
K: A Semantic Framework for
Programming Languages and

Formal Analysis Tools

Grigore Rosu a,1

a University of Illinois at Urbana-Champaign, USA

Abstract. We give an overview of the K framework, following the lecture notes
presented by the author at the Marktoberdorf Summer School in year 2016.

Keywords. formal semantics, program verification, rewriting, K

Introduction

Recently, operational semantics of several real languages have been proposed, e.g.,
of C [10,15], Java [5], JavaScript [4,26], Python [13,27], PHP [11], CAML [25],
EVM [17,16] thanks to the development of semantics engineering frameworks like PLT-
Redex [20], Ott [33], Lem [22], K [29,30], etc., which make defining an operational se-
mantics for a programming language almost as easy as implementing an interpreter, if
not easier. Operational semantics are comparatively easy to define and understand, re-
quire little formal training, scale up well, and, being executable, can be tested. Thus, they
are typically used as trusted reference models for the defined languages.

Despite their advantages, operational semantics are rarely used directly for program
verification; the general belief is that proofs tend to be low-level, as they work directly
with the corresponding transition system. Hoare [18] or dynamic [14] logics are typically
used, as they allow higher level reasoning. These come at the cost of (re)defining the
language semantics as a set of abstract proof rules, which are harder to understand and
trust. The state-of-the-art in mechanical program verification is to develop and prove such
language-specific proof systems sound w.r.t. a trusted operational semantics [23,19,1],
but that needs to be done for each language separately and is labor intensive.

Defining even one complete semantics for a real language like C or Java is already
a huge effort. Defining multiple semantics, each good for a different purpose, is at best
uneconomical, with or without proofs of soundness w.r.t. the reference semantics. It is
therefore not surprising that many practical program verifiers forgo defining a semantics
altogether, and instead they implement ad-hoc verification condition (VC) generation,
sometimes via (unverified) translations to intermediate verification languages like Boo-
gie [2] or Why3 [12]. For example, program verifiers for C like VCC [6] and Frama-
C [12], and for Java like jStar [9] take this approach. Also, none of the 35 verifiers that

1E-mail: grosu@illinois.edu



Deductive 
program 
verifier

Parser

Interpreter

Compiler

(semantic) 
Debugger

Symbolic 
execution

Model 
checker

Formal Language Definition 
(Syntax and Semantics)

Test-case 
generation

Figure 1. Architecture of the K framework, powered by matching logic

participated in the 2016 software verification competition (SV-COMP) [3] appear to be
based on a formal semantics of any kind. The consequence is that such tools cannot be
trusted. We would like program verifiers, ideally, to produce proof certificates whose
trust base is only an operational semantics of the target language, same as mechanical
verifiers based on Coq [21] or Isabelle [24] do, but without the effort to define any other
semantics of the same language, either directly as a separate proof system or indirectly
by extending the operational semantics with language-specific lemmas. We would like
program verifiers, ideally, to take an operational semantics of a language as input and to
yield, as output, a verifier for that language which is as easy to use and as efficient as
verifiers specifically developed for that language.

The K framework [29,30] (http://kframework.org), illustrated in Figure 1. was
born from our belief that programming languages must have formal definitions, and that
tools for a given language, such as interpreters, compilers, state-space explorers, model
checkers, deductive program verifiers, etc., can be derived from just one reference formal
definition of the language, which is executable. No other semantics for the same language
should be needed. This is the ideal scenario and there is enough evidence that it is within
our reach in the short term. For example, [7] presents a program verification module of
K, based on matching logic [28], which takes the respective operational semantics of
C [15], Java [5], and JavaScript [26] as input and yields automated program verifiers
for these languages, capable of verifying challenging heap-manipulating programs at
performance comparable to that of state-of-the-art verifiers specifically crafted for those
languages. A precursor of this verifier, MatchC [31], has an online interface at http:
//matching-logic.org where one can verify dozens of predefined or new programs.

This paper gives a short overview of author’s lectures notes presented at the Mark-
toberdorf Summer School in 2016.

1. Simple Language Definitions in K

In this section we illustrate K by means of defining two canonical languages, one func-
tional and another imperative. Many other languages, some significantly more complex,

http://kframework.org
http://matching-logic.org
http://matching-logic.org


were presented during the Marktoberdorf seminars and can be found in the K tutorial,
available online at http://kframework.org.

1.1. LAMBDA

Here we show a simple functional language definition in K, called LAMBDA, using a
substitution style.

Substitution

We need the predefined substitution module2, so we require it with the command below.
Then we import its module called SUBSTITUTION in our LAMBDA module below.

require "substitution.k"

module LAMBDA

imports SUBSTITUTION

Basic Call-by-value λ -Calculus

We first define a conventional call-by-value λ -calculus, making sure that we declare the
lambda abstraction construct to be a binder, the lambda application to be strict, and the
parentheses used for grouping as a bracket. Syntax in K is defined using the familiar
BNF notation, with terminals enclosed in quotes and nonterminals starting with capital
letters. K actually extends BNF with several attributes, some of which described in the
sequel. The strict constructs can evaluate their arguments in any (fully interleaved)
order. Here is the initial syntax of our λ -calculus:

syntax Val ::= Id

| "lambda" Id "." Exp [binder]

syntax Exp ::= Val

| Exp Exp [left, strict]

| "(" Exp ")" [bracket]

syntax KVariable ::= Id

syntax KResult ::= Val

β -reduction

rule (lambda X:Id . E:Exp) V:Val => E[V / X]

Integer and Boolean Builtins

The LAMBDA arithmetic and Boolean expression constructs are simply rewritten to
their builtin counterparts once their arguments are evaluated. The operations with sort
suffixes in the right-hand sides of the rules below are builtin and come with the corre-
sponding builtin sort. Note that the variables appearing in these rules have integer sort.
That means that these rules will only be applied after the arguments of the arithmetic
constructs are fully evaluated to K results; this will happen thanks to their strictness
attributes declared as annotations to their syntax declarations (below).

