
Matching Logic — Extended Abstract∗

Grigore Roşu

University of Illinois at Urbana-Champaign, USA
grosu@illinois.edu

Abstract
This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning
about structure by means of patterns and pattern matching. Its sentences, the patterns, are con-
structed using variables, symbols, connectives and quantifiers, but no difference is made between
function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set
of values that match it), in contrast to FOL where functions and predicates map into a regular
domain. Matching logic uniformly generalizes several logical frameworks important for program
analysis, such as: propositional logic, algebraic specification, FOL with equality, and separation
logic. Patterns can specify separation requirements at any level in any program configuration,
not only in the heaps or stores, without any special logical constructs for that: the very nature
of pattern matching is that if two structures are matched as part of a pattern, then they can
only be spatially separated. Like FOL, matching logic can also be translated into pure predicate
logic, at the same time admitting its own sound and complete proof system. A practical aspect
of matching logic is that FOL reasoning remains sound, so off-the-shelf provers and SMT solvers
can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning
about programs in programming languages that have a rewrite-based operational semantics.

1998 ACM Subject Classification D.2.4 Software/Program Verification; D.3.1 Formal Defini-
tions and Theory; F.3 LOGICS AND MEANINGS OF PROGRAMS; F.4 MATHEMATICAL
LOGIC AND FORMAL LANGUAGES

Keywords and phrases Program logic; First-order logic; Rewriting; Verification

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.x

1 Introduction, Motivation and Overview

In their simplest form, as term templates with variables, patterns abound in mathematics
and computer science. They match a concrete, or ground, term if and only if there is some
substitution applied to the pattern’s variables that makes it equal to the concrete term,
possibly via domain reasoning. This means, intuitively, that the concrete term obeys the
structure specified by the pattern. We show that when combined with logical connectives
and variable constraints and quantifiers, patterns provide a powerful means to specify and
reason about the structure of states, or configurations, of a programming language.

Matching logic was inspired from the domain of programming language semantics, spe-
cifically from attempting to use rewrite-based operational semantics for program verification.
For example, a series of large and complete semantic definitions of real languages has been
recently developed using the K framework (http://kframework.org [18, 19]), such as C11
(POPL’12 [6], PLDI’15 [8]), Java 1.4 (POPL’15 [2]), JavaScript ES5 (PLDI’15 [13]), with

∗ The work presented in this paper was supported in part by the Boeing grant on "Formal Analysis Tools
for Cyber Security" 2014-2015, the NSF grants CCF-1218605, CCF-1318191 and CCF-1421575, and the
DARPA grant under agreement number FA8750-12-C-0284.

© Grigore Roşu;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 0–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.x
http://kframework.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Grigore Roşu 1

struct listNode { int val; struct listNode *next; };

void list_read_write(int n) {
rule 〈$⇒ return; ···〉k 〈A⇒ · ···〉in 〈··· · ⇒ rev(A)〉out requires n = len(A)
int i=0;
struct listNode *x=0;

inv 〈β ···〉in 〈··· list(x, α) ···〉heap ∧ i ≤ n ∧ len(β) = n− i ∧ A = rev(α)@β
while (i < n) {
struct listNode *y = x;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = y;
i += 1; }

inv 〈··· α〉out 〈··· list(x, β) ···〉heap ∧ rev(A) = α@β
while (x) {
struct listNode *y;
y = x->next;
printf("%d␣",x->val);
free(x);
x = y; }

}

Figure 1 Reading, storing, and reverse writing a sequence of integers

many other similar but partial semantics of other languages. Each of these language semantics
has more than 1,000 semantic rules and has been thoroughly tested on benchmarks and test
suites that implementations of these languages use to test their conformance, where available.
Unfortunately, the current state-of-the-art in program verification is to define yet another
semantics for these languages, amenable for reasoning about programs, such as an axiomatic
or a dynamic logic semantics, because the general belief is that operational semantics are too
low level for program verification. Moreover, when the correctness of the verifier itself is a
concern, tedious proofs of equivalence between the operational and the alternative semantics
are produced. That is because operational semantics are comparatively much easier to define
and at the same time are executable (and thus also testable), so they are often considered as
reference models of the corresponding languages, while the alternative semantics devised for
verification purposes tend to be more mathematically involved and are not executable so
they may hide tricky errors. Defining even one semantics for a real language like C or Java
is already a huge effort. Defining more semantics, each good for a different purpose, is at
best very uneconomical, with or without proofs of equivalence with the reference semantics.

Matching logic was born from our firm belief that programming languages must have
formal definitions of their syntax and semantics, and that all the execution and analysis tools
for a given language, such as parsers, interpreters, compilers, state-space explorers, model
checkers, deductive program verifiers, etc., can be derived from just one reference formal
definition of the language, which is executable and easy to test. No other semantics for the
same language should be needed. This is the ideal scenario and we believe that there is
enough evidence that it is within our reach in the short term. The main idea is that semantic
rules match and apply on program configurations, which are algebraic data types defined as
terms constrained by equations capturing the needed mathematical domains, such as lists
(e.g., for input/output buffers, function stacks, etc.), sets (e.g., for concurrent threads or
processes, for resources held, etc.), maps (e.g., for environments, heaps, etc), and so on.

To reason about programs we need to be able to reason about program configurations.
Specifically, we need to define configuration abstractions and reason with them. Consider,
for example, the program in Figure 1 which shows a C function that reads n elements from

RTA 2015

2 Matching Logic

the standard input and prints them to the standard output in reversed order (for now, we
can ignore the specifications, which are grayed). While doing so, it allocates a singly linked
list storing the elements as they are read, and then deallocates the list as the elements are
printed. In the end, the heap stays unchanged. To state the specification of this program,
we need to match an abstract sequence of n elements in the input buffer, and then to match
its reverse at the end of the output buffer when the function terminates. Further, to state
the invariants of the two loops we need to identify a singly linked pattern in the heap, which
is a partial map. Many such sequence or map patterns, as well as operations on them, can
be easily defined using conventional algebraic data types (ADTs). But some of them cannot.

A major limitation of ADTs and of FOL is that operation symbols are interpreted as
functions in models, which sometimes is insufficient. E.g., a two-element linked list in the
heap (we regard heaps as maps from locations to values) starting with location 7 and holding
values 9 and 5, written as pattern list(7, 9 · 5), can allow infinitely many heap values, one
for each location where the value 5 may be stored. So we cannot define list as an operation
symbol Int×Seq → Map. The FOL alternative is to define list as a predicate Int×Seq×Map,
but mentioning the map all the time as an argument makes specifications verbose and hard
to read, use and reason about. An alternative offered by separation logic [11, 14, 12] is to fix
and move the map domain from explicit in models to implicit in the core of the logic, so that
list(7, 9 · 5) is interpreted as a predicate but the map and the non-deterministic choices are
implicit in the logic. We then may need custom separation logics for different languages that
require different variations of map models or different configurations making use of different
kinds of resources. This may also require specialized separation logic theorem provers needed
for each, or otherwise encodings that need to be proved correct. Matching logic avoids the
limitations of both approaches above, by interpreting its terms/formulae as sets of values.

Matching logic’s formulae, or patterns, are defined using variables, symbols from a
signature, and FOL connectives and quantifiers. We only treat the many-sorted first-order
case here, but the same ideas can be extended to order-sorted or higher-order contexts.
Specifically, if (S,Σ) is a many-sorted signature and Var an S-sorted set of variables, then a
pattern ϕ of sort s ∈ S can inductively be a variable in Vars, or have the form σ(ϕ1, . . . , ϕn)
where σ ∈ Σ is a symbol of result s (and arguments of any sorts) and ϕ1, . . . , ϕn are patterns
of appropriate sorts, or ¬ϕ′ or ϕ′ ∧ ϕ′′ or ∃x.ϕ′ where ϕ′ and ϕ′′ are patterns of sort s and
x ∈ Var (of any sort). Derived constructs ∨, ∀,→,↔, >, ⊥ can be defined as usual. One way
to think of patterns is that they collapse the function and predicate symbols of FOL, allowing
patterns to be simultaneously regarded both as terms and as predicates. When regarded as
terms they build structure, and when regarded as predicates they express constraints.

