
Open Problems and Challenges
From FSL
(back to Grigore Rosu's webpage)
Here is a list of open problems and challenges that I (Grigore Rosu) am interested in solving, in no particular
order. While we are doing our best to keep this list actual, it may well be the case that some of the problems
have been solved in the meanwhile or that we have found a different way to approach them. In case you are
interested in working on any of these problems, please send me a note at (grosu@illinois.edu
(mailto:grosu@illinois.edu)) to make sure that the problem is still actual and nobody is already working on it.
The reason I decided to create and maintain this list of challenges is not only that it helps me keep track of
them, but more importantly, that is also helps my students understand these topics better and put things at their
place in the big picture. There are more problems here than one person can finish in a life-time. If you choose to
work on a problem and believe that I can help, please let me know and we may work together on it. If you are a
student in my FSL group, then you are actually expected to work together with me, and possibly other students,
on one or more of these problems.

Contents
Here are the short descriptions of all the problems, one per line. Each problem is preceded by a list of major
topics that it covers, where: PL means programming languages and it includes topics like K, matching logic,
reachability logic, language design, language semantics, etc.; RV means runtime verification and includes
topics like monitoring, monitor synthesis, predictive runtime analysis, etc.; and C mean coinduction and
includes both algorithmic aspects and interesting applications of coinduction.

[PL] Dynamic matching logic
[PL] Semantics of K
[PL] Sound and relatively complete reachability logic proof system with conditional rules (the challenge
is the all-path)
[PL,C] Unifying deductive program verification and (symbolic) model checking
[PL,C] Coinductive program verification
[PL] Separation logic as a fragment of matching logic
[PL,C] Formal Relationship between the Circularity proof rule and Coinduction
[PL] True concurrency with K
[PL] Rewrite-based parsing
[PL] Narrowing-based parsing
[PL] Fast execution engine
[PL] Semantics-based compilation

Open Problems and Challenges - FSL Page 1 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

[PL] Support full dynamic matching logic in K
[PL] Semantics-based test-case generation
[PL] Symbolic execution framework
[PL] Symbolic model checking
[PL] Invariant/Pattern inference using anti-unification
[PL] Aggressive state/configuration-reduction techniques
[PL] Language-independent infrastructure for program equivalence
[PL] Program portability checking
[PL] Translation validation, preferably for LLVM
[PL] Strategy language for K and reachability logic
[PL] Systematic comparison of K with other operational approaches
[PL] Configuration abstraction
[PL] Defining/Implementing language translators/compilers in K
[PL] Translations from K to other languages or formalisms
[PL] Semantics-based Compiler Generation
[PL,C] Certification of proofs done using the K framework
[PL] K semantics to new real languages
[PL] Verification of real-time languages, WCET verification
[PL] Module system for K
[PL] Semantics-based debugging: from debugging to verification
[PL] Type systems and abstract interpretations in K and reachability logic
[PL] Binders with matching logic
[PL,C] Migrate Circ (circular coinduction) examples/theory to K/Circularity rule
[PL] Define/Implement K in K
[PL,RV] Maximal causality as a configuration space reduction for semantics-based verification
[RV] Playing and replaying program executions
[PL,RV] Runtime verification of matching logic patterns
[PL,RV] Certifiable runtime verification

Open Problems and Challenges - FSL Page 2 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

[PL,RV] Formalizing the JDK API
[RV] Parametric property mining using positive and negative examples
[RV] Offline analysis of large logs
[RV,C] Extended Regular Expression (ERE) Membership Checking
[RV,C] Optimal Monitor generation using coinduction
[RV] Runtime verification of timed properties
[RV] Evolution-aware program analysis

All Problems and Challenges
1. Dynamic matching logic.

Currently (Jan 2016), we are framing matching logic as a static logic, that is, as one for reasoning about
program configurations at a particular place in the execution of a program:
Matching Logic --- Extended Abstract

Grigore Rosu
RTA'15, Leibniz International Proceedings in Informatics (LIPIcs) 36, pp 5-21. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-06-29-RTA/2015-06-29-
RTA.pptx) , Matching Logic (http://matching-logic.org/) , DOI
(http://dx.doi.org/10.4230/LIPIcs.RTA.2015.5) , RTA'15 (http://rdp15.mimuw.edu.pl/index.php?
site=rta) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-ref.bib)

For dynamic properties we use reachability logic:
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

One-Path Reachability Logic
Grigore Rosu and Andrei Stefanescu and Stefan Ciobaca and Brandon Moore
LICS'13, IEEE, pp 358-367. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-27-LICS.pptx) , Reachability Logic
(http://fsl.cs.uiuc.edu/RL) , LICS'13 (http://lii.rwth-aachen.de/lics/lics13/) , BIB

Open Problems and Challenges - FSL Page 3 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

(http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-ref.bib)

However, both one-path and all-path reachability rules are particular formulae in a more general dynamic
matching logic, which extends matching logic with two constructs: a modal next construct and a usual
fixed-point mu construct. The resulting logic is expected to be sound and relatively complete; the
relativity comes from the fact that we will want to fix a model of configurations, same like in reachability
logic, to enable the use of SMT solvers for domain reasoning. In interested in this topic, you should also
check out a draft paper I wrote a couple of years back but never published on how a Godel-Loeb proof
rule gives us a complete proof system for finite execution traces; let me know and I can give you the
draft. Once defined, then we should be able to prove the reachability logic proof system rules as
theorems, thus modulo
From Hoare Logic to Matching Logic Reachability

Grigore Rosu and Andrei Stefanescu
FM'12, LNCS 7436, pp 387-402. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-fm.pdf) , Slides(pptx)
(http://fsl.cs.uiuc.edu/pubs/Presentation_FM.pptx) , Slides(pdf)
(http://fsl.cs.uiuc.edu/pubs/Presentation_FM.pdf) , Matching Logic (http://matching-logic.org) ,
FM'12 (http://fm2012.cnam.fr/) , , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-fm.bib.txt)

obtaining that dynamic matching logic generalizes Hoare logic mechanically. We should also be able to
prove that dynamic matching logic similarly generalizes dynamic logic
(https://en.wikipedia.org/wiki/Dynamic_logic_(modal_logic)) . The point of these generalizations is that
Hoare or dynamic logic are basically "design patterns" to be manually crafted for each language
separately, while dynamic matching logic is one fixed logic for all languages; each language is a
particular set of axioms, which can be used in combination with a language-independent fixed proof
system to derive any dynamic property for the language. In our view, that is how program
reasoning/verification should be done, using one language-independent and powerful logic, and not to
craft a specific logic for each specific language (which is what Hoare/dynamic/separation logic advocate).

2. Semantics of K.
K was mostly explained informally until now, calling it a "rewrite-based framework" and relying on
reader's intuition and common sense. Semantically, so far we framed K either as a notation within rewrite
logic by showing how to translate it to rewrite logic,
An Overview of the K Semantic Framework

Grigore Rosu and Traian Florin Serbanuta
J.LAP, Volume 79(6), pp 397-434. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap.pdf) , Slides(PPTX)
(http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap-slides-2011-01-14-Iasi.pptx.zip) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap-slides-2011-01-14-Iasi.pdf) , K Tool
(http://k-framework.googlecode.com/) , J.LAP (http://dx.doi.org/10.1016/j.jlap.2010.03.012) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap.bib.txt)

or in terms of translation to graph rewriting (to show its true concurrency capabilities)
A Truly Concurrent Semantics for the K Framework Based on Graph Transformations

Open Problems and Challenges - FSL Page 4 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Traian Florin Serbanuta and Grigore Rosu
ICGT'12, LNCS 7562, pp 294-310. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2012-icgt.pdf) , ICGT'12
(http://www.informatik.uni-bremen.de/icgt2012/) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2012-icgt-slides.pdf) , BIB
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2012-icgt.bib.txt)

More recently, we introduced reachability logic
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

One-Path Reachability Logic
Grigore Rosu and Andrei Stefanescu and Stefan Ciobaca and Brandon Moore
LICS'13, IEEE, pp 358-367. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-27-LICS.pptx) , Reachability Logic
(http://fsl.cs.uiuc.edu/RL) , LICS'13 (http://lii.rwth-aachen.de/lics/lics13/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-ref.bib)

and that allowed us to give a semantics of K that is more faithful to our uses of K.
Yet, the semantics of K is more finer grained than all the above. Consider, for example, the following
assignment rule in IMP:
 rule <k> X = I:Int => I ...</k> <state>... X |-> (_ => I) ...</state>

So in one atomic transaction, we rewrite both the assignment construct in the k cell and the value that X is
bound to in the state to I. If we regard the above as a rewrite or a reachability rule, then we would need to
translate into something like this:
 rule <k> X = I:Int ~> K </k> <state> S1, X |-> _, S2 </state> => <k> I ~> K </k> <state> S1, X |-> I, S2 </state>

The resulting rule above is not only more verbose and uglier than the original K rule, but it is also less
concurrent. Indeed, once we add threads to IMP (see, for example, the IMP++ language in the K Tutorial
(http://www.kframework.org/index.php/K_Tutorial)), we want K rules like above to apply concurrently,
because we want two threads assigning to different variables to proceed concurrently and not interleaved.
Fortunately, dynamic matching logic provides the granularity we need to give semantics to the intended K

Open Problems and Challenges - FSL Page 5 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

rewriting. For example, the rule above would become
 rule <k> (X = I:Int -> o I) ...</k> <state>... X |-> (_ -> o I) ...</state>

where "o" is the "next" modal construct of dynamic matching logic, "->" is logical implication and "_"
and "..." are universally quantified (anonymous) variables like in K.
Therefore, as soon as the dynamic matching logic challenge is solved, or at the same time, we need to
give K a crystal clear dynamic matching logic semantics. And from there on we will call K a best-effort
implementation of dynamic matching logic, the same way Maude (http://maude.cs.illinois.edu) is a best-
effort implementation of rewrite logic.

3. Sound and relatively complete reachability logic proof system with conditional rules (the challenge
is the all-path).
The original reachability logic proof systems that we proposed and proved sound and relatively complete,
namely
Towards a Unified Theory of Operational and Axiomatic Semantics

Grigore Rosu and Andrei Stefanescu
ICALP'12, LNCS 7392, pp 351-363. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-icalp.pdf) , Slides(pptx)
(http://fsl.cs.uiuc.edu/pubs/2012-07-12-rosu-stefanescu-ICALP.pptx) , Slides(pdf)
(http://fsl.cs.uiuc.edu/pubs/2012-07-12-rosu-stefanescu-ICALP.pdf) , Matching Logic
(http://matching-logic.org) , ICALP'12
(http://www2.warwick.ac.uk/fac/cross_fac/dimap/icalp2012/) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-icalp.bib.txt)

From Hoare Logic to Matching Logic Reachability
Grigore Rosu and Andrei Stefanescu
FM'12, LNCS 7436, pp 387-402. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-fm.pdf) , Slides(pptx)
(http://fsl.cs.uiuc.edu/pubs/Presentation_FM.pptx) , Slides(pdf)
(http://fsl.cs.uiuc.edu/pubs/Presentation_FM.pdf) , Matching Logic (http://matching-logic.org) ,
FM'12 (http://fm2012.cnam.fr/) , , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-fm.bib.txt)

Checking Reachability using Matching Logic
Grigore Rosu and Andrei Stefanescu
OOPSLA'12, ACM, pp 555-574. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-oopsla.pdf) , Slides(pptx)
(http://fsl.cs.uiuc.edu/pubs/2012-10-24-rosu-stefanescu-OOPSLA.pptx) , Slides(pdf)
(http://fsl.cs.uiuc.edu/pubs/2012-10-24-rosu-stefanescu-OOPSLA.pdf) , Matching Logic
(http://matching-logic.org) , OOPSLA'12 (http://splashcon.org/2012/cfp/378) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-2012-oopsla.bib.txt)

worked only with language semantics defined using unconditional reachability rules and deriving one-
path reachability rules. These are sufficient for deterministic language semantics in several frameworks,
including in K. We tried hard to eliminate the "unconditional" and the "one-path" limitations, but we only
partially succeeded.

Open Problems and Challenges - FSL Page 6 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

First, we were able to extend our soundness and relative completeness results to allow semantics defined
using conditional rules, but still deriving only one-path reachability rules:
Reachability Logic

Grigore Rosu, Andrei Stefanescu, Stefan Ciobaca and Brandon Moore
Technical Report http://hdl.handle.net/2142/32952, July 2012
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-stefanescu-ciobaca-moore-2012-tr.pdf) , TR@UIUC
(http://hdl.handle.net/2142/32952)

One-Path Reachability Logic
Grigore Rosu and Andrei Stefanescu and Stefan Ciobaca and Brandon Moore
LICS'13, IEEE, pp 358-367. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-27-LICS.pptx) , Reachability Logic
(http://fsl.cs.uiuc.edu/RL) , LICS'13 (http://lii.rwth-aachen.de/lics/lics13/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-ref.bib)

Now thanks to this paper,
A Rewriting Logic Approach to Operational Semantics

Traian Florin Serbanuta, Grigore Rosu and Jose Meseguer
Information and Computation, Volume 207(2), pp 305-340. 2009
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-meseguer-2007-ic.pdf) , Experiments
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-meseguer-2007-ic-experiments.zip) , J.Inf.&Comp.
(http://dx.doi.org/10.1016/j.ic.2008.03.026) , BIB (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-
meseguer-2007-ic.bib.txt)

which shows that virtually all operational semantics approaches can be represented using rewriting with
conditional rules, at least we have a general language-independent (sound and relatively complete)
verification infrastructure that works with any deterministic language defined using any operational
semantic formalism. We say "deterministic language" above, because for non-deterministic languages we
typically want to prove all-path reachability.
Second, we were able to extend our results to prove all-path reachability, but only when the language
semantics is defined using unconditional rules:
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

This is good enough for us in K, because the language semantics that we define in K consist of
unconditional reachability rules, so we stopped here with our quest.

Open Problems and Challenges - FSL Page 7 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

However, scientifically speaking, it is very frustrating that we were not able to find a perfect solution to
such a beautiful and major problem! It should be possible to obtain a sound and relatively complete proof
system for a combined logic with both one-path and all-path conditional reachability rule statements,
where the target programming language semantics is nothing but a subset of such rules. Such a proof
system would completely eliminate the need for Hoare logic or axiomatic semantics or any other
semantics used for program verification, and all the heavy work on proving such semantics sound and
relatively complete with respect to a reference model operational semantics of the language, simply
because the proof system itself gives you that, for any language, be it concurrent or not, defined using any
operational semantic style. This would be a fundamental result in the field, helping future generations of
designers and developers of programming languages and program verification tools to do all these better:
define a formal operational semantics of your language in any formalism you like, and that's all, because
the desired program verification logic for your language comes for free and it is not only sound, but also
relatively complete. For all practical reasons we already have that in K, thanks to the last paper above, but
the challenge for the perfect result remains.

4. Unifying deductive program verification and (symbolic) model checking.
In our approach, there is no distinction between deductive verification and model checking. These are just
particular uses of our fixed and language-independent proof system, to derive particular properties about
particular languages. Moreover, optimizations made for one can apply to the other. For example, a faster
matching logic prover will give us faster deductive reasoning and also faster model checking. Also, a
faster checker for already visited configurations/states (better hashing), will obviously give us a faster
model checker, but it will also give us faster verifier because the circularity rule will be applied more
effectively. I can personally think of no difference between a "model checker" and a "deductive program
verifier" in our approach. But this needs to be spelled out rigorously and empirically. We should
implement automated proof search optimizations that give users the feel of a "model checker", at the
same time having the system generate a proof object using our proof system, as a checkable proof
certificate of what the model checker did. Much of the research in the model checking field goes into
developing alogorithms, such as automata-based ones, where the automata encode both the program and
the property to check. This approach is particularly useful for explicit-state model checking, but not only.
Then there is also much work on using BDDs for symbolic model checking. We should also consider
such algorithms, but then we should still be able to generate a proof object as a result of the analysis. My
conjecture is the following. The key ingredient that makes our approach particularly suitable for such a
grande unification is the Circularity rule. See for example this paper, but any of the papers mentioned
under the dynamic matching logic challenge works:
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

Open Problems and Challenges - FSL Page 8 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Check the Circularity proof rule out. It is saying that if you want to prove a reachability property, then
assume it and try to prove it, but use it in your proof only after you make one trusted step with the
operational semantic rules. This is very similar to how model checkers saturate their state-space search.
We should be able to take model checking algorithms and adapt them to work with the general-purpose
transition systems that semantics associate to programs, and then take their verification results and
translate them into proofs using our proof system, where cycles in the internal graphs or automata
maintained by the model checker result in applications of the Circularity rule.

5. Coinductive program verification.
Recall that conventional Hoare-style program verification typically proves partial correctness of
programs, that is, that a program satisfies its property if it terminates. The non-terminating programs
satisfy any property under partial correctness; in particular, a non-terminating program satisfies the
property false. Partial correctness should not be confused with total correctness, which means that the
program terminates and it satisfies the desired property. Termination is typically handled using different
mechanisms (e.g., variants). Sometimes researchers craft Hoare logics for total correctness, but those tend
to be rather intricate. Now, when partial correctness is sought to be proved, a very nice way to do it is by
coinduction:
Program Verification by Coinduction

Brandon Moore and Grigore Rosu
Technical Report http://hdl.handle.net/2142/73177, February 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/moore-rosu-2015-tr/moore-rosu-2015-tr-
public.pdf) , Matching Logic (http://matching-logic.org/) , DOI (http://hdl.handle.net/2142/73177) ,
BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/moore-rosu-2015-tr/moore-rosu-2015-tr-ref.bib)

The main idea is that the partial correctness properties of a programming language are precisely the
coinductive closure of the step relation given by the operational semantics of the programming language.
This is not only an interesting theoretical observation, but we believe it can be quite practical. It shares
the same belief of an ideal language framework, where the operational semantics is taken as input and
tools are generated from it. The tool in this case is more like a workbench, where one can use an
interactive theorem prover like Coq or Isabelle with support for coinduction, and do proofs about
programs based only on the existing generic mathematical infrastructure and the operational semantics of
the programming language defined as a binary (step) relation.
The main challenge here is to make coinductive program verification practical. That means developing
proof strategies that automate the process. Most likely those will be quite similar to those in the matching
logic prover of K; for example "execute symbolic configuration using operational semantics rules, doing
case analysis when multiple rules match, and giving priority to claimed circularities (which in this case
would be coinductive hypotheses)".
Achieving the above in a satisfactory manner would be quite exciting news for the mechanical
verification community. Unfortunately, the state-of-the-art in mechanical verification (Jan 2016) is to
formalize two different semantics of the target programming language, and to prove a special relationship
between them. One semantics is executable (operational or denotational) and serves as a reference model
for the language, because it allows you to run programs and see what they do. The other semantics is
axiomatic, essentially a Hoare logic or a verification condition generator based on a hypothetical Hoare
logic, and serves for program verification. The axiomatic semantics tends to be quite involved when real
programming languages are concerned, so in order to increase confidence in the results of verification, a

Open Problems and Challenges - FSL Page 9 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

proof of soundness for the axiomatic semantics wrt the executable semantics is also provided. In our view
and experience, defining even one formal semantics to a real language (say C or Java) is a huge effort
already. Defining two semantics and proving the soundness theorem is just too uneconomical if it can be
avoided. And it can! The secret is coinduction. Indeed, coinduction with the operational semantics of the
language gives you a sound and relatively complete verification infrastructure for any language. And with
the right degree of automation, it can be even more practical than the current axiomatic semantics based
approached. Why? Because you are actually executing your program all the time, so whenever the proof
gets stuck or is wrong, which is what happens in most of the situations (you really only prove the program
once, all the other attempts until you get there are typically wrong steps or stuck proofs), you know
exactly where it happened and why.
There is a disadvantage of the coinductive approach, though. There will be fewer PhD theses on formal
semantics of programming languages. With the current state-of-the-art, defining an executable semantics
of C is one PhD thesis, defining an axiomatic semantics of C is yet another PhD thesis, and then proving
the soundness of the latter semantics in terms of the former semantics is yet another PhD thesis. This last
one will have the merit that it will also fix bugs in the axiomatic semantics, because it will be full of bugs
as it is not executable and thus not testable. And then all the above will be maintained as C evolves (C99
-> C11 -> ?). Excuse our sarcasm, but the current state-of-the-art is simply unacceptable. Period.

