresponding
to � and of a map τ : Var → T ; we write such valuations using a pairing notation,
namely (γ, τ) : Var� → T . We are now ready to introduce the concept of pattern
matching that inspired the name of our axiomatic semantic approach.

Definition 2. Configuration γmatches pattern ∃X.((� = c) ∧ ϕ) iff there is a τ : Var→ T
such that (γ, τ) |= ∃X.((� = c) ∧ ϕ); if τ is relevant, we say that γ τ-matches the pattern.

(γ, τ) |= ∃X.((� = c) ∧ ϕ) is equivalent to saying that there exists θτ : Var→ T with
θτ�Var\X = τ�Var\X such that γ = θτ(c) and θτ |= ϕ.

We next introduce an important syntactic sugar notation for the common case when
configurations are bags of cells, that is, when “CfgF 〈Bag[CfgItem]〉”. If that is the case,
then we let C, C′, . . . , range over configuration item bag terms, possibly with variables.

Notation 1 If L’s configurations have the form “Cfg F 〈Bag[CfgItem]〉”, if 〈C〉 is a
Cfg-term (with variables), and if the variables in X are clear from context (say, their name
starts with a “?”, e.g., ?x), then we may write 〈C 〈ϕ〉form〉 instead of ∃X.((� = 〈C〉) ∧ ϕ).

The rationale for this notation is twofold: (1) it eases the writing and reading of
matching logic proof systems by allowing meta-variables C, C′ to also range over the ad-
ditional subcell when not important in a given context; and (2) it prepares the ground for
deriving matching logic provers from operational semantics over such cell configurations.

With this notation, the IMP pattern below Def. 1 can be written more uniformly as

〈〈x := y/x〉k 〈x 7→?x, y 7→?y, ρ〉env 〈?x , 0 ∧ ?y =?x ∗Int z〉form〉

Since patterns are special FOL= formulae, one can use FOL= reasoning to prove proper-
ties about patterns; e.g., one can show that the above pattern implies the one below:

〈〈x := y/x〉k 〈x 7→?x, y 7→?x ∗Int z, ρ〉env 〈?x , 0〉form〉
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A matching logic axiomatic semantics is given as a proof system for deriving sequents
called correctness pairs, which can be thought of as “symbolic big-step sequents” as they
relate configurations before the execution of a program fragment to configurations after:

Definition 3. A matching logic (partial) correctness pair consists of two patterns Γ and
Γ′, written Γ

V

Γ′. We call Γ a pre-condition pattern and Γ′ a post-condition pattern.

Assuming a hypothetical big-step operational semantics of the language under consid-
eration, (partial) correctness pairs specify properties of big-step sequents (over concrete
configurations) γ ⇓ γ′, of the form “if γ τ-matches Γ then γ′ τ-matches Γ′”. For example,
if Γ is the IMP pattern above (any of them), then Γ

V

〈〈·〉k 〈x 7→ z, ?ρ〉env 〈true〉form〉 will
be derivable with our matching logic proof system of IMP discussed in the sequel.

|= Γ ⇒ Γ1, Γ1

V

Γ′1, |= Γ′1 ⇒ Γ′

Γ

V

Γ′ (ML-conseq)
Γ1

V

Γ2

ξ(Γ1)

V

ξ(Γ2)
(ML-subst)

〈C 〈µ〉L〉

V

〈C′ 〈µ′〉L〉 (ML-frame)
〈C 〈µ, F〉L〉

V

〈C′ 〈µ′, F〉L〉

Like in Hoare logic, most matching logic proof
rules are language-specific, but there are also some
general purpose proof rules. For example, the rules
(ML-conseq) and (ML-subst) in the right box (ξ
is a substitution over free variables) can be used
in any matching logic proof context. Also like in
Hoare logic, the formulae in the background theory
can be used when proving implications. Theoreti-
cally, this is nothing special because one can always assume that each pattern constraint
also includes the background formulae FL; practically, one would probably prefer to
minimize the complexity of the patterns and thus keep the background theory separate,
making use of its formulae whenever needed. Unlike in Hoare logic, in matching logic
one can also add framing rules for any of the cells in one’s language configurations, not
only for the 〈. . .〉form cell. The rule (ML-frame) in the box above-right shows a generic
framing rule for a cell L (for notational simplicity, we used the cell-based Notation 1; if
L is form, then _, _ is _ ∧ _). One should add framing rules on a case-by-case basis; for
some complex configurations, one may not want to add framing rules for all cells. More
details about framing and other generic rules can be found in our technical report [26].