2Substitution can be defined fully generically in K (not shown here), and then used to give semantics to
various constructs in various languages.

http://kframework.org


syntax Val ::= Int | Bool

syntax Exp ::= Exp "*" Exp [strict, left]

| Exp "/" Exp [strict]

> Exp "+" Exp [strict, left]

> Exp "<=" Exp [strict]

rule I1 * I2 => I1 *Int I2

rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0

rule I1 + I2 => I1 +Int I2

rule I1 <= I2 => I1 <=Int I2

Conditional

Note that the if construct is strict only in its first argument.

syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)]

rule if true then E else _ => E

rule if false then _ else E => E

Let Binder

The let binder is a derived construct, because it can be defined using λ .

syntax Exp ::= "let" Id "=" Exp "in" Exp

rule let X = E in E':Exp => (lambda X . E') E [macro]

Letrec Binder

We prefer a definition based on the µ construct. Note that µ is not really necessary, but
it makes the definition of letrec easier to understand and faster to execute.

syntax Exp ::= "letrec" Id Id "=" Exp "in" Exp

| "mu" Id "." Exp [binder]

rule letrec F:Id X:Id = E in E' => let F = mu F . lambda X . E in E' [macro]

rule mu X . E => E[(mu X . E) / X]

endmodule

Compiling the Definition and Executing LAMBDA Programs

The K definition of LAMBDA is now complete. We can compile it using the command

$ kompile lambda.k

Then we can execute programs using the krun command. For example, if the file
factorial.lambda contains the LAMBDA program

letrec f x = if x <= 1 then 1 else (x * (f (x + -1)))

in (f 10)

then the command

$ krun factorial.k

yields the expected result 3628800.



1.2. IMP

Below is the K semantic definition of the classic IMP language. IMP is considered a
folklore language, without an official inventor, and has been used in many textbooks
and papers, often with slight syntactic variations and often without being called IMP.
It includes the most basic imperative language constructs, namely basic constructs for
arithmetic and Boolean expressions, and variable assignment, conditional, while loop
and sequential composition constructs for statements.

Syntax

module IMP-SYNTAX

This module defines the syntax of IMP. Note that <= is sequentially strict and has
a LATEX attribute making it display as ≤, and that && is strict only in its first argument,
because we want to give it a short-circuit semantics.

syntax AExp ::= Int | Id

| AExp "/" AExp [left, strict]

> AExp "+" AExp [left, strict]

| "(" AExp ")" [bracket]

syntax BExp ::= Bool

| AExp "<=" AExp [seqstrict, latex({#1}\leq{#2})]

| "!" BExp [strict]

> BExp "&&" BExp [left, strict(1)]

| "(" BExp ")" [bracket]

syntax Block ::= "{" "}"

| "{" Stmt "}"

syntax Stmt ::= Block

| Id "=" AExp ";" [strict(2)]

| "if" "(" BExp ")"

Block "else" Block [strict(1)]

| "while" "(" BExp ")" Block

> Stmt Stmt [left]

An IMP program declares a set of variables and then executes a statement in the
state obtained after initializing all those variables to 0. K provides builtin support for
generic syntactic lists: List{Nonterminal, terminal} stands for terminal-separated lists of
Nonterminal elements.

syntax Pgm ::= "int" Ids ";" Stmt

syntax Ids ::= List{Id,","}

endmodule

We are done with the definition of IMP’s syntax.

Semantics

module IMP

imports IMP-SYNTAX

This module defines the semantics of IMP. Before you start adding semantic rules
to a K definition, you need to define the basic semantic infrastructure consisting of defi-
nitions for results and the configuration.



Values and results

IMP only has two types of values, or results of computations: integers and Booleans. We
here use the K builtin variants for both of them.

syntax KResult ::= Int | Bool

Configuration

The configuration of IMP is trivial: it only contains two cells, one for the computation
and another for the state. For good encapsulation and clarity, we place the two cells inside
another cell, the “top” cell which is labeled T.

configuration <T color="yellow">

<k color="green"> $PGM:Pgm </k>

<state color="red"> .Map </state>

</T>

The configuration variable $PGM tells the K tool where to place the program. More
precisely, the command “krun program” parses the program and places the resulting
K abstract syntax tree in the k cell before invoking the semantic rules described in the
sequel. The .Map in the state cell is K’s way to say “nothing”. Technically, it is a con-
stant which is the unit, or identity, of all maps in K (similar dot units exist for other K
structures, such as lists, sets, multi-sets, etc.).

Arithmetic expressions

The K semantics of each arithmetic construct is defined below.

Variable lookup

A program variable X is looked up in the state by matching a binding of the form X 7→ I
in the state cell. If such a binding does not exist, then the rewriting process will get
stuck. Thus our semantics of IMP disallows uses of uninitialized variables. Note that the
variable to be looked up is the first task in the k cell (the cell is closed to the left and open
to the right), while the binding can be anywhere in the state cell (the cell is open at both
sides).

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

Arithmetic operators

There is nothing special about these, but note that K’s configuration abstraction mech-
anism is at work here! That means that the rewrites in the rules below all happen at the
beginning of the k cell.

rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0

rule I1 + I2 => I1 +Int I2



Boolean expressions

The rules below are straightforward. Note the short-circuited semantics of &&; this is the
reason we annotated the syntax of && with the K attribute strict(1) instead of strict.

rule I1 <= I2 => I1 <=Int I2

rule ! T => notBool T

rule true && B => B

rule false && _ => false

Blocks and Statements

There is one rule per statement construct except for if, which needs two rules.