6. Separation logic as a fragment of matching logic.
That matching modulo AC naturally yields spatial separation was hinted even in the first paper on
matching logic,
Matching Logic --- Extended Report

Grigore Rosu and Wolfram Schulte
Technical Report UIUCDCS-R-2009-3026, January 2009
TR@UIUC (http://hdl.handle.net/2142/10790) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-schulte-2009-
tr.bib.txt)

The paper above also suggests that matching gives separation anywhere, not only in the heap, and shows
that common heap patterns in separation logic, such as lists, can be similarly defined using terms and
matching. Three years later we showed that separation logic falls as a fragment of matching logic:
Checking Reachability using Matching Logic

Grigore Rosu and Andrei Stefanescu
OOPSLA'12, ACM, pp 555-574. 2012
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2012/rosu-stefanescu-2012-oopsla/rosu-stefanescu-
2012-oopsla-public.pdf) , Slides(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2012/2012-
10-24-rosu-stefanescu-OOPSLA.pptx) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2012/2012-10-24-rosu-stefanescu-OOPSLA.pdf) ,
Matching Logic (http://matching-logic.org) , DOI (http://dl.acm.org/citation.cfm?
doid=2384616.2384656) , OOPSLA'12 (http://splashcon.org/2012/cfp/378) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2012/rosu-stefanescu-2012-oopsla/rosu-stefanescu-2012-
oopsla-ref.bib)

Back then, matching logic was what we now call topmost matching logic, that is, only patterns of top sort,
Configuration, were allowed. That was sufficient to define a translation from separation logic formulae to
matching logic patterns and prove a theorem stating that a separation logic formula is valid if and only if
its translation is valid in matching logic. However, it had the problem that all pattern abstractions had to

Open Problems and Challenges - FSL Page 10 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

be defined at the top Configuration level, which was verbose. Also, the translation of separation logic
formulae modified the original formula, so one might claim that the resulting formula was not as easy to
read and reason with as the original one.
We then generalized matching logic to support patterns of any sort, and once we did that, we managed to
embed separations logic as a particular matching logic theory within a fixed model, that of maps:
Matching Logic: A Logic for Structural Reasoning

Grigore Rosu
Technical Report http://hdl.handle.net/2142/47004, Jan 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/rosu-2014-tr/rosu-2014-tr-public.pdf) ,
Matching Logic (http://matching-logic.org) , DOI (http://hdl.handle.net/2142/47004) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/rosu-2014-tr/rosu-2014-tr-ref.bib)

Matching Logic --- Extended Abstract
Grigore Rosu
RTA'15, Leibniz International Proceedings in Informatics (LIPIcs) 36, pp 5-21. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-06-29-RTA/2015-06-29-
RTA.pptx) , Matching Logic (http://matching-logic.org/) , DOI
(http://dx.doi.org/10.4230/LIPIcs.RTA.2015.5) , RTA'15 (http://rdp15.mimuw.edu.pl/index.php?
site=rta) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-ref.bib)

The nice part of the embedding discussed in the papers above is that the original separation logic formula
does not change at all! Indeed, we defined a matching logic theory whose syntax of symbols is identical
to that used by separation logic, and thus every separation logic formula is a matching logic pattern over
that signature as is, without any change. Then it is shown that the separation logic formula is valid in
separation logic if an only if it is matched by the particular model of maps in matching logic. The
conclusion here is that, through the lenses of matching logic, separation logic is a particular fixed-model
fragment for exclusively specifying heap patterns. Matching logic, on the other hand, allows you to
specify patterns everywhere in a program configuration, not only in the heap. And you do not have to fix
the model either.
So you may ask why we are interested in separation logic at all then. Separation logic proposed a
different way to think about program state properties, where the actual structure of the heap matters for
what it is and not for how it can be encoded using FOL or other classic logics. Matching logic embraces
this view; in fact, it is all about this view, but extended to the entire program configuration, not only the
heap. Several interesting theoretical results and automation heuristics have been proposed in the context
of separation logic. My conjecture is that many of these results transcend the particularity of separation
logic and are just as well applicable in the more general context of matching logic. Doing things more
generally may help us better understand the nature of those results, and may turn them into more powerful
ones. On the practical side, separation logics have been used to specify program properties in several
program verifiers, and several programs have been verified that way. We should be able to reuse all these
properties unchanged in matching logic provers. All these indicate that a systematic and thorough study
of the various variants of separation logic in the context of matching logic might be more than an
exercise. It might be instrumental to obtaining both interesting new theoretical results and practical
matching logic program verifiers. I propose the following steps, as a start: (1) Clarify that separation logic
is equivalent to first-order logic in the map model directly, without going through matching logic; (2)
Show (1) for several variants of separation logic, to make the point crystal clear; (3) Make the point that it
is not practical to use FOL, though, because the translations at (2) increase the size of the formula and add

Open Problems and Challenges - FSL Page 11 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

quantifiers; (4) Like in the two papers above, show how each variant at (2) can be framed as a matching
logic theory over a fixed model of maps, without any formula translation; (5) Implement a matching logic
prover and then show how to obtain separation logic provers from it, for each variant at (2).

7. Formal Relationship between the Circularity proof rule and Coinduction.
As we claimed in our papers on reachability logic,
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

One-Path Reachability Logic
Grigore Rosu and Andrei Stefanescu and Stefan Ciobaca and Brandon Moore
LICS'13, IEEE, pp 358-367. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-27-LICS.pptx) , Reachability Logic
(http://fsl.cs.uiuc.edu/RL) , LICS'13 (http://lii.rwth-aachen.de/lics/lics13/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-ref.bib)

the Circularity proof rule has a coinductive nature. We need to nail down the relationship between the
two. Some intuitive connections are discussed in
Program Verification by Coinduction

Brandon Moore and Grigore Rosu
Technical Report http://hdl.handle.net/2142/73177, February 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/moore-rosu-2015-tr/moore-rosu-2015-tr-
public.pdf) , Matching Logic (http://matching-logic.org/) , DOI (http://hdl.handle.net/2142/73177) ,
BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/moore-rosu-2015-tr/moore-rosu-2015-tr-ref.bib)

but the problem is far from being solved. One we understand the connection well, the next step is to
formalize it as a mechanical translator from reachability logic proofs to coinductive proofs. Eventually,
this will become part of the K framework, where proofs done using the K prover can be translated into
Coq or Isabelle or other similar theorem prover proof scripts, so that the latter can reconstruct the proof in
a certifiable manner.

8. True concurrency with K.

Open Problems and Challenges - FSL Page 12 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

This is related to the semantics of K challenge. As explained there, K offers finer grained concurrency
than conventional rewriting, for example the chemical abstract machine
(http://dx.doi.org/10.1145/96709.96717) or rewrite logic (http://dx.doi.org/10.1016/0304-3975(92)
90182-F) , because it allows rewrite rules that overlap in the conventional sense apply concurrently. We
need to do a systematic study of computational frameworks and/or logics for true concurrency and then
show how each can be represented in K in a way that gives them exactly the intended truly concurrent
semantics. While this challenge naturally combines with the semantics of K challenge, we prefer to study
them as separate problems, or at least to publish them as such. Each of them is big and important enough
in itself.
There are two parallel semantic avenues to study this problem. One is to follow the dynamic matching
logic approach to the semantics of K, where K rules are syntactic sugar for particular dynamic matching
logic formulae. Another is to follow the reachability logic approach, with a proof system specialized for
the particular kind of dynamic matching logic formulae that we call reachability rules. However, in this
latter case, we have to extend the notion of reachability rule to allow local and multiple reachability rules
into a given context, like the K rules allow; then we should be able to take two such reachability rules
which can be applied concurrently and combine them into one reachability rule that collects all the
reads/writes of the two combined rules.

9. Rewrite-based parsing.
Powerful language frameworks require powerful parsing. Indeed, the first tool generated from a formal
language definition is a parser for the language. In fact, several parsers. In addition to the parser for the
language, we also want parsers for the semantic rules of the language, in which we want to use concrete
instead of abstract syntax, as well as for symbolic program configurations needed for specifying
properties to be verified, in which we also want to use concrete syntax. Therefore, the user-defined syntax
of the programming language will need to be extended with the syntax of K. Moreover, the syntax of K
itself can be changed by the user, for example in order to avoid conflicts or ambiguities with the
programming language they define. Even if the user adjusts the syntax of K, syntactically complex
languages like C or JavaScript will pose significant parsing challenges. A powerful parsing framework is
needed, which should allow users to see, debug and resolve parsing ambiguities.
In K implementations, the parser should be made available to the user using a special KLabel, say #parse
(String,Module[,Sort]). Also, the implementation of K itself should use that exact same parser to
parse its modules, by constructing the right module to be used as input to the parser; that module will
combine the user-defined language syntax with the (potentially user-modified) syntax of K. Ideally, we
would like the parsing infrastructure to be uniformly integrated with the K framework, at least at its core
notation (the front will likely provide parsing specific notations, such as the ">" for constructor
priorities). Since K is based on its special rewrite rules, we would like to allow users to disambiguate their
syntax using similar rules. Consider the following trivial syntax:
 syntax Exp ::= Exp "+" Exp | Exp "*" Exp

The string "1+2*3" is clearly ambiguous. We would like the parser to construct a special K-style
configuration making the ambiguity clear, for example something like this:
 <amb>... <kast> _+_(...) </kast> <kast> _*_(...) </kast> ...<amb>

Open Problems and Challenges - FSL Page 13 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

 

Therefore, an amb cell is inserted wherever ambiguities are detected, holding all the ambiguous parse
trees as K ASTs (kast). Like in the K debugger, the ... can be unfolded by need using special
commands or mouse clicks. Like with any other syntax, the user can also modify the the syntax of parsing
configurations; for example, they may replace amb with ambiguity, and kast with parse-tree, etc.
Based on many years of experience, we believe that rewrite rules are quite a powerful computational
mechanism. We expect them to be equally powerful for parsing disambiguation. For example, to state that
* binds tighter than _*_, we can write the following rule:
 rule <kast> _+_(_:KList) </kast> (<kast> _*_(_:Klist) </kast> => .)

That is, if two parser are possible, one with _+_ as root and the other with _*_ as root, then get rid of the
latter. Or, alternatively, we can say that a parsing tree with a _+_ immediately under a _*_ is never
allowed (one should use parentheses if one wants that, that is, "(1+2)*3"):
 rule <kast> _*_(_:Klist,_+_(_:Klist),_:Klist) </kast> => .

Adding enough rules like the above, eventually all undesired parses are hopefully eliminated. When that
happens, a rule like the above can then get rid of the unnecessary ambcell:
 rule <amb> <kast> K </kast> </amb> => <kast> K </kast>

Allowing the user to add such rewrite rules to interact with the parser can give them a lot of semantic
power. For example, one may use the parsing ambiguities as a means to define non-deterministic
languages, where each ambiguity is one possible way to look at the program. Recall, for example,
reduction semantics with evaluation contexts, where non-deterministic evaluation strategies are defined
using ambiguous evaluation context grammars. Also, this would allow users to parse in stages. For
example, consider C. A first grammar can parse all the top level declarations (globals and functions),
putting the body of each declaration in a string bubble; for example,
 #parse("int f(int x) {return x+1;}", C-DECLARATIONS-SYNTAX, Pgm)

can yield a K AST of the form
 __(_){_} (int, #token("f","Id"), __(int,#token("x", "Id")), #token("return x+1;", FunctionBodyBubble))

then one can enable further parses of bubble with rules of the form
 rule #token(S, FunctionBodyBubble)) => #parse(S, C-FUNCTION-BODY-SYNTAX)

This way, each stage uses a simpler grammar that hopefully generates fewer ambiguities. Moreover,
complex parsers can be developed, where a parser state can be maintained and used at later stages; for
example, remember that "a*b;" in C means a pointer declaration of type a when a has been declared as a

Open Problems and Challenges - FSL Page 14 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

type with typedef, and a multiplication otherwise. Also, better error messages can be reported. Not to
mention that performance can increase, because the K rewrite engine takes advantage of parallel
architectures, so multiple instances of the rule above can be applied in parallel.
It should be easy to implement an inefficient parsing infrastructure like above. For example, use an
Earley-based algorithm to obtain all the parsings, put them into a configuration like above, and then use
the K rewrite infrastructure to rewrite the configuration. The challenge here is how to do this efficiently.
Essentially, we'd like to apply the disambiguation rules like above at parse time, while the parsing
DAG/tree is being generated. Consider, for example, the disambiguation rule
 rule <kast> _*_(_:Klist,_+_(_:Klist),_:Klist) </kast> => .

discussed above. An efficient parser would use it to never even attempt to parse a _+_ underneath a _*_,
which can save considerable resources.
An ideal solution to this problem would be a parser generator that takes as input a grammar and a set of
disambiguation rules, and generates an efficient parser as output that applies the disambiguation rules on
the fly, as the input string is being processed. Moreover, when the grammar falls into fragments for which
efficient parser generators are known (e.g., LL(k), LR(k), etc.), we would like the complexity of our
generated parser to stay within the same asymptotic complexity.

10. Narrowing-based parsing.
Narrowing is rewriting with unification instead of matching. You start with a term T with variables and
then find rewrite rules whose LHS unifies with T. Apply the mgu and rewrite rule to T and obtain a new
term T'. Keep doing that until the term is not unifiable with the LHS of any rule. The overall result is that
you iteratively narrow the original term by adding structure to its variables so that rules apply and keep
applying rules this way until the term cannot be narrowed anymore.
Narrowing is a very powerful computational mechanism. It turns out that we can use narrowing for
parsing. The code below show some simple experiments with Maude's narrowing support (v2.7) to flesh
out the idea, and it seems to work:
in full-maude .
mod TOKENS is sorts Token TokenList . op nil : -> TokenList . op __ : Token TokenList -> TokenList . ops a b c d e f g h i j k l m n o p q r s t u v x y z w 0 1 2 3 4 5 6 7 8 9 : -> Token . op append : TokenList TokenList -> TokenList . var T : Token . vars Ts Ts' : TokenList . rl append(nil,Ts') => Ts' . rl append(T Ts, Ts') => T append(Ts,Ts') . endm
mod KAST is sorts KItem K KLabel KList . subsorts KItem < K < KList . op .KList : -> KList . op _,_ : KItem KList -> KList . op _`(_`) : KLabel KList -> KItem . endm
mod GRAMMAR is including TOKENS .

Open Problems and Challenges - FSL Page 15 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

 including KAST .
 op [_,_] : K KItem -> TokenList .
***(syntax S ::= S A | epsilon syntax A ::= a | b ***)
 sorts S A . subsorts S A < K .
 ops 'a:->A' 'b:->A' '__:S*A->S' 'epsilon:->S' : -> KLabel .
 vars S1 S2 : S . vars A1 A2 : A . vars K1 K2 : KItem . rl [S1, '__:S*A->S'(K1,K2)] => append([S2, K1], [A1, K2]) . rl [S1, 'epsilon:->S'(.KList)] => nil .
 rl [A1, 'a:->A'(.KList)] => a nil . rl [A1, 'b:->A'(.KList)] => b nil .
endm
select FULL-MAUDE . loop init .
(search [1,5] in TOKENS : append(Ts:TokenList, c d nil) ~>* a b c d nil .)
(search [1,7] in GRAMMAR : [S1:S, AST:K] ~>* nil .)
(search [1,7] in GRAMMAR : [S1:S, AST:K] ~>* a nil .)
(search [1,8] in GRAMMAR : [S1:S, AST:K] ~>* a b nil .)

The above outputs:
search [1,5] in TOKENS : append(Ts:TokenList,c d nil) ~>* a b c d nil .
Solution 1 Ts:TokenList --> a b nil
No more solutions.
search [1,7] in GRAMMAR :[S1:S,AST:K] ~>* nil .
Solution 1 AST:K --> 'epsilon:->S'(.KList)
No more solutions.
search [1,7] in GRAMMAR :[S1:S,AST:K] ~>* a nil .
Solution 1 AST:K --> '__:S*A->S'(('epsilon:->S'(.KList)),'a:->A'(.KList))
No more solutions.
search [1,8] in GRAMMAR :[S1:S,AST:K] ~>* a b nil .
Solution 1 AST:K --> '__:S*A->S'(('__:S*A->S'(('epsilon:->S'(.KList)),'a:->A'(.KList))),'b:->A'(.KList))
No more solutions.
Bye.

Unfortunately, it looks like narrowing in Maude only works with Full Maude, and does not have support
for associativity, so we had to cripple the definition to use append instead of associative lists. And in the
end it is quite slow. It takes about 1 minute for the above to terminate on a regular desktop.

Open Problems and Challenges - FSL Page 16 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

So here is the question. We want a powerful narrowing engine for test-case generation and many other
reasons anyway in the K framework, which should interact well with strategies and associative lists. Then
why not use that for parsing as well? Of course, performance is a serious issue, but can't we improve the
performance to an extent that it will not be a bottleneck? We want narrowing to be fast anyway.

11. Fast execution engine.
While K rewriting can be mimicked with conventional rewriting, the price to pay may be too high to do
so. Our first implementation of K was in Maude
K-Maude: A Rewriting Based Tool for Semantics of Programming Languages

Traian Florin Serbanuta and Grigore Rosu
WRLA'10, LNCS 6381, pp 104-122. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-wrla.pdf) , Slides (PDF)
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-wrla-slides.pdf) , K-Maude
(http://k-framework.googlecode.com/) , LNCS (http://dx.doi.org/10.1007/978-3-642-16310-4_8) ,
WRLA'10 (http://wrla10.ifi.uio.no/) , BIB (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-
wrla.bib.txt)

and it worked fine for small languages. However, for larger languages, with tens of semantic components
in their configuration, the cost of AC matching started to become unbearable. Note that Maude is indeed a
super-fast general purpose rewrite engine, able to perform millions of rewrite steps per second in general.
But with complex language configurations, with several layers of nested cells (which are AC soups), the
performance of Maude was quickly reduced to only a few thousands steps per second, sometimes a few
hundred. To avoid this cost, starting with v3.6 K provides its own rewrite engine, implemented fully in
Java. In addition to specialized cell matching to avoid unrestricted AC, the new rewrite engine also
provides specialized data-structures, such as hash maps and vectors and soon threads. All these have
increased the execution speed of K between one and two orders of magnitude. Also, K has been
reorganized to allow various backends. Additionally, Runtime Verification, Inc.
(http://runtimeverification.com) has developed an OCAML backend, which is two additional orders of
magnitude faster than the Java backend when executing concrete programs.
While the OCAML backend is orders of magnitude faster than the original Maude backend, there is still
room for faster. For example, when executing the C semantics with the OCAML backend, the resulting C
interpreter is still about 100,000 slower than if we compiled the program with gcc and then executing the
native binary. Two or even three orders of magnitude slower than a compiler is acceptable for an
interpreter, but 5 orders is still too much. We believe that we can improve over the OCAML backend
another two orders of magnitude. One possible approach could be to translate K to LLVM, and then use
LLVM compilers to native code. The challenge here is to implement very efficient indexing algorithms
and/or pattern match automata specialized for K, so that we do a minimal amount of computation at each
step in order to decide which rule can match.
Another major challenge is to develop a semantics-based compiler for K.

12. Semantics-based compilation.

Open Problems and Challenges - FSL Page 17 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

An ideal language framework should allow us to generate compilers from language definitions.
Specifically, we hope that soon K will have the capability to take a language semantics and a program in
that language, and generate an efficient binary for the program. Conceptually, K already provides the
ingredients needed for such a semantics-based compiler. One way to approach the problem is to use
symbolic execution on all non-recursive non-iterative program fragments and calculate the mathematical
summary of the fragment as a (potentially large) K rule; the left-hand side of that rule will contain the
fragment. For example, consider the trivial IMP language and a while loop whose body contains no other
while loops. Then we can conceptually replace the while loop body with a new statement, say
stmt17093, whose semantics is given with a K rule that symbolically accumulates the semantics of the
individual statements that composed stmt17093. We can do the same for all non-loop fragments of code,
until we eventually obtain a program containing only while statements whose bodies are special statement
constants like stmt17093, each with its own K semantics.
Once the above is achieved, there are two more important components left. One is to translate the while
statements into jump statements in the beckend language, say LLVM. In the long term, this should be
inferred automatically from the K semantics of the while statement. In the short term, we can get the user
involved by asking them to provide a translation for the while loop (yes, this is not nice, but hey, getting a
compiler for your language is a big deal). The other component is to translate the K rules for statements
like stmt17093 into efficient target language code. We believe this is an orthogonal issue, which we want
to have efficiently implemented in K anyway, as part of our effort on providing a fast execution engine
for K.