Semantically, a modelM consists of a carrierMs for each sort s, like in FOL, but interprets
symbols σ ∈ Σs1...sn,s as maps σM : Ms1 × · · · ×Msn → P(Ms) yielding a set of elements.
In particular, σM can be a function, when the set contains only one element, or a partial
function, when the set contains at most one element. Any M -valuation ρ : Var→M extends
to a map ρ taking patterns to sets of values, where ¬ is interpreted as the complement, ∧ as
intersection, and ∃ as union over all compatible valuations. If ϕ is a pattern and a ∈ ρ(ϕ)
then we say that a matches ϕ (with ρ). The name of matching logic was inspired from
the case when M is a term model, quite common in the context of programming language
semantics where M typically represents a program configuration or a fragment of it. In that
case, if a is a ground term and ϕ is a term with variables, then “a matches ϕ” in matching
logic becomes precisely the usual notion of pattern matching. Pattern ϕ is valid in M iff
ρ(ϕ) = M (i.e., it is matched by all elements of M), and it is valid iff it is valid in all models.

It turns out that, unlike in FOL, equality can be defined in matching logic (Section 4.3):

Grigore Roşu 3

i.e., ϕ1 = ϕ2 is a pattern so that, given any model M and any M -valuation ρ : Var→ M ,
ϕ1 = ϕ2 is either matched by all elements when ρ(ϕ1) = ρ(ϕ2), or by none otherwise.

Let us discuss some simple examples. If Σ is the signature of Peano natural numbers and
M is the model of natural numbers with 0 and succ interpreted accordingly, then the pattern
∃x . succ(x) is matched by all positive numbers: indeed, by the semantics of the existential
quantifier, it is the union of all successors of natural numbers. If we want to only allow
models in which 0 is interpreted as one element, succ as a total and injective function, and
whose elements are either zero or successors of other elements, then we add the axioms:

∃y . 0 = y 0 ∨ ∃x . succ(x)
∃y . succ(x) = y succ(x1) = succ(x2)→ x1 = x2

We can go further and axiomatize plus the same way we are used to in algebraic specification:

plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))

or equivalently as the following equality matching logic (and not FOL) pattern:

plus(x, y) = (x = 0 ∧ y ∨ ∃z . x = succ(z) ∧ succ(plus(z, y)))

We next define a matching logic specification whose symbols are not all functions anymore.
Consider a typical ADT of maps from natural to integer numbers, with emp the empty map,
_ 7→_ a one binding map, _ 7→ [_] a map of consecutive bindings, and _ ∗ _ the partial
function merging two maps (notations inspired from separation logic [11, 14, 12]). In addition
to the usual unit, associativity and commutativity axioms for emp and _ ∗_, we also add

¬(0 7→ a) x 7→ a ∗ x 7→ b = ⊥ x 7→ [ε] = emp x 7→ [a, S] = x 7→ a ∗ (x+ 1) 7→ [S]

The first pattern says 0 cannot serve as the key of any binding. The second pattern says that
the keys of different bindings in a map must be distinct. The last two patterns desugar the
consecutive binding construct. Consider now a symbol list ∈ ΣNat×Seq,Map taking a number
x and a sequence of integers S to a set of maps list(x, S), together with the following:

list(0, ε) = emp list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S)

This looks similar to how the list predicate is defined in separation logic using recursive
predicates, although in matching logic there are no predicates and no recursion. The equations
above use the same principle to define list as the Peano equations did to define plus: pattern
equations. We can now show (see Section 4.7) that in the model whose Map carrier consists
of the finite-domain partial maps, and where 7→ and ∗ are interpreted appropriately, the
interpretation of list(x, S) is precisely the set of all singly-linked lists starting with x 6= 0
and comprising the sequence of integers S. That is, in the intended model, the list(x, S)
pattern is matched by precisely the desired lists. In fact, we can show that the matching
logic specification above, in the map model, is equivalent to separation logic (Section 4.9).

Using the generic proof system of matching logic in Section 5, we can now derive properties
about lists in this specification, such as, e.g., (1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1)→ list(7, 9 · 5):

1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1 = 1 7→ [5, 0] ∗ 7 7→ [9, 1] =
1 7→ [5, 0] ∗ list(0, ε) ∗ 7 7→ [9, 1] → (∃z . 1 7→ [5, z] ∗ list(z, ε)) ∗ 7 7→ [9, 1] =
list(1, 5 · ε) ∗ 7 7→ [9, 1] = list(1, 5) ∗ 7 7→ [9, 1] →
∃z . 7 7→ [9, z] ∧ list(z, 5) = list(7, 9 · 5)

RTA 2015

4 Matching Logic

The benefits of matching logic can be perhaps best seen when there are no immediate
existing logics to reason about certain structures. Consider, e.g., the operational semantics
of a real language like C, whose configuration can be defined with ordinary ADTs but has
more than 100 semantic cells [6, 8]. The semantic cells, written using symbols 〈...〉cell, can be
nested and their grouping is associative and commutative. There is a top cell 〈...〉cfg holding a
subcell 〈...〉heap among many others. We can globalize the local reasoning above to the entire
C configuration proving the following property using the same proof system in Section 5:

∀c :Cfg.∀h :Map . (〈〈1 7→5 ∗ 2 7→0 ∗ 7 7→9 ∗ 8 7→1 ∗ h〉heap c〉cfg → 〈〈list(7, 9 · 5) ∗ h〉heap c〉cfg)

Quantification over the heap or over the configuration are first-order in matching logic.
We refer to such variables like h and c matching the remaining contents of a cell “cell” as
(structural) “cell” frames; e.g., h is the (structural) heap frame and c is the (structural)
configuration frame, and write them as ellipses (“...”) when their particular name is irrelevant.

The C semantics consists of more than 2,000 rewrite rules between patterns (ordinary
terms with variables are patterns). We are currently developing an extension of the K
framework that allows us to verify programs using a rewrite-based operational semantics of
the programming language, like in [4, 16, 20]. Matching logic reasoning is used in-between
semantic rewrite rule applications to re-arrange the configuration so that semantic rules
match or assertions can be proved. This work-in-progress extension of K will be reported
elsewhere. In the remainder of this section we only want to emphasize, by means of example,
that in spite of its generality, matching logic can also be implemented efficiently.

Figure 1 showed a C function whose correctness can be automatically verified by our
current prototype prover. The reader can check it, as well as dozens of other programs, using
the online MatchC interface at http://matching-logic.org; this function is under the io
folder and it takes about 150ms to verify. The rule specification of the function states its
semantics/summary: the body ($) returns in the code cell 〈〉k possibly followed by other
code (as mentioned, “...” are structural frames, that is, universally quantified “anonymous”
variables), the sequence A of size n is consumed from the prefix of the input buffer (A is
rewritten to “·”, the unit of collections, possibly followed by more input), and the reversed
sequence rev(A) is put at the end of the output buffer.