Blocks

The empty block {} is simply dissolved. The · below is the unit of the computation list
structure K, that is, the empty task. Similarly, the non-empty blocks are dissolved and
replaced by their statement contents, thus effectively giving them a bracket semantics;
we can afford to do this only because we have no block-local variable declarations yet
in IMP. Since we tagged the rules below as "structural", the K tool structurally erases
the block constructs from the computation structure, without considering their erasure
as computational steps in the resulting transition systems. You can make these rules
computational (dropping the attribute structural) if you do want these to count as
computational steps.

rule {} => . [structural]

rule {S} => S [structural]

Assignment

The assigned variable is updated in the state. The variable is expected to be declared,
otherwise the semantics will get stuck. At the same time, the assignment is dissolved.

rule <k> X = I:Int; => . ...</k> <state>... X |-> (_ => I) ...</state>

Sequential composition

Sequential composition is simply structurally translated into K’s builtin task sequential-
ization operation. You can make this rule computational (i.e., remove the structural

attribute) if you want it to count as a computational step. Recall that the semantics of a
program in a programming language defined in K is the transition system obtained from
the initial configuration holding that program and counting only the steps corresponding
to computational rules as transitions (i.e., hiding the structural rules as unobservable, or
internal steps).

rule S1:Stmt S2:Stmt => S1 ~> S2 [structural]

Conditional

The conditional statement has two semantic cases, corresponding to when its condition
evaluates to true or to false. Recall that the conditional was annotated with the at-
tribute strict(1) in the syntax module above, so only its first argument is allowed to
be evaluated.



rule if (true) S else _ => S

rule if (false) _ else S => S

While loop

We give the semantics of the while loop by unrolling. Note that we preferred to make
the rule below structural.

rule while (B) S => if (B) {S while (B) S} else {} [structural]

Programs

The semantics of an IMP program is that its body statement is executed in a state ini-
tializing all its global variables to 0. Since K’s syntactic lists are internally interpreted as
cons-lists (i.e., lists constructed with a head element followed by a tail list), we need to
distinguish two cases, one when the list has at least one element and another when the
list is empty. In the first case we initialize the variable to 0 in the state, but only when
the variable is not already declared (all variables are global and distinct in IMP). We
prefer to make the second rule structural, thinking of dissolving the residual empty int;

declaration as a structural cleanup rather than as a computational step.

rule <k> int (X,Xs => Xs);_ </k> <state> Rho:Map (.Map => X|->0) </state>

requires notBool (X in keys(Rho))

rule int .Ids; S => S [structural]

endmodule

Compiling the Definition and Executing IMP Programs

After compilation with the command kompile imp.k, we can execute programs. If
sum.imp contains the following program:

int n, sum;

n = 100;

sum = 0;

while (!(n <= 0)) {

sum = sum + n;

n = n + -1;

}

then krun sum.imp yields the final configuration

<T>

<k> . </k>

<state>

n |-> 0

sum |-> 5050

</state>

</T>

2. Program Verification

One of the very basic design decisions of K was to naturally support program verifica-
tion for the defined languages. That is, to provide a language-independent reasoning in-



frastructure in addition to its language-independent execution infrastructure, which can
then be used with any programming language by simply plugging in its semantics as
a set of axioms. And, more importantly, to achieve the above in an ideal, mathemati-
cally grounded manner. That is, to have a fixed logic with a fixed sound and (relatively)
complete proof system, where all the various programming languages become theories,
about which we can reason using the fixed proof system, execution corresponding to just
one particular proof for a reachability property. By “fixed logic” we therefore mean that
it does not depend on any particular programming language. This is in sharp contrast to
many logics used for program verification, such as Hoare logic, dynamic logic, or sepa-
ration logic, which are in fact more like “design patterns”: you have a “Hoare logic for
Java”, a “dynamic logic for C”, a “separation logic for JavaScript”, etc.

The logical foundation of K is reachability logic (see [7] for a recent reference)
for dynamic properties, which uses matching logic (see [28] for a recent reference) for
static properties. We do not discuss these logics here; instead we encourage the inter-
ested reader to consult the above-mentioned references. Here we only show how to do
program verification with K. The first step is to specify what you want to prove. Spec-
ifications can be written using the already existing K rule syntax; both the rules used
for giving the language semantics and the rules used to specify program properties are
reachability rules in reachability logic, which is the only type of sentence that reachabil-
ity logic supports. One useful way to think when writing specifications is the following:
“supposing that I want to add the program or fragment of program as a new construct to
my language, what would its semantics be?”. Let us consider the IMP language and its
sum.imp program discussed in Section 1.2. We claim that the following K rule properly
captures the intended semantics of the sum program:

rule

<k>

int n, sum;

n = N:Int;

sum = 0;

while (!(n <= 0)) {

sum = sum + n;

n = n + -1;

}

=>

.

</k>

<state>

.Map

=>

n |-> 0

sum |-> ((N +Int 1) *Int N /Int 2)

</state>

requires N >=Int 0

The rule above says that if the sum program is put in the <k> cell, with program
variable n assigned a mathematical (or symbolic) variable N of sort Int, constrained to be
larger than or equal to zero (the rule condition), and with an empty state, then the program
rewrites to nothing and the state rewrites to one containing bindings of the program
variables to their expected mathematical values. This is a partial correctness argument, in
the sense that the program is allowed to not terminate [7]. We urge the reader to note that



the above is nothing but a normal K rule, containing only one variable3, N of integer sort,
and a requires clause; for comparison, the rule for division in Section 1.2 also contained
a requires clause, but two variables and a smaller term in its left-hand side.