13. Support full dynamic matching logic in K.
If we can give [[#K-semantics|semantics to K] using [#dml|dynamic matching logic], then why not
support the entire dynamic matching logic notation in K? It may be convenient to keep using the existing
notational sugar in the frontend, such as the rewrite arrow => instead of "implies next", but it would be
nice and uniform to have KORE (https://github.com/kframework/k/wiki/KAST-and-KORE) use directly
the dynamic matching logic notation. And of course, since KORE is included in the full K notation, that
means to also allow people to use the dynamic matching logic notation in their definitions if they choose
to. Note that dynamic matching logic can be computationally expensive, so it is likely that we would not
support it in its full generality. But we can support more and more of it. For example, we can start by
allowing Boolean connectives, so we can write
 rule I1 / I2 /\ (I2 =/= 0)@INT => (I1 / I2)@INT

instead of
 rule I1 / I2 => (I1 / I2)@INT requires (I2 =/= 0)@INT

or
 rule <k> nat X; =></k> <state>... . => (X |-> ?V /\ (?V >= 0)@INT) ...</state>

instead of

Open Problems and Challenges - FSL Page 18 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

 rule <k> nat X; =></k> <state>... . => (X |-> ?V) ...</state> ensures (?V >= 0)@INT

Or, remember issue #1380 (https://github.com/kframework/k/pull/1380%7CK) , where we wanted to be
able to write (comma is AC)
 rule A,B => A*B \/ A-B \/ A+B \/ A/B

instead of four rules
 rule A,B => A * B rule A,B => A - B rule A,B => A + B rule A,B => A / B

14. Semantics-based test-case generation.
Suppose that you have a given program in a given programming language. Suppose also that the program
takes inputs, either directly through dedicated parameters or indirectly through interaction with the
environment, or the user, or some thread scheduler, and that you would like to test the program according
to various test criteria. What this boils down to ultimately is to provide inputs to the program in order to
exercise the desired behaviors when executed.
Nothing in the above process is specific to any particular programming language; no matter whether it is
C, or Java, or JavaScript, you would still want to do the same, namely to generate inputs that exercise the
various desired behaviors of the program. In fact, the particular semantic details of the programming
language can even confuse you wrt what inputs need to be generated. Consider, for example, the simple C
expression fragment a+(*b). It is obvious that you need to generate inputs under which *b is defined or
not, that is, b points to a previously allocated and unfreed memory location or not, but it may be easy, if
not careful, to miss checking for behaviors where the sum overflows. Now in C overflow is allowed for
unsigned integers, but it is disallowed for normal integers, so in one case you test an interesting behavior
while in the other you found a bug in the program.
In the end, if you want to develop a powerful test-case generation tool for your language that misses no
dark corners of the program, you must take into account the entire semantics of the programming
language. But why waste time and risk to make mistakes implementing your own understanding of the
language semantics in your own test-case generation tool? Following the ideal language framework
paradigm, we believe that test-case generation should be a framework feature and not a language one,
where each language that has a semantics given in the framework can benefit from it. Note that a
semantics is unavoidable anyway, as discussed in the simple example above. But instead of manually
projecting it into one particular tool for one particular purpose at a significant effort, we should just define
it once and for all, in a rigorous and easy to understand notation, and then have all the tools, including the
test-case generator, be developed in a language-independent manner that can be automatically instantiated
with any language semantics given as input.
Sometimes doing things generally helps you not only find cleaner solutions to the problem at hand, but
also resolve apparently different problems using the same general machinery. Then you realize that all
these problems are instances of the same general principle and you do not even see them as different

Open Problems and Challenges - FSL Page 19 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

problems anymore. In our case, the general principle is to generate program configurations, where each
includes both the program and its input, as well as all the other semantic components, possibly dozens of
them, such as memory, stacks, I/O buffers, threads, locks held by thread, and so on. Generating program
inputs only amounts to an instance of the general problem where the program in the k cell is fixed, but its
inputs are allowed to vary. Here is another instance of the general problem. Suppose that you already
have an interpreter or a compiler for a language, or an analysis tool for it, which was not derived using the
ideal language framework approach we that advocate, and that you want to test it. In other words, you
would like to execute lots and lots of programs that attempt to cover all the dark corners of your language,
hopefully multiple times under various combinations of features. Getting such programs is challenging,
though. Some newer languages already come with conformance test suites, such as, for example,
JavaScript (https://es5conform.codeplex.com/) . But others, like C or C++, in spite of being already quite
complex, have no such well-established test suites. There are companies which sell test suites for C and
C++, though; for example you can buy them from Plum Hall, Inc. (http://www.plumhall.com/) for
thousands of dollars. Well, using the same general machinery described below, we can not only generate
inputs to test programs, but also whole programs and inputs for them to test compilers, interpreters, or
other language tools.
The general idea of our sought solution is in fact quite simple and the technique well-established:
narrowing, or rewriting with unification instead of matching. Indeed, starting with a program
configuration with (symbolic) variables, which can also be potentially constrained, or in other words a
matching logic pattern, attempt to unify it with the left-hand-side of some semantic rule. If that is
possible, then rewrite the symbolic configuration and apply the unifying substitution to the result. Keep
doing that systematically, with all the rules, until a desired pattern, say one where the result configuration
holds the value 0 in the k cell, or until any desired termination criterion is reached. If your objective is to
generate inputs to a given program, then start with a configuration holding the concrete program in the k
cell and symbolic variables in the configuration where the desired input is to be generated. If your
objective is to generate programs, then put a symbolic variable in the k cell. And you can be arbitrarily
creative now: you can generate programs making use of say up to three variables in their environment,
using at most 10 heap locations and at most 2 stack frames. All you have to do is to start with the desired
configuration pattern and to enable the desired strategies to apply the semantics rules. Which brings us to
the actual challenge here. The challenge is to come up with appropriate coverage strategies and to
implement them efficiently. We want to cover the semantics as thoroughly as possible when generating
new configurations, given the initial constraints (both structural and logical constraints). The success of a
solution to this problem will be measured by the quality of the generated programs. For example, in the
case of C, can we use the ISO C11 semantics in K to generate millions of C programs that can then reveal
bugs in C compilers? Or in the case of JavaScript, ca we use the JavaScript semantics in K to generate
more comprehensive test suites than the ES5 conformance test suite? Or even better, can we give
semantics to ES6, and thus save the committee from coming up with a conformance test suite first place,
because they cannot do better than a semantics-driven test suite anyway?

15. Symbolic execution framework.
There are many uses of symbolic execution in the literature. Some in the context of test-case generation
others in the context of program verification, some static others dynamic, some available to extend others
hardwired in tools, and so on, but all instances of symbolic execution that we are aware of end up being
specifically instantiated for one particular language. So you end up with a symbolic execution engine for
C, one for LLVM, one for Java, one for JavaScript, and so on and so forth, each implemented by a
different team, with a high degree of overlapping and similar challenges. Worse, each presents

Open Problems and Challenges - FSL Page 20 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

innovations and engineering solutions which could have very well been applied to other symbolic
execution engines developed by other teams for other languages. Even worse, because of this
fragmentation, we do not even have a crystal clear definition of what symbolic execution is in the end.
People interested in finding bugs will say that it is a method to find which inputs lead to execution paths
that have bugs. People interested in program verification will say that it is a method that allows you to
systematically explore all the execution paths in a program to prove bug freedom. Some will say that only
the program input is symbolic, but not the program environment, nor the program itself (for example you
cannot replace a missing function or a missing concurrent thread or a missing code fragment of a given
function with a symbolic variable); others say you can. Some will say that values in the heap can be
symbolic, but not the stack frames. Some will say that you can only make values that can be assigned to
"program variables" symbolic, others that we can go further and have even the program
execution/evaluation context symbolic. And what is a "program variable" anyway, generally speaking? It
may mean something in some languages, but in others it is not clear (e.g., in Prolog, or in SQL, or in
Haskell, etc.). Some will say that symbolic execution is all about using Hoare logic to extract verification
conditions and then solve them with an SMT, others will say "no way!", it is all about extending an
interpreter of the language to work with symbolic values instead of concrete ones. So the lack of a clear
definition leads to mixing possible implementation of symbolic execution to what it actually is. A big
mess, in our view.
Since there is no rigorous definition of what symbolic execution is, we propose one which is general
enough to include all the instances of the concept that we are aware of, for all programming languages:
reachability logic without Circularity``. Recall the following papers presenting reachability logic, the
former for all-path and the latter for one-path:
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

One-Path Reachability Logic
Grigore Rosu and Andrei Stefanescu and Stefan Ciobaca and Brandon Moore
LICS'13, IEEE, pp 358-367. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-27-LICS.pptx) , Reachability Logic
(http://fsl.cs.uiuc.edu/RL) , LICS'13 (http://lii.rwth-aachen.de/lics/lics13/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-ref.bib)

Also recall that Circularity is a proof rule for proving circular behaviors. The rest of the rules can be used
to derive any one-path or all-path reachability logic property over any finite execution of any
programming language. Reachability rules can contain logical variables of any sorts, which act as
symbolic variables, and they can occur anywhere in the program configuration, including in the program
itself.

Open Problems and Challenges - FSL Page 21 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

The challenge here is to design and implement a symbolic excution API to the K framework. Like all the
other K tools, it would take a programming language semantics as input and it would provide a suite of
functions, likely hooked to K commands in a console or debugging mode, that should allow a user to do
anything they need in terms of symbolic execution. Each of the functions/commands would correspond to
certain combinations/heuristics/strategies of the reachability logic proof system, except for Circularity.
For example, if one is interested in finding a bug in some execution path, then one should be able to drive
the operational semantics based one-path reachability logic proof to cover that path, and then one should
be able to solve the accumulated semantic constraints to find a concrete input that lead them there.
Adding the Circularity proof rule yields a sound and relative complete procedure to verify any property of
any program, as shown in the above papers.

16. Symbolic model checking.
This problem is closely related to the unifying deductive verification and model checking and the
symbolic execution framework problems, but it focuses in more depth on the model checking aspect. The
idea here is to systematically investigate the various approaches used by the symbolic model checking
community and to generalize them to work within our semantic framework. After all, model checkers
regard a programming language as a transition system generator, one for each program, and then they
implement techniques and optimizations to make the analysis of the transition system efficient and
automatic. Well, a programming language semantics in a language framework like K is also a transition
system generator, one for each program. Therefore, there is no reason not to develop model checking
techniques directly at the level of a semantics framework like K, instead of at the level of each particular
language. On the contrary, there are significant benefits for doing so. Besides the obvious fact that this
way you get model checkers for all languages for which you have formal semantics, there is also a major
engineering pragmatic advantage: each feature or optimization implemented for the generic symbolic
model of the framework results in optimizations for all the instances for all the languages. Consider, for
example, a smart technique to identify equivalent configurations based on graph isomorphism and alpha-
equivalence (see also the aggressive state-reduction challenge below); once implemented generically in
the framework, it will yield state-reduction benefits to all model-checker instances for all the languages.
Compare that with the approach where each team developing a different model checker for a different
language re-implements the same idea in their model checker.
To get a better feel for what we expect to achieve here assume some program in some programming
language which, when put into some symbolic configuration as a pattern PHI, it shows the following
behaviors: PHI => PHI1 and PHI => PHI2 are all the direct transitions that PHI can perform, then PHI1
=> PHI' is all PHI1 can perform and we can prove, say using some SMT solver, that PHI2 -> PHI is
valid (i.e., PHI2 implies the original PHI). This could happen when, for example, PHI2 is obtained after
the execution of a loop with invariant PHI and PHI1 is the exit configuration pattern. In terms of model
checking intuitions, we have just proved above that PHI => PHI', because we have exhaustively
analyzed all the behaviors of the program and the only way to start with PHI and "exit the loop" is to
reach PHI'. Well, the above can actually very well be framed as a reachability logic proof, where PHI =>
PHI' is used as a circularity to prove itself.

Open Problems and Challenges - FSL Page 22 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

The challenge here is twofold: (1) to frame existing symbolic model checking techniques and algorithms
as instances of using the reachability logic proof system and the Circularity rule, in particular, as shown
above; and (2) to develop abstraction and automation techniques, based on existing ideas or develop new
ones, to come up with patterns like PHI above, which manifests the circular behavior needed to apply the
Circularity proof rule. This is also related to the invariant inference challenge.

17. Invariant/Pattern inference using anti-unification.
Finding program invariants is and will continue to be one of the major challenges in program verification
and analysis. In terms of reachability logic, that is equivalent to finding all the circularities that are
needed to derive a reachability rule. Such circularities, if available, would put a finite bound on the space
of the reachability logic proof search, reducing the complexity of proving the original rule to domain
reasoning, which can hopefully be discharged using SMT solvers.
We formulate the invariant/circularity inference problem for reachability logic, or K, as follows. Given a
set of matching logic patterns Phi_1, Phi_2, ..., Phi_n, find the strongest pattern Phi such that Phi_i ->
Phi for all i from 1 to n ("strongest" means that Phi -> Phi' for any other pattern Phi' with Phi_i ->
Phi' for all i from 1 to n). The patterns Phi_1, Phi_2, ..., Phi_n can for example be (concrete or
symbolic) configuration snapshots at a particular point in a program configuration, which can be
extracted by simply executing the program with the semantics. Since in matching logic there is no
distinction between terms and predicates, this problem can also be regarded as an anti-unification, or
generalization, problem. Like for other tools and techniques that we plan to port to the generic level of
our semantic framework, we should probably start with the state of the art in invariant inference and try to
incorporate it in our framework, and then continue to improve it based on other generic tools and
algorithms provided by the framework (e.g., unification, narrowing, state-equivalence, etc.).

18. Aggressive state/configuration-reduction techniques.
One of the major engineering challenges when automating deductive program verification and model
checking is to identify when a program state is equivalent to a previously discovered state. In matching
logic a weaker property suffices, namely when a pattern implies another pattern, but that is irrelevant for
this problem/challenge. What we'd like to be able to is to efficiently find out when a pattern is
semantically equivalent to another one, so that the new pattern can be discarded from the analysis
(because it would yield the same behaviors as the previously discovered equivalent one). Same like in
object-oriented programming, where objects can be equivalent for many semantic reasons, there are also
various logical reasons for which two patterns can be considered equivalent. For example, two lambda
abstractions lambda x . x and lambda y . y can be considered equivalent due to alpha-equivalence.
Or two symbolic integer expressions x +Int y and y +Int x can be considered equivalent due to the
domain commutativity of +Int. Or two almost identical program configurations, with the difference that
one allocates program variable x to location 100 which then holds value 7, and the other allocates x to
location 17 which also holds value 7, can be considered equivalent in a language where the location of a
variable is not available to the program (unlike in C).
We would like to design and implement a generic approach to pattern equivalence, where users should be
allowed to define the precise notion of configuration equivalence that they want for their language. As an
analogy, object-oriented languages like Java also allows users to implement their own notion of object

Open Problems and Challenges - FSL Page 23 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

equality using methods like isEqual. The framework should provide default support for at least well-
known equivalences like domain equalities, alpha-conversion and graph isomorphism (in the
environment/heap), but in its full generality it should allow users to define their own pattern equality.

19. Language-independent infrastructure for program equivalence.
Program equivalence is a hard problem, even when the two programs are in the same language. It is a
Pi_2^0-complete problem, in fact, which makes it theoretically as hard as the totality problem for Turing
machines: given a Turing machine, does it terminate on all inputs? In order to verify program translators
within the same language or across different languages, we would like to develop a theoretical foundation
with corresponding tool support for program equivalence. And of course, it should all be language-
independent. Specifically, given two language semantics and a (symbolic) configuration pattern in each,
when are the two equivalent? Like for reachability logic, we would like to have a sound and relatively
complete proof system for this problem. The equivalent of Circularities here would be to conjecture more
pairs of equivalent configuration patterns. The resulting technique is expected to be akin to bisimulation,
or cricular coinduction. We have already proposed a sound proof system
A Language-Independent Proof System for Full Program Equivalence

Stefan Ciobaca and Dorel Lucanu and Vlad Rusu and Grigore Rosu
J.FOAC. 2016. To appear

PDF (http://fslweb.cs.illinois.edu/FSL/papers/2016/ciobaca-lucanu-rusu-rosu-2016-foac/ciobaca-
lucanu-rusu-rosu-2016-foac-public.pdf) , Matching Logic (http://matching-logic.org) , J.FOAC
(http://link.springer.com/journal/165) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2016/ciobaca-
lucanu-rusu-rosu-2016-foac/ciobaca-lucanu-rusu-rosu-2016-foac-ref.bib)

A Language-Independent Proof System for Mutual Program Equivalence
Stefan Ciobaca and Dorel Lucanu and Vlad Rusu and Grigore Rosu
ICFEM'14, LNCS 8829, pp 75-90. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/ciobaca-lucanu-rusu-rosu-2014-icfem/ciobaca-
lucanu-rusu-rosu-2014-icfem-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-11-05-ICFEM.pdf) , Matching Logic
(http://matching-logic.org) , DOI (http://dx.doi.org/10.1007/978-3-319-11737-9_6) , ICFEM'14
(http://icfem2014.uni.lu/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2014/ciobaca-lucanu-rusu-
rosu-2014-icfem/ciobaca-lucanu-rusu-rosu-2014-icfem-ref.bib)

and a prototype tool in K has been implemented that worked with some simple examples, but we were not
able to prove the relative completeness of the proof system and have not upgraded the tool to work with
the latest version of K. Also, some serious applications are needed (see, for example, the C portability and
the LLVM correctness problems below.
In addition to a sound and relatively complete proof system, another major challenge is how to automate
the process of checking program equivalence. Ideally, we would like the user to only provide a binary
relation between "synchronization" points in the two programs, and then have the framework do the rest
automatically. For example, consider a C program with a loop that you want to prove equivalent to its
translation to LLVM, where the loop has been replaced with a conditional jump. You want to only say
that the beginning of the C loop and the LLVM label that the jump targets are synchronized, and
everything else to be automatically inferred. The problem is non-trivial, but we believe it can be done. In
order to lift the user-provided light relation to a relation between symbolic program configurations that
can be shown closed under the semantic transition relations, we need to add enough semantic structure to

Open Problems and Challenges - FSL Page 24 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

the inferred symbolic configurations that we can execute the corresponding cyclic behaviors. We believe
that can be done using narrowing, basically starting with very abstract symbolic configurations which are
just variables, and then adding more structure and constraints to them as the bodies of the corresponding
loops are executed. The resulting configuration patterns are expected to be significantly more abstract
than the loop invariants would be, because they need not be strong enough to prove the programs correct.
The above was discussed for program equivalence, but a similar approach should also work for program
simulation, where one of the programs has only a subset of the behaviors of the other one. This is
typically the case in compilers, where the target program may make choices for otherwise non-
deterministic behaviors in the source program.

20. Program portability checking.
As an application of the program equivalence problem above, with immense practical relevance, we
would like to develop a C portability checker. Specifically, we would like to take a given C program in a
particular instance of C, say for 32 bit word machines, and prove the program equivalent to itself under a
different semantics of C, say an idealistic one with arbitrarily large integers. So in this special case of the
program equivalence problem, the synchronization points between the two programs are obvious, because
the two programs are in fact identical. If the check passes and the program under the different semantics
has the same behavior, then the program has no behaviors that depend on the particular C instance, so the
program is fully portable.
The above is expected to be an idealistic requirement that probably few programs will respect. To allow
more programs to be analyzed and the analyses to be finer grained, we should allow the users to annotate
the non-portable code, taking responsibility for it. For example, if a while loop iterates from the
MAXINT to 0 and its result depends on the number of iterations, then a user annotation is needed. The
point is that the checker is not meant to be very intelligent and infer the user's intention. Its purpose is to
let the user know where portability might be possibly broken.
The same can be done for C++, LLVM, and various fragments of C (MisraC, JSF C) and of other
languages.