Matching Logic Proof System for IMP. Figure 2 gives a matching logic proof sys-
tem for IMP. To make it resemble the more familiar Hoare logic system (Fig. 1), we
adopt the following notations:

(C 〈ρ〉env)[x← v] for C 〈ρ[v/x]〉env

(C 〈ϕ〉form) ∧ ϕ′ for C 〈ϕ ∧ ϕ′〉form

C[e] ≡ v for 〈〈e〉k C〉

V

〈〈v〉k C〉
〈C〉 s 〈C′〉 for 〈〈s〉k C〉

V

〈〈·〉k C′〉

The meta-variables C, C′, C1, C2 above and in Fig. 2 range over appropriate configuration
item bag terms so that the resulting patterns are well-formed.The first notation can be
included as an operation in the algebraic signature or IMP’s configurations; the third
works because IMP’s expressions are side-effect-free (so C does not change). In the
case of IMP, configurations have only two subcells, the code and an environment. Using
generic meta-variables like C instead of more concrete configuration item terms is key
to the modularity of matching logic definitions and proofs. Indeed, to add heaps to IMP
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C[e] ≡ v
〈C〉 x := e 〈C[x← v]〉

(ML-asgn)

〈C1〉 s1 〈C2〉, 〈C2〉 s2 〈C3〉

〈C1〉 s1;s2 〈C3〉
(ML-seq)

C[e] ≡ v, 〈C ∧ (v , 0)〉 s1 〈C′〉, 〈C ∧ (v = 0)〉 s2 〈C′〉
〈C〉 if (e) s1 else s2 〈C′〉

(ML-if)

C[e] ≡ v, 〈C ∧ (v , 0)〉 s 〈C〉
〈C〉 while (e) s 〈C ∧ (v = 0)〉

(ML-while)

·

C[i] ≡ i
(ML-int)

·

(C 〈x 7→ v, ρ〉env)[x] ≡ v
(ML-lookup)

C[e1] ≡ v1, C[e2] ≡ v2

C[e1 op e2] ≡ v1 opInt v2
(ML-op)

Fig. 2. IMP matching logic formal system

in Sec. 5 we only add new rules for the new language constructs (none of the rules in
Fig. 2 changes), and let C include an additional heap cell.

The rule (ML-lookup) in Fig. 2, which desugared says 〈〈x〉k 〈x 7→ v, ρ〉env C〉config

V

〈〈v〉k 〈x 7→ v, ρ〉env C〉config is derivable, shows an interesting and common situation where
a configuration contains a term which, in order to make sense, needs to satisfy additional
constraints. Indeed, the term “x 7→ v, ρ” appears in the 〈. . .〉env cell which wraps a map
structure, so one expects that x is not in the domain of ρ. To avoid notational clutter, we
always assume that sufficient conditions are given in configurations’ constraints so that
each term appearing in any configuration is well-defined, according to its sort’s corre-
sponding notion of well-definedness in the background theory, if any. If the background
theory does not axiomatize well-definedness for certain sorts, then one may miss the
opportunity to derive certain correctness pairs, but it is important to understand that one
cannot derive wrong facts. Indeed, the correctness pair above is sound no matter whether
C’s constraint states that x is not in the domain of ρ or not, because if x is in the domain
of ρ then no concrete configuration will ever match the pre-condition.

Despite its operational flavor (e.g., see (ML-asgn)), the matching logic proof system
is as rigorous and compositional as the Hoare logic one; in particular, the rule (ML-
while) is almost identical to (HL-while). The soundness of this particular matching logic
proof system follows directly from Thm. 1 and the soundness of the Hoare logic proof
system in Fig. 1. We additionally have a direct proof of soundness, with respect to an
operational semantics, that can be found in our technical report [27].
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4 Equivalence of Hoare and (a Restricted Form of) Matching Logic

We show that, for IMP, any property provable using Hoare logic is also provable using
matching logic and vice-versa. Our proof reductions are mechanical in both directions,
which means that one can automatically generate a matching logic proof from any Hoare
logic proof and vice-versa. For the embedding of Hoare logic into matching logic part we
do not use the fact that the configuration contains only an environment and a computation,
so this result also works for other languages that admit Hoare logic proof systems.