The first loop invariant says the pattern list(x, α) is matched somewhere in the heap, and
that the sequence β of size n− i is available in the input buffer such that A is the reverse of
the sequence that x points to, rev(α), concatenated with β. By convention, Boolean patterns
like i ≤ n can be used in any context and they are either matched by all elements when they
hold, or by no elements when they do not hold (Section 4.5). The variables starting with a ?
are assumed existentially quantified. The invariant of the second loop says that a sequence α
can be matched as a suffix of the output buffer and sequence β can be matched within a
list that x points to in the heap, such that α@β is the reverse of the original sequence A.
The verification of this function consists of executing the rewrite semantics of C symbolically
on all paths and, each time a pattern is encountered, a pattern implication proof task is
deferred to the matching logic prover. For example, the last proof task is:

〈〈I〉in 〈O,α〉out 〈list(x, β) ∗H〉heap C〉cfg ∧ rev(A) = α@β ∧ x = 0
→ 〈〈I〉in 〈O, rev(A)〉out 〈H〉heap C〉cfg

which can be proved using the proof system in Section 5 and the given pattern axioms.
Section 2 introduces the syntax and semantics of matching logic. Section 3 shows that,

like FOL with equality, matching logic also translates to predicate logic. Section 4 enumerates
a series of examples, most notably showing that equality is definable. Section 5 introduces a
sound and complete proof system. Section 6 discusses related work and Section 7 concludes.

http://matching-logic.org

Grigore Roşu 5

2 Matching Logic

We assume the reader familiar with many-sorted sets, functions, and FOL. For any given set
of sorts S, we assume Var is an S-sorted set of variables, sortwise infinite and disjoint. We
may write x : s instead of x ∈ Vars; when the sort of x is irrelevant, we just write x ∈ Var.
We let P(M) denote the powerset of a many-sorted set M , which is itself many-sorted.

I Definition 1. Let (S,Σ) be a many-sorted signature of symbols. Matching logic (S,Σ)-
formulae, also called (S,Σ)-patterns, or just (matching logic) formulae or patterns when
(S,Σ) is understood from context, are inductively defined as follows for all sorts s ∈ S:

ϕs ::= x ∈ Vars | σ(ϕs1 , ..., ϕsn
) with σ ∈ Σs1...sn,s | ¬ϕs | ϕs∧ϕs | ∃x.ϕs with x ∈Var

Let Pattern be the S-sorted set of patterns. By abuse of language, we refer to the symbols
in Σ also as patterns: think of σ ∈ Σs1...sn,s as the pattern σ(x1 :s1, . . . , xn :sn).

To compact notation, ϕ ∈ Pattern means ϕ is any pattern, while ϕs ∈ Pattern or
ϕ ∈ Patterns that it has sort s. We adopt the following derived constructs:

⊥s ≡ x :s ∧ ¬x :s ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2
>s ≡ ¬⊥s ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ∀x.ϕ ≡ ¬(∃x.¬ϕ)
and let FV (ϕ) denote the free variables of ϕ, defined as usual.

I Definition 2. A matching logic (S,Σ)-model M , or simply a model when (S,Σ) is under-
stood, consists of: (1) An S-sorted set {Ms}s∈S , where each set Ms, called the carrier of
sort s of M , is assumed non-empty; and (2) A function σM : Ms1 × · · · ×Msn

→ P(Ms) for
each symbol σ ∈ Σs1...sn,s, called the interpretation of σ in M .

Note that usual (S,Σ)-algebras are special cases of matching logic models, where
|σM (m1, . . . ,mn)| = 1 for any m1 ∈Ms1 , . . . , mn ∈Msn

. Similarly, partial (S,Σ)-algebras
also fall as special case, where |σM (m1, . . . ,mn)| ≤ 1, since we can capture the undefinedness
of σM on m1, . . . , mn with σM (m1, . . . ,mn) = ∅. We tacitly use the same notation σM for
its extension P(Ms1) × · · · × P(Msn) → P(Ms) to argument sets, i.e., σM (A1, . . . , An) =⋃
{σM (a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}, where A1 ⊆Ms1 , . . . , An ⊆Msn

.

I Definition 3. Given a model M and a map ρ : Var→M , called an M-valuation, let its
extension ρ : Pattern→ P(M) be inductively defined as follows:

ρ(x) = {ρ(x)}, for all x ∈ Vars
ρ(σ(ϕs1 , . . . , ϕsn

)) = σM (ρ(ϕ1), . . . ρ(ϕn))
ρ(¬ϕs) = Ms \ ρ(ϕs) (“\” is set difference)
ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2)
ρ(∃x.ϕ) =

⋃
{ρ′(ϕ) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}} (“ρ�A” is ρ restricted to A)

The extension of ρ works as expected with the derived constructs:
ρ(⊥s) = ∅ and ρ(>s) = Ms

ρ(ϕ1 ∨ ϕ2) = ρ(ϕ1) ∪ ρ(ϕ2)
ρ(ϕ1 → ϕ2) = {m ∈Ms | m ∈ ρ(ϕ1) implies m ∈ ρ(ϕ2)} = Ms \ (ρ(ϕ1) \ ρ(ϕ2))
ρ(ϕ1 ↔ ϕ2) = {m ∈Ms | m ∈ ρ(ϕ1) iff m ∈ ρ(ϕ2)} = Ms \ (ρ(ϕ1) ∆ ρ(ϕ2))
(“∆” is the set symmetric difference operation)
ρ(∀x.ϕ) =

⋂
{ρ′(ϕ) | ρ′ : Var→M, ρ′�Var\{x}= ρ�Var\{x}}

I Definition 4. Model M satisfies ϕs, written M |= ϕs, iff ρ(ϕs) = Ms for all ρ : Var→M .

RTA 2015

6 Matching Logic

I Proposition 5. The following properties hold:
If ρ1, ρ2 : Var→M , ρ1�FV (ϕ)= ρ2�FV (ϕ) then ρ1(ϕ) = ρ2(ϕ)
If x ∈ Vars then M |= x iff |Ms| = 1
If σ ∈ Σs1...sn,s and ϕ1, . . . , ϕn are patterns of sorts s1, . . . , sn, respectively, then we have
M |= σ(ϕ1, . . . , ϕn) iff σM (ρ(ϕ1), . . . , ρ(ϕn)) = Ms for any ρ : Var→M

M |= ¬ϕ iff ρ(ϕ) = ∅ for any ρ : Var→M

M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2
If ∃x.ϕs is closed, then M |= ∃x.ϕs iff

⋃
{ρ(ϕs) | ρ : Var→M} = Ms; hence, M |= ∃x.x

M |= ϕ1 → ϕ2 iff ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→M

M |= ϕ1 ↔ ϕ2 iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→M

M |= ∀x.ϕ iff M |= ϕ

Note that property “if ϕ closed then M |= ¬ϕ iff M 6|= ϕ”, which holds in FOL, does
not hold in matching logic. Indeed, suppose ϕ is a constant symbol, say 0, of sort s. Then
M |= ¬0 is equivalent to 0M = ∅, while M 6|= 0 is equivalent to 0M 6= Ms.

I Definition 6. Pattern ϕ is valid, written |= ϕ, iff M |= ϕ for all M . If F ⊆ Pattern then
M |= F iff M |= ϕ for all ϕ ∈ F . F entails ϕ, written F |= ϕ, iff for all M , we have M |= F

implies M |= ϕ. A matching logic specification is a triple (S,Σ, F) with F ⊆ Pattern.