21. Translation validation, preferably for LLVM.
Probably the "killer application" of a powerful infrastructure for proving program equivalence/simulation
is translation validation. Translation validation means that each translation/compilation instance is
validated (as opposed to verifying the translator/compiler itself, which is a much harder problem). The
idea is to augment the translator or compiler to produce not only a target program from the source
program, but also a witness that can be used to validate the particular translation. For example, the
witness can be the synchronization points between the source and the target program. Since LLVM has
been invented at UIUC (in Prof. Vikram Adve (http://web.engr.illinois.edu/~vadve) 's group) and we
continue to have significant expertise in LLVM as a department at UIUC, in case you are a UIUC student
or collaborator it makes sense to pick LLVM as a target compilation framework for this challenge.

22. Strategy language for K and reachability logic.

Open Problems and Challenges - FSL Page 25 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

In K and in reachability logic, the semantic rewrite rules form a set. That is, their order is irrelevant.
While there are strong mathematical reasons to keep them that way in a framework for mathematical
semantics and reasoning about programs, this may sometimes be inconvenient when writing K language
definitions. For example, you may need to add side conditions to rules to prevent their application in
cases where you want the "previous" rules in the definition to apply. In such a situation you may want to
tell K to attempt to apply the rules in order, and to never apply a rule that appears later in a definition if a
rule that appears earlier applies. Or you may want to split the rules in two groups, and to always apply
rules from the first group before attempting rules from the second group. For such reasons, and many
others, the term rewriting community has developed strategy languages to allow users to control the
application of rules. Probably Elan (http://elan.loria.fr/elan.html) was the first rewrite engine that
provided a language for describing strategies, and probably Stratego
(http://strategoxt.org/Stratego/StrategoLanguage) is the rewrite engine with the most advanced strategies.
We would like to also add strategies to the K framework. However, due to the variety of tools that it
incorporates, and due to its semantics and its uses for program reasoning and verification, we would like
to maintain K's core semantics as a set of reachability rules. So we would like to "desugar" strategies by
translating them back to ordinary rules. For example, a strategy can be seen as a monitor telling which
rules are allowed to apply. The monitor state can be stored in some cell specially added for this purpose,
and the rewrite rules can then match the monitor state and apply only if allowed to. We believe that all
this strategy monitoring infrastructure can be generated automatically from some user convenient and
intuitive strategy language. We also believe that the above is possible, even for complex strategies,
because of the power of reachability logic to take arbitrary matching logic patterns as LHS of rules. For
example, for complex strategies you may need to state that none in a set of terms (the LHS's of a group of
rules) match, which is impossible to state in a conventional rewrite engine but is easy to state as a
matching logic pattern (the conjunction of the complements of all the LHS patterns).

23. Systematic comparison of K with other operational approaches.
K evolved from other approaches, systematically analyzing their advantages and disadvantages, and
keeping the advantages and eliminating the disadvantages. To systematically analyze other approaches,
we have uniformly represented all of them into one meta-formalism, rewrite logic, and implemented them
in Maude:
A Rewriting Logic Approach to Operational Semantics

Traian Florin Serbanuta, Grigore Rosu and Jose Meseguer
Information and Computation, Volume 207(2), pp 305-340. 2009
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-meseguer-2007-ic.pdf) , Experiments
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-meseguer-2007-ic-experiments.zip) , J.Inf.&Comp.
(http://dx.doi.org/10.1016/j.ic.2008.03.026) , BIB (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-
meseguer-2007-ic.bib.txt)

A more detailed discussion and comparison appears in my book draft, which I can send you if you want
to (send me a message).
A more direct comparison of K with rewrite logic has been studied in depth, and various translators from
K to rewrite logic have been implemented in Maude, meant not only to preserve the execution semantics
but also other aspects of the original definition, such as its symbolic execution and verification
capabilities:

Open Problems and Challenges - FSL Page 26 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Language Definitions as Rewrite Theories
Vlad Rusu and Dorel Lucanu and Traian Florin Serbanuta and Andrei Arusoaie and Andrei
Stefanescu and Grigore Rosu

J.LAMP, Volume 85(1, Part 1), pp 98-120. 2016
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2016/rusu-lucanu-serbanuta-arusoaie-stefanescu-
rosu-2016-jlamp/rusu-lucanu-serbanuta-arusoaie-stefanescu-rosu-2016-jlamp-public.pdf) , project
(http://fmse.info.uaic.ro/tools/K-3.4) , DOI (http://dx.doi.org/10.1016/j.jlamp.2015.09.001) ,
J.LAMP (http://www.journals.elsevier.com/journal-of-logical-and-algebraic-methods-in-
programming) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2016/rusu-lucanu-serbanuta-arusoaie-
stefanescu-rosu-2016-jlamp/rusu-lucanu-serbanuta-arusoaie-stefanescu-rosu-2016-jlamp-ref.bib)

Language Definitions as Rewrite Theories
Andrei Arusoaie (http://andrei.arusoaie.com/andrei/) and Dorel Lucanu
(http://fmse.info.uaic.ro/~dorel.lucanu/) and Vlad Rusu (http://researchr.org/profile/vladrusu) and
Traian Florin Serbanuta and Andrei Stefanescu and Grigore Rosu
WRLA'14, LNCS 8663, pp 97-112. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/arusoaie-lucanu-rusu-serbanuta-stefanescu-
rosu-2014-wrla/arusoaie-lucanu-rusu-serbanuta-stefanescu-rosu-2014-wrla-public.pdf) , K
(http://www.kframework.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-12904-4_5) , WRLA'14
(http://users.dsic.upv.es/workshops/wrla2014/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/arusoaie-lucanu-rusu-serbanuta-stefanescu-rosu-
2014-wrla/arusoaie-lucanu-rusu-serbanuta-stefanescu-rosu-2014-wrla-ref.bib)

The Rewriting Logic Semantics Project: A Progress Report
Jose Meseguer and Grigore Rosu
Information and Computation, Volume 231(1), pp 38-69. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/meseguer-rosu-2013-ic/meseguer-rosu-2013-ic-
public.pdf) , K (http://k-framework.org) , DOI (http://dx.doi.org/10.1016/j.ic.2013.08.004) ,
Information and Computation (http://iandc.csail.mit.edu/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2013/meseguer-rosu-2013-ic/meseguer-rosu-2013-ic-
ref.bib)

K-Maude: A Rewriting Based Tool for Semantics of Programming Languages
Traian Florin Serbanuta and Grigore Rosu
WRLA'10, LNCS 6381, pp 104-122. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-wrla.pdf) , Slides (PDF)
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-wrla-slides.pdf) , K-Maude
(http://k-framework.googlecode.com/) , LNCS (http://dx.doi.org/10.1007/978-3-642-16310-4_8) ,
WRLA'10 (http://wrla10.ifi.uio.no/) , BIB (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-
wrla.bib.txt)

Nevertheless, a crystal clear and shorter than in my book comparison of K to other semantic approaches
needs to be also written up and published as a conference/journal paper, for wider dissemination. Indeed,
we have encountered colleagues who seem to think that K is some new theoretical development based on
new principles. Well, sorry to disappoint, but K is an engineering endeavor attempting to get the best of
the ideas developed by the formal semantics community over the last four decades, avoiding their
limitations. The main novelties of K, besides its unique notation which appears to admit an elegant
semantics in dynamic matching logic, are: (1) its concurrent semantics, which allows for true concurrency
even in the presence of sharing; and (2) its configuration abstraction mechanism which is the key for K's
modularity.

Open Problems and Challenges - FSL Page 27 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

24. Configuration abstraction.
Configuration abstraction is one of the key features of K. It allows K language definitions to be be
compact and modular. What we mean by modular in this context is that you should not have to modify
the semantics of existing features in your language definition in order to add a new, unrelated features.
Consider, for example, a naive big-step SOS definition of an IMP-style language. Then suppose that you
want to add abrupt termination to your language, say that you want to stop the program when a division-
by-zero takes place. To achieve that, you now have to go through each language construct for which
you've already given semantics and add at least as many new rules as arguments that construct has, each
propagating the abrupt termination signal generated by that argument through the language construct.
This is terrible. It quickly discourages you to add anything new to your language, not to mention that it is
error-prone. Similarly, the configuration of a programming language often changes as you add new
features to the language. For example, if you add exceptions to your language, you may want to add an
exception stack to the configuration. Or if you want to add threads to your language, you need to re-
organize the configuration so that each thread cell holds its own computation and environment, while all
the threads share the same store or heap. In K, you do not need to change existing semantic rules when
extending the configuration or when adding new unrelated features to your language. For example,
consider an environment-based K semantics of IMP, whose configuration looks as follows
 configuration <T color="yellow"> <k color="green"> $PGM:Stmt </k> <env color="LightSkyBlue"> .Map </env> <store color="red"> .Map </store> </T>

and whose semantic rule for assignment looks as follows, saying that once the assigned expression
evaluates to integer I, the assignment statement is dissolved from the computation and I is written at the
location N of X.
 rule <k> X = I:Int; =></k> <env>... X |-> N ...</env> <store>... N |-> (_ => I) ...</store>

Later you add several other features to the language, say concurrent threads and I/O which are completely
unrelated to the assignment statement, and your configuration becomes:
 configuration <T color="yellow"> <threads color="orange"> <thread multiplicity="*" color="blue"> <k color="green"> $PGM:Stmts </k> <env color="LightSkyBlue"> .Map </env> <id color="black"> 0 </id> </thread> </threads> <store color="red"> .Map </store> <in color="magenta" stream="stdin"> .List </in> <out color="Orchid" stream="stdout"> .List </out> </T>

In a conventional semantic framework you would have to now also change the semantic rule of the
assignment to account for the new configuration structure. But not in K. In K, the same rule that we had
still works untouched, thanks to configuration abstraction. Indeed, as explained in some of the K papers,
such as

Open Problems and Challenges - FSL Page 28 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

K Overview and SIMPLE Case Study
Grigore Rosu and Traian Florin Serbanuta
K'11, ENTCS 304, pp 3-56. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-serbanuta-2013-k/rosu-serbanuta-2013-k-
public.pdf) , K (http://kframework.org) , DOI (http://dx.doi.org/10.1016/j.entcs.2014.05.002) , K'11
(http://www.kframework.org/K11/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-
serbanuta-2013-k/rosu-serbanuta-2013-k-ref.bib)

An Overview of the K Semantic Framework
Grigore Rosu and Traian Florin Serbanuta
J.LAP, Volume 79(6), pp 397-434. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap.pdf) , Slides(PPTX)
(http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap-slides-2011-01-14-Iasi.pptx.zip) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap-slides-2011-01-14-Iasi.pdf) , K Tool
(http://k-framework.googlecode.com/) , J.LAP (http://dx.doi.org/10.1016/j.jlap.2010.03.012) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-serbanuta-2010-jlap.bib.txt)

there is only one meaningful way to complete the assignment rule above to match the new configuration,
process we call configuration concretization, which is
 rule <threads>... <thread>... <k> X = I:Int; =></k> <env>... X |-> N ...</env> ...</thread> ...</threads> <store>... N |-> (_ => I) ...</store>

But this is done automatically by the K kompiler, so you do not have to touch any existing, unrelated
rules. In our experience with defining semantics for many languages, large and small, modularity of
definitions is perhaps the most important aspect of a practical language semantic framework.
This configuration abstraction mechanism has been explained rather informally so far. We need to
formalize it and make it an important component of the semantics of K. One way to look at it is as
rewriting modulo structure, where certain operations symbols, such as the cell constructs, are considered
structural, and rewrite rules apply modulo them. Another is to define special evaluation contexts that
allow to push the rewrite relations that appear in a rule to their place. Both of these possible solutions can
be mathematically explained by means of equations, or (pairs of) rules. For example, the effect of an
evaluation context C can be defined equationally through heating/cooling equations of the form C[R] = R
~> C.

25. Defining/Implementing language translators/compilers in K.
So far, K was mostly used to define language semantics or type systems. But in the end, K is about
rewriting program configurations, where a program configuration can be almost anything, depending on
the application. There is nothing to stop us from implementing complex program translators, or even full
compilers, in K. The program configuration in this case can store various types of information that is
needed for the translation, such as symbol tables, jump maps, current allocations, resources available, etc.
Then rules can match what they need and transform the program accordingly. With this picture in mind, a

Open Problems and Challenges - FSL Page 29 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

language semantics can be regarded as an extreme program transformer, where the program is
transformed iteratively until nothing is left to transform, the result being some value, or some state, or
whatever is relevant in the final configuration.
As a case study, it would be nice to do this for LLVM, for the reasons explained in the translation
validation challenge. That is, to implement an optimizing LLVM compiler in K. Moreover, to also
implement some frontend translators to LLVM, say from C to LLVM, and also some backends
translators, say from LLVM to x86.
Besides simplicity and elegance, an addition benefit of doing things this way is that it also gives us a
formal basis for verifying such translators or compilers. Indeed, assuming a semantics for the source
language and one for the target language, to prove a translator/compiler from the former to the latter
correct, we would need to show that whatever syntactic transformation it does, it also preserves/refines
the semantics of the original language. This is typically done by extending the translator to consider entire
semantic configurations of the first language, not only programs, and then showing that the extended
translator preserves the meaning of each semantic rule in the source language semantics. This should be
done using reachability logic verification. That is, each semantic rule from the source language translates
into a reachability rule in the target language, which then needs to be proved correct using the target
language semantics.
Verifying compilers like described above is not easy. A translation validation approach may be
preferable, at least as a starting point. Having the translator/compiler defined or implemented in K should
also help with the translation validation approach, because we can validate each translation instance as is
generated, without leaving the framework.

26. Translations from K to other languages or formalisms.
The very first uses of what we call K today were as a definitional methodology in Maude:
CS322 - Programming Language Design: Lecture Notes

Grigore Rosu
Technical Report UIUCDCS-R-2003-2897, December 2003
PDF (http://fsl.cs.uiuc.edu/pubs/UIUCDCS-R-2003-2897.pdf) , TR @ UIUC
(http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2003-2897) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-2003-cs322.bib.txt)

The Rewriting Logic Semantics Project
Jose Meseguer and Grigore Rosu
J. of TCS, Volume 373(3), pp 213-237. 2007
PDF (http://fsl.cs.uiuc.edu/pubs/meseguer-rosu-2006-tcs.pdf) , J.TCS
(http://dx.doi.org/10.1016/j.tcs.2006.12.018) , BIB (http://fsl.cs.uiuc.edu/pubs/meseguer-rosu-
2006-tcs.bib.txt)

The fact that we could define rather complex languages without conditional rules, thanks to the then-K-
methodology, made us think that in fact conditional rules can be automatically eliminated. We tried hard
to do so, first in
From Conditional to Unconditional Rewriting

Grigore Rosu
WADT'04, LNCS 3423, pp 218-233. 2004

Open Problems and Challenges - FSL Page 30 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2004-wadt.pdf) , LNCS
(http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-
9743&volume=3423&spage=218) , WADT'04
(http://www.lsi.upc.es/etaps04/wadt2004/index.html) , Experiments
(http://fsl.cs.uiuc.edu/pubs/rosu-2004-wadt-experiments.zip) , PDF - Original submission
(http://fsl.cs.uiuc.edu/pubs/rosu-2004-wadt-abstract.pdf) , WADT'04 slides
(http://fsl.cs.uiuc.edu/pubs/rosu-2004-wadt-slides.ppt) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2004-
wadt.bib.txt)

and then in
Computationally Equivalent Elimination of Conditions - extended abstract

Traian Florin Serbanuta and Grigore Rosu
RTA'06, LNCS 4098, pp 19-34. 2006
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2006-rta.pdf) , Slides (PPT)
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2006-rta-slides.ppt) , Experiments
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2006-rta-experiments.zip) , LNCS
(http://dx.doi.org/10.1007/11805618_3) , RTA'06 (http://www.easychair.org/FLoC-06/RTA.html) ,
DBLP (http://ftp.informatik.uni-trier.de/~ley/db/conf/rta/rta2006.html#SerbanutaR06) , BIB
(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2006-rta.bib.txt)

hoping that K could be seen as a general translator from conditional to unconditional rules. Then we ran
into quite difficult technical problems following this path, related to associative operators, which didn't
even have anything to do with K as we envisioned it at that time, so we gave up that approach. Instead,
we started regarding K as a language semantic framework in itself:
K: a Rewrite-based Framework for Modular Language Design, Semantics, Analysis and Implementation

Grigore Rosu
Technical Report UIUCDCS-R-2005-2672, December 2005
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2005-tr.pdf) , Experiments (http://fsl.cs.uiuc.edu/pubs/rosu-
2005-tr-experiments.zip) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2005-tr.bib.txt)

K: a Rewrite-based Framework for Modular Language Design, Semantics, Analysis and Implementation
Grigore Rosu
Technical report UIUCDCS-R-2006-2802, December 2006
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2006-tr-c.pdf) , TR@UIUC
(http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2006-2802) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-2006-tr-c.bib.txt)

K: A Rewriting-Based Framework for Computations -- Preliminary version
Grigore Rosu
Technical report UIUCDCS-R-2007-2926 and UILU-ENG-2007-1827, December 2007
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2007-tr-c.pdf) , ZIP (http://fsl.cs.uiuc.edu/pubs/rosu-2007-
tr-c.zip) , TR@UIUC (http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-
2007-2926) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2007-tr-c.bib.txt)

We had our first implementations of K as translations to Maude:
K-Maude: A Rewriting Based Tool for Semantics of Programming Languages

Traian Florin Serbanuta and Grigore Rosu
WRLA'10, LNCS 6381, pp 104-122. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-wrla.pdf) , Slides (PDF)

Open Problems and Challenges - FSL Page 31 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

(http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-wrla-slides.pdf) , K-Maude
(http://k-framework.googlecode.com/) , LNCS (http://dx.doi.org/10.1007/978-3-642-16310-4_8) ,
WRLA'10 (http://wrla10.ifi.uio.no/) , BIB (http://fsl.cs.uiuc.edu/pubs/serbanuta-rosu-2010-
wrla.bib.txt)

The K Primer (version 2.5)
Traian Florin Serbanuta, Andrei Arusoaie, David Lazar, Chucky Ellison, Dorel Lucanu and Grigore
Rosu
Technical Report, January 2012
PDF (http://fsl.cs.uiuc.edu/pubs/k-primer-2012-v25.pdf) , K 2.5
(http://k-framework.googlecode.com/svn/tags/v2.5/) , BIB (http://fsl.cs.uiuc.edu/pubs/k-primer-
2012-v25.bib.txt)

K Framework Distilled
Dorel Lucanu, Traian Florin Serbanuta and Grigore Rosu
WRLA'12, LNCS 7571, pp 31-53. 2012 Invited Paper
PDF (http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-serbanuta-2012-wrla.pdf) , Slides (PDF)
(http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-serbanuta-2012-wrla-slides.pdf) , WRLA'12
(http://wrla2012.lcc.uma.es/) , LNCS (http://dx.doi.org/10.1007/978-3-642-34005-5_3) , BIB
(http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-serbanuta-2012-wrla.bib.txt)

Executing Formal Semantics with the K Tool
David Lazar, Andrei Arusoaie, Traian Florin Serbanuta, Chucky Ellison, Radu Mereuta, Dorel
Lucanu and Grigore Rosu
FM'12, LNCS 7436, pp 267-271. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/lazar-arusoaie-serbanuta-ellison-mereuta-lucanu-rosu-2012-
fm.pdf) , Slides(PDF) (http://fsl.cs.uiuc.edu/pubs/fm-2012-slides.pdf) , FM'12
(http://fm2012.cnam.fr/) , DBLP (http://www.informatik.uni-
trier.de/~ley/db/conf/fm/fm2012.html#LazarASEMLR12) , BIB (http://fsl.cs.uiuc.edu/pubs/lazar-
arusoaie-serbanuta-ellison-mereuta-lucanu-rosu-2012-fm.bib.txt)

That gave us an excellent basis for experimentation and for defining K semantics of several languages,
but it quickly turned out to be more inefficient than we liked it to, mainly because of the huge cost to pay
for nested matching modulo associativity and commutativity as needed for K's configurations. We then
implemented a Java rewrite engine customized to K's needs, as well as a modified kompiler that
translated the original definition into one that could be handled by our Java backend engine:
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

KJS: A Complete Formal Semantics of JavaScript

Open Problems and Challenges - FSL Page 32 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Daejun Park and Andrei Stefanescu and Grigore Rosu
PLDI'15, ACM, pp 346-356. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/park-stefanescu-rosu-2015-pldi/park-
stefanescu-rosu-2015-pldi-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-06-16-park-stefanescu-rosu-PLDI.pdf) ,
Semantics (https://github.com/kframework/javascript-semantics) , DOI
(http://dx.doi.org/10.1145/2737924.2737991) , PLDI'15 (http://conf.researchr.org/home/pldi2015) ,
BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/park-stefanescu-rosu-2015-pldi/park-stefanescu-
rosu-2015-pldi-ref.bib)

Our Java engine is significantly more complex than a conventional rewrite engine, because it is tightly
connected to an SMT (Z3) and it also provides support for symbolic execution and reasoning within
domains supported by Z3. But because it specializes to K, the resulting K implementation with the Java
backend ended up being more than one order of magnitude faster than the previous version with the
Maude backend. For execution performance specifically, the RV-Match
(https://runtimeverification.com/match) tool implements an OCAML backend to execute the C semantics
on ordinary C programs, which consists of a translator from K to OCAML followed by compilation to
native code, which turned out to be more than two orders of magnitude faster than the Java backend. The
reason the OCAML backend is so muck faster is because it takes advantage of OCAML's efficient
implementation of case matching, based on advanced indexing. But even with all this added efficiency
thanks to OCAML, the RV-Match tool is still five orders of magnitude slower than the actual C programs
compiled with gcc and executed natively.
We believe we should be able to translate K definitions to any functional language or theorem prover
following the same approach as for the OCAML backend, such as to Haskell or Coq. This would give us
models of the language defined in K in any of these languages. In the case of the functional languages,
the resulting models can be used for execution or for integration with other tools, while in the case of the
theorem provers for mechanized reasoning about the programming language or about programs of it. We
believe the same can be done even for LLVM, by customizing and implementing indexing ourselves as
part of the translator (instead of relying on the target language's indexing), in which case we can obtain
very efficient interpreters. I conjecture that the resulting interpreter can be even two orders of magnitude
faster than the current OCAML backend of RV-Match, and thus the C semantics to execute C programs
"only" three orders of magnitude slower than if the programs were compiled with gcc and executed
natively. To go even faster, I think we need to generate compilers from semantics.

