
From Rewriting Logic, to Programming Language
Semantics, to Program Verification

Grigore Ros, u

University of Illinois at Urbana-Champaign, USA
grosu@illinois.edu

Abstract. Rewriting logic has proven to be an excellent formalism to define
executable semantics of programming languages, concurrent or not, and then to
derive formal analysis tools for the defined languages with very little effort, such
as model checkers. In this paper we give an overview of recent results obtained
in the context of the rewriting logic semantics framework K, such as complete
semantics of large programming languages like C, Java, JavaScript, Python, and
deductive program verification techniques that allow us to verify programs in these
languages using a common verification infrastructure.

1 Introduction

Programming language semantics and program analysis and verification are well devel-
oped research areas with a long history. In fact, one might think that all problems would
have been solved by now: we would hope that any formal semantics for a language
should give rise to a proof system and that a verifier for such a system would simply
extend the proof system with a proof strategy; or looked at from the other side, we
would assume that any verification system for a particular programming language would
be grounded in that language’s formal semantics. However, reality tells us that most
program verifiers are not directly based on a formal semantics, but rather on complex
and adhoc hardwired models of their target programming languages. This has at least
two negative consequences. First, it makes the development and maintenance of pro-
gram verifiers hard and uneconomical, particularly for new programming languages or
languages which evolve fast. Second, it allows room for subtle bugs in program verifiers
themselves. Consider, for example, the following three-line C program:

void main() {
int x = 0;
return (x = 1) + (x = 2);

}

When compiled with some compilers, e.g., GCC3, ICC, Clang, this program evaluates
to 3, while when compiled with others, e.g., GCC4, MSVC, it evaluates to 4. This is
correct behavior for the compilers, because according to the ISO C11 standard [1] this
function is undefined (it writes x twice within the same sequence-point interval), and
language implementations or compilers are free to treat undefined programs however
they find fit, in particular to apply aggressive optimizations, like above. The overall
design of the C language has been conceived in the spirit of improved performance,

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

Test-case
generation

Fig. 1. Rewriting logic semantics can achieve this.

the price to pay being that it becomes programmer’s responsibility to ensure that their
programs are well-defined. However, what is scary, and in our view unacceptable, is that
state-of-the-art program verifiers for C code like VCC [2] and Frama-C [3] prove that
this program evaluates to 4! That is because in order to simplify implementation, these
verifiers use code simplification modules similar to those used by compilers, which work
as expected only when the source program is well-defined according to the C semantics.

The unfortunate consequence is that, in spite of more than 40 years of worldwide
research and in spite of being hard to use, state-of-the-art software verification tools
cannot be trusted. They encode or implement rather adhoc models of programming
languages, without any guarantee that their model is faithful to the actual language.
The root problem is that most languages do not even have a formal semantics, their
designers wrongly thinking that a formal semantics is not worth the effort. Hence, the
tool developers must rely on informal manuals and on their subjective understanding
of the language. Inspired by countless hours of discussions with my mentor, colleague
and dear friend José Meseguer, we firmly believe that this can and should change, that
programming languages must have formal semantics! Moreover, that formal analysis
tools and language implementations can and should be derived from such semantics, as
shown in Figure 1, so they are correct by construction. This is not a dream. Not anymore.

We present a snapshot of recent and current research on using rewriting logic se-
mantics in the field of programming languages through the K framework, from giving
semantics to real programming languages to using such semantics to verify programs.

2 From Rewriting Logic to Language Semantics

Starting with Meseguer’s seminal rewriting logic paper [4], which demonstrated how
naturally rewriting logic can capture the various computational paradigms, a series of

2

papers have been published on using rewriting logic to give semantics to programming
languages. Verdejo and Martì-Oliet [5,6] show how to use rewriting logic and Maude [7]
to define and implement executable semantics for several languages following both
big-step [8] and small-step SOS [9, 10] approaches, and S, erbănut, ă et al. [11] show how
several other semantic approaches can be represented in rewriting logic, including Berry
and Boudol’s chemical abstract machine (CHAM) [12, 13] and Felleisen’s reduction
semantics with evaluation contests [14, 15].