3 Reduction to Predicate Logic

It is known that FOL formulae can be translated into equivalent predicate logic formulae, by
replacing each function symbol with a predicate symbol and then systematically transforming
terms into formulae. We can similarly translate patterns into equivalent predicate logic
formulae. Consider pure predicate logic with equality and no constants, whose satisfaction
relation is |==

PL. If (S,Σ) is a matching logic signature, let (S,ΠΣ) be the predicate logic
signature with ΠΣ = {πσ : s1 × · · · × sn × s | σ ∈ Σs1...sn,s}. We define the translation PL of
matching logic (S,Σ)-patterns into predicate logic (S,ΠΣ)-formulae inductively as follows:

PL(ϕ) = ∀r .PL2(ϕ, r)

PL2(x, r) = (x = r)
PL2(σ(ϕ1, . . . , ϕn), r) = ∃r1 · · · ∃rn .PL2(ϕ1, r1) ∧ · · · ∧ PL2(ϕn, rn) ∧ πσ(r1, . . . , rn, r)

PL2(¬ϕ, r) = ¬PL2(ϕ, r)
PL2(ϕ1 ∧ ϕ2, r) = PL2(ϕ1, r) ∧ PL2(ϕ2, r)

PL2(∃x . ϕ, r) = ∃x .PL2(ϕ, r)

PL({ϕ1, . . . , ϕn}) = {PL(ϕ1), . . . ,PL(ϕn)}

Then the following result holds, like for FOL:
I Proposition 7. If F is a set of patterns and ϕ is a pattern, then F |= ϕ iff PL(F) |==

PL PL(ϕ)
Proposition 7 gives a sound and complete procedure for matching logic reasoning: translate
the specification (S,Σ, F) and pattern to prove ϕ into the predicate logic specification
(S,ΠΣ,PL(F)) and formula PL(ϕ), respectively, and then derive it using the sound and
complete proof system of predicate logic. However, translating patterns to predicate logic
formulae makes reasoning harder not only for humans, but also for machines, since new
quantifiers are introduced. For example, (1 7→ 5∗2 7→ 0∗7 7→ 9∗8 7→ 1)→ list(7, 9·5) discussed
and proved in Section 1, translates into the formula (to keep it small, we do not translate
the numbers) ∀r . (∃r1 .∃r2 . π7→(1, 5, r1) ∧ (∃r3 .∃r4 . π7→(2, 0, r3) ∧ (∃r5 .∃r6 . π7→(7, 9, r5) ∧
π 7→(8, 1, r6) ∧ π∗(r5, r6, r4)) ∧ π∗(r3, r4, r2)) ∧ π∗(r1, r2, r))→ ∃r7 . π·(9, 5, r7) ∧ πlist(7, r7, r).

Grigore Roşu 7

What we would like is to reason directly with matching logic patterns, the same way we
reason directly with terms in FOL without translating them to predicate logic.

I Proposition 8. The following hold for matching logic:
1. |= ϕ, where ϕ is a propositional tautology (over patterns)
2. Modus ponens: |= ϕ1 and |= ϕ1 → ϕ2 implies |= ϕ2
3. |= (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x 6∈ FV (ϕ1)
4. Universal generalization: |= ϕ implies |= ∀x . ϕ
Proposition 8 states that the proof system of pure predicate logic is actually sound for
matching logic as is. Section 5 shows that a few additional proof rules yield a sound and
complete proof system for matching logic, similarly to how Substitution (∀x . ϕ → ϕ[t/x])
together with the four proof rules of pure predicate logic brings complete deduction to FOL.
But before that, we demonstrate the usefulness of matching logic by a series of examples.

4 Examples and Notations

We have already seen some simple patterns in Section 2, such as ∃x.x (satisfied by all models)
and ∀x.x (satisfied only by models whose carrier of the sort of x contains only one element).
Here we illustrate matching logic by means of a series of more complex examples.

4.1 Propositional logic
If S contains only one sort Prop, Σ is empty, and we drop the existential quantifier, then the
syntax of matching logic becomes that of propositional calculus: ϕ ::= VarProp | ¬ϕ | ϕ ∧ ϕ.

I Proposition 9. For any proposition ϕ, the following holds: |=Prop ϕ iff |= ϕ.

An alternative way to capture propositional logic is to add a constant symbol to Σ
for each propositional variable, and then associate a ground pattern to each proposition.
Proposition 9 still holds, despite the fact that propositional constants can be interpreted as
arbitrary sets. That is since (P(M),¬M ,∩) is a model of propositional logic for any set M .

4.2 Pure predicate logic
If S is a sort set and Π is a set of predicate symbols, the syntax of pure predicate logic
formulae (without equality) is ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ.
We can pick a new sort name, Pred, and construct a matching logic signature (S ∪ {Pred},Σ)
where Σs1...sn,Pred = Πs1...sn

. Then any predicate logic formula can be trivially regarded as
a matching logic pattern. The following result then holds:

I Proposition 10. For any predicate logic formula ϕ, the following holds: |=PL ϕ iff |= ϕ.

4.3 Definedness, Equality, Membership
Pattern definedness, equality and membership can be defined in matching logic, without any
special support or logic extensions. Let us first discuss why we cannot use ↔ as equality.
Indeed, since M |= ϕ1 ↔ ϕ2 iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→M , one may be tempted to
do so. E.g., given a signature with one sort and one unary symbol f , one may think that
pattern ∃y . f(x)↔ y defines precisely the models where f is a function. Unfortunately, that
is not true. Consider model M with M = {1, 2} and fM the non-function fM (1) = {1, 2},
fM (2) = ∅. Let ρ : Var→M ; recall (Definition 3) that ρ’extension ρ to patterns interprets
“∃” as union and “↔” as the complement of the symmetric difference. If ρ(x) = 1 then

RTA 2015

8 Matching Logic

ρ(∃y . f(x) ↔ y) = (M\({1, 2}∆{1})) ∪ (M\({1, 2}∆{2})) = {1, 2} = M . If ρ(x) = 2 then
ρ(∃y . f(x)↔ y) = (M\(∅∆{1})) ∪ (M\(∅∆{2})) = {1, 2} = M . Hence, M |= ∃y . f(x)↔ y.

The problem above was that the interpretation of ϕ1 ↔ ϕ2 is not equivalent to either
> or ⊥, as we are used to think in FOL. Specifically, ρ(ϕ1) 6= ρ(ϕ2) does not suffice for
ρ(ϕ1 ↔ ϕ2) = ∅ to hold. Indeed, ρ(ϕ1 ↔ ϕ2) = M \ (ρ(ϕ1) ∆ ρ(ϕ2)) and there is nothing
to prevent, e.g., ρ(ϕ1) ∩ ρ(ϕ2) 6= ∅, in which case ρ(ϕ1) ∆ ρ(ϕ2) 6= M . What we would like
to have is a proper equality, ϕ1 = ϕ2, which behaves like a predicate: ρ(ϕ1 = ϕ2) = ∅ when
ρ(ϕ1) 6= ρ(ϕ2), and ρ(ϕ1 = ϕ2) = M when ρ(ϕ1) = ρ(ϕ2). Moreover, we want equalities to
be used with terms of any sort, and in contexts of any sort.