27. Semantics-based Compiler Generation.
Generating a language compiler from a language semantics could be one of the most practical
applications of a semantic framework. Indeed, it is a lot easier to define a language semantics than to
implement a compiler. Besides, since the compiler is generated using the mathematical semantics of the
language, the generated compiler can either be correct-by-construction or a proof can be generated for
each language instance (in a translation validation style, but for the compiler itself). In other words, we
not only would get compilers cheaply, from language semantics, but the compilers we get also would be
provably correct. If this can be made to work in a way that the generated compilers are also efficient, it
can completely change the way we as a community design and implement programming languages.
But is this really feasible? How can we even start such a project? We actually believe that it is not hard.
We expect it to be a nice application of the already existing infrastructure that K provides. Consider a
C-like source language and LLVM as a target language. Suppose that we know which instructions in the

Open Problems and Challenges - FSL Page 33 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

source language have a circular behavior, and suppose that we already know how to translate those to
corresponding instructions in the target language; for example, a while loop in C is translated in a very
specific and trivial way to a conditional jump in LLVM. Now we can split the source program into
statements with circular behaviors and blocks of other statements in between or inside them. Further, we
can regard each such block of instructions as one generalized instruction that accumulates the semantics
of all composing instructions. We can express its accumulated semantics as a K reachability rule. Now
the challenge is how to generate efficient target language code for a K reachability rule. And we strongly
believe that this is indeed possible. Consider for example the following code in a C-like language:
while(n) { s += n; n--; }

The while will be translated into an appropriate conditional jump, and the accumulated semantics of the
loop body can be expressed with a rule as follows:
 rule <k> s+=n;n--; =></k> <state>... s |-> (S => S +Int N), n |-> (N => N -Int 1) ...</state>

It should not be difficult to translate the effect of this rule on the state into LLVM code that does
precisely that.

28. Certification of proofs done using the K framework.
One of the major features of K is that we can derive deductive program verifiers, model checkers, and
possibly other program reasoning tools, all correct-by-construction, where the only trusted base is the
operational semantics of the programming language in question. These program reasoning tools are
indeed correct-by-construction as supported by their underlying theory, but their implementation can have
errors. For example, imagine that you verity a complex C program using the K framework instantiated
with the C semantics, and that your program verifies "automatically" and after 15 minutes of waiting you
get the much desired proved message. Why should you trust that you have indeed verified your program?
You have confidence in the C semantics,
Defining the Undefinedness of C

Chris Hathhorn and Chucky Ellison and Grigore Rosu
PLDI'15, ACM, pp 336-345. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/hathhorn-ellison-rosu-2015-pldi/hathhorn-
ellison-rosu-2015-pldi-public.pdf) , C Semantics (https://github.com/kframework/c-semantics) ,
DOI (http://dx.doi.org/10.1145/2813885.2737979) , PLDI'15
(http://conf.researchr.org/home/pldi2015) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2015/hathhorn-ellison-rosu-2015-pldi/hathhorn-ellison-
rosu-2015-pldi-ref.bib)

An Executable Formal Semantics of C with Applications
Chucky Ellison and Grigore Rosu
POPL'12, ACM, pp 533-544. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl.pdf) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl-slides.pdf) , Project

Open Problems and Challenges - FSL Page 34 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

(http://c-semantics.googlecode.com) , ACM (http://dl.acm.org/citation.cfm?
doid=2103656.2103719) , POPL'12 (http://www.cse.psu.edu/popl/12/) , DBLP
(http://www.informatik.uni-trier.de/~ley/db/conf/popl/popl2012.html#EllisonR12) , BIB
(http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl.bib.txt)

because it was tested on tens of thousands of programs, and you have confidence in the soundness of
reachability logic because that has been proved mathematically and mechanically in Coq:
All-Path Reachability Logic

Andrei Stefanescu and Stefan Ciobaca and Radu Mereuta and Brandon Moore and Traian Florin
Serbanuta and Grigore Rosu
RTA'14, LNCS 8560, pp 425-440. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-
rosu-2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-07-16-RTA.pptx) , Matching
Logic (http://matching-logic.org/) , DOI (http://dx.doi.org/10.1007/978-3-319-08918-8_29) ,
RTA'14 (http://vsl2014.at/pages/RTATLCA-cfp.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-
2014-rta/stefanescu-ciobaca-mereuta-moore-serbanuta-rosu-2014-rta-ref.bib)

One-Path Reachability Logic
Grigore Rosu and Andrei Stefanescu and Stefan Ciobaca and Brandon Moore
LICS'13, IEEE, pp 358-367. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-27-LICS.pptx) , Reachability Logic
(http://fsl.cs.uiuc.edu/RL) , LICS'13 (http://lii.rwth-aachen.de/lics/lics13/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2013/rosu-stefanescu-ciobaca-moore-2013-lics/rosu-
stefanescu-ciobaca-moore-2013-lics-ref.bib)

But how do you know that K, which at the time of this writing (Feb 2016) has about 100k LOC,
implements these correctly? In fact, we keep discovering bugs in K, so it is quite likely that K has bugs.
So what can we do to have absolute confidence in a program verified using the K framework? First, note
that there is nothing that can be done to have absolute confidence in a language semantics, simply
because that acts as the definition of the language, and definitions are correct by definition, if we can say
so. You can execute more tests, or even show it equivalent to other semantics for the same language if
another one exists, but in the end, no matter what you do, you will have to simply assume that the
language semantics is correct. However, we would like the language semantics to be the only thing that
we have to trust. Everything that we execute or prove with K is, in the end, a reachability logic proof
derivation, specifically a proof derivation using the eight proof rules of reachability logic and the
language semantics as axioms. We should be able to augment K to produce not only the final result, but
also evidence of how the proof has been constructed. Such evidence, or proof witness, should be a in
form that makes it easy to check in a trusted manner, for example by a third-party proof checker. One
way to do this is to build upon the relationship between Circularity and coinduction, and to have K
produce a proof tactic that a mechanical theorem prover like Coq or Isabelle can use to reconstruct the
entire proof. One source of concern with this approach is that we should still trust the translation of the
axioms from K to Coq, but hopefully that can be mitigated by re-executing all the tests that were used to
validate the K semantics also with the translated Coq semantics. Another source of concern is the gaps in
the original proof that are due to invocations of decision procedures, such as matching modulo
associativity, commutativity, etc., or SMT solver decisions. Another way is develop a separate proof

Open Problems and Challenges - FSL Page 35 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

checker for reachability logic, and then to have K generate proof objects following the syntax expected by
the reachability logic proof checker. Since reachability logic has only either proof rules, such a proof
checker is not expected to be too complex. This approach would also suffer from the same problem of
proof gaps like the other approach. We have done some research on this topic in the context of equational
proofs, which we believe can be extended to work for reachability logic:
Certifying and Synthesizing Membership Equational Proofs

Grigore Rosu and Steven Eker and Patrick Lincoln and Jose Meseguer
FME'03, Lecture Notes in Computer Science (LNCS) 2805, pp 359-380. 2003
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2003/rosu-eker-lincoln-meseguer-2003-fme/rosu-
eker-lincoln-meseguer-2003-fme-public.pdf) , Slides(PPT)
(http://fslweb.cs.illinois.edu/FSL/presentations/2003/2003-09-10-FME.ppt) , Maude
(http://maude.cs.illinois.edu/) , DOI (http://dx.doi.org/10.1007/978-3-540-45236-2_21) , FME'03
(http://fm03.isti.cnr.it/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2003/rosu-eker-lincoln-
meseguer-2003-fme/rosu-eker-lincoln-meseguer-2003-fme-ref.bib)

Regardless of the approach, the size of the proof object itself can be a problem. The simpler and thus
easier to trust the proof checker, the more detailed and thus larger the proof is. The right balance will
need to be found to keep certification practical.

29. K semantics to new real languages.
If you are practically inclined, defining a K semantics to a new real language is probably the best entry
point to the K framework. It is a well-defined problem and can serve as a B.S., M.S, and even a Ph.D.
topic, and in our experience it is relatively easy to publish. So far we gave and published semantics to C
(ISO C11):
Defining the Undefinedness of C

Chris Hathhorn and Chucky Ellison and Grigore Rosu
PLDI'15, ACM, pp 336-345. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/hathhorn-ellison-rosu-2015-pldi/hathhorn-
ellison-rosu-2015-pldi-public.pdf) , C Semantics (https://github.com/kframework/c-semantics) ,
DOI (http://dx.doi.org/10.1145/2813885.2737979) , PLDI'15
(http://conf.researchr.org/home/pldi2015) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2015/hathhorn-ellison-rosu-2015-pldi/hathhorn-ellison-
rosu-2015-pldi-ref.bib)

An Executable Formal Semantics of C with Applications
Chucky Ellison and Grigore Rosu
POPL'12, ACM, pp 533-544. 2012
PDF (http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl.pdf) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl-slides.pdf) , Project
(http://c-semantics.googlecode.com) , ACM (http://dl.acm.org/citation.cfm?
doid=2103656.2103719) , POPL'12 (http://www.cse.psu.edu/popl/12/) , DBLP
(http://www.informatik.uni-trier.de/~ley/db/conf/popl/popl2012.html#EllisonR12) , BIB
(http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl.bib.txt)

to JavaScript (ES5):
KJS: A Complete Formal Semantics of JavaScript

Open Problems and Challenges - FSL Page 36 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Daejun Park and Andrei Stefanescu and Grigore Rosu
PLDI'15, ACM, pp 346-356. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/park-stefanescu-rosu-2015-pldi/park-
stefanescu-rosu-2015-pldi-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-06-16-park-stefanescu-rosu-PLDI.pdf) ,
Semantics (https://github.com/kframework/javascript-semantics) , DOI
(http://dx.doi.org/10.1145/2737924.2737991) , PLDI'15 (http://conf.researchr.org/home/pldi2015) ,
BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/park-stefanescu-rosu-2015-pldi/park-stefanescu-
rosu-2015-pldi-ref.bib)

to Java (Java 1.4):
K-Java: A Complete Semantics of Java

Denis Bogdanas and Grigore Rosu
POPL'15, ACM, pp 445-456. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/bogdanas-rosu-2015-popl/bogdanas-rosu-2015-
popl-public.pdf) , Slides(PDF) (http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-01-16-K-
Java-POPL/2015-01-16-K-Java-POPL.pdf) , K-Java (https://github.com/kframework/java-
semantics) , DOI (http://dx.doi.org/10.1145/2676726.2676982) , POPL'15 (http://popl.mpi-
sws.org/2015/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/bogdanas-rosu-2015-
popl/bogdanas-rosu-2015-popl-ref.bib)

to Verilog:
A Formal Executable Semantics of Verilog

Patrick Meredith, Michael Katelman, Jose Meseguer and Grigore Rosu
MEMOCODE'10, IEEE, pp 179-188. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/meredith-katelman-meseguer-rosu-2010-memocode.pdf) , Slides
(PDF) (http://fsl.cs.uiuc.edu/pubs/memocode_presentation.pdf) , Sources
(http://fsl.cs.uiuc.edu/images/c/c7/Verilog_rls.zip) , Verilog Semantics
(http://fsl.cs.uiuc.edu/index.php/Verilog_Semantics) , IEEE
(http://dx.doi.org/10.1109/MEMCOD.2010.5558634) , MEMOCODE'10 (http://www-
memocode2010.imag.fr/) , BIB (http://fsl.cs.uiuc.edu/pubs/meredith-katelman-meseguer-rosu-
2010-memocode.bib.txt)

to Scheme:
A K Definition of Scheme

Patrick Meredith, Mark Hills and Grigore Rosu
Technical Report UIUCDCS-R-2007-2907, October 2007
PDF (http://fsl.cs.uiuc.edu/pubs/meredith-hills-rosu-2007-tr-b.pdf) , TR@UIUC
(http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2007-2907) , BIB
(http://fsl.cs.uiuc.edu/pubs/meredith-hills-rosu-2007-tr-b.bib.txt)

The semantics of Verilog and of Scheme are very old, and then used an old version of K that is neither
supported anymore nor powerful enough to do the various types of analysis that the new version can do.
It would be very nice to upgrade their semantics to the latest version of K, do some experiments with
model checking and program verification, and replublish them in some high-impact avenues.
In addition to the above, large to almost complete semantics of Python, LLVM, Haskell and OCaml light
have also been defined, but they were not published yet. If interested in a quick paper, please contact me
to let you know about the status of these projects and how you can contribute.

Open Problems and Challenges - FSL Page 37 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Of particular importance are languages related to the web. That's because these languages are in charge of
enforcing security policies, and security policies can be easily broken if the language is incorrectly
designed or implemented, or if the libraries used in security-critical code are incorrectly implemented. For
example, our semantics of JavaScript ES5 above has been used to find bugs in all major browsers and
implementations of JavaScript. Ideally, we would like to get involved with the design of future web
languages, so that these language start with a formal semantics that can also serve as a reference
implementation, instead of with adhoc implementations. We believe the current performance of the
OCaml backend of K is good enough, meaning that a formal semantics can already provide a reasonably
fast implementation for free, to serve as a language model. Particular languages of interest here are
JavaScript ES6 and WASM.
Also of particular importance are unconventional languages for which no adequate verification techniques
or tools are available. For example, consider aspect-oriented languages, say AspectJ. There are many
tools and systems developed using AspectJ, and it is not at all clear how to formally analyze or verify
such systems and there are certainly no available tools for such a task. On the other hand, it should not be
hard to give a formal semantics to AspectJ, on top of the existing Java semantics. Through its strategies,
K even allows you to do that modularly. Then, once a K formal semantics of AspectJ exists, we should be
able to use precisely the same verification and analysis machinery that the K framework provides to
verify AspectJ programs.

30. Verification of real-time languages, WCET verification.
Verification of programs in real-time languages, that is showing not only the functional correctness of the
program but also that its time guarantees are met, as well as verification of worst case execution time
(WCET), are considered to be very complex topics both from a foundational and from a practical point of
view. Indeed, conventional verification techniques work for functional correctness, but they do not apply
off-the-shelf for proving time bounds of programs. Existing general purpose verification tools are
inapplicable, while tools for verifying such properties tend to be very specialized and obscure.
To verify such properties with our approach, all we need to do is to define an operational semantics for
the target programming language that takes time into account. For example, recall the assignment rule in
an IMP-like language:
 rule <k> X = I:Int => I ...</k> <state>... X |-> (_ => I) ...</state>

Now suppose that we also want to keep track of time in the semantics, and that the assignment operation
takes 3 units (e.g., one unit for reading the value to assign, one unit for writing it to the variable, and
another unit for jumping to the next instruction). All we have to do is to add a new cell to the semantics,
say called time, and then modify the rules to increment the time appropriately, for example:
 rule <k> X = I:Int => I ...</k> <state>... X |-> (_ => I) ...</state> <time> T => T +Int 3 </time>

Now we can refer to the time a program takes in reachability rules, at no additional infrastructure effort.
The bottom line is that we do not need to do anything special for verifying timed properties in our
semantics-based verification approach. We have published a workshop paper on this topic, where we
considered also interrupts:

Open Problems and Challenges - FSL Page 38 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Low-Level Program Verification using Matching Logic Reachability
Dwight Guth and Andrei Stefanescu and Grigore Rosu
LOLA'13. 2013
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/guth-stefanescu-rosu-2013-lola/guth-
stefanescu-rosu-2013-lola-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2013/2013-06-29-LOLA.pdf) , Matching Logic
(http://matching-logic.org/) , LOLA'13 (http://research.microsoft.com/en-us/events/lola2013/) ,
BIB (http://fslweb.cs.illinois.edu/FSL/papers/2013/guth-stefanescu-rosu-2013-lola/guth-stefanescu-
rosu-2013-lola-ref.bib)

And we also published a paper specifically on how to do WCET using a semantics-based approach:
Towards Semantics-Based WCET Analysis

Mihail Asavoae and Dorel Lucanu and Grigore Rosu
WCET'11. 2011
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2011/asavoae-lucanu-rosu-2011-wcet/asavoae-
lucanu-rosu-2011-wcet-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2011/2011-07-WCET.pdf) , Matching Logic
(http://matching-logic.org) , WCET'11 (http://www.artist-
embedded.org/artist/Overview,2317.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2011/asavoae-lucanu-rosu-2011-wcet/asavoae-lucanu-
rosu-2011-wcet-ref.bib)

But we need a more through study on this topic, investigate the literature, and in the end make a
convincing argument that verification of timed properties in real-time programming languages came at no
additional complexity besides what is absolutely necessary and unavoidable anyway if mathematical rigor
is desired, namely to define a formal semantics of the target language.

31. Module system for K.
Large language definitions need to be decomposed in modules. An obvious reason is to better understand
them. A more subtle reason is that different modules achieve different tasks and there is no one module
that includes all the functionality. Consider, for example, a language like C. In order to parse actual C
programs, you need a very specialized syntax, which may even be considered ugly or unsuitable for
semantic purposes. For example, you may want to define a left-recursive grammar to efficiently parse
comma-separated lists of expressions:
module C-SYNTAX-FOR-PARSING-PROGRAMS ... syntax NeExps ::= NeExps "," Exp | Exp // non-empty expressions syntax Exps ::= NeExp | "" // empty or non-empty expressions ...

On the other hand, when giving semantics to C, you would prefer to work with associative lists of
expressions, probably something like this:
module C-SYNTAX-FOR-SEMANTICS ... syntax Exps ::= "." | Exp | Exps "," Exps [assoc id:.] ...