When representing any of these semantic approaches in rewriting logic, the idea
is to define the desired program configurations as an algebraic specification, that is
as a signature representing the syntax of configurations and equations defining the
underlying mathematical domains, and then to define the various types of transitions
uniformly as rewrite rules. For example, in a simple C-like imperative language a
program configuration can be a pair < code, state >, where code is a fragment of
program and state is a finite-domain map from program variables to values. Fragments
of programs are nothing but well-formed terms over an appropriate algebraic signature,
and finite-domain maps can be defined as an algebraic data type. In a small-step SOS
style rewrite logic semantics, for example, the semantics of the assignment construct can
then be defined with rewrite rules as follows (we use the Maude notation):

crl < X = E,Sigma > => < X = E’,Sigma’ > if < E,Sigma > => < E’,Sigma’ > .
rl < X = V,Sigma > => < V,Sigma[V / X] > .

The first rule reduces the expression E assigned to program variable X step by step until
it becomes a value V, and then the second rule assigns that value to X in the state Sigma.

A problem faced when attempting the above for real languages, like C or Java, is that
the program configuration tends to be huge, comprising dozens of semantic cells, most
of them being unused in most rules or their changes just being propagated by rules. The
lack of modularity of SOS was visible even in Plotkin’s original notes [9, 10], where he
had to modify the definition of simple arithmetic expressions several times as his initial
language evolved. Hennessy also makes it even more visible in his book [16]. Each time
he adds a new feature, he also has to change the configurations and the entire existing
semantics. However, the lack of modularity of language definitional frameworks was not
perceived as a major problem until late 1990s, partly because there were few attempts to
give complete and rigorous semantics to real programming languages. Hennessy actually
used each language extension as a pedagogical opportunity to teach what new semantic
components the feature needs and how and where those are located in each sequent.

The first to pinpoint the limitations of plain SOS when defining non-trivial languages
were the inventors of alternative semantic frameworks, such as Berry and Boudol [12,13]
who proposed the chemical abstract machine model, Felleisen and his collaborators
[14,15] who proposed reduction semantics with evaluation contexts, and Mosses and his
collaborators [17–19] who proposed the modular SOS (MSOS) approach. Among these,
Mosses is perhaps the one who most vehemently criticized the lack of modularity of plain
SOS. Meseguer and Braga [20, 21] were the first to observe that rewriting logic, through
its powerful support for multiset matching, can seamlessly support modular semantic
frameworks, by giving a first rewrite logic representation of MSOS. The representation
in [20] also led to the development of the Maude MSOS tool [22].

Learning from previous uses of rewriting logic to define programming language
semantics, we proposed the K framework [23] (http://kframework.org) as a for-

3

http://kframework.org

malism and notation inspired from rewrite logic but specialized to the domain of pro-
gramming languages. In K, programming languages can be defined using configurations,
computations and rules. Configurations organize the state in units called cells, which
are labeled and can be nested. Computations carry computational meaning as special
nested list structures sequentializing computational tasks, such as fragments of program.
Computations extend the original language abstract syntax. K (rewrite) rules make it
explicit which parts of the term they read-only, write-only, read-write, or do not care
about. This makesK suitable for defining truly concurrent languages even in the presence
of sharing. Computations are like any other terms in a rewriting environment: they can be
matched, moved from one place to another, modified, or deleted. This makes K suitable
for defining control-intensive features such as abrupt termination, exceptions or call/cc.

In K, a language is defined in one or more files with extension “.k”. A language
definition consists roughly of three parts: annotated syntax, configuration, and semantic
rules. For syntax, K uses conventional BNF annotated with K-specific attributes. For
example, the syntax of assignment in a language like above can be defined as

syntax Stmt ::= Id "=" Exp [strict(2)]

The attribute strict(2) states the evaluation strategy of the assignment construct: first
evaluate the second argument, and then apply the semantic rule(s) for assignment.