Before we proceed with the technical constructions, we need to impose a restriction
on the structure of matching logic patterns to be used throughout this section. Note that
a pattern of the form 〈C 〈x 7→ x〉env〉 specifies configurations whose environments only
declare x (and its value is x), while a pattern 〈C 〈·〉env〉 specifies configurations with empty
(or “·”) environments. Thus, one is able to derive 〈〈x 7→ x〉env〉 x := x − x 〈〈x 7→ 0〉env〉,
but it is impossible to derive 〈〈·〉env〉 x := x − x 〈〈x 7→ 0〉env〉: one will never be able
to “evaluate” x in the empty environment. However, note that the obvious Hoare logic
equivalent, namely {true} x := x − x {x = 0}, is unconditionally derivable. To avoid such
situations, we: (1) fix a finite set of program variables Z ⊂ PVar which is large enough
to include all the program variables that appear in the original program that one wants to
verify; and (2), restrict the IMP matching logic patterns to ones whose environments have
the domain precisely Z. The need for this restriction in order to prove the equivalence of
the two formal systems suggests that matching logic patterns allow for more informative
specifications than Hoare logic. Also, we assume that Z ⊆ Var is a set of “semantic
clones” of the program variables in Z, that is, Z = {z | z ∈ Z}, and that the semantic
variables in Z are reserved only for this purpose. Also, let ρZ be the special environment
mapping each program variable z ∈ Z into its corresponding semantic clone z ∈ Z.

We first define mappings H2M and M2H taking Hoare logic correctness triples
to matching logic correctness pairs, and matching logic correctness pairs to Hoare
logic correctness triples, respectively. Then we show in Thm. 1 that these mappings
are logically inverse to each other and that they take derivable sequents in one logic
to derivable sequents in the other logic; for example, if a correctness triple {ϕ} s {ϕ′}
is derivable with the Hoare logic proof system in Fig. 1, then the correctness pair
H2M({ϕ} s {ϕ′}) is derivable with the matching logic proof system in Fig. 2.

4.1 H2M: From Hoare to Matching Logic

Hoare logic makes no distinction between program and logic variables. Let variables in
Hoare specifications but not in the original program be semantic variables in Var. Let
H2M(ϕ, s) be an auxiliary map taking formulae ϕ and statements s to patterns as follows:

H2M(ϕ, s) def
= ∃Z.((� = 〈〈s〉k 〈ρZ〉env〉) ∧ ρZ(ϕ))

Hence, H2M(ϕ, s) is a pattern whose code is s, whose environment ρZ maps each z ∈ Z
in ϕ or in s into its semantic clone z ∈ Z, and whose constraint ρZ(ϕ) renames all the
program variables in ϕ into their semantic counterparts. We now define the mapping
from Hoare logic correctness triples into matching logic correctness pairs as follows:

H2M({ϕ} s {ϕ′}) def
= H2M(ϕ, s)

V

H2M(ϕ′, ·)
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For example, if Z = {x, z} then H2M ({x > 0 ∧ z = u} z := x + z {z > u}) is

∃x, z.((� = 〈〈z := x + z〉k 〈x 7→ x, z 7→ z〉env〉) ∧ x > 0 ∧ z = u)V

∃x, z.((� = 〈〈skip〉k 〈x 7→ x, z 7→ z〉env〉) ∧ z > u)

The resulting correctness pairs are quite intuitive, making use of pattern bound variables
as a bridge between the program variables and the semantic constraints on them.

4.2 M2H: From Matching to Hoare Logic

Given an environment ρ = (x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn), let ρ be the FOL= formula
x1 = v1 ∧ x2 = v2 ∧ . . . ∧ xn = vn. We define the mapping M2H taking matching logic
statement correctness pairs into Hoare logic correctness triples as follows:

M2H (∃X.((� = 〈〈s〉k 〈ρ〉env〉) ∧ ϕ)

V

∃X′.((� = 〈〈skip〉k 〈ρ
′〉env〉) ∧ ϕ′)

)
= {∃X.(ρ ∧ ϕ)} s {∃X′.(ρ′ ∧ ϕ′)}

For example, if Γ

V

Γ′ is the correctness pair in Sec. 4.1, then M2H(Γ

V

Γ′) is

{∃x, z.(x = x ∧ z = z ∧ x > 0 ∧ z = u)} z := x + z {∃x, z.(x = x ∧ z = z ∧ z > u)}

We say that two FOL formulae ϕ1 and ϕ2 are logically equivalent iff |= ϕ1 ⇔ ϕ2.
Moreover, correctness triples {ϕ1} s {ϕ

′
1} and {ϕ2} s {ϕ

′
2} are logically equivalent iff

|= ϕ1 ⇔ ϕ2 and |= ϕ′1 ⇔ ϕ′2; similarly, matching logic correctness pairs Γ1

V

Γ′1 and
Γ2

V

Γ′2 are logically equivalent iff |= Γ1 ⇔ Γ2 and |= Γ′1 ⇔ Γ′2. Thanks to the rules (HL-
conseq) and (ML-conseq), logically equivalent sequents are either both or none derivable.
Since ∃x, z.(x = x∧z = z∧x > 0∧z = u) is logically equivalent to x > 0∧z = u and since
∃z.(z = z ∧ z > u) is logically equivalent to z > u, we can conclude that the correctness
triple M2H(Γ

V

Γ′) above is logically equivalent to {x > 0 ∧ z = u} z := x + z {z > u}.