Open Problems and Challenges - FSL Page 39 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

 

This way, in the semantics, you do not need to consider all the cases used for parsing, and you can match
anywhere inside a list of expressions. You also want to have another module where you convert the
parsed program from the original (abstract) syntax to the semantics (abstract) syntax:
module TRANSLATE import C-SYNTAX-FOR-PARSING-PROGRAMS import C-SYNTAX-FOR-SEMANTICS syntax Exps@C-SYNTAX-FOR-SEMANTICS ::= translate(Exps@C-SYNTAX-FOR-PARSING-PROGRAMS) rule translate() => . rule translate(E:Exp) => E rule translate(NeEs,E) => translate(Nes),E endmodule

Now you can define your C semantics module by importing only the desired C-SYNTAX-FOR-SEMANTICS
module, and making sure that you parse the program you want to execute with the right module and
translate it accordingly, without ever polluting the semantics with syntax necessary only for parsing:
module C-SEMANTICS import C-SYNTAX-FOR-SEMANTICS configuration ... <k> #rewrite(TRANSLATE, translate(#parse(C-SYNTAX-FOR-PARSING-PROGRAMS,$PGM))) </k> endmodule

While K currently provides modules, it collapses all the sorts of the imported modules into their union,
without qualifying them with their defining modules, so the module TRANSLATE above cannot be
defined yet. If qualification is not desired (this is still being debated in our design of K; Maude, for
example, does not do it) but we add renaming to K, which we want to do anyway, then we could still
solve the problem:
module TRANSLATE import C-SYNTAX-FOR-PARSING-PROGRAMS * (Exps to ParsingExps) import C-SYNTAX-FOR-SEMANTICS syntax Exps ::= translate(ParsingExps) rule translate() => . rule translate(E:Exp) => E rule translate(NeEs,E) => translate(Nes),E endmodule

Another issue that we have to discuss and decide is whether we want parametric modules in K. Again,
renaming seems to be powerful enough to resolve problems that are typically resolved with parametric
modules, so it is not clear.
Take a look at Maude's module system (http://maude.lcc.uma.es/manual/maude-manualch6.html#x41-
740006) , especially its parametric modules. Take also a look at some theoretical work we've done in this
area, on giving formal semantics to modules and operations on them using category theory:
Abstract Semantics for K Module Composition

Codruta Girlea and Grigore Rosu
K'11, ENTCS 304, pp 127-149. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2013/girlea-rosu-2013-k/girlea-rosu-2013-k-
public.pdf) , K (http://kframework.org) , DOI (http://dx.doi.org/10.1016/j.entcs.2014.05.007) , K'11
(http://www.kframework.org/K11/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2013/girlea-
rosu-2013-k/girlea-rosu-2013-k-ref.bib)

Towards a Module System for K

Open Problems and Challenges - FSL Page 40 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Mark Hills and Grigore Rosu
WADT'08, LNCS 5486, pp 187-205. 2009
PDF (http://fsl.cs.uiuc.edu/pubs/hills-rosu-2008-wadt-b.pdf) , LNCS
(http://dx.doi.org/10.1007/978-3-642-03429-9_13) , WADT'08
(http://www.di.unipi.it/WADT2008/) , BIB (http://fsl.cs.uiuc.edu/pubs/hills-rosu-2008-
wadt-b.bib.txt)

Composing Hidden Information Modules over Inclusive Institutions
Joseph Goguen and Grigore Rosu
Dahl's Festschrift, LNCS 2635, pp 96-123. 2004
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2004/goguen-rosu-2004-dahl/goguen-rosu-2004-
dahl-public.pdf) , DOI (http://dx.doi.org/10.1007/978-3-540-39993-3_7) , Dahl's Festschrift
(http://dx.doi.org/10.1007/b96089) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2004/goguen-
rosu-2004-dahl/goguen-rosu-2004-dahl-ref.bib)

Abstract Semantics for Module Composition
Grigore Rosu
Technical Report http://roger.ucsd.edu/record=b7304233~S9, May 2000
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2000/rosu-2000-tr/rosu-2000-tr-public.pdf) , DOI
(http://roger.ucsd.edu/record=b7304233~S9) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2000/rosu-2000-tr/rosu-2000-tr-ref.bib)

A good understanding of the Maude module system and of the papers above should provide a solid basis
for approaching this problem.

32. Semantics-based debugging: from debugging to verification.
Debugging tools can also be developed to a large extent language-independently. Moreover, in
combination with support for symbolic execution and conjecturing (circularity) claims, debugging can be
smoothly extended into an interactive program verification.
So suppose that you have a semantics to your programming language, and that you have a program in
your language in which we know or you believe that you have a bug. What you typically do with a
conventional debugger, you can also do with the language semantics. For example, you may want to
execute the program step-by-step and to observe how the state changes at each step. There is better way
to see that than by tracing the rewrite-based execution of your semantics. Indeed, this way you can
literally see everything in the program configuration, not only what a particular, adhoc language-specific
debugging tool allows you to see. For example, you can browse through the stack frames of each of the
threads alive, or through the output generated so far, or you can check which threads can progress and
which are blocked, or what are the next possible execution steps, and so on. And storing the sequence of
rewrite rule applications, you can jump back and forth through the execution trace and see how the
configuration/state looked like at each moment in the past, or advance as many steps as you wish in the
future. Also, you can obviously set "breakpoints" in the program, by simply inserting an artificial
instruction there which has no semantics, so the execution will stop there for you to see the entire
configuration. Together with some relatively simple and still language-independent visualization
mechanism, such as hiding thinks that you do not care about in the configuration, for example replacing
them with "...", we should be able to offer a language-independent debugger in the K framework that
offers all the features that conventional debuggers offer.

Open Problems and Challenges - FSL Page 41 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

But we can go a lot further than what a conventional debugger can do! For example, how about executing
the program until the configuration matches a certain pattern of interest, where the pattern can be any
matching logic formula? With such a feature, you can set semantic breakpoints. Here are some examples:
breakpoint when program variables x and y have the same value; or when you reach the 10th function
call; or whem function <t>f</tt> is called with value 7; or when x points to a singly linked list in the
heap; or then the heap can be organized as a circular list; etc.
And we can go even much further! We can execute the program symbolically, and still do all the above.
This allows you to cover a whole bunch of inputs in one run. Moreover, you can symbolically investigate
different paths in your program in search for the bug systematically, picking points in the program that
you want to cover and then have the generic symbolic execution infrastructure find the constraints under
which those points are reachable, and solve the constraints for you to give you the concrete inputs that
would get you there.
And we can go even much much further! If you do not want to waste your time waiting for a loop to
execute many iterations, or avoid undecidability issues when executing it symbolically in order to find a
bug that lurks after the loop, a semantics-based debugging infrastructure based on reachability logic
should allow you to simply provide a reachability rule that summarizes the loop in question. Then you do
not have to execute the loop, you can apply its corresponding reachability rule and then continue to
execute the code after the loop in search for your bug. And if you want to also be absolutely sure that
your reachability rule abstraction for the loop is correct, then you can do the same for the loop itself, that
is execute it symbolically to check the claimed reachability rule in hopes to find bugs in the loop.
And we can go all the way and even verify the program! Indeed, there is not much left to do on top of the
above in order to verify your program. You can start with a set of reachability rules that you want to
verify against the program, or to debug the program against them if you like this perspective better, then
add some more reachability claims if you want to, such as for some loops and some functions, and then
check/debug each of them separately, using any of them as a shortcut whenever possible during the
process. If you find any problem in the process, then you either found a bug in the program or you
claimed wrong properties, so you need to fix something. If you manage to complete checking all of them,
then congratulations, you just verified your program!
So semantics-based debugging is not only possible, but it can go where no other debugger ever dreamed
of going.
We have started designing and developing such a debugger, but there is still a lot of work left. You can
see our current progress on our K Debugger (https://github.com/kframework/k/wiki/K-Debugger) wiki.

33. Type systems and abstract interpretations in K and reachability logic.
As shown in the K tutorial (https://github.com/kframework/k/tree/master/k-distribution/tutorial) , type
systems or static semantics can be defined for languages following the same approach that we use for the
semantics: rewrite rules. For technical details, check the Technical Reports on K, starting with the 2003
lecture notes:
CS322 - Programming Language Design: Lecture Notes

Grigore Rosu
Technical Report UIUCDCS-R-2003-2897, December 2003
PDF (http://fsl.cs.uiuc.edu/pubs/UIUCDCS-R-2003-2897.pdf) , TR @ UIUC

Open Problems and Challenges - FSL Page 42 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

(http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2003-2897) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-2003-cs322.bib.txt)

For how to define polymorphic type systems (with type inference) using rewriting, see:
A Rewriting Logic Approach to Type Inference

Chucky Ellison, Traian Florin Serbanuta and Grigore Rosu
WADT'08, LNCS 5486, pp 135-151. 2009
PDF (http://fsl.cs.uiuc.edu/pubs/ellison-serbanuta-rosu-2008-wadt-b.pdf) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/ellison-serbanuta-rosu-2008-wadt-slides.pdf) , LNCS
(http://dx.doi.org/10.1007/978-3-642-03429-9_10) , WADT'08
(http://www.di.unipi.it/WADT2008/) , BIB (http://fsl.cs.uiuc.edu/pubs/ellison-serbanuta-rosu-
2008-wadt-b.bib.txt)

A Rewriting Logic Approach to Type Inference
Chucky Ellison, Traian Florin Serbanuta and Grigore Rosu
Technical report UIUCDCS-R-2008-2934, March 2008
PDF (http://fsl.cs.uiuc.edu/pubs/ellison-serbanuta-rosu-2008-tr.pdf) , TR@UIUC
(http://hdl.handle.net/2142/11423) , BIB (http://fsl.cs.uiuc.edu/pubs/ellison-serbanuta-rosu-2008-
tr.bib.txt)

For abstract-interpretation style analyses, for the domain of units of measurement, see
Rule-Based Analysis of Dimensional Safety

Feng Chen and Grigore Rosu and Ram Prasad Venkatesan
RTA'03, LNCS 2706, pp197 - 207. 2003.
PDF (http://fsl.cs.uiuc.edu/pubs/chen-rosu-venkatesan-2003-rta.pdf) , LNCS
(http://link.springer.de/link/service/series/0558/bibs/2706/27060197.htm) , RTA'03
(http://www.dsic.upv.es/~rdp03/rta/) , DBLP (http://www.informatik.uni-
trier.de/~ley/db/conf/rta/rta2003.html#ChenRV03) , BIB (http://fsl.cs.uiuc.edu/pubs/chen-rosu-
venkatesan-2003-rta.bib.txt)

Certifying Measurement Unit Safety Policy
Grigore Rosu and Feng Chen
ASE'03, IEEE, pp. 304 - 309. 2003.
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-chen-2003-ase.pdf) , IEEE
(http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240326) , ASE'03 (http://ase.cs.uni-
essen.de/ase/past/ase2003/index.htm) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-chen-2003-
ASE.bib.txt)

and for the domain of astronomical calculations/geometry see
Certifying Domain-Specific Policies

Michael Lowry and Thomas Pressburger and Grigore Rosu
ASE'01, IEEE, pp 81-90. 2001
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2001/lowry-pressburger-rosu-2001-ase/lowry-
pressburger-rosu-2001-ase-public.pdf) , Slides(PPT)
(http://fslweb.cs.illinois.edu/FSL/presentations/2001/2001-11-ASEb.ppt) , AutoFilter
(https://ti.arc.nasa.gov/tech/rse/synthesis-projects-applications/autofilter/) , DOI
(http://dx.doi.org/10.1109/ASE.2001.989793) , ASE'01 (http://ase-
conferences.org/ase/past/ase2001/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2001/lowry-
pressburger-rosu-2001-ase/lowry-pressburger-rosu-2001-ase-ref.bib)

Open Problems and Challenges - FSL Page 43 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

For an approach to define abstract interpretations using membership equational logic and Maude see
Interpreting Abstract Interpretations in Membership Equational Logic

Bernd Fischer and Grigore Rosu
RULE'01, Electronic Notes in Theoretical Computer Science 59(4), pp 271-285. 2001
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2001/fischer-rosu-2001-rule/fischer-rosu-2001-rule-
public.pdf) , Maude (http://maude.cs.illinois.edu) , DOI (http://dx.doi.org/10.1016/S1571-0661(04)
00292-0) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2001/fischer-rosu-2001-rule/fischer-rosu-
2001-rule-ref.bib)

For a generic framework for adding abstractions to C, see our work on plugable policies for C
(https://www.ideals.illinois.edu/handle/2142/11421) .
An obvious work that needs to be done here is to write up and publish the definitions of type systems in
the K tutorial (https://github.com/kframework/k/tree/master/k-distribution/tutorial) , especially the
Dammas-Milner polymorphic type inferencer. There are some tricky technical mathematical details that
need to be clarified there with regards to how meta-variables and sets of them are used. Then we need to
develop a foundation for proving such semantic abstractions of a language correct; for example, type
preservation and progress style properties. Automating such proofs would be very useful. Can we
generalize the nice result by Stump and his students on proving type preservation using confluence
(http://dx.doi.org/10.4230/LIPIcs.RTA.2011.345) to any abstractions? That is, take a concrete language
semantics L and an abstract semantics of it A; that define correctness of A wrt L as some notion of
confluence of the aggregation L+A. It cannot be ordinary confluence, because some terms are irrelevant
and possibly non-confluent (e.g., terms corresponding to programs which are undefined or do not type), it
will be what is called relative confluence in the literature, that is, confluence wrt only some terms.
Finally, it would also be quite useful to develop a theory and technique to define abstractions compactly
using a specialized notation, and then have the abstract language semantics be generated automatically
from it.

34. Binders with matching logic.
Matching logic has a general notion of symbol, which captures both operational and predicate symbols as
special cases. Symbols together with logical connectives and quantifiers can be used to build patterns, and
the meaning of a pattern is that of the set of all the elements that match it. Equality can be defined as a
pattern in matching logic, that is, it needs not be axiomatized like we do in FOL with equality. In fact,
turns out that matching logic has the same expressiveness as FOL with equality, so in can be regarded as
a variant of FOL that allows a more compact notation; indeed, translation to FOL with equality incurs an
explosion in the size of the formula, including adding new quantifiers, so the translation has more of a
theoretical than practical relevance. The conventional meaning of operational and predicate symbols can
be regained adding patterns, including equality patterns. See this paper to recall matching logic:
Matching Logic --- Extended Abstract

Grigore Rosu
RTA'15, Leibniz International Proceedings in Informatics (LIPIcs) 36, pp 5-21. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-06-29-RTA/2015-06-29-
RTA.pptx) , Matching Logic (http://matching-logic.org/) , DOI

Open Problems and Challenges - FSL Page 44 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

 

(http://dx.doi.org/10.4230/LIPIcs.RTA.2015.5) , RTA'15 (http://rdp15.mimuw.edu.pl/index.php?
site=rta) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-ref.bib)

When it gets to defining higher-order language or calculi, matching logic appears to suffer from the same
problems as FOL: it provides no explicit support for binders in terms, for bound variable renaming, or for
substitution.
On the other hand, we have developed a generalization of FOL that adds generic support for terms with
binders, via the more general mechanism of a so-called term syntax:
Term-Generic Logic

Andrei Popescu and Grigore Rosu
Journal of Theoretical Computer Science, Volume 577(1), pp 1-24. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/popescu-rosu-2015-jtcs/popescu-rosu-2015-
jtcs-public.pdf) , project (http://fsl.cs.illinois.edu/index.php/Generic_First-Order_Logic) , DOI
(http://dx.doi.org/10.1016/j.tcs.2015.01.047) , Journal of Theoretical Computer Science
(http://www.journals.elsevier.com/theoretical-computer-science/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2015/popescu-rosu-2015-jtcs/popescu-rosu-2015-jtcs-
ref.bib)

The idea is that you start with a generic notion of term, which is axiomatized rather than constructed, and
then build the entire FOL infrastructure on top of that. Everything works, including Gentzen proof
systems and soundness and completeness results that smoothly generalize the classic FOL results.
The challenge here is to find an elegant and powerful mechanism to deal with binders in matching logic,
and thus support not only first-order but also higher-order language definitions and calculi. Note that the
K implementation of matching logic actually supports all these, but in a rather adhoc manner. We need a
solid foundation for this. One obvious thing to do is to try to combine term-generic logic with matching
logic. Another is to try to take advantage of the fact that in matching logic we can quantify over terms and
we have equality as a pattern with the expected properties, and do things like this:
 syntax Exp ::= "prelambda" Var "." Exp // to always be preceded by an existential quantifier "exists X" | "premu" Var . Exp | Exp Exp' // syntactic sugar macro lambda X . E = (exists X . prelambda X . E) macro mu X . E = (exists X . premu X . E)
 rule (lambda X . E) E' => E[E'/X] // the usual matching logic substitution rule mu X . E => E[(mu X . E)/X]

The use of the substitution is probably unnecessary above. Can we replace it with equality and then rely
on the properties of equality (recall that equality is definable in matching logic)?
 rule (lambda X . E) E' => E /\ (X = E') rule mu X . E => E /\ (X = mu X . E)

Can we deal with all binders that elegantly? How about other binders, nominal logic, HOAS, etc.? Note
that the nominal logic style encoding of lambda X . E, namely as lambda([X] E) where [X] E is a
generic version of binder with no specific semantics except that it is a binder, does not seem to work in

Open Problems and Challenges - FSL Page 45 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

our context by just replacing [X] E with exists X . E, because of semantic reasons. Indeed, the
matching logic semantics of the existential is the union of all X instances of the semantics of E; once we
compute the union, then the parametricity in X is completely lost, so applying a lambda on it does not
seem to work. On the other hand, with our definition above, the union is calculated over all the semantics
of prelambda X . E. In other words, we put together all the particular "implementations" of a function.
Indeed, patterns like prelambda X . X and prelambda Y . Y may have different interpretations in a
particular model M under a particular interpretation rho, but the interpretation of lambda X . X, that is, of
exists X . prelambda X . X, will contain both: rho(prelambda X . X) and rho(prelambda Y .
Y) included in rho(lambda X . X). So, in some sense, it is like in the relationship between an NFA and
its associated equivalent DFA: a state of the DFA corresponds to the set of equivalent states of the NFA.
Similarly, the interpretation of lambda X . X is the union of all the equivalent identity functions.