To allow arbitrarily complex and nested program configurations, K proposes a cell-
based approach. Each cell encapsulates relevant information for the semantics, including
other cells that can “float” inside it. For our simple language, a “top” cell <T>...</T>
containing a code cell <k>...</k> and a state <state>...</state> suffices:

configuration <T>
<k> $PGM </k>
<state> .Map </state>

</T>

The given cell contents tell K how to initialize the configuration: $PGM says where to put
the input program once parsed, and .Map is the empty map.

Once the syntax and configuration are defined, we can start adding semantic rules. K
rules are contextual: they mention a configuration context in which they apply, together
with local changes they make to that context. The user typically only mentions the abso-
lutely necessary context in their rules; the remaining details are filled in automatically
by the tool. For example, here is the K rule for assignment:

rule <k> X:Id = V:Val => V ...</k>
<state>... X |-> (_ => V) ...</state>

The ellipses are part of the K syntax. Recall that assignment was strict(2), so we can
assume that its second argument is a value, say V. The context of this rule involves two
cells, the k cell which holds the current code and the state cell which holds the current
state. Moreover, from each cell, we only need certain pieces of information: from the k
cell we only need the first task, which is the assignment “X = V”, and from the state
cell we only need the binding “X |-> _”. The underscore stands for an anonymous
variable, the intuition here being that that value is discarded anyway, so there is no need

4

to bother naming it. The irrelevant parts of the cells are replaced with ellipses. Then,
once the local context is established, we identify the parts of the context which need to
change, and we apply the changes using local rewrite rules with the arrow =>, noting
that it has a greedy scoping, grabbing everything to the left and everything to the right
until a cell boundary (open or closed) or an unbalanced parenthesis is encountered. In
our case, we rewrite both the assignment expression and the value of X in the state to
the assigned value V. Everything else stays unchanged. The concurrent semantics of K
regards each rule as a transaction: all changes in a rule happen concurrently; moreover,
rules themselves apply concurrently, provided their changes do not overlap.

Once the definition is complete and saved in a .k file, say imp.k, the next step is to
generate the desired language model. This is done with the kompile command:

kompile imp.k

By default, the fastest possible executable model is generated. To generate models which
are amenable for symbolic execution, test-case generation, search, model checking, or
deductive verification, one needs to provide kompile with appropriate options.

The generated language model is employed on a given program for the various types
of analyses using the krun command. By default, with the default language model, krun
simply runs the program. For example, if sum.imp contains

n=100; s=0;
while(n>0) {
s=s+n; n=n-1;

}

then the command

krun sum.imp

yields the final configuration

<T>
<k> . </k>
<state>
n |-> 0, s |-> 5050

</state>
</T>

Using the appropriate options to the kompile and krun commands, we can enable
all the above-mentioned tools and analyses on the defined programming language and
the given program. Many languages are provided with the K tool distribution, and several
others are available from http://kframework.org (start with the K tutorial). Some
of these languages have dozens of cells in their configurations and hundreds of rules.

Besides didactic and prototypical languages, K has been used to formalize several
existing real-life languages and to design and develop analysis and verification tools
for them. The most notable are complete K definitions for the following languages:
C11 (POPL’12 [24], PLDI’15 [25]), Java 1.4 (POPL’15 [26]), JavaScript ES5 (PLDI’15
[27]). Each of these language semantics has more than 1,000 semantic rules and has

5

http://kframework.org

been tested on benchmarks and test suites that implementations of these languages
also use to test their conformance, where available. The C semantics, when executed,
catches undefinedness; for example, the program discussed in the introduction reports
the following error when executed with the C semantics:

===
ERROR! KCC encountered an error while executing this program.
===
Error: EIO1
Description: Unsequenced side effect on scalar object with side effect
of same object.