Theorem 1 (Equivalence of Matching Logic and Hoare Logic for IMP). Any given
Hoare triple {ϕ} s {ϕ′} is logically equivalent to M2H(H2M({ϕ} s {ϕ′})), and any match-
ing logic correctness pair Γ

V

Γ′ is logically equivalent to H2M(M2H(Γ

V

Γ′)).
Moreover, for any Hoare logic proof of {ϕ} s {ϕ′} one can construct a matching logic
proof of H2M({ϕ} s {ϕ′}), and for any matching logic proof of Γ

V

Γ′ one can construct
a Hoare logic proof of M2H(Γ

V

Γ′). (Proof given in [27])

5 Adding a Heap

We next work with HIMP (IMP with a heap), an extension of IMP with dynamic
memory allocation/deallocation and pointer arithmetic. We show that the IMP matching
logic formal system extends modularly to HIMP. The heap allows for introducing and
axiomatizing heap data-structures by means of pointers, such as lists, trees, graphs, etc.
Unlike in separation logic where such data-structures are defined by means of recursive
predicates, we define them as ordinary term constructs, with natural FOL= axioms saying
how they can be identified and/or manipulated in configurations or patterns.
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(〈ρ〉env 〈σ〉mem C)[e] ≡ v, where ?p ∈ Var is a fresh variable
〈〈ρ〉env 〈σ〉mem C〉 x := cons(e) 〈〈ρ[?p/x]〉env 〈?p 7→ [v], σ〉mem C ∧ (?p ≥ 0)〉

(ML-cons)

(〈v 7→ v′, σ〉mem C)[e] ≡ v
〈〈v 7→ v′, σ〉mem C〉 dispose(e) 〈〈σ〉mem C〉

(ML-dispose)

(〈ρ〉env 〈v 7→ v′, σ〉mem C)[e] ≡ v
〈〈ρ〉env 〈v 7→ v′, σ〉mem C〉 x := [e] 〈〈ρ[v′/x]〉env 〈v 7→ v′, σ〉mem C〉

(ML-[lookup])

(〈v1 7→ v′2, σ〉mem C)[(e1, e2)] ≡ (v1, v2)
〈〈v1 7→ v′2, σ〉mem C〉 [e1] := e2 〈〈v1 7→ v2, σ〉mem C〉

(ML-[mutate])

Fig. 3. HIMP Matching logic formal system (these rules to be added to those in Fig. 2)

S F ... | PVar := cons(List[E])
| dispose(E)
| PVar := [E]
| [E1] := E2

CfgItemF . . . | 〈Mem〉mem

MemF Map[Nat+, Int]

HIMP Configuration. The configuration of HIMP
extends that of IMP with a heap, or memory cell,
as shown in the right box. A heap is a (partial) map
structure just like the environment, but from positive
naturals (also called pointers) to integers. We use no
special connective to construct heaps, as they are sim-
ply maps like any other. Our heap-related constructs
are based on those described by Reynolds [25]. The cons construct is used to simultane-
ously allocate memory and assign to it, while [E] is used for lookup when on the right-
hand side of an assignment, and mutation when on the left-hand side. This is very much
like the ∗ operator in C. Finally, dispose(E) removes a single mapping from the heap.

Matching Logic Definition of HIMP. Figure 3 shows the rules that need to be added
to those in Fig. 2 to obtain a matching logic formal system for HIMP. Since patterns
inherit the structure of configurations, matching logic is as modular as the underlying
configuration. In particular, none of the matching logic rules in Fig. 2 need to change. To
obtain a matching logic semantics for HIMP, all we need to add is one rule for each new
language construct, as shown in Fig. 3. To save space, we write “C[(e1, e2, . . . , en)] ≡
(v1, v2, . . . , vn)” for “C[e1] ≡ v1 and C[e2] ≡ v2 and . . . and C[en] ≡ vn” and “?p 7→
[v1, ..., vn]” instead of “?p 7→ v1, ..., ?p 7→ vn”. One can now easily derive, e.g.,

〈〈x := cons(1, x); [x] := [x + 1]; dispose(x + 1)〉k 〈x 7→ x, ρ〉env 〈σ〉mem 〈ϕ〉form〉V