K does not currently do any automatic specification inference, so the user is required
to supply all the helping specifications. In our case here, we need to abstract the behavior
of the while loop. The usual approach, following the Hoare logic style, is to provide
a loop invariant, that is, a tight property that holds at each iteration of the loop and
implies the postcondition once the loop condition becomes negative. In our case, such an
invariant would state that n is bound to some symbolic value N′ with N′ ≥ 0 and sum to
symbolic value (N−N′)∗ (N+N′+1)/2. Hoare logic can be mechanically translated to
reachability logic [32], so we can follow the same approach if we choose to. But we can
often do proofs more elegantly and intuitively with reachability logic, by summarizing
the effect of the entire loop with one reachability rule instead of focusing on the invariant.
For example, we can add the following specification for the while loop:

rule

<k>

while (!(n <= 0)) {

sum = sum + n;

n = n + -1;

}

=>

.

...</k>

<state>...

n |-> (N:Int => 0)

sum |-> (S:Int => S +Int ((N +Int 1) *Int N /Int 2))

...</state>

requires N >=Int 0

This rule states the obvious: when executed with n bound to4 N and sum bound to S,
when the loop exits n is bound to 0 and S is bound to the properly incremented value.

To verify the above using K, put both rules above in a module extending the IMP
semantics and save it in a file, say sum-spec.k. Then invoke the krun tool with the
option �prove on this file. It should return true. There is also an option to see all the
queries that K makes to Z3 [8] during the verification process.

3. More Complex Language Definitions in K

K scales. Several real-life languages have been defined following a style similar to that
in Section 1, such as: C [10,15], Java [5], JavaScript [26], Python [13,27], PHP [11], and
more recently, EVM [16]. Then properties about programs in these languages have been
verified using a style similar to that in Section 2. We cannot discuss any of these large
language definitions here, but we can add a few more features to IMP to show how the
modularity of K facilitates the process of defining large languages.

3The program variables n and sum are technically constants of sort Id.
4The N in this rule has nothing to do with the N in the previous rule, for the same reason for which the same

variable names used in the different rules in Section 1 had nothing to do with each other. Technically, each rule
is assumed universally quantified over its free variables.



IMP++ extends the IMP language with the features listed below:

Strings and concatenation of strings. Strings are useful for the print statement,
which is discussed below. For string concatenation, we use the same + construct
that we use for addition (so we overload it).

Variable increment. We only add a pre-increment construct: ++x increments variable
x and evaluates to the incremented value. Variable increment makes the evalua-
tion of expressions have side effects, and thus makes the evaluation strategies of
the various language constructs have an influence on the set of possible program
behaviors.

Input and output. IMP++ adds a read() expression construct which reads an integer
number and evaluates to it, and a variadic (i.e., it has an arbitrary number of ar-
guments) statement construct print(e1,e2,...,en) which evaluates its argu-
ments and then outputs their values. Note that the K tool allows to connect the
input and output cells to the standard input and output buffers, this way compiling
the language definition into an interactive interpreter.

Abrupt termination. The halt statement simply halts the program. The K tool shows
the resulting configuration, as if the program terminated normally. We therefore as-
sume that an external observer does not care whether the program terminates nor-
mally or abruptly, same like with exit statements in conventional programming
languages like C.

Dynamic threads. The expression construct spawn s starts a new concurrent thread
that executes statement s, which is expected to be a block, and evaluates immedi-
ately to a fresh thread identifier that is also assigned to the newly created thread.
The new thread is given at creation time the environment of its parent, so it can ac-
cess all its parent’s variables. This allows for the parent thread and the child thread
to communicate; it also allows for races and “unexpected” behaviors, so be care-
ful. For thread synchronization, IMP++ provides a thread join statement construct
“join t;”, where t evaluates to a thread identifier, which stalls the current thread
until thread t completes its computation.

Blocks and local variables. IMP++ allows blocks enclosed by curly brackets. Also,
IMP’s global variable declaration construct is generalized to be used anywhere as
a statement, not only at the beginning of the program. As expected, the scope of
the declared variables is from their declaration point till the end of the most nested
enclosing block.

Syntax

module IMP-SYNTAX

IMP++ adds several syntactic constructs to IMP. Also, since the variable declaration
construct is generalized to be used anywhere a statement can be used, not only at the
beginning of the program, we need to remove the previous global variable declaration of
IMP and instead add a variable declaration statement construct.

We do not re-discuss the constructs which are taken over from IMP, except when
their syntax has been subtly modified (such as, e.g., the syntax of the previous “state-
ment” assignment which is now obtained by composing the new assignment expression
and the new expression statement constructs). For execution purposes, we tag the ad-



dition and division operations with the addition and division tags. These attributes
have no theoretical significance, in that they do not affect the semantics of the language in
any way. They only have practical relevance, specific to our implementation of the K tool.
Specifically, we can tell the K tool (using its superheat and supercool options) that
we want to exhaustively explore all the non-deterministic behaviors (due to strictness)
of these language constructs. For performance reasons, by default the K tool chooses an
arbitrary but fixed order to evaluate the arguments of the strict language constructs, thus
possibly losing behaviors due to missed interleavings. This aspect was irrelevant in IMP,
as its expressions had no side effects, but it becomes relevant in IMP++.

The syntax of the IMP++ constructs is self-explanatory. Note that assignment is now
an expression construct. Also, print is variadic, taking a list of expressions as argument.
It is also strict, which means that the entire list of expressions, i.e., each expression in
the list, will be evaluated. Note also that we now defined sequential composition of state-
ments as a whitespace-separated list of statements, aliased with the nonterminal Stmts,
and block as such a (possibly empty) statement sequence surrounded by curly brackets.

syntax AExp ::= Int | String | Id

| "++" Id

| "read" "(" ")"

> AExp "/" AExp [left, strict, division]

> AExp "+" AExp [left, strict]

> "spawn" Block

> Id "=" AExp [strict(2)]

| "(" AExp ")" [bracket]

syntax BExp ::= Bool

| AExp "<=" AExp [seqstrict, latex({#1}\leq{#2})]

| "!" BExp [strict]

> BExp "&&" BExp [left, strict(1)]

| "(" BExp ")" [bracket]

syntax Block ::= "{" Stmts "}"

syntax Stmt ::= Block

| AExp ";" [strict]

| "if" "(" BExp ")"

Block "else" Block [strict(1)]

| "while" "(" BExp ")" Block

| "int" Ids ";"

| "print" "(" AExps ")" ";"

| "halt" ";"

> "join" AExp ";" [strict]

syntax Ids ::= List{Id,","}

syntax AExps ::= List{AExp,","}

syntax Stmts ::= List{Stmt,""}

endmodule

Semantics

module IMP

imports IMP-SYNTAX

We next give the semantics of IMP++. We start by first defining its configuration.