The above can be achieved methodologically in matching logic, by adding to the signature
a definedness symbol [_]s2

s1
∈ Σs1,s2 for any sorts s1 and s2, together with the pattern axiom

[x :s1]s2
s1

enforcing ([_]s2
s1

)M (m1) = Ms2 in all models M for all m1 ∈ Ms1 , that is, for any
ρ : Var → M , ρ([ϕ]s2

s1
) is either ∅ when ρ(ϕ) = ∅ (i.e., ϕ undefined in ρ), or is Ms2 when

ρ(ϕ) 6= ∅ (i.e., ϕ defined). We can now use _ =s2
s1

_ and _ ∈s2
s1

_, respectively, as aliases:

ϕ =s2
s1
ϕ′ ≡ ¬[¬(ϕ↔ ϕ′)]s2

s1
where ϕ,ϕ′ ∈ Patterns1

x ∈s2
s1
ϕ ≡ [x ∧ ϕ]s2

s1
where x ∈ Vars1 , ϕ ∈ Patterns1

I Proposition 11. With the above, the following hold:
1. ρ(ϕ =s2

s1
ϕ′) = ∅ iff ρ(ϕ) 6= ρ(ϕ′), and ρ(ϕ =s2

s1
ϕ′) = Ms2 iff ρ(ϕ) = ρ(ϕ′)

2. |= ϕ =s2
s1
ϕ′ iff |= ϕ↔ ϕ′

3. ρ(x ∈s2
s1
ϕ) = ∅ iff ρ(x) 6∈ ρ(ϕ); and ρ(x ∈s2

s1
ϕ) = Ms2 iff ρ(x) ∈ ρ(ϕ)

4. |= (x ∈s2
s1
ϕ) =s3

s2
(x ∧ ϕ =s2

s1
x)

From now on we assume equality and membership in all specifications, without mentioning
the constructions above. Moreover, since s1 and s2 can usually be inferred from context, we
write [_], = and ∈ instead of [_]s2

s1
, =s2

s1
, and ∈s2

s1
, respectively. If the sort decorations cannot be

inferred from context, then we assume the stated property/axiom/rule holds for all such sorts.
For example, the generic pattern axiom “[x] where x ∈ Var” replaces all the axioms [x :s1]s2

s1

above for the definedness symbol, for all the sorts s1 and s2. Similarly, the axiom in Section 4.7
defining list patterns within maps, list(x) = (x = 0∧ emp ∨ ∃z . x 7→ z ∗ list(z)), is equivalent
to the explicit axioms (for all sorts s), list(x) =s

Map (x =Map
Nat 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z)).

Proposition 8 showed that four of the proof rule/axiom schemas of FOL are already sound
for matching logic. The soundness of several others are shown below, essentially stating the
soundness of the matching logic proof system, except one rule, Substitution (Section 5):
I Proposition 12. The following hold:
1. Equality introduction: |= ϕ = ϕ

2. Equality elimination: |= ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]
3. |= ∀x . x ∈ ϕ iff |= ϕ

4. |= (x ∈ y) = (x = y) when x, y ∈ Var
5. |= (x ∈ ¬ϕ) = ¬(x ∈ ϕ)
6. |= (x ∈ ϕ1 ∧ ϕ2) = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
7. |= (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
8. |= x ∈ σ(ϕ1, ..., ϕi−1, ϕi, ϕi+1, ..., ϕn) = ∃y.(y ∈ ϕi ∧ x ∈ σ(ϕ1, ..., ϕi−1, y, ϕi+1, ..., ϕn))

4.4 Defining special relations
Here we show how to define special relations using patterns. For example, ∃y . σ(x1, . . . , xn) =
y states that σ ∈ Σs1...sn,s is a function in all models. Indeed, if M is any model satisfying
the pattern above and a1 ∈ Ms1 , . . . , an ∈ Msn

then let ρ : Var → M be an M -valuation

Grigore Roşu 9

such that ρ(x1) = a1, . . . , ρ(xn) = an. Since M satisfies the pattern, it follows that Ms =⋃
{ρ′(σ(x1, . . . , xn) = y) | ρ′ : Var→M, ρ′�Var\{y}= ρ�Var\{y}}. Since ρ′(σ(x1, . . . , xn) = y)

is either Ms or ∅, depending upon whether σM (x1, . . . , xn) = {ρ′(y)} holds or not, we
conclude that there exists some ρ′ : Var→M such that σM (a1, . . . , an) = {ρ′(y)}, that is,
σM (a1, . . . , an) is a one-element set. Therefore, σM represents a total function. To avoid
writing such boring function patterns, from now on we automatically assume such an axiom
whenever we write a symbol σ ∈ Σs1...sn,s using the function notation σ : s1 × · · · × sn → s.

Pattern (f(x) = f(y))→ (x = y) states that f is injective. If (M,fM : M →M) is any
model satisfying this specification, then fM must be injective. Indeed, let a, b ∈M such that
a 6= b and fM (a) = fM (b). Pick ρ : Var → M such that ρ(x) = a and ρ(y) = b. Since M
satisfies the axiom above, we get ρ(f(x) = f(y)) ⊆ ρ(x = y). But Proposition 11 implies that
ρ(x = y) = ∅ and ρ(f(x) = f(y)) = M , which is a contradiction. We can also show that any
model whose f is injective satisfies the axiom. Let (M,fM : M → M) be any model such
that fM is injective. It suffices to show ρ(f(x) = f(y)) ⊆ ρ(x = y) for any ρ : Var → M ,
which follows by Proposition 11: if ρ(x) = ρ(y) then ρ(f(x) = f(y)) = ρ(x = y) = M , and if
ρ(x) 6= ρ(y) then ρ(f(x) = f(y)) = ρ(x = y) = ∅ because fM is injective.

From here on in the rest of the paper we take the freedom to write ϕ 6= ϕ′ instead of
¬(ϕ = ϕ′). With this, another way to capture the injectivity of f is (x 6= y)→ (f(x) 6= f(y)).

Pattern (σ(x1, . . . , xn) = ⊥s) ∨ ∃y . σ(x1, . . . , xn) = y states that σ ∈ Σs1...sn,s is a partial
function, and from now on we use the notation (note the “⇀” symbol) σ : s1 × · · · × sn ⇀ s

to automatically assume a pattern like the above for σ. For example, a division partial
function which is undefined in all models when the denominator is 0 can be specified as:

_ /_ : Nat ×Nat ⇀ Nat ¬(x/0)
i.e., as a symbol _ /_ ∈ ΣNat×Nat,Nat with patterns (x/y = ⊥Nat)∨∃z . x/y = z and ¬(x/0).

Total relations can be defined with [σ(x1, . . . , xn)]ss, equivalent to σ(x1, . . . , xn) 6= ⊥s.
We write σ : s1 × · · · × sn⇒ s to automatically state that σ is a total relation.

4.5 Algebraic specifications and matching logic modulo theories
An algebraic specification is a many-sorted signature (S,Σ) together with a set of equations
E over Σ-terms with variables. To translate an algebraic specification into a matching logic
specification we only need to ensure that symbols get a function interpretation as described
in Section 4.4, and to regard each equation t = t′ as an equality pattern t = t′.
I Proposition 13. Let (S,Σ, F) be the matching logic specification associated to the algebraic
specification (S,Σ, E) as above. Then for any Σ-equation e, we have E |=alg e iff F |= e.

Using the notations introduced so far, Peano natural numbers can be defined as follows:
0 : → Nat succ : Nat → Nat plus : Nat ×Nat → Nat
plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))

This looks identical to the conventional algebraic specification definition.
Note, however, that matching logic allows us to add more than just equational patterns.

For example, we can add to F the pattern 0 ∨ ∃x . succ(x) stating that any number is either 0
or the successor of another number. Nevertheless, since matching logic ultimately has the same
expressive power as predicate logic (Proposition 7), we cannot finitely axiomatize in matching
logic any mathematical domains that do not already admit finite FOL axiomatizations.
In practice, we follow the same standard approach as the first-order SMT solvers, namely
desired domains are theoretically presented with potentially infinitely many axioms but
are implemented using specialized decision procedures. Indeed, our current matching logic
implementation prototype in K defers to Z3 [5] the solving of all the domain constraints.

RTA 2015

10 Matching Logic

Algebraic specifications and decision procedures of mathematical domains abound in the
literature. All of these can be used in the context of matching logic. We do not discuss these
further, but only mention that from now on we tacitly assume definitions of integer and of
natural numbers, as well as of Boolean values, with common operations on them. We assume
that these come with three sorts, Int, Nat and Bool, and the operations on them use the
conventional syntax and writing; e.g., _ ≤ _ : Nat × Nat → Bool, x ≤ y, etc. To compact
writing, we take the freedom to write b instead of b = true for Boolean expressions b, in any
sort context. For example, we write ϕs ∧ x ≤ y instead of ϕs ∧ (x ≤ y =s

Bool true).