〈〈·〉k 〈x 7→?p, ρ〉env 〈?p 7→ x, σ〉mem 〈ϕ∧?p ≥ 0〉form〉

where x, ρ and σ are free variables of appropriate sorts and ?p is a bound variable.
As we already mentioned, to keep the presentation simple we assume that a pattern’s

constraint is strong enough to guarantee that each term appearing in the pattern is
well-defined. That is the reason for which we added the constraint p? ≥ 0 to the post-
condition of the bottom correctness pair in (ML-cons) in Fig. 3, and also the reason for
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which we did not require that the pre-conditions’ constraints in the rules (ML-dispose),
(ML-lookup) and (ML-mutate) guarantee that v (first two) and v′ (the third), resp., are
not in the domain of σ. As discussed at the end of Sec. 3, matching logic proof rules
are still sound even if the patterns’ constraints do not guarantee well-definedness of
all the terms appearing in the pattern, but if this information is missing then one may
not be able to derive certain correctness pairs that would otherwise be derivable. In
our implementation, we prefer to keep the formula in 〈. . .〉form free of well-definedness
information and, instead, collect that information by need from the rest of the pattern;
e.g., we do not need to add the constraint ?p ≥ 0 in our implementation of (ML-cons).

Defining and Using Heap Patterns. Most complex programs organize heap data in
structures such as linked lists, trees, graphs, etc. To verify such programs, one needs to
be able to specify and reason about heap structures. Consider linked lists whose nodes
consist of two consecutive locations: an integer (data) followed by a pointer to next node
(or 0 for the list end). One is typically interested in reasoning about the sequences of
integers held by such list structures. It is then natural to define a list heap constructor
“list : Nat × List[Int] → Mem” taking a pointer (the location where the list starts) and
a sequence of integers (the data held by the list, with “ε” for the empty sequence and
“:” for sequence concatenation) and yielding a fragment of memory. It does not make
sense to define this as one would a function, since it is effectively non-deterministic, but
it can be axiomatized as a FOL= formula as follows, in terms of patterns:

〈〈list(p, α), σ〉mem 〈ϕ〉form C〉 ⇔ 〈〈σ〉mem 〈p = 0 ∧ α = ε ∧ ϕ〉form C〉
∨ 〈〈p 7→ [?a,?q], list(?q,?β), σ〉mem 〈α =?a:?β ∧ ϕ〉form C〉

In words, a list pattern can be identified in the heap starting with pointer p and
containing integer sequence α iff either the list is empty, so it takes no memory and
its pointer is null (0), or the list is non-empty, so it holds its first element at location p
and a pointer to a list containing the remaining elements at location p + 1. Using this
axiom, one can prove properties about patterns, such as:

〈〈5 7→ 2, 6 7→ 0, 8 7→ 3, 9 7→ 5, σ〉mem C〉 ⇒ 〈〈list(8, 3 : 2), σ〉mem C〉, and
〈〈list(8, 3 : 2), σ〉mem C〉 ⇒ 〈〈8 7→ 3, 9 7→?q, ?q 7→ 2, ?q + 1 7→ 0, σ〉mem C〉

Similar axiomatizations are given in [27] for other heap patterns (trees, queues, graphs)
and are supported by our current matching logic verifier (briefly discussed below).

It is worthwhile emphasizing that we are here talking about axiomatic, as opposed to
constructive, definitions of heap patterns. Axioms like the one for lists above are simply
added to the background theory. Like with the other axioms in the background theory,
one can attempt to prove them from basic principles of mathematics and constructive
definitions if one wants to have full confidence in the results of verification.

6 Proof Example and Practical Experience

In order to give a more practical understanding of matching logic, here we describe
a concrete example as well as a quick description of our verification results using a
matching logic verifier for a fragment of C implemented in Maude, which is available
for download and online execution at http://fsl.cs.uiuc.edu/ml.
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List-Reverse Example. Consider proving that a program correctly reverses a list. A
similar proof, but using separation logic, is given by Reynolds in [25]. Given x pointing
to the beginning of a linked list, the following HIMP program reverses that list in-place:

p:=0; while (x!=0) ( y:=[x+1]; [x+1]:=p; p:=x; x:=y )

We assume each list node is two contiguous memory locations, the first containing
the value, the second containing a pointer to the next node. Initially [x] is the value of
the first node and [x + 1] points to the second node in the list.