Configuration

The original configuration of IMP has been extended to include all the various additional
cells needed for IMP++. To facilitate the semantics of threads, more specifically to natu-
rally give them access to their parent’s variables, we prefer a (rather conventional) split of
the program state into an environment and a store. An environment maps variable names
into locations, while a store maps locations into values. Stores are also sometimes called
“states”, or “heaps”, or “memory”, in the literature. Like values, locations can be any-
thing. For simplicity, here we assume they are natural numbers. Moreover, each thread
has its own environment, so it knows where all the variables that it has access to are
located in the store (that includes its locally declared variables as well as the variables
of its parent thread), and its own unique identifier. The store is shared by all threads. For
simplicity, we assume a sequentially consistent memory model in IMP++. Note that the
thread cell has multiplicity “*”, meaning that there could be zero, one, or more instances
of that cell in the configuration at any given time. This multiplicity information is impor-
tant for K’s configuration abstraction process: it tells K how to complete rules which,
in order to increase the modularity of the definition, choose to not mention the entire
configuration context. The in and out cells hold the input and the output buffers as lists
of items.

configuration <T color="yellow">

<threads color="orange">

<thread multiplicity="*" color="blue">

<k color="green"> $PGM:Stmts </k>

<env color="LightSkyBlue"> .Map </env>

<id color="black"> 0 </id>

</thread>

</threads>

<store color="red"> .Map </store>

<in color="magenta" stream="stdin"> .List </in>

<out color="Orchid" stream="stdout"> .List </out>

</T>

We can also use configuration variables to initialize the configuration through krun.
For example, we may want to pass a few list items in the in cell when the program
makes use of read(), so that the semantics does not get stuck. Recall from IMP that
configuration variables start with a $ character when used in the configuration (see, for
example, $PGM) and can be initialized with any string by krun; or course, the string
should parse to a term of the corresponding sort, otherwise errors will be generated.
Moreover, K allows you to connect list cells to the standard input or the standard output.
For example, the attribute stream="stdin" to the in cell tells krun to prompt the user
to pass input when the in cell is empty and any semantic rule needs at least one item to
be present there in order to match. Similarly but dually, the attribute stream="stdout"
to the out cell, tells that any item placed into this cell by any rule will be promptly sent
to the standard output. This way, krun can be used to obtain interactive interpreters based
directly on the K semantics of the language. For example:

bash$ krun sum-io.imp --no-config

Add numbers up to (<= 0 to quit)? 10

Sum = 55

Add numbers up to (<= 0 to quit)? 1000



Sum = 500500

Add numbers up to (<= 0 to quit)? 0

bash$

The option --no-config instructs krun to not display the resulting configuration
after the program executes. The input/output streaming works with or without this option,
although if you don’t use the option then a configuration with empty in and out cells will
be displayed after the program is executed. You can also initialize the configuration using
configuration variables and stream the contents of the cells to standard input/output at
the same time. For example, if you use a configuration variable in the in cell and pass
contents to it through krun, then that contents will be first consumed and then the user
will be prompted to introduce additional input if the program’s execution encounters
more read() constructs.

The old IMP constructs

The semantics of the old IMP constructs is almost identical to their semantics in the
original IMP language, except for those constructs making use of the program state and
for those whose syntax has slightly changed. Indeed, the rules for variable lookup and
assignment in IMP accessed the state cell, but that cell is not available in IMP++ any-
more. Instead, we have to use the combination of environment and store cells. Thanks to
K’s implicit configuration abstraction, we do not have to mention the thread and threads

cells: these are automatically inferred (and added by the K tool at compile time) from
the definition of the configuration above, as there is only one correct way to complete the
configuration context of these rules in order to match the configuration declared above.
In our case here, “correct way” means that the k and env cells will be considered as
being part of the same thread cell, as opposed to each being part of a different thread.
Configuration abstraction is crucial for modularity, because it gives us the possibility to
write our definitions in a way that may not require us to revisit existing rules when we
change the configuration. Changes in the configuration are quite frequent in practice,
typically needed in order to accommodate new language features. For example, imagine
that we initially did not have threads in IMP++. There would be no need for the thread

and threads cells in the configuration then, the cells k and env being simply placed at
the top level in the T cell, together with the already existing cells. Then the rules below
would be exactly the same. Thus, configuration abstraction allows you to not have to
modify your rules when you make structural changes in your language configuration.