35. Migrate Circ (circular coinduction) examples/theory to K/Circularity rule.
Behavioral equivalence, in the sense of indistinguishability under experiments, and the automated circular
coinduction technique to prove behavioral equivalence, were at the core of my PhD thesis:
Hidden Logic

Grigore Rosu
PhD Thesis, University of California at San Diego
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2000-phdthesis.pdf) , Thesis@UCSD
(http://roger.ucsd.edu/record=b4170032~S9) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2000-
phdthesis.bib.txt)

The Circularity rule of reachability logic, and how we automate its application in K, were to a large extent
inspired from that early work in my PhD thesis and several subsequent papers discussed below. I believe
it is important to unify or reconcile these two approaches to circular reasoning, both from a foundational
and from a practical perspective. Such a unification could also let us better understand productivity and
generalize it to the level of programming languages and their verification. Maybe novel and powerful
automated verification techniques will be discovered in the process.
Besides my PhD thesis above, here are a few papers that might be useful to better understand circular
coinduction and how we dealt with circularity and its automation before the Circularity rule in
reachability logic and K:
Automating Coinduction with Case Analysis

Eugen-Ioan Goriac, Dorel Lucanu and Grigore Rosu
ICFEM'10, LNCS 6447, pp 220-236. 2010
PDF (http://fsl.cs.uiuc.edu/pubs/goriac-lucanu-rosu-2010-icfem.pdf) , LNCS
(http://dx.doi.org/10.1007/978-3-642-16901-4_16) , ICFEM'10
(http://www.sei.ecnu.edu.cn/icfem2010/) , CIRC (http://fsl.cs.uiuc.edu/index.php/Circ) , BIB
(http://fsl.cs.uiuc.edu/pubs/goriac-lucanu-rosu-2010-icfem.bib.txt)

Circular Coinduction with Special Contexts
Dorel Lucanu and Grigore Rosu
ICFEM'09, LNCS 5885, pp 639-659. 2009
PDF (http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-2009-icfem.pdf) , Slides(PDF)
(http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-2009-icfem-slides.pdf) , LNCS

Open Problems and Challenges - FSL Page 46 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

(http://dx.doi.org/10.1007/978-3-642-10373-5_33) , ICFEM'09 (http://icfem09.inf.puc-
rio.br/ICFEM.html) , BIB (http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-2009-icfem.bib.txt)

Circular Coinduction: A Proof Theoretical Foundation
Grigore Rosu and Dorel Lucanu
CALCO'09, LNCS 5728, pp 127-144. 2009
Slides (PDF) (http://fsl.cs.uiuc.edu/pubs/rosu-lucanu-2009-calco-slides.pdf) , LNCS
(http://dx.doi.org/10.1007/978-3-642-03741-2_10) , CALCO'09 (http://calco09.dimi.uniud.it/) ,
DBLP (http://www.informatik.uni-trier.de/~ley/db/conf/calco/calco2009.html#RosuL09) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-lucanu-2009-calco.bib.txt)

CIRC: A Circular Coinductive Prover
Dorel Lucanu and Grigore Rosu
CALCO'07, LNCS 4624, pp 372-378. 2007
PDF (http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-2007-calco.pdf) , CIRC webpage
(http://fsl.cs.uiuc.edu/CIRC) , CALCO'07 (http://www.ii.uib.no/calco07/) , BIB
(http://fsl.cs.uiuc.edu/pubs/lucanu-rosu-2007-calco.bib.txt)

Migrating all the examples in the old Circ prover to K is a good indication that, at least at the
practical/automation level, the current approach captures the old one.
Here are two papers that discuss complexity results for behavioral equivalence, and also touch the topic
of productivity:
Equality of Streams is a Pi_2^0-Complete Problem

Grigore Rosu
ICFP'06, ACM, 2006
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2006-icfp.pdf) , ICFP'06 Slides
(http://fsl.cs.uiuc.edu/pubs/rosu-2006-icfp.ppt) , ACM
(http://doi.acm.org/10.1145/1159803.1159827) , ICFP'06 (http://icfp06.cs.uchicago.edu/) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-2006-icfp.bib.txt)

Similar results should be generalizable to the level of matching/reachability logic and, as I said above,
doing so may reveal new results and definitely a deeper understanding. Here is a paper where we
generalized the notion of productivity from streams to arbitrary behavioral theories:
So in case we find a smooth generalization of such general behavioral rewrite systems, then we can also
handle productivity as we know it for streams.
Finally, here are some papers taking a different general view at behavioral equivalence:
Behavioral Extensions of Institutions

Andrei Popescu and Grigore Rosu
CALCO'05, LNCS 3629, pp. 331-347. 2005
PDF (http://fsl.cs.uiuc.edu/pubs/popescu-rosu-2005-calco.pdf) , CALCO'05 Slides
(http://fsl.cs.uiuc.edu/pubs/popescu-rosu-2005-calco.ppt) , LNCS
(http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/11548133_21) , CALCO
'05 (http://www.cs.swan.ac.uk/calco/index.php) , DBLP (http://www.informatik.uni-
trier.de/~ley/db/conf/calco/calco2005.html#PopescuR05) , BIB
(http://fsl.cs.uiuc.edu/pubs/popescu-rosu-2005-calco.bib.txt)

Behavioral Abstraction is Hiding Information

Open Problems and Challenges - FSL Page 47 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Grigore Rosu
J. of TCS, Volume 327(1-2), pp 197-221. 2004
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2004-jtcs.pdf) , J.TCS
(http://dx.doi.org/10.1016/j.tcs.2004.07.027) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2004-
jtcs.bib.txt)

Inductive Behavioral Proofs by Unhiding
Grigore Rosu
CMCS'03, ENTCS 82(1). 2003
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2003-cmcs.pdf) , ENTCS (http://dx.doi.org/10.1016/S1571-
0661(04)80645-5) , CMCS'03 (http://www.mathematik.uni-marburg.de/~cmcs/) , Experiments
(http://fsl.cs.uiuc.edu/pubs/rosu-2003-cmcs-experiments.zip) , DBLP (http://www.informatik.uni-
trier.de/~ley/db/journals/entcs/entcs82.html#Rosu03) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2003-
cmcs.bib.txt)

Understanding them could be useful for cracking this problem.

36. Define/Implement K in K.
A framework which is Turing complete (that is, it can express any Turing machine, or any computable
domain) and reflective (that is, it can express itself in itself) can be regarded as an alternative foundation
or model of computation, both from a theoretical and from a practical perspective. The Turing
completeness is sufficient for the theoretical part, because we can always represent the universal Turing
machine in it and by that anything that can be done using conventional computability theory can also be
done with the framework. But that may not be practical. We want the framework to be reflective, too, and
if possible, elegantly reflective. See the Maude documentation on its reflection
(http://maude.lcc.uma.es/manual/maude-manualch11.html#x66-14300011) for a good understanding of
what we are after. We would like not only to do the same for K, but we plan on implementing K that way,
in fact. Specifically, we want to define a minimal Turing complete and reflective version of K, which we
are currently referring to as KORE (https://github.com/kframework/k/wiki/KAST-and-KORE) . KORE
will therefore have all the power that we need. But it will miss convenient features, such as defining
multiple productions separated with `|`, or parametric modules, etc. Then we can define in KORE all
these convenient features that together form what we call K, as an extension of the definition of KORE in
KORE.

37. Maximal causality as a configuration space reduction for semantics-based verification.
We have shown that we can go way beyond the usual Lamport happens-before in what regards causal
dependence between events in a concurrent program execution trace:
Maximal Causal Models for Sequentially Consistent Systems

Traian Florin Serbanuta and Feng Chen and Grigore Rosu
RV'12, LNCS 7687, pp 136-150. 2012
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2012/serbanuta-chen-rosu-2012-rv/serbanuta-chen-
rosu-2012-rv-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2012/serbanuta-chen-rosu-2012-rv-slides.pdf) ,
JPredictor (http://fsl.cs.illinois.edu/index.php/JPredictor) , DOI (http://dx.doi.org/10.1007/978-3-
642-35632-2_16) , RV'12 (http://rv2012.ku.edu.tr) , BIB

Open Problems and Challenges - FSL Page 48 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

(http://fslweb.cs.illinois.edu/FSL/papers/2012/serbanuta-chen-rosu-2012-rv/serbanuta-chen-rosu-
2012-rv-ref.bib)

Maximal Sound Predictive Race Detection with Control Flow Abstraction
Jeff Huang and Patrick Meredith and Grigore Rosu
PLDI'14, ACM, pp 337-348. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/huang-meredith-rosu-2014-pldi/huang-
meredith-rosu-2014-pldi-public.pdf) , Slides(PPT)
(http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-06-10-PLDI.ppt) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-06-10-PLDI.pdf) , jPredictor
(http://fsl.cs.illinois.edu/jPredictor) , DOI (http://dx.doi.org/10.1145/2594291.2594315) , PLDI'14
(http://conferences.inf.ed.ac.uk/pldi2014/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2014/huang-meredith-rosu-2014-pldi/huang-meredith-
rosu-2014-pldi-ref.bib)

Lamport's happens-before is a trivial partial order generated by ordering all the accesses to each shared
resource. For example, if in a particular program execution a thread/process reads x before a another
thread/process writes x, then we add a less-then relation between the read and the write. Similarly for all
concurrent objects (locks, semaphores, monitors, etc.), carefully taking into account their semantics or
access protocol. Together with the total execution order on each thread, this gives us a partial order on all
the events in the execution trace, called the causal dependence, with the intuition that each smaller even
has caused a larger one in the observed execution; but two un-ordered events are independent, meaning
that they can be permuted and we still get a feasible execution of the same program. In other words, any
linearization of Laport's causal dependence partial order is a feasible execution of the original program.
Now if any of these linearizations violates a desired property of the program, then you detected a bug in
the original program, even if the bug was not directly visible in the original, flat execution trace. This
natural idea was the basis of what we called predictive runtime analysis (PRA) back in 2001-2002,
although note that the "predictions" are always correct; if implemented properly, there should be no false
alarms reported. PRA has been mostly used to predict data-races, but there is no conceptual restriction to
limit it to data-races.
Some researchers think that Lamport's happens-before is what causal dependence is all about; they even
define causal dependence that way. Others, including ourselves, have tried hard to extend the notion to
include more linearizations. Why? Because this way you can have a better prediction capability in tools,
and thus have better bug detection performance still without false positives. There is a series of papers
where generalizations of Lamport's happens-before were proposed. For example, you can only relate a
write with all the reads following it, and thus move them all together before or after other similar
semantic blocks; this is obviously not a partial order anymore, it is a disjunction of partial orders.
Similarly, you can permute synchronized blocks provided that there are no data dependencies between
them. And you can go even further if you are not interested in the exact values that are read in variables,
but only that a read event has taken place. All these are explained and all the literature discussed in depth
in the two papers above. Our major contribution to this area, presented in the papers above, is to show
that there is a maximal causal model. In other words:

From one execution trace you can extract a maximal causal model, with the property that it
comprises exactly all the executions that could be generated by any program that could
generate the original trace!

Please read the previous sentence again. Once more, because it is trickier than it may seem. This tells us
that any sound dynamic analysis or runtime verification tool, no matter how sophisticated it is, cannot
detect more errors from the same execution trace than a tool based on our maximal causal model. The

Open Problems and Challenges - FSL Page 49 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

commercial tool RV-Predict (https://runtimeverification.com/predict/) implements the maximal causal
model technique, so unless it has implementation errors, it should be the best dynamic race-detection tool
that detects no false positives.
We believe that the maximal causal model idea can be significantly generalized, to go well beyond the
simplistic model based on variable reads, variable writes and concurrency objects. Specifically, we
believe it can be generalized to work with any programming language semantics. Indeed, the K semantic
rules have a read-only part, a write-only part, and a don't care part. We should be able to axiomatize the
basic principles of semantic execution based on positions in the configuration where each rule
reads/writes, the same way we axiomatized the sequentially consistent program execution in our papers
above. Then, based on that, to obtain a general notion of maximal causality that applies to any
programming language, based entire on its semantics. To confirm that it is the right notion, when applied
to the toy language considered in our papers above it should give the same maximal causality, and when
applied to the Java semantics it should give the same model as the one in RV-Predict, so it should detect
the same maximal number of data-races.
The above will have at least two major benefits. First, it will yield RV-Predict-like tools for lots of
languages, not only for Java. Second, and more importantly, it will yield a very aggressive partial-order
reduction mechanism for program verification. Indeed, we can use it in our K-based deductive
verification or model checking tools to run the program symbolically in a managed environment, to
divide-and-conquer the problem quite elegantly: (1) develop efficient techniques to analyze each causal
model generated by each execution; and (2) make sure that at each execution a (maximally) causally
different model is observed, i.e., the generated execution does not belong to the maximal causal model
generated by any of the previously observed executions. This idea has been discussed in our FSL group
for several years by now. Qingzhou Luo has made some interesting and in my view convincing
experiments in his PhD thesis showing that this can bring significant benefits. A former member of our
group, Jeff Huang, has published similar results in PLDI'15. Make sure you check Qingzhou's and Jeff's
works out, too, and even contact them to ask what the current status of their work is. Take also a look at
the related play and replay challenge.

38. Playing and replaying program executions.
When finding errors in a system using program analysis or verification or even testing tools, you often
want to be able to play or replay the erroneous execution so you can better understand the bug. For
example, imagine that you are analyzing a program using the maximal causality technique, and that you
found that a certain permutation of the events in the observed trace violates the property you are
checking. You also know from theoretical results that the permutation is feasible. There could be,
however, millions of events in the predicted execution trace. How can you help the user of your tool
pinpoint and understand the bug? The best way to do it in my view would be to steer the program
execution to follow the buggy path until the bug is hit. Being able to go back and forth along that
execution and see all the state details in some debugger would allow the user to understand the problem
well and then fix the bug.
A simplified version of the problem above, which is not trivial either, is just the replay itself. Imagine you
execute a Java program and you hit a bug, say a data-race. Then you want to replay the execution to see
how the race really happened. Unfortunately, that is a very hard problem with little to no tool support.
The program for example can read input from the user, or from sockets, or from files, and then at reply
time you want to make sure that the same input is fed to the program, so that it follows that same path.
You would need to modify the program (instrument it?) so that when you execute it the first time you log

Open Problems and Challenges - FSL Page 50 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

relevant information that allows you to replay afterwards, and then at replay time reuse that information.
We started working on this problem, but there is still work to do and nothing was published yet:
https://github.com/kheradmand/replaymop

39. Runtime verification of matching logic patterns.
One of the most difficult parts of program verification is to come up with the right properties to prove.
Not only the global, top-level properties for the code that you want you want to verify, which are
unavoidable, but also helping properties (loops invariants, assertions, pre/post conditions, etc.). Some of
these may be learned or inferred using techniques like the ones discussed in the invariant inference
challenge, but in general you cannot expect to automatically learn or infer all of them. Most of the time, it
takes a few iterations to get these right. Whether learned automatically or provided manually, there is a
need to quickly check whether they are correct or not. Ideally, you would like to check them by actually
verifying the entire program, but that is going to be quite expensive in general. What is significantly
cheaper is to execute the program and check them at runtime, or to runtime verify them. However, even
that can be quite expensive in some cases. For example, imagine that you have a loop that iterates
1,000,000 times and at each iteration it allocates a new node in a tree represented somehow in the heap,
and that the pattern that you want to check is that the tree structure in the heap is maintained. Specifying
trees or other heap structures is not a problem at all, as we know from the matching logic paper:
Matching Logic --- Extended Abstract

Grigore Rosu
RTA'15, Leibniz International Proceedings in Informatics (LIPIcs) 36, pp 5-21. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-public.pdf) , Slides
(PPTX) (http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-06-29-RTA/2015-06-29-
RTA.pptx) , Matching Logic (http://matching-logic.org/) , DOI
(http://dx.doi.org/10.4230/LIPIcs.RTA.2015.5) , RTA'15 (http://rdp15.mimuw.edu.pl/index.php?
site=rta) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/rosu-2015-rta/rosu-2015-rta-ref.bib)

But note that the tree definition has a recursive nature, and naively checking, or matching it against a flat
heap each time means re-doing all the work done at the previous iteration of the loop, plus adding the new
node to the tree as well. We would like to "cache" all the matching work that we've done at the previous
iterations, and only do the delta that is needed to add the effects of the new loop iteration to the already
existing work. In some sense, is like dynamic programming used as a way to implement efficiently
recursive algorithms by caching the previously seen results. Edgar Pek has a chapter in his thesis on this
topic, but in the context of separation logic. Since matching logic captures separation logic, we hope that
we should be able to devise a general efficient runtime monitoring algorithm for matching logic patterns
in the same style but working at all levels in the program configuration, not only in the heap.

40. Certifiable runtime verification
Semantics-based verification opens the door for novel verification methodologies and for verification of
non-conventional programming languages and programming paradigms, because all is needed is an
operational semantics of the target language or paradigm, which is considerably simpler to design and
define than a verification infrastructure for that language or paradigm. We have already discussed the
possibility of verifying AspectJ programs in the semantics of real languages challenge. But we can go
further than that. How about Monitoring-Oriented Programming, which can be regarded as one level

Open Problems and Challenges - FSL Page 51 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

above aspect-oriented programming? For example, suppose that you have a Java program that includes a
class Resource with two methods, use() and authenticate(), and that you want to runtime
verify/monitor the property:

for any resource r, method r.authenticate() must always be called before r.use();
enforce safety/security by calling r.authenticate() whenever the property is violated.

This property can be easily formalized and enforced using JavaMOP. What happens under the hood is
that JavaMOP generates AspectJ code, which maintains a monitor for each resource for the specified
property, and updates it whenever the relevant events take place at the specified pointcuts; if the monitor
finds that the property is violated, then it executes the recovery code to call the authentication code, and
thus the intended property that authentication precedes usage of the resource is never really violated. Can
we do all the above automatically? That is, can we automatically verify that a runtime verified system is
correct with respect to the property that runtime verifies? Folklore in the formal methods community goes
that if you cannot verify a property then monitor it. But if you really try to do that and prove that the
monitored program is correct, you realize that the problem is not as easy as one may think. In fact, it is
quite complex. Worse, there are no tools to help you do it in the real world for real programming
languages like Java, because complex monitoring of such languages subsumes aspect-oriented
programming, and there is no real technology available off-the-shelf to verify aspect-oriented programs.
Formally guaranteeing correctness with respect to the runtime verified properties is in my view one of the
most important challenges that the runtime verification community needs to overcome. Let's call this
problem certifiable runtime verification.

41. Formalizing the JDK API
One of the biggest challenges of the verification communities, both static and runtime, is the lack of
properties to verify. There have been studies on this topic, and many engineers found that writing the
properties to check/verify/monitor is the most difficult part for them and often a show stopper. One
possibility, and probably the most precise, it to just formalize the properties by hand. Another could be to
mine the properties from observing many execution traces. One way or another, we would like to have
formal property specifications for commonly user libraries. Those can be used to verify the libraries, or to
check programs using the libraries to make sure they are using the libraries correctly, that is, they do not
violate the usage protocols of those libraries. For example, in Java, if you create an iterator or an
enumerator over a collection of elements, then you cannot modify the collection by adding or removing
elements to it as you are iterating or enumerating it. If you do that, unexpected results can happen and one
may even consider that your application is broken.
We have systematically analyzed and categorized the documentation text of four packages of the JDK
API, and found that all the properties that were implicit in the text could be formalized as what we call
parametric properties:
Towards Categorizing and Formalizing the JDK API

Choonghwan Lee and Dongyun Jin and Patrick O'Neil Meredith and Grigore Rosu
Technical Report http://hdl.handle.net/2142/30006, March 2012
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2012/lee-jin-meredith-rosu-2012-tr/lee-jin-meredith-
rosu-2012-tr-public.pdf) , Java API (https://github.com/runtimeverification/property-db) , DOI
(http://hdl.handle.net/2142/30006) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2012/lee-jin-
meredith-rosu-2012-tr/lee-jin-meredith-rosu-2012-tr-ref.bib)

Open Problems and Challenges - FSL Page 52 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

RV-Monitor: Efficient Parametric Runtime Verification with Simultaneous Properties
Qingzhou Luo and Yi Zhang and Choonghwan Lee and Dongyun Jin and Patrick O'Neil Meredith
and Traian Florin Serbanuta and Grigore Rosu
RV'14, LNCS 8734, pp 285-300. 2014
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2014/luo-zhang-lee-jin-meredith-serbanuta-rosu-
2014-rv/luo-zhang-lee-jin-meredith-serbanuta-rosu-2014-rv-public.pdf) , Slides(PPTX)
(http://fslweb.cs.illinois.edu/FSL/presentations/2014/2014-09-25-RV.pptx) , JavaMOP
(https://github.com/runtimeverification) , DOI (http://dx.doi.org/10.1007/978-3-319-11164-3_24) ,
RV'14 (http://rv2014.imag.fr/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2014/luo-zhang-lee-
jin-meredith-serbanuta-rosu-2014-rv/luo-zhang-lee-jin-meredith-serbanuta-rosu-2014-rv-ref.bib)

JavaMOP, for example, takes parametric properties as input and automatically generates instrumentation
and inlines efficient monitors for them in your application to monitor. Other verification tools can also
make use of such properties. You can visualize these properties using a nice graphical interface that lays
them out over the JavaDoc of the JDK API: https://runtimeverification.com/monitor/annotated-java-8/ If
you want to see the code that is generating that, then check this github repository out:
https://github.com/runtimeverification/property-db. I think formalizing the entire JDK API is probably
one of the most useful projects that one can carry out. Indeed, Java is one of the most used programming
languages, and almost any Java program uses the JDK API. Formalizing the JDK API would give the
community a rigorous means to check the correct usage of the JDK in their programs, as well as proof
obligations for the libraries themselves (that is, prove that the library implementation satisfies the
specifications).
Ideally, we would like the entire community of Java users and formal methods researchers to contribute
to such an important project. We have created the github repository at
https://github.com/runtimeverification/property-db exactly for that purpose. Maybe we need to popularize
it more? Or to improve the graphical interface that layers the categorization and the current categorization
over the JDK Javadoc at https://runtimeverification.com/monitor/annotated-java-8/?

42. Parametric property mining using positive and negative examples.
Related to the problem of formalizing the JDK API, it would be great to make use of property learning or
mining algorithms. That is, to instrument programs making use of the libraries whose properties we want
to learn, and then collect many traces and try to learn from them what properties that API ought to have.
Ideally, we would like to do all this automatically. In the paper
Mining Parametric Specifications

Choonghwan Lee, Feng Chen and Grigore Rosu
ICSE'11, ACM, pp 591-600. 2011
PDF (http://fsl.cs.uiuc.edu/pubs/lee-chen-rosu-2011-icse.pdf) , Slides(pptx)
(http://fsl.cs.uiuc.edu/pubs/2011-05-27-ICSE.pptx) , ACM
(http://dx.doi.org/10.1145/1985793.1985874) , ICSE'11 (http://2011.icse-conferences.org/) , jMiner
(http://fsl.cs.uiuc.edu/jMiner) , BIB (http://fsl.cs.uiuc.edu/pubs/lee-chen-rosu-2011-icse.bib.txt)

we proposed a technique that does precisely that. We used the unit tests of the target API packages to see
which groups of methods are expected to obey some property, the assumption being that if a tester wrote
a test to check an interaction among a certain group of methods, most likely those methods are expected
to obey some interaction protocol. Then we instrumented large applications making use of those methods
to log all their calls to those methods at runtime, and this way we collected millions of execution traces.