Matching logic uses the standard notion of loop-invariants to prove loops correct.
The fundamental idea is to find one pattern that is always true when leaving the loop,
whether the loop condition is true or false. As before, the order of the configuration
pieces does not matter. The invariant configuration for our reverse program can be:

〈〈p 7→?p, x 7→?x, y 7→?x〉env 〈list(?p, ?β), list(?x, ?γ)〉mem 〈rev(α) = rev(?γ):?β〉form〉

where the environment binds program variable p to pointer ?p and program variables
x and y to the same value ?x. In the memory we see list(?p, ?β) and list(?x, ?γ)—two
disjoint lists, the first starting with pointer ?p and holding sequence ?β and the second
starting with pointer ?x and holding sequence ?γ. Unlike in separation logic where “list”
needs to be a predicate holding in a separate portion of the heap, in matching logic “list”
is an ordinary operation symbol added to the signature and constrained through axioms
as shown in Sec. 5. The pattern formula guarantees that rev(α) = rev(?γ):?β, where
α, the original sequence of integers in the list pointed to by x, is the only non-bound
variable in the pattern. Now we see how the pattern progresses as we move into the loop:

〈〈p 7→?p, x 7→?x, y 7→?x〉env 〈list(?p,?β), list(?x,?γ)〉mem 〈rev(α)= rev(?γ):?β ∧?x , 0〉form〉

Note, we use bold to indicate changes. Inside the body of the while loop, we know that the
guarding condition is true, so we assume it by adding it to our formula. Now that we know
?x is not nil, we can expand the definition of the list list(?x, ?γ) in the heap and thus yield:〈

〈p 7→?p, x 7→?x, y 7→?x〉env 〈list(?p, ?β), ?x 7→ [?a, ?x′], list(?x′, ?γ′)〉mem

〈rev(α) = rev(?γ):?β ∧ ?x , 0 ∧ ?γ = ?a:?γ′〉form

〉
This pattern now contains all the configuration infrastructure needed to process the four
assignments y:=[x+1]; [x+1]:=p; p:=x; x:=y, which yield the following pattern:〈
〈p 7→?x, x 7→?x′, y 7→?x′〉env 〈list(?p, ?β), ?x 7→ [?a, ?p], list(?x′, ?γ′)〉mem

〈rev(α) = rev(?γ):?β ∧ ?x , 0 ∧ ?γ =?a:?γ′〉form

〉
The list axiom can be applied again to the resulting pattern to reshape its heap into
one having a list at ?x. We can additionally use the fact that ?γ =?a:?γ′ to rewrite our
rev(α) = rev(?γ):?β to rev(α) = rev(?a:?γ′):?β. The axioms for reverse then tell us this
is equivalent to rev(α) = rev(?γ′):?a:?β. We therefore obtain the following pattern:〈

〈p 7→?x, x 7→?x′, y 7→?x′〉env 〈list(?x, ?a:?β), list(?x′, ?γ′)〉mem

〈rev(α) = rev(?γ′):?a:?β ∧ ?x , 0〉form

〉
Now we are in a position to prove that this pattern logically implies the original invariant.
Recall that bound variables are quantified existentially. It is then easy to see that since
this is a more specific pattern than the invariant itself, the invariant follows logically from
this pattern. Thus, we have shown that the invariant always holds after exiting the loop.
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assume
<config>
<env> p |-> ?p, x |-> ?x, y |-> ?y </env>
<heap> list(?x)(A) </heap>
<form> TrueFormula </form>

</config> ;
p = 0 ;

invariant
<config>
<env> p |-> ?p, x |-> ?x, y |-> ?y </env>
<heap> list(?p)(?B), list(?x)(?C) </heap>
<form> rev(A)===rev(?C)::?B </form>

</config> ;
while(x != 0) {
y = *(x + 1) ;
*(x + 1) = p ;
p = x ;
x = y ;

}
assert
<config>
<env> p |-> ?p, x |-> ?x, y |-> ?y </env>
<heap> list(?p)(rev(A)) </heap>
<form> TrueFormula </form>

</config> ;

Fig. 4. The reverse example in our matching logic prover

Experience with Our Verifier. We have implemented a matching logic verifier for a
fragment of C, using Maude [4]. Since matching logic is so close to operational semantics,
our implementation essentially modifies a rewriting logic executable semantics of the
language, in the style presented in [20, 28], turning it into a matching logic prover. Our
prover extends the language with assume, assert, and invariant commands, each
taking a pattern. For example, Figure 4 shows the list-reverse example above, as given to
our verifier. After execution, the following result is output to the user:

rewrites: 3146 in 5ms cpu (5ms real) (524420 rewrites/second)
result Result: 2 feasible and 3 infeasible paths