4.6 Sequences, Multisets and Sets
Sequences, multisets and sets are typical ADTs. Matching logic enables, however, some useful
developments and shortcuts. For simplicity, we only discuss collections over Nat, and name
the corresponding sorts Seq, MultiSet, and Set. Ideally, we would build upon an order-sorted
algebraic signature setting, so that we can regard x :Nat not only as an element of sort Nat,
but also as one of sort Seq (a one-element sequence), as one of sort MultiSet, as well as one
of sort Set. Extending matching logic to an order-sorted setting is not difficult, but would
deviate from our main objective in this paper, so we refrain from doing it. Instead, we rely
on the reader to assume either that order-sortedness does not bring complications (besides
those of order-sortedness itself in the context of algebraic specification) or that elements of
sort Nat used in a Seq, MultiSet, or Set context are wrapped with injection symbols.

Sequences can be defined with two symbols and corresponding equations:

ε : → Seq _ ·_ : Seq × Seq → Seq ε · x = x x · ε = x (x · y) · z = x · (y · z)

We assume that lowercase variables have sort Nat, and uppercase ones have the appropriate
collection sort. To avoid adding initiality constraints on models yet be able to do proofs by
case analysis and elementwise equality, we may add ε ∨ ∃x .∃S. x · S and (x · S = x′ · S′) =
(x = x′) ∧ (S = S′) as pattern axioms. We next define some operations on sequences:

rev : Seq → Seq rev(ε) = ε ¬(x ∈ ε) x ∈ x · S
_ ∈ _ : Nat × Seq → Bool rev(x · S) = rev(S) · x x ∈ y · S ∧ (x 6= y) = x ∈ S

We can transform sequences into multisets adding the equality axiom x · y = y · x, and
into sets by also including x · x = ⊥ or x · x = x. Here is one way to axiomatize intersection:

∩ :Set×Set → Set ε ∩ S2 = ε (x·S1)∩S2 = ((x∈S2→x) ∧ (¬(x∈S2)→ε))·(S1∩S2)

4.7 Maps and Map Patterns
Finite-domain maps are also a typical example of an ADT. We only discuss maps from natural
numbers to natural numbers, but they can be similarly defined over arbitrary domains as
keys and as values. We use a syntax for maps that resembles that of separation logic [11]:

_ 7→ _ : Nat ×Nat ⇀ Map emp ∗H = H

emp : → Map H1 ∗H2 = H2 ∗H1
_ ∗_ : Map ×Map ⇀ Map (H1 ∗H2) ∗H3 = H1 ∗ (H2 ∗H3)
0 7→ a = ⊥ x 7→ a ∗ x 7→ b = ⊥

When regarding the above ADT as a matching logic specification, we can prove that
the bottom two pattern equations above are equivalent to ¬(0 7→ a) and, respectively,
(x 7→ a ∗ y 7→ b)→ x 6= y, giving the _ 7→ _ and _ ∗_ the feel of “predicates”.

Consider the canonical model of partial maps M , where: MNat = {0, 1, 2, . . .}; MMap =
partial maps from natural numbers to natural numbers with finite domains and undefined in

Grigore Roşu 11

0, with emp interpreted as the map undefined everywhere, with _ 7→ _ interpreted as the
corresponding one-element partial map except when the first argument is 0 in which case it
is undefined (note that _ 7→ _ was declared using ⇀), and with _ ∗_ interpreted as map
merge when the two maps have disjoint domains, or undefined otherwise (note that _ ∗_
was also declared using ⇀). M satisfies all axioms above.

We next define two common patterns, for complete linked lists and for list fragments:

list : Nat⇒Map lseg : Nat ×Nat⇒Map
list(0) = emp lseg(x, x) = emp
list(x) ∧ x 6= 0 = ∃z . x 7→ z ∗ list(z) lseg(x, y) ∧ x 6= y = ∃z . x 7→ z ∗ lseg(z, y)

It can be shown that in the model M of partial maps described above, there is a unique
way to interpret list and lseg, namely as the expected linked lists and, respectively, linked
list fragments. Specifically, we can show that lsegM : MNat ×MNat → P(MMap) (we only
discuss lseg, because list is similar and simpler) can only be the following function:

lsegM (n, n) = {empM} for all n ≥ 0
lsegM (n,m) = { n 7→M n1 ∗M n1 7→M n2 ∗M · · · ∗M nk 7→M m

| k ≥ 0, and n0 = n, n1, n2, . . . , nk > 0 all different}

Complete details can be found in [15].
It should be clear that patterns can be specified in many different ways. E.g., the first

list pattern can also be specified as list(x) = (x = 0∧ emp ∨ ∃z . x 7→ z ∗ list(z)). In a similar
style, we can define more complex patterns, such as lists with data. But first, we specify
a convenient operation for defining maps over contiguous keys, making use of a sequence
data-type. The latter can be defined like in Section 4.6; for notational convenience, we take
the freedom to use comma “,” instead of “·” for sequence concatenation in some places:

_ 7→ [_] : Nat × Seq → Map x 7→ [ε] = emp x 7→ [a, S] = x 7→ a ∗ (x+ 1) 7→ [S]

In our model M , we can take MSeq to be the finite sequences of natural numbers, with εM
and _ ·M _ interpreted as the empty sequence and, respectively, sequence concatenation.

We can now define lists with data as follows:
list : Nat × Seq⇒Map lseg : Nat × Seq ×Nat⇒Map
list(0, ε) = emp lseg(x, ε, x) = emp
list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S) lseg(x, n · S, y) = ∃z . x 7→ [n, z] ∗ lseg(z, S, y)

Note that, unlike in the case of lists without data, this time we have not required the side
conditions x 6= 0 and x 6= y, respectively. The side conditions were needed in the former
case because without them we can infer, e.g., list(0) = ⊥ (from the second equation of list),
which using the first equation would imply emp = ⊥. However, they are not needed in the
latter case because it is safe (and even desired) to infer list(0, n ·S) = ⊥ for any n and S. We
can show, using a similar approach like for lists without data, that the pattern lseg(x, S, y)
matches in M precisely the lists starting with x, exiting to y, and holding data sequence S.

We can similarly define other data-type specifications, such as trees with data:

none : → Tree node : Nat × Tree × Tree → Tree tree : Nat × Tree⇒Map
tree(0,none) = emp tree(x,node(n,t1,t2)) = ∃y z . x 7→ [n, y, z] ∗ tree(y, t1) ∗ tree(z, t2))

Therefore, fixing the interpretations of the basic mathematical domains, such as those of
natural numbers, sequences, maps, etc., suffices in order to define interesting map patterns
that appear in verification of heap properties of programs, in the sense that the axioms
themselves uniquely define the desired data-types. No inductive predicates or principles were
needed to define them, although induction or initiality may be needed in order to define

RTA 2015

12 Matching Logic

the desired models. Choosing the right basic mathematical domains is, however, crucial.
For example, if we allow the maps in MMap to have infinite domains then the list patterns
without data above (the first ones) also include infinite lists. The lists with data cannot
include infinite lists, because we only allow finite sequences. This would, of course, change if
we allow infinite sequences, or streams, in the model. In that case, list and lseg would not
admit unique interpretations anymore, because we can interpret them to be either all the
finite domain lists, or both the finite and the infinite-domain lists. Writing patterns which
admit the desired solution in the desired model suffices in practice; our reasoning techniques
developed in the sequel allow us to derive properties that hold in all models satisfying the
axioms, so any derived property is sound also for the intended model and interpretations.