Below we list the semantics of the old IMP constructs, referring the reader to the
K semantics of IMP for their meaning. Like we tagged the addition and the division
rules above in the syntax, we also tag the lookup and the assignment rules below (with
tags lookup and assignment), because we want to refer to them when we generate the
language model (with the kompile tool), basically to allow them to generate (possibly
non-deterministic) transitions. Indeed, these two rules, unlike the other rules correspond-
ing to old IMP constructs, can yield non-deterministic behaviors when more threads are
executed concurrently. In terms of rewriting, these two rules can “compete” with each
other on some program configurations, in the sense that they can both match at the same
time and different behaviors may be obtained depending upon which of them is chosen
first.

syntax KResult ::= Int | Bool



Variable lookup

rule <k> X:Id => I ...</k>

<env>... X |-> N ...</env>

<store>... N |-> I ...</store> [lookup]

Arithmetic constructs

rule I1 / I2 => I1 /Int I2 when I2 =/=Int 0

rule I1 + I2 => I1 +Int I2

Boolean constructs

rule I1 <= I2 => I1 <=Int I2

rule ! T => notBool T

rule true && B => B

rule false && _ => false

Variable assignment

Note that the old IMP assignment statement “X = I;” is now composed of two constructs:
an assignment expression construct “X = I”, followed by a semicolon “;” turning the
expression into a statement. Here is the semantics of the two constructs:

rule _:Int; => .

rule <k> X = I:Int => I ...</k>

<env>... X |-> N ...</env>

<store>... N |-> (_ => I) ...</store> [assignment]

Sequential composition

Sequential composition has been defined as a whitespace-separated syntactic list of state-
ments. Recall that syntactic lists are actually syntactic sugar for cons-lists. Therefore, the
following two rules eventually sequentialize a syntactic list of statements “s1 s2 ... sn..
into the corresponding computation “s1 ~> s2 ~> ... ~> sn”.

rule .Stmts => .

rule S:Stmt Ss:Stmts => S ~> Ss [structural]

Conditional statement

rule if (true) S else _ => S

rule if (false) _ else S => S

While loop

The only thing to notice here is that the empty block has been replaced with the block
holding the explicit empty sequence. That’s because in the semantics all empty lists
become explicit corresponding dots (to avoid parsing ambiguities)

rule while (B) S => if (B) {S while (B) S} else {.Stmts} [structural]

The new IMP++ constructs

We next discuss the semantics of the new IMP++ constructs.



Strings

First, we have to state that strings are also results. Second, we give the semantics of
IMP++ string concatenation (which uses the already existing addition symbol + from
IMP) by reduction to the built-in string concatenation operation.

syntax KResult ::= String

rule Str1 + Str2 => Str1 +String Str2

Variable increment

Like variable lookup, this is also meant to be a supercool transition: we want it to count
both in the non-determinism due to strict operations above it in the computation and in
the non-determinism due to thread interleavings. This rule also relies on K’s configu-
ration abstraction. Without abstraction, you would have to also include the thread and
threads cells.

rule <k> ++X => I +Int 1 ...</k>

<env>... X |-> N ...</env>

<store>... N |-> (I => I +Int 1) ...</store> [increment]

Read

The read() construct evaluates to the first integer in the input buffer, which it consumes.
Note that this rule is tagged increment. This is because we will include it in the set of
potentially non-deterministic transitions when we kompile the definition; we want to do
that because two or more threads can “compete” on reading the next integer from the
input buffer, and different choices for the next transition can lead to different behaviors.

rule <k> read() => I ...</k>

<in> ListItem(I:Int) => .List ...</in> [read]

Print

The print statement is strict, so all its arguments are eventually evaluated (recall that
print is variadic). We append each of its evaluated arguments, in order, to the output
buffer, and structurally discard the residual print statement with an empty list of ar-
guments. We only want to allow printing integers and strings, so we define a Printable
syntactic category including only these and define the print statement to only print
Printable elements. Alternatively, we could have had two similar rules, one for integers
and one for strings. Recall that, currently, K’s lists are cons-lists, so we cannot simply
rewrite the head of a list (P) into a list (·). The first rule below is tagged, because we want
to include it in the list of transitions when we kompile; different threads may compete
on the output buffer and we want to capture all behaviors. The second rule is structural
because we do not want it to count as a computational step.

syntax Printable ::= Int | String

syntax AExp ::= Printable

context print(HOLE:AExp, AEs:AExps);

rule <k> print(P:Printable,AEs => AEs); ...</k>

<out>... .List => ListItem(P) </out> [print]

rule print(.AExps); => . [structural]



Halt

The halt statement empties the computation, so the rewriting process simply terminates
as if the program terminated normally. Interestingly, once we add threads to the language,
the halt statement as defined below will terminate the current thread only. If you want
an abrupt termination statement that halts the entire program, then you need to discard
the entire contents of the threads cell, so the entire computation abruptly terminates the
entire program, no matter how many concurrent threads it has, because there is nothing
else to rewrite.

rule <k> halt; ~> _ => . </k>

Spawn thread

A spawned thread is passed its parent’s environment at creation time. The spawn expres-
sion in the parent thread is immediately replaced by the unique identifier of the newly
created thread, so the parent thread can continue its execution. We only consider a se-
quentially consistent shared memory model for IMP++, but other memory models can
also be defined in K. Note that the rule below does not need to be tagged in order to
make it a transition when we kompile, because the creation of the thread itself does not
interfere with the execution of other threads. Also, note that K’s configuration abstrac-
tion is at heavy work here, in two different places. First, the parent thread’s k and env

cells are wrapped within a thread cell. Second, the child thread’s k, env and id cells are
also wrapped within a thread cell. Why that way and not putting all these four cells to-
gether within the same thread, or even create an additional threads cell at top holding
a thread cell with the new k, env and id? Because in the original configuration we de-
clared the multiplicity of the thread cell to be “∗”, which effectively tells the K tool that
zero, one or more such cells can co-exist in a configuration at any moment. The other
cells have the default multiplicity “one”, so they are not allowed to multiply. Thus, the
only way to complete the rule below in a way consistent with the declared configuration
is to wrap the first two cells in a thread cell, and the latter two cells under the “·” also
in a thread cell. Once the rule applies, the spawning thread cell will add a new thread
cell next to it, which is consistent with the declared configuration cell multiplicity. The
unique identifier of the new thread is generated using the “fresh” side condition.

rule <k> spawn S => !T:Int ...</k> <env> Rho </env>

(.Bag => <thread>... <k> S </k> <env> Rho </env> <id> !T </id> ...</thread>)