Our verifier is path-based, cutting paths as quickly as found infeasible. Each assertion
(including the two implicit ones associated to an invariant) results in a proof obligation,
namely that the current pattern matches (or implies) the asserted one. To prove such
implications, we implemented a simple FOL= prover which: (1) skolemizes the variables
bound in the hypothesis pattern; (2) iterates through each subcell in the hypothesis pattern
and attempts to match its contents against the corresponding cell in the conclusion, this
way accumulating a substitution of the variables bound in the conclusion pattern; (3)
the computed substitution is applied on the fly, together with equational simplification
axioms for various mathematical domains (such as integer arithmetic, lists, trees, etc.); (4)
the remaining matching tasks which cannot be solved using Maude’s term matching and
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the above substitution propagation, are added to the constraints of the conclusion pattern;
(5) eventually, all is left is the two 〈. . .〉form cells, which may generate an implication
of formulae over various domains; if that is the case, we send the resulting formula to
the Z3 SMT solver (we have modified/recompiled Maude for this purpose). In most of
our experiments, including the one in Fig. 4, our Maude domain axiomatizations were
sufficient to discard all proof obligations without a need for an external SMT solver.

One can download or use our matching logic verifier through an online interface at
http://fsl.cs.uiuc.edu/ml. The following examples are available on the website
and can be verified in less than 1 second (all of them, together; we use a 2.5GHz Linux
machine to run the online interface): the sum of numbers from 1 to n, three variants of list
reverse, list append, list length, queue enqueuing and dequeuing, transferring elements
from one queue to another (using transfer of ownership and stealing), mirroring a tree,
converting (the leaves of) a tree to a list, and insertion-, bubble-, quick- and merge-sort
using linked lists as in this paper. All proofs are of complete correctness, not only memory
safety. Additionally, both aspects are always verified using a single prover—there is no
need to have one prover to verify correctness and another to verify memory safety. In
fact, matching logic makes no distinction between the two kinds of correctnesses.

We have also verified the Schorr-Waite graph marking algorithm [13] (used in
garbage collection); the details can be found in [27]. Our verifier automatically generated
and proved all 227 paths in a few seconds. The formalization uses novel axiomatizations
of clean and marked partial graphs, as well as a specific stack-in-graph structure, which
records that during the execution of Schorr-Waite the heap consists at any time of such
a stack and either a clean or a marked partial subgraph. To the best of our knowledge,
this is the first time the partial correctness of this algorithm has been automatically
verified. We use the word “automatically” in the sense that no user intervention is
required to make the proof go through other than correctly describing the invariant.
Previous automated efforts have either proved only its memory safety [16] or a version
restricted to trees [19] automatically.

7 Conclusion, Related Work and Future Work

This paper introduced matching logic and showed how it relates to the most traditional
logics for program verification, Hoare logic. Matching logic program specifications are
constrained algebraic structures, called patterns, formed by allowing (and constraining)
variables in program configurations. Configurations satisfy patterns iff they match their
structure consistently with their constraints. Matching logic formal systems mimic (big-
step) operational semantics, making them relatively easy to turn into forwards-analysis
program verifiers. However, specifications tend to be more verbose in matching logic than
in Hoare logic, because one may need to mention a larger portion of the program config-
uration. On the other hand, matching logic appears to handle language extensions better
than Hoare logic, precisely because it has direct access to the program configuration.

Matching logic is related to many verification approaches; here we only briefly dis-
cuss its relationships to Floyd/Hoare logics, evolving algebra/specifications, separation
logic, shape analysis, and dynamic logic. There are many Hoare-logic-based verification
frameworks, such as ESC/Java [9], Spec# tool [1], HAVOC [17], and VCC [5]. Ca-
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duceus/Why [8,16] proved many properties relating to the Schorr-Waite algorithm. How-
ever, their proofs were not entirely automated. The weakness of traditional Hoare-like ap-
proaches is that reasoning about non-inductively defined data-types and about heap struc-
tures tend to be difficult, requiring extensive manual intervention in the proof process.