Open Problems and Challenges - FSL Page 53 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

We then sliced those execution traces according to various parameter instances, and thus obtained even
more traces of non-parametric events. Then using a statistical learning algorithm (k-means) we learned
the regular expressions or DFAs that best explained the observed traces. In the end we learned more than
100 parametric properties of the JDK API.
All the above sounds great and it may even work for some cases, but our experience was actually rather
negative from a practical perspective. In the end, we ended up throwing away almost all the properties
that were mined and we rewrote them by hand, as discussed in the papers discussed in the formalizing the
JDK API challenge. Ironically, we had a very hard time to publish the paper about the manually written
properties, which took a lot of time to get right, while the paper on automatic mining was easily accepted
for publication; well, we all know how random the publication process is these days. However, I actually
have some hopes that mining can in fact work in practice, but in order for that to happen we need to learn
not only from positive data as we've done above (that is, from correct traces wrt the property), but also
from negative data. Search on the internet for "algorithms for learning regular expressions from positive
and negative data" and you will find a vast body of literature. I believe that some of those could work if
we can produce good negative traces for them. A negative trace would be a trace which should not be
accepted by the learned property. How can we generate such negative traces? That would be the
challenge here. One can use test-case generation techniques to generate object instances, and then call the
methods whose protocol you want to formalize randomly on those objects and mark as negative all the
traces where uncaught exceptions are thrown (the hypothesis here being that those sequences of calls
should not be part of the property). Or take some positive traces obtained in some large programs, and
serialize the object instances on which they were called, save them in a file and then log all the calls to the
target methods on them; then load the serialized objects and only call the logged methods on them, in the
logged order. This way, you obtain minimal programs that generate positive traces, programs which
consist of loading the object parameters followed by sequences of method calls. Well, take these
programs and re-order the method calls, then run the resulting programs and if they throw exceptions then
mark the way they reordered the methods as negative traces. Maybe other ideas will come as you play
with this. Anyway, please use our insight and experience, and stop wasting your time learning parametric
properties from only positive traces. If you are interested in mining, spend your time wisely and come up
with smart techniques to generate negative traces. Then use the best algorithms that you can find to learn
from both positive and negative traces. I believe something useful will come out of this, which can then
be used in some automated manner to mine the properties of the entire JDK API: use unit tests as we did
to find groups of methods that are expected to interact and thus obey interaction protocols, then use large
applications to collect positive traces, then use some techniques to also collect negative traces, and then
learn the regular expressions or DFAs. You can also do this in a loop, until you converge and cannot
improve the property you learn.

43. Offline analysis of large logs.
Many companies and institutions these days collect huge logs of data for their records, auditing, and in
general any kind of analysis. It is not unusual for a web service company to log every single action that
any customer takes on their server. There is therefore a need for efficient algorithms and techniques to
analyze large logs of data. By large in this context we mean logs of hundreds of GBs or even TBs or PBs
of data. Conventional monitoring algorithms can be used to analyze such logs, by simply reading the log
entries in order and processing them as if they were generated online. But the advantage of log analysis is
that you have random access to all the entries in the log, in any order. Interestingly, there are trace
analysis algorithms that are significantly more efficient than online algorithms when they have random
access to the entries in the trace. See, for example, an extreme case in these two papers, where a future-
time LTL checking algorithm is linear both in the trace and in the formula when it can process the trace
backwards:

Open Problems and Challenges - FSL Page 54 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
Grigore Rosu and Klaus Havelund
Technical Report https://ti.arc.nasa.gov/m/pub-archive/archive/0220.pdf, January 2001
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2001/rosu-havelund-2001-tr/rosu-havelund-2001-tr-
public.pdf) , DOI (https://ti.arc.nasa.gov/m/pub-archive/archive/0220.pdf) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2001/rosu-havelund-2001-tr/rosu-havelund-2001-tr-
ref.bib)

Rewriting-Based Techniques for Runtime Verification
Grigore Rosu and Klaus Havelund
J.ASE, Volume 12(2), pp 151-197. 2005
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2005/rosu-havelund-2005-jase/rosu-havelund-2005-
jase-public.pdf) , MOP (http://fsl.cs.illinois.edu/mop) , DOI (http://dx.doi.org/10.1007/s10515-005-
6205-y) , J.ASE (http://link.springer.com/journal/10515) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2005/rosu-havelund-2005-jase/rosu-havelund-2005-jase-
ref.bib)

It is known that any forwards future-time LTL algorithm requires exponential time and space in the
formula, so the fact that the entire trace is available upfront can make a big difference. It is also know that
a dynamic programming algorithm similar to the one used above for future-time LTL can be applied to
past-time LTL, too, in which case the trace analysis proceeds in a forwards manner:
Efficient Monitoring of Safety Properties

Klaus Havelund and Grigore Rosu
J. of STTT, Volume 6(2), pp 158-173. 2004
PDF (http://fsl.cs.uiuc.edu/pubs/havelun-rosu-2004-sttt.pdf) , J.STTT
(http://dx.doi.org/10.1007/s10009-003-0117-6) , BIB (http://fsl.cs.uiuc.edu/pubs/havelund-rosu-
2004-sttt.bib.txt)

Synthesizing Monitors for Safety Properties
Klaus Havelund and Grigore Rosu
TACAS'02, LNCS 2280, pp 342-356. 2002
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2002/havelund-rosu-2002-tacas/havelund-rosu-2002-
tacas-public.pdf) , Slides(PPT) (http://fslweb.cs.illinois.edu/FSL/presentations/2002/2002-04-
TACAS.ppt) , MOP (https://github.com/runtimeverification) , DOI
(http://dx.doi.org/10.1007/3-540-46002-0_24) , TACAS'02
(http://www.etaps.org/2002/Tacas/tacas.html) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2002/havelund-rosu-2002-tacas/havelund-rosu-2002-
tacas-ref.bib)

And that algorithm can be extended to work with nested call-return events, to monitor stack-related
properties without touching the stack:
Synthesizing Monitors for Safety Properties -- This Time With Calls and Returns --

Grigore Rosu, Feng Chen and Thomas Ball
RV'08, LNCS 5289, pp 51-68, 2008
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-chen-ball-2008-rv.pdf) , RV'08 (http://rv08.in.tum.de/) , BIB
(http://fsl.cs.uiuc.edu/pubs/rosu-chen-ball-2008-rv.bib.txt)

A natural question here is how far we can push these dynamic-programming-style algorithms for off-line
log analysis? For example, how rich can the logical formalism to express properties be so that we can
have linear or close to linear complexity algorithms for off-line checking? It looks like we should at least

Open Problems and Challenges - FSL Page 55 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

be able to support the entire LTL, both past-time and future-time. Can we also add support to call-return
events to the logic? How about time, can we add it to the logic as well (see the RV of times properties
challenge, too)? Another interesting category of properties is regular expressions, possibly extended with
complement (to also allow you to say that certain patterns should not match); see also the ERE
membership checking challenge.
I would also include here the development of appropriate finite-trace logics and complete deduction for
them. The logs are large but finite, so such logics are appropriate for log analysis. Complete deduction for
such logics helps us generate optimal monitors, by statically deriving the formula in all possible ways
depending on the next event, and then proving when the obtained formulae are equivalent to previous
ones. One of the nicest monitor generation technique that I've worked on does the above in a coinductive
style; see the monitor generation using coinduction challenge. Also, for really large logs, it may even be
the case that an algorithm that needs to read all the entries in the log may already be too slow, even if it
processes each entry in constant, even zero time. Note that the log may not even be stored in one place, it
may be distributed across many different machines and even geographical sites. We would like
algorithms that split the trace in chunks and then analyze each chunk separately and in parallel with the
other chunks, if possible.

44. Extended Regular Expression (ERE) Membership Checking.
Checking whether a word belongs to the language of an extended regular expression (ERE) is a problem
that challenged me several times, and I still don't have a good solution. The problem starts with the fact
that once you extend the language of regular expressions with complement, you have a potential non-
elementary explosion in the size of the DFA or NFA monitor. Indeed, to complement an NFA you have to
first determinize it, which comes at an exponential cost. Now if you have nested complement operations,
then you have multiple exponential explosions, in the worst case as many as proportional with the size of
the ERE. This can simply make the generation of the DFA or NFA monitor impossible, if we follow the
usual approach.
To approach the problem from a different angle, we first tried an approach where you do not generate any
automata statically. Instead, generate only the path that you are on, dynamically, as you receive events
from the monitored system. We do that using derivatives and rewriting, together with simplification rules
to keep the size of the ERE bounded:
Testing Extended Regular Language Membership Incrementally by Rewriting

Grigore Rosu and Mahesh Viswanathan
RTA'03, Lecture Notes in Computer Science (LNCS) 2706, pp 499-514. 2003
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2003/rosu-viswanathan-2003-rta/rosu-viswanathan-
2003-rta-public.pdf) , Slides(PPT) (http://fslweb.cs.illinois.edu/FSL/presentations/2003/2003-06-
RTA.ppt) , MOP (http://fsl.cs.illinois.edu/mop) , DOI (http://dx.doi.org/10.1007/3-540-
44881-0_35) , RTA'03 (http://users.dsic.upv.es/~rdp03/rta/) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2003/rosu-viswanathan-2003-rta/rosu-viswanathan-2003-
rta-ref.bib)

Not only that we proved that the ERE size is bounded, but we also proved that its overall size is only
exponential, so the non-elementary explosion can be avoided this way. Unfortunately, our proof, which is
quite complex, had an error; the error was found by Prasanna Thati, a PhD student at UIUC back in 2004.
Frustratingly, that sent us back into a non-elementary complexity of online ERE membership checking. I
actually proved in the meanwhile that the complexity is indeed non-elementary, that is, if you want to
check online a trace of size `n` against the language of an ERE of size `m`, then you cannot do better that

Open Problems and Challenges - FSL Page 56 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

`Omega(n * 2^(2^(2^...)))`, where the exponential tower is as deep as the number of nested complement
operations in the ERE; let me know if you want to see the proof, I have it in a book draft which I can send
you if interested.
But we nevertheless liked our rewrite-based monitoring algorithm. The problem with it, though, is that
you have to pay the price of rewriting the ERE at each event. Since the formula can potentially grow non-
elementarily large, that means that the runtime overhead may be potentially quite high in some cases. One
thing which can be done is to mimic the rewrite-based monitoring procedure statically and cache all the
relevant EREs that it goes through as states, and this way generate a monitor as an automaton whose
states correspond to EREs (but relabeled as numbers, for efficiency):
Generating Optimal Monitors for Extended Regular Expressions

Koushik Sen and Grigore Rosu
RV'03, Electronic Notes in Theoretical Computer Science 89(2), pp 226-245. 2003
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2003/sen-rosu-2003-rv/sen-rosu-2003-rv-public.pdf)
, MOP (http://fsl.cs.illinois.edu/mop) , DOI (http://dx.doi.org/10.1016/S1571-0661(04)81051-X) ,
RV'03 (https://rtg.cis.upenn.edu/rv2003/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2003/sen-
rosu-2003-rv/sen-rosu-2003-rv-ref.bib)

While we know we cannot avoid the non-elementary explosion in the worst case, at least we hope that
this way we avoid intermediate explosions that you might have with the conventional approach which do
not result in an explosion in the final monitor automaton. For example, consider an ERE of the form `~(~
(~(~(~(~(~r))))))`. This is equivalent to `r` and our monitor generation technique above will completely
avoid the unnecessary exponential explosion that the naive algorithm suffers from. It would be nice to
implement the above very efficiently and then do some experiments to compare its efficiency with the
conventional approach. Maybe even turn it into a library that languages using regexes can incorporate.
See also the monitor generation using coinduction challenge.
But what if the entire trace is available, like in the off-line analysis of large logs challenge? Can we come
up with better algorithms for ERE membership checking if we have random access to the trace? We
managed to improve a bit the best known lower bounds:
An Effective Algorithm for the Membership Problem for Extended Regular Expressions

Grigore Rosu
FOSSACS'07, LNCS 4423, pp 332-345, 2007
PDF (http://fsl.cs.uiuc.edu/pubs/rosu-2007-fossacs.pdf) , FOSSACS'07
(http://www2.in.tum.de/~seidl/fossacs07/) , BIB (http://fsl.cs.uiuc.edu/pubs/rosu-2007-
fossacs.bib.txt)

We showed that if we have a trace of size `n` and an ERE of size `m`, then we can check the membership
of the trace to the language of the ERE in time `O(n^2 * (log n + m) * 2^m)`, while the previous best
algorithms had complexity `Omega(n^3)`. So only exponential in `m`, which means that this algorithm
may work in situations where the online algorithm cannot generate or store the monitor for the ERE.
However, it is still annoying that you have to pay such a high `n^2 * log n` cost in the size of the
execution trace. Can we push that down to linear complexity or `O(n * log n)` in the execution trace? If
not, then prove so.

45. Optimal Monitor generation using coinduction.
There is a nice relationship between monitor generation and circular coinduction. We used it for
generating optimal monitors for extended regular expressions and for linear temporal logic:

Open Problems and Challenges - FSL Page 57 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

Generating Optimal Monitors for Extended Regular Expressions
Koushik Sen and Grigore Rosu
RV'03, Electronic Notes in Theoretical Computer Science 89(2), pp 226-245. 2003
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2003/sen-rosu-2003-rv/sen-rosu-2003-rv-public.pdf)
, MOP (http://fsl.cs.illinois.edu/mop) , DOI (http://dx.doi.org/10.1016/S1571-0661(04)81051-X) ,
RV'03 (https://rtg.cis.upenn.edu/rv2003/) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2003/sen-
rosu-2003-rv/sen-rosu-2003-rv-ref.bib)

Generating Optimal Linear Temporal Logic Monitors by Coinduction
Koushik Sen and Grigore Rosu and Gul Agha
ASIAN'03, Lecture Notes in Computer Science (LNCS) 2896, pp 260-275. 2003
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2003/sen-rosu-agha-2003-asian/sen-rosu-agha-2003-
asian-public.pdf) , MOP (http://fsl.cs.illinois.edu/mop) , DOI (http://dx.doi.org/10.1007/978-3-540-
40965-6_17) , ASIAN'03 (http://dx.doi.org/10.1007/b94667) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2003/sen-rosu-agha-2003-asian/sen-rosu-agha-2003-asian-
ref.bib)

The idea is to start with the formula/pattern/specification for which you want to generate an optimal
monitor, and then derive it in all possible ways, one step, depending on what the next even can be. That
is, considering a formula `PHI` and an event `e`, the derived formula `PHI{e}` is a formula `PHI'` with
the property that `PHI'` holds on a given trace `t` if and only if `PHI` holds on the trace `e t`. Each time a
new formula is derived, check if it is equivalent to some formula that has already been seen. If yes, then
discard the new formula. If not, then add the new formula to the pool and keep deriving. Now the
interesting part is that in order to check for equivalence by circular coinduction, you also derive the two
involved formulae. As you derive them, it makes sense to cache all the formulae that you reach in the
process, because they will likely be needed again. The challenge is how to do this efficiently. Our
previous solutions only showed that the concept makes sense, but we have not really put much effort into
making that process efficient. Ideally, we would like to combine the derivation process that unveils the
optimal monitor with the circular coinductive checking, and apply them both synchronously making sure
that no work is repeated. Another challenge is to understand how general this monitor generation process
can be. For example, what "API" should a given logical formalism provide in order to apply this
coinductive technique to it? It should obviously provide a derivative operation that takes a formula and an
event and returns another formula. It would likely also provide some formula simplification procedure.
Anything else needed?

46. Runtime verification of timed properties.
Runtime verification and monitoring of times properties raises many interesting and challenging
problems. For example, who keeps track of the time? Does the monitor have its own clock, or do the
events come already time stamped? Does the monitor generate timeouts, or the event sequence somehow
magically is assumed to provide a special timeout event? When are the timeouts generated and by whom?
Now supposing that somehow the monitor is made aware of the time, what would the best formalism for
specifying timed properties be? We know that timed automata have some complexity challenges, and we
often do not need their full generality. Besides, in many cases users prefer a more declarative formalism,
such as variants of temporal logic. We have investigated the problem of monitoring metric temporal logic
properties, where the events were assumed to arrive time-stamped:
Monitoring Algorithms for Metric Temporal Logic

Prasanna Thati and Grigore Rosu
RV'05, Electronic Notes in Theoretical Computer Science 113, pp 145-162. 2005
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2005/thati-rosu-2005-rv/thati-rosu-2005-rv-

Open Problems and Challenges - FSL Page 58 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

public.pdf) , MOP (http://fsl.cs.illinois.edu/mop) , DOI
(http://dx.doi.org/10.1016/j.entcs.2004.01.029) , RV'05 (https://www.react.uni-saarland.de/rv2005/)
, BIB (http://fslweb.cs.illinois.edu/FSL/papers/2005/thati-rosu-2005-rv/thati-rosu-2005-rv-ref.bib)

We employed a rewrite-based approach, following the approach in
Rewriting-Based Techniques for Runtime Verification

Grigore Rosu and Klaus Havelund
J.ASE, Volume 12(2), pp 151-197. 2005
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2005/rosu-havelund-2005-jase/rosu-havelund-2005-
jase-public.pdf) , MOP (http://fsl.cs.illinois.edu/mop) , DOI (http://dx.doi.org/10.1007/s10515-005-
6205-y) , J.ASE (http://link.springer.com/journal/10515) , BIB
(http://fslweb.cs.illinois.edu/FSL/papers/2005/rosu-havelund-2005-jase/rosu-havelund-2005-jase-
ref.bib)

but it would be nice to generate some sort of timed automata from such mtl properties, maybe using the
coinductive approach.

47. Evolution-aware program analysis.
Program analysis tends to be very expensive, no matter whether we are talking about static of dynamic
analysis. On the other hand, software to be analyzed evolves incrementally, in small steps. Ideally, we
would like to be able to reuse analysis efforts from one version of the software to the next. A trivial
example is when you verify a function and that function does not change from one version to the next;
then obviously we do not need to verify that function again. But how about another function which
changes that calls the function we verified? We may or may not need to verify it fully, depending on what
changed and on the property.
The challenge here is to develop a general infrastructure for evolution-aware program analysis. We
started working on this in the context of runtime monitoring of MOP properties:
Evolution-Aware Monitoring-Oriented Programming

Owolabi Legunsen and Darko Marinov and Grigore Rosu
ICSE NIER'15, ACM, pp 615-618. 2015
PDF (http://fslweb.cs.illinois.edu/FSL/papers/2015/legunsen-marinov-rosu-2015-icse/legunsen-
marinov-rosu-2015-icse-public.pdf) , Slides(PDF)
(http://fslweb.cs.illinois.edu/FSL/presentations/2015/2015-05-21-legunsen-marinov-rosu-
ICSE.pdf) , JavaMOP (http://fsl.cs.illinois.edu/index.php/JavaMOP) , DOI
(http://dx.doi.org/10.1109/ICSE.2015.206) , ICSE NIER'15 (http://2015.icse-
conferences.org/NIER) , BIB (http://fslweb.cs.illinois.edu/FSL/papers/2015/legunsen-marinov-
rosu-2015-icse/legunsen-marinov-rosu-2015-icse-ref.bib)

But this is only the beginning, there is a lot of work to be done. I am particularly interested in a general
approach to state what a software analysis tools does, and how the code changes interfere with it. In other
words, how does a delta on your code impact the analysis? What properties need not be verified/checked
because they are not impacted? Among those you need to verify, do you need to verify them fully or only
partially? In the case of runtime analysis you may only need to instrument some paths, and in the case of
symbolic execution you may only need to analyze some paths, all depending on the changes in the code
and on the property to check.

Retrieved from "http://fsl.cs.illinois.edu/index.php?title=Open_Problems_and_Challenges&oldid=17943"

Open Problems and Challenges - FSL Page 59 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

◾ This page was last modified on 28 February 2016, at 15:52.◾ This page has been accessed 2,015 times.

Open Problems and Challenges - FSL Page 60 of 60

http://fsl.cs.illinois.edu/index.php/Open_Problems_and_Challenges 2/29/2016