Join thread

A thread who wants to join another thread T has to wait until the computation of T be-
comes empty. When that happens, the join statement is simply dissolved. The terminated
thread is not removed, because we want to allow possible other join statements to also
dissolve.

rule <k> join(T); => . ...</k> <thread>... <k>.</k> <id>T</id> ...</thread>

Blocks

The body statement of a block is executed normally, making sure that the environment at
the block entry point is saved in the computation, in order to be recovered after the block



body statement. This step is necessary because blocks can declare new variables having
the same name as variables which already exist in the environment, and our semantics
of variable declarations is to update the environment map in the declared variable with
a fresh location. Thus, variables which are shadowed lose their original binding, which
is why we take a snapshot of the environment at block entrance and place it after the
block body (see the semantics of environment recovery at the end of this module). Note
that any store updates through variables which are not declared locally are kept at the
end of the block, since the store is not saved/restored. An alternative to this environment
save/restore approach is to actually maintain a stack of environments and to push a new
layer at block entrance and pop it at block exit. The variable lookup/assign/increment
operations then also need to change, so we do not prefer that non-modular approach.
Compilers solve this problem by statically renaming all local variables into fresh ones, to
completely eliminate shadowing and thus environment saving/restoring. The rule below
can be structural, because what it effectively does is to take a snapshot of the current
environment; this operation is arguably not a computational step.

rule <k> {Ss} => Ss ~> Rho ...</k> <env> Rho </env> [structural]

Variable declaration

We allocate a fresh location for each newly declared variable and initialize it with 0.

rule <k> int (X,Xs => Xs); ...</k>

<env> Rho => Rho[X <- !N:Int] </env>

<store>... .Map => !N |-> 0 ...</store>

rule int .Ids; => . [structural]

Auxiliary operations

We only have one auxiliary operation in IMP++, the environment recovery. Its role is to
discard the current environment in the env cell and replace it with the environment that
it holds. This rule is structural: we do not want them to count as computational steps in
the transition system of a program.

rule <k> Rho => . ...</k> <env> _ => Rho </env> [structural]

If you want to avoid useless environment recovery steps and keep the size of the
computation structure smaller, then you can also add the rule

rule (_:Map => .) ~> _:Map [structural]

This rule acts like a “tail recursion” optimization, but for blocks.

endmodule

On Kompilation Options

We are done with the IMP++ semantics. The next step is to kompile the definition using
the kompile tool, this way generating a language model. Depending upon for what you
want to use the generated language model, you may need to kompile the definition using
various options. We here discuss these options.

To tell the K tool to exhaustively explore all the behaviors due to the non-
determinism of addition, division, and threads, we have to kompile with the command:



kompile imp.k --transition="addition division lookup assignment increment read print"

As already mentioned, the syntax and rule tags play no theoretical or foundational
role in K. They are only a means to allow kompile to refer to them in its options, like
we did above. By default, kompile’s transition option is empty, because this yields the
fastest language model when executed. Transitions may slow down the execution, but
they instrument the language model to allow for formal analysis of program behaviors,
even for exhaustive analysis.

Theoretically, the heating/cooling rules in K are fully reversible and unconstrained
by side conditions as we showed in the semantics of IMP. For example, the theoretical
heating/cooling rules corresponding to the strict attribute of division are the following:

E1/E2 ⇒ E1 y�/E2
E1 y�/E2 ⇒ E1/E2
E1/E2 ⇒ E2 y E1/�
E2 y E1/� ⇒ E1/E2

The other semantic rules apply modulo such structural rules. For example, using heat-
ing rules we can bring a redex (a subterm which can be reduced with semantic rules) to
the front of the computation, then reduce it, then use cooling rules to reconstruct a term
over the original syntax of the language, then heat again and non-deterministically pick
another redex, and so on and so forth without losing any opportunities to apply seman-
tic rules. Nevertheless, these unrestricted heating/cooling rules may create an immense,
often unfeasibly large space of possibilities to analyze. The �transition option im-
plements an optimization which works well with other implementation choices made in
the current K tool. Recall from the detailed description of the IMP language semantics
that (theoretical) reversible rules like above are restricted by default to complementary
conditional rules of the form

E1/E2 ⇒ E1 y�/E2 if E1 6∈ KResult
E1 y�/E2 ⇒ E1/E2 if E1 ∈ KResult
E1/E2 ⇒ E2 y E1/� if E2 6∈ KResult
E2 y E1/� ⇒ E1/E2 if E2 ∈ KResult

Therefore, our tool eagerly heats and lazily cools the computation. In other words, heat-
ing rules apply until a redex gets placed on the top of the computation, then some se-
mantic rule applies and rewrites that into a result, then a cooling rule is applied to plug
the obtained result back into its context, then another argument may be chosen and com-
pletely heated, and so on. This leads to efficient execution, but it may and typically does
hide program behaviors. Using the �transition option allows you to interfere with
this process and to obtain all possible non-deterministic behaviors as if the theoretical
heating/cooling rules were applied. Optimizations of course happen under the hood, but
you need not be aware of them. Used carefully, this mechanism allows us to efficiently
explore more of the non-deterministic behaviors of a program, even all of them (like
here). For example, with the semantics of IMP++ given above, the krun command with
the --search option detects all five behaviors of the following IMP++ program (x can
be 0, 1, 2, 3, or undefined due to division-by-zero):



int x,y;

x = 1;

y = ++x / (++x / x);

Besides non-determinism due to underspecified argument evaluation orders, which
the current K tool addresses as explained above, there is another important source of
non-determinism in programming languages: non-determinism due to concurrency/par-
allelism. For example, when two or more threads are about to access the same location
in the store and at least one of these accesses is a write (i.e., an instance of the variable
assignment rule), there is a high chance that different choices for the next transition lead
to different program behaviors. While in the theory of K all the non-structural rules count
as computational steps and hereby as transitions in the transition system associated to
the program, in practice that may yield a tremendous number of step interleavings to
consider. Most of these interleavings are behaviorally equivalent for most purposes. For
example, the fact that a thread computes a step 8+3⇒ 11 is likely irrelevant for the other
threads, so one may not want to consider it as an observable transition in the space of
interleavings. Since the K tool cannot know without help which transitions need to be
explored and which do not, our approach is to let the user say so explicitly using the
transition option of kompile.