4.8 First-Order Logic
First-order logic (FOL) allows both function and predicate symbols:

ts ::= x ∈ Vars | σ(t1, . . . , tn) with σ ∈ Σs1...sn,s

ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn
| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

Let (S,Σ,Π) be a FOL signature. Like in pure predicate logic, we add a Pred sort and regard
the predicate symbols as symbols of result Pred. Let (SML,ΣML) be the matching logic
signature with SML = S ∪ {Pred} and ΣML = Σ ∪ {π : s1 . . . sn → Pred | π ∈ Πs1...sn}, and
let F be {∃z :s . σ(x1 :s1, . . . , xn :sn) = z | σ ∈ Σs1...sn,s} saying each symbol is a function.
I Proposition 14. For any FOL formula ϕ, we have |=FOL ϕ iff F |= ϕ.

4.9 Separation Logic
Matching logic has inherent support for structural separation, without a need for any special
logic constructs or extensions. That is because pattern matching has a spatial meaning by its
very nature: matching a subterm already separates that subterm from the rest of the context,
so matching two or more terms can only happen when there is no overlapping between them.

Separation logic [11, 14, 12] is a logic for reasoning about heap structures. There are
many variants, but here we only consider the one in [11]. Its syntax extends FOL as follows:

ϕ ::= (FOL syntax) | emp | Int 7→ Int | ϕ ∗ ϕ | ϕ−∗ϕ

Its semantics is based on a fixed model of stores and heaps, which are finite-domain maps from
variables and locations (particular integers), respectively, to integers. The semantics of each
construct is given in terms of a pair (s, h) of a store and a heap, called a state. For example,
(s, h) |=SL E1 7→ E2 iff Dom(h) = s(E1) and h(s(E1)) = s(E2), and (s, h) |=SL P1 ∗ P2 iff
there exist h1 and h2 of disjoint domains such that h = h1 ∗ h2 and (s, h1) |=SL P1 and
(s, h2) |=SL P2. The semantics of “magic wand”, P1−∗P2 is defined as the states whose heaps
extended with a fragment satisfying P1 result in ones satisfying P2: (s, h) |=SL P1−∗P2 iff
for any h1 of domain disjoint of h’s, if (s, h1) |=SL P1 then (s, h ∗ h1) |=SL P2.

We can define a matching logic specification and a model of it, which precisely capture
separation logic. The FOL constructs are already captured by the generic syntax of patterns
as explained in previous sections. The spatial constructs, except for the −∗ , are given by the
matching logic specification of maps discussed in Section 4.7, in which we substitute Int for
Nat. For the magic wand, we add the partial function _−∗_ : Map ×Map ⇀ Map and the
pattern P1−∗P2 = ∃H .H ∧ [H ∗ P1 → P2]. Recall from Section 4.3 that [_] leverages the
non-emptyness of its argument to the total set. In words, P1−∗P2 is the set of all maps h

Grigore Roşu 13

which merged with maps satisfying P1 yield only maps satisfying P2. With the above, any
separation logic formula can be regarded, as is, as a matching logic pattern of sort Map.

We next construct our model. Let M be identical to the model for maps in Section 4.7,
except that we replace natural numbers with integer numbers. The only thing left is to
define the partial function _−∗M_ : Map × Map → P(Map), which we do as follows:
h1−∗M h2 = {h | Dom(h) ∩Dom(h1) = ∅ and h ∗M h1 = h2}. Note that h1−∗M h2 is either
the empty set or it is a set of precisely one map. Then the following result holds:
I Proposition 15. If ϕ is a separation logic formula, then |=SL ϕ iff M |= ϕ. More specifically,
for any store s and any heap h, we have (s, h) |=SL ϕ iff h ∈ s(ϕ).

5 Sound and Complete Deduction

As shown in Section 3, the proof system of predicate logic is sound for matching logic as
is. Ideally, we would like the same to hold true for FOL with equality, that is, we would
like its proof system to be sound as is for matching logic reasoning, where we replace
terms and predicates with arbitrary patterns. Unfortunately, FOL’s Substitution axiom,
(∀x . ϕ) → ϕ[t/x], is not sound if we replace t with any pattern. For example, consider
the tautology ∀x .∃y . x = y and let ϕ be ∃y . x = y. If FOL’s Substitution were sound for
arbitrary patterns ϕ′ instead of t, then the formula ∃y . ϕ′ = y, stating that ϕ′ evaluates to a
unique element for any valuation, would be valid for any pattern ϕ′. However, this is not
true in matching logic, because patterns can evaluate to any set of elements, including the
empty set or the total set; several examples of such patterns were discussed in Section 4. We
need to modify Substitution to indicate that ϕ′ admits unique evaluations:

Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]

Condition ∃y . ϕ′ = y holds when ϕ′ is a term built with symbols σ obeying the functional
axioms ∃y . σ(x1, . . . , xn) = y discussed in Section 4.4. So the constrained substitution axiom
is still more general than the original substitution axiom in FOL, since it can also apply when
ϕ′ is not built only from functional symbols but can be proved to have unique evaluation. It
is interesting to note that a similar modification of Substitution was needed in the context
of partial FOL [7], where the interpretations of functional symbols are partial functions, so
terms may be undefined; axiom PFOL5 in [7] requires ϕ′ to be defined in the Substitution rule,
and several rules for proving definedness are provided. Note that our condition ∃y . ϕ′ = y is
equivalent to definedness in the special case of PFOL, and that, thanks to the definability of
equality in matching logic, we do not need special machinery for proving definedness.

Our approach to obtain a sound and complete proof system for matching logic is to build
upon its reduction to predicate logic in Section 3. Specifically, to use Proposition 7 and the
complete proof system of predicate logic. Given a matching logic signature (S,Σ), let (S,ΠΣ)
be the predicate logic signature obtained like in Section 3. In addition to the PL translation
there, we also define a backwards translation ML of (S,ΠΣ)-formulae into (S,Σ)-patterns:

ML(x = r) = x = r

ML(πσ(r1, . . . , rn, r)) = r ∈ σ(r1, . . . , rn)
ML(¬ψ) = ¬ML(ψ)

ML(ψ1 ∧ ψ2) = ML(ψ1) ∧ML(ψ2)
ML(∃x . ψ) = ∃x .ML(ψ)

ML({ψ1, . . . , ψn}) = {ML(ψ1), . . . ,ML(ψn)}

Recall from Section 4.3 that we assume equality and membership in all specifications.

RTA 2015

14 Matching Logic

FOL axioms and rules:

1. ` propositional tautologies
2. Modus ponens: ` ϕ1 and ` ϕ1 → ϕ2 imply ` ϕ2
3. ` (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x 6∈ FV (ϕ1)
4. Universal generalization: ` ϕ implies ` ∀x . ϕ
5. Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]
6. Equality introduction: ` ϕ = ϕ

7. Equality elimination: ` ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]

Membership axioms and rules:

8. ` ∀x . x ∈ ϕ iff ` ϕ
9. ` x ∈ y = (x = y) when x, y ∈ Var
10. ` x ∈ ¬ϕ = ¬(x ∈ ϕ)
11. ` x ∈ ϕ1 ∧ ϕ2 = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
12. ` (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
13. ` x∈σ(ϕ1,.., ϕi−1, ϕi, ϕi+1,.., ϕn) = ∃y.(y∈ϕi ∧ x∈σ(ϕ1,.., ϕi−1, y, ϕi+1,.., ϕn))

Figure 2 Sound and complete proof system of matching logic.