The idea of regarding a program (fragment) as a specification transformer to analyze
programs in a forwards-style is very old. In fact, Floyd did precisely that in his seminal
1967 paper [10]: if ϕ holds before x := e is executed, then ∃v. (x = e[v/x]) ∧ ϕ[v / x]
holds after. Thus, the assignment statement can be naturally regarded as a transition, or a
rewrite, from one FOL formula to another. Equational algebraic specifications have also
been used to express pre- and post-conditions and then verify programs in a forwards
manner using term rewriting [11]. Evolving specifications [24], building upon intuitions
from evolving algebra and ASMs, adapt and extend this basic idea to compositional
systems, refinement and behavioral specifications. Many other verification approaches,
some discussed above or below, can be cast as formula-transforming ones, and matching
logic makes no exception. What distinguishes the various approaches is the formalism
and style used for specifications. What distinguishes matching logic is its apparently
very low level formalism, which drops no detail from the program configuration, which
makes it resemble operational semantics. The other approaches we are aware of attempt
to do the opposite, namely to use formalisms which are as abstract as possible. Matching
logic builds upon the belief that there are some advantages of working with explicit
configuration patterns instead of abstract formulae, and that the use of symbolic variables
in configurations can still offer a comfortable level of abstraction by only mentioning
in each rule those configuration components which are necessary.

Separation logic [23, 25] is an extension of Hoare logic. There are many variants and
extensions of separation logic that we cannot discuss here. There is a major difference
between separation and matching logic: the former extends Hoare logic to work better
with heaps, while matching logic attempts to provide an alternative to Hoare logics in
which the program configuration structure is explicit in the specifications, so heaps are
treated uniformly just like any other structures in the configuration. Smallfoot [3] and
jStar [7] are separation logic tools with good support for proving memory safety.

Shape analysis [29] allows one to examine and verify properties of heap structures.
It has been shown to be quite powerful when reasoning about heaps, leading to an
automated proof of total correctness for a variant of the Schorr-Waite algorithm [19]
restricted to binary trees. The ideas of shape analysis have also been combined with
those of separation logic [6] to quickly infer invariants for programs operating on lists.

Dynamic logic (DL) [14] extends FOL with modal operators to embed program
fragments within program specifications. For example, a partial correctness Hoare triple
{ϕ} s {ψ} can be represented as a DL formula ϕ→ [s]ψ, where the meaning of the formula
[s]ψ is “after executing s, a state may be reached which satisfies ψ”. The advantage
of dynamic logic is that programs and specifications co-exits in the same logic, so one
needs no other encodings or translations. Perhaps the most mature program verification
project based on dynamic logic is KeY [2]. The KeY project and matching logic have
many common goals and similarities. Particularly, both attempt to serve as an alternative,
rather than an extension, to Hoare logic, and both their current implementations rely
on symbolic execution rather than weakest precondition. Even though in principle DL
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can employ FOL= and configurations, its current uses are still less explicit than the
patterns used in matching logic, so one may still need logical encodings of configuration
components such as stacks, heaps, pointer maps, etc. It could also be possible to devise a
dynamic matching logic where the program fragment is pulled out from patterns and
moved into modalities. However, one of the practical benefits of matching logic is that its
patterns make no distinction between code or other configuration components, allowing
to have transitions/rewrites between patterns in which the code is not involved at all
(e.g., defining message delivery, or garbage collection).

Finally, there is a large body of work on embedding various semantic styles, including
operational ones, into higher-level formalisms, and then using the latter to formally relate
two or more semantics of the same language, or to prove properties about the embedded
languages or about their programs. Relating semantics is practical, because one can
use some semantics for some purposes and other for other purposes (e.g., executability
versus verification). A representative example in this category is [22], which does that for
a language almost identical to our IMP. Note, however, that there is a sharp distinction
between such embedding approaches and matching logic, both in purpose and in shape.
Matching logic is not an embedding of an operational semantics or of anything else;
it is a program verification logic, like Hoare logic, but one inspired from operational
semantics. We proved its relationship to Hoare logic in this paper to put it in context,
and not to use their relationship as a basis for program verification; in fact, we advocate
that one can have some benefits from using matching logic instead of Hoare logic for
program verification. Nevertheless, like Hoare logic or other semantics, matching logic
can also be embedded into higher-level formalisms and then use the latter to mechanize
proofs of relationships to other semantics (such as the result claimed in this paper), or
to even verify programs. Our current implementation itself can be regarded as such an
embedding of matching logic, namely into rewrite logic.

Matching logic is new, so there is much work left to be done. The intrinsic separation
available in matching logic might simplify verifying concurrent programs with shared
resource access. Also, we would like to infer pattern loop invariants; since configurations
in our approach are just ground terms that are being rewritten by semantic rules, and
since patterns are terms over the same signature with constrained variables, we believe
that narrowing and/or anti-unification can be good candidates to approach the problem.
Since our matching logic verification approach makes language semantics practical, we
believe that it will stimulate interest in giving formal rewrite logic semantics to various
programming languages. Finally, we have paid no attention to compact the representation
of patterns in user annotations; we are experimenting with a variant of our prover in
which the environment is implicit, so one needs not mention it in patterns anymore.
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