4. Conclusion

We gave a very high-level overview of the K framework, as presented at the Markto-
berdorf Summer School in 2016. The interested reader is strongly encouraged to con-
sult the K Tutorial reachable from the main K webpage at http://kframework.org
and to contact the author. Besides many other languages covering various paradigms, the
tutorial also shows how to define type systems in K, including type inference.

The author would like to warmly thank the organizers, Doron Peled and Alexander
Pretschner, for inviting him to lecture at the summer school and for their support and
infinite patience during the editing of this paper. The work presented in this paper was
supported in part by the Boeing grant on "Formal Analysis Tools for Cyber Security"
2016-2017, the NSF grants CCF-1318191 and CCF-1421575, and an IOHK gift.

References

[1] A. W. Appel. Verified software toolchain. In ESOP’11, volume 6602 of LNCS, pages 1–17, 2011.
[2] M. Barnett, B. yuh Evan Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable

verifier for object-oriented programs. In FMCO’05, volume 4111 of LNCS, pages 364–387, 2006.
[3] D. Beyer. Reliable and reproducible competition results with benchexec and witnesses (report on SV-

COMP 2016). In TACAS’16, volume 9636 of LNCS, pages 887–904, 2016.
[4] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, and

G. Smith. A trusted mechanised JavaScript specification. In POPL’14, pages 87–100. ACM, 2014.
[5] D. Bogdănaş and G. Roşu. K-Java: A Complete Semantics of Java. In POPL’15, pages 445–456. ACM,

January 2015.
[6] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and

S. Tobies. VCC: A practical system for verifying concurrent C. In TPHOLs’09, volume 5674 of LNCS,
pages 23–42, 2009.

[7] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu. Semantics-based program verifiers for all lan-
guages. In OOPSLA’16, pages 74–91. ACM, 2016.

http://kframework.org


[8] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS’08, volume 4963 of LNCS, pages
337–340, 2008.

[9] D. Distefano and M. J. Parkinson. jStar: Towards practical verification for Java. In OOPSLA’08, pages
213–226. ACM, 2008.

[10] C. Ellison and G. Rosu. An executable formal semantics of C with applications. In POPL, pages
533–544. ACM, 2012.

[11] D. Filaretti and S. Maffeis. An executable formal semantics of php. In ECOOP’14, LNCS, pages
567–592. Springer, 2014.

[12] J. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In ESOP’13, volume 7792 of
LNCS, pages 125–128, 2013.

[13] D. Guth. A formal semantics of Python 3.3. Master’s thesis, University of Illinois at Urbana-Champaign,
July 2013. https://github.com/kframework/python-semantics.

[14] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In Handbook of Philosophical Logic, pages 497–604,
1984.

[15] C. Hathhorn, C. Ellison, and G. Roşu. Defining the undefinedness of C. In PLDI’15, pages 336–345.
ACM, 2015.

[16] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, and G. Rosu. Kevm: A com-
plete semantics of the ethereum virtual machine. Technical Report http://hdl.handle.net/2142/97207,
University of Illinois, Aug 2017.

[17] Y. Hirai. Defining the ethereum virtual machine for interactive theorem provers. WSTC17, International
Conference on Financial Cryptography and Data Security, 2017.

[18] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the Association for
Computing Machinery, 12(10):576–580, 1969.

[19] B. Jacobs. Weakest pre-condition reasoning for Java programs with JML annotations. The Journal of
Logic and Algebraic Programming, 58(1-2):61–88, 2004.

[20] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. McCarthy, J. Rafkind,
S. Tobin-Hochstadt, and R. B. Findler. Run your research: On the effectiveness of lightweight mecha-
nization. In POPL’12, pages 285–296. ACM, 2012.

[21] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Version
8.0, http://coq.inria.fr.

[22] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem: reusable engineering of real-world
semantics. In ACM SIGPLAN Notices, volume 49, pages 175–188. ACM, 2014.

[23] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. Formal Aspects of
Computing, 10:171–186, 1998.

[24] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order Logic.
Springer-Verlag, Berlin, Heidelberg, 2002.

[25] S. Owens. A sound semantics for OCamllight . In ESOP’08, volume 4960 of LNCS, pages 1–15, 2008.
[26] D. Park, A. Ştefănescu, and G. Roşu. KJS: A complete formal semantics of JavaScript. In PLDI’15,

pages 346–356. ACM, 2015.
[27] J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson, J. Li, A. Chitipothu, and S. Krishnamurthi.

Python: The full monty. In OOPSLA’13, pages 217–232. ACM, 2013.
[28] G. Roşu. Matching logic. Logical Methods in Computer Science, to appear, 2017.
[29] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal of Logic and Algebraic

Programming, 79(6):397–434, 2010.
[30] G. Rosu and T. F. Serbanuta. K overview and simple case study. In Proceedings of International K

Workshop (K’11), volume 304 of ENTCS, pages 3–56. Elsevier, June 2014.
[31] G. Rosu and A. Stefanescu. Checking reachability using matching logic. In OOPSLA’12, pages 555–

574. ACM, 2012.
[32] G. Rosu and A. Stefanescu. From hoare logic to matching logic reachability. In FM’12, volume 7436

of LNCS, pages 387–402, 2012.
[33] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott: effective tool

support for the working semanticist. In ICFP’07, pages 1–12. ACM, 2007.

https://github.com/kframework/python-semantics
http://coq.inria.fr