Figure 2 shows our sound and complete proof system for matching logic reasoning, which
was specifically crafted to include the proof system of first-order logic. Indeed, the first group
of axiom and rule schemas include all the axioms and proof rules of FOL with equality as
instances (the rules Substitution, Equation introduction and Equation elimination allow
more general patterns instead of terms). The second group of proof rules, for reasoning
about membership, is introduced for technical reasons, namely for the proof of Theorem 16:

I Theorem 16. The proof system in Figure 2 is sound and complete: F |= ϕ iff F ` ϕ.

6 Additional Related Work

Matching logic builds upon intuitions from and relates to at least four important logical
frameworks: (1) Relation algebra (RA) (see, e.g., [21]), noticing that our interpretations of
symbols as functions to powersets are equivalent to relations; although our interpretation
of symbols captures better the intended meaning of pattern and matching, and our proof
system is quite different from that of RA, like with FOL we expect a tight relationship
between matching logic and RA, which is left as future work; (2) Partial FOL (see, e.g., [7]
for a recent work and a survey), noticing that our interpretations of symbols into powersets
are more general than partial functions (Section 4.3 shows how we defined definedness); and
(3) Separation logics (SL) (see, e.g.,[11]), which we briefly discussed in Section 4.9 but refer
the reader to [15] for more details; and (4) Precursors of matching logic in [17, 20, 16], which
proposed the pattern idea by extending FOL with particular “configuration” terms:

ts ::= x ∈ Vars | σ(t1, . . . , tn) with σ ∈ Σs1...sn,s

ϕ ::= π(x1, . . . , xn) with π ∈ Πs1...sn
| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

| t ∈ TΣ,Cfg(X)

where TΣ,Cfg(X) is the set of terms of a special sort Cfg (from “configurations”) over variables
in set X. To avoid naming conflicts, we propose to call the variant above topmost matching

Grigore Roşu 15

logic from here on. Topmost matching logic can trivially be desugared into FOL with equality
by regarding a particular pattern predicate t ∈ TΣ,Cfg(X) as syntactic sugar for “(current
state/configuration is) equal to t”. One major limitation of topmost matching logic, which
motivated the generalization in this paper, is that its restriction to patterns of sort Cfg
prevented us to define local patterns (e.g., the heap list pattern) and perform local reasoning.

The idea of regarding arbitrary terms as patterns is reminiscent to pattern calculus [10],
although note that matching logic’s patterns are intended to express and reason about static
properties of data-structures or program configurations, while pattern calculi are aimed at
generally and compactly expressing computations and dynamic behaviors of systems. So far
we used rewriting to define dynamic language semantics; it would be interesting to explore
the combination of pattern calculus and matching logic for language semantics and reasoning.

7 Conclusion and Future Work

Matching logic is a sound and complete FOL variant that makes no distinction between
function and predicate symbols. Its formulae, called patterns, mix symbols, logical connectives
and quantifiers, and evaluate in models to sets of values, those that “match” them, instead of
just one value as terms do or a truth value as predicates do in FOL. Equality can be defined
and several important variants of FOL fall as special fragments. Separation logic can be
framed as a matching logic theory within the particular model of partial finite-domain maps,
and heap patterns can be elegantly specified using equations. Matching logic allows spatial
specification and reasoning anywhere in a program configuration, and for any language, not
only in the heap or other particular and fixed semantic components.

We made no efforts to minimize the number of rules in our proof system, because our
main objective here was to include the proof system for FOL with equality. It is likely
that a minimal proof system working directly with the core symbols [_]s2

s1
∈ Σs1,s2 for

all sorts s1, s2 ∈ S can be obtained such that the equality and membership axioms and
rules in Figure 2 can be proved as lemmas. Likewise, we refrained from discussing any
computationally effective fragments of matching logic, although we are implementing them
in K. Finally, complexity results in the style of [1, 3, 9] for separation logic can likely also be
obtained for fragments of matching logic.

Acknowledgments. I wish to express my deepest thanks to the K team (http://
kframework.org), who share the belief that programming languages should have only one
semantics, which should be executable, and formal analysis tools, including fully fledged
deductive program verifiers, should be obtained from such semantics at little or no extra cost.
I would like to also warmly thank the following colleagues and friends for their comments and
criticisms on previous drafts of this paper: Nikolaj Bjorner, Claudia-Elena Chiriţă, Maribel
Fernández, Dorel Lucanu, Brandon Moore, Cosmin Rădoi, Andrei Ştefănescu.

References

1 Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël
Ouaknine. Foundations for decision problems in separation logic with general inductive
predicates. In FOSSACS’14, LNCS 8412, pages 411–425, 2014.

2 Denis Bogdănaş and Grigore Roşu. K-Java: A Complete Semantics of Java. In Proceedings
of the 42nd Symposium on Principles of Programming Languages (POPL’15), pages 445–
456. ACM, January 2015.

RTA 2015

http://kframework.org
http://kframework.org

16 Matching Logic

3 James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan Navarro Pérez. A decision
procedure for satisfiability in separation logic with inductive predicates. Technical Report
RN/13/15, University College London, 2013.

4 Andrei Ştefănescu, Ştefan Ciobâcă, Radu Mereuţă, Brandon M. Moore, Traian Florin Şer-
bănuţă, and Grigore Roşu. All-path reachability logic. In Proceedings of the Joint 25th
International Conference on Rewriting Techniques and Applications and 12th International
Conference on Typed Lambda Calculi and Applications (RTA-TLCA’14), volume 8560 of
LNCS, pages 425–440. Springer, July 2014.

5 Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS, pages
337–340, 2008. LNCS 4963.

6 Chucky Ellison and Grigore Rosu. An executable formal semantics of C with applications.
In POPL, pages 533–544, 2012.

7 William M. Farmer and Joshua D. Guttman. A set theory with support for partial functions.
Studia Logica, 66(1):59–78, 2000.

8 Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the undefinedness of C. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15). ACM, 2015.

9 Radu Iosif, Adam Rogalewicz, and Jirí Simácek. The tree width of separation logic with
recursive definitions. In CADE’13, LNCS 7898, 2013.

10 C. Barry Jay. The pattern calculus. ACM Trans. Program. Lang. Syst., 26(6):911–937,
November 2004.

11 Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. In CSL, pages 1–19. LNCS 2142, 2001.

12 Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of Symb.
Logic, 5(2):215–244, 1999.

13 Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A complete formal semantics
of JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15). ACM, 2015.

14 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74, 2002.

15 Grigore Roşu. Matching logic: A logic for structural reasoning. Technical Report
http://hdl.handle.net/2142/47004, University of Illinois, Jan 2014.

16 Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M. Moore. One-path
reachability logic. In LICS’13. IEEE, 2013.

17 Grigore Rosu, Chucky Ellison, and Wolfram Schulte. Matching logic: An alternative to
Hoare/Floyd logic. In AMAST, volume 6486 of LNCS, pages 142–162, 2010.

18 Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

19 Grigore Rosu and Traian Florin Serbanuta. K overview and simple case study. In Pro-
ceedings of International K Workshop (K’11), volume 304 of ENTCS, pages 3–56. Elsevier,
June 2014.

20 Grigore Rosu and Andrei Stefanescu. Checking reachability using matching logic. In
Proceedings of the 27th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’12), pages 555–574. ACM, 2012.

21 A. Tarski and S.R. Givant. A Formalization of Set Theory Without Variables. Number 41.
AMS, 1987.

	Introduction, Motivation and Overview
	Matching Logic
	Reduction to Predicate Logic
	Examples and Notations
	Propositional logic
	Pure predicate logic
	Definedness, Equality, Membership
	Defining special relations
	Algebraic specifications and matching logic modulo theories
	Sequences, Multisets and Sets
	Maps and Map Patterns
	First-Order Logic
	Separation Logic

	Sound and Complete Deduction
	Additional Related Work
	Conclusion and Future Work