Type: Undefined behavior.
See also: C11 sec. 6.5
===

The Java semantics effort has also produced a test suite of several hundreds of
programs that thoroughly and systematically test all the Java language constructs, because
no such test suite was available. 1 The JavaScript semantics passes all the 2,782 core
language tests part of the ECMAScript 5 conformance testuite. To put this in perspective,
among the existing implementations of JavaScript, only Chrome’s passes all the tests,
and no other existing semantics attempt of JavaScript passes more than 90%. In addition
to a reference implementation for a language, a K executable semantics also yields
a simple coverage metric for a test suite: the set of semantic rules it exercises. The
semantics of JavaScript revealed that the ECMAScript 5 conformance test suite fails
to cover several semantic rules. Guided by the semantics, we wrote tests to exercise
those rules and those tests revealed bugs both in production JavaScript engines (Chrome,
Safari, Firefox) and in other semantics.

3 From Language Semantics to Program Verification

An operational semantics of a programming language, be it defined inK or not, defines an
execution model the language typically in terms of a transition relation cfg⇒cfg′ between
program configurations, and can serve as a formal basis for language understanding,
design, implementation, and so on. On the other hand, an axiomatic semantics defines a
proof system typically in terms of Hoare triples {ψ} code {ψ′}, and can serve as a basis
for program verification. To increase confidence in program verifiers and thus avoid
problems like the one discussed in the introduction, ideally the axiomatic semantics
should be proved sound w.r.t. the operational semantics (see, e.g., [28]). Needless to
say that defining an axiomatic semantics for a real language like C is no simpler than
defining an operational semantics, and that proving their equivalence is a burden that

1 The official test suite for Java implementations is the Java Compatibility Kit (JCK) from
Oracle, which is not publicly available. Oracle offers free access for non-profit organizations
willing to implement the whole JDK (http://openjdk.java.net/groups/conformance/
JckAccess/), i.e., both the language and the class library. We applied and Oracle rejected
our request, because we did not “implement” the complete Java library. Also, note that the
NIST Juliet testsuite (http://samate.nist.gov/SARD/testsuite.php) is meant to asses
the capability of Java static analysis tools, and not the completeness of Java implementations.

6

http://openjdk.java.net/groups/conformance/JckAccess/
http://openjdk.java.net/groups/conformance/JckAccess/
http://samate.nist.gov/SARD/testsuite.php

few can take. Consequently, most program verifiers are actually based on no formal
semantics of their target language at all and, as discussed above, end up sometimes
proving wrong programs correct.

We have recently proposed a different approach to program verification, reachability
logic [29–32], which introduces the notion of a reachability rule to express dynamic
properties of programs, as a generalization of both a rewrite rule and a Hoare triple.
Thus, reachability logic unifies operational and axiomatic semantics. Reachability logic
builds upon matching logic [33–36] as a formalism to express static state properties. The
overall idea of our verification approach is to start with a rewriting-based semantics of a
programming language (which is operational), and to derive program properties with the
same semantics, without giving the language any other (axiomatic) semantics.

Matching logic allows us to state and reason about structural properties over arbitrary
program configurations. The main intuition underlying matching logic is that “terms are
predicates and their satisfaction is matching”. Syntactically, it introduces a new formula
construct, called a basic pattern, which is a term possibly containing variables, e.g.,
a configuration term expressing a desired structure of the program configuration. The
formulae, which can be built using basic patterns and arbitrary other conventional logical
constructs, are called patterns. This way, we can compose structural requirements and
add logical constraints over the variables appearing in basic patterns. Semantically, the
models of basic patterns are concrete elements, e.g., concrete configurations regarded as
ground terms, where such an element satisfies a basic pattern iff it matches it. Considering
some configuration structure with a top-level cell 〈...〉cfg holding, in any order, other cells
with semantic data such as the code 〈...〉k,2 an environment 〈...〉env, a heap 〈...〉heap, an
input buffer 〈...〉in, an output buffer 〈...〉out, etc., configurations then have the structure:

〈〈...〉k 〈...〉env 〈...〉heap 〈...〉in 〈...〉out ...〉cfg

The contents of the cells can be various algebraic data types, such as trees, lists, sets,
maps, etc. Here are two particular concrete configurations (note that x and y are program
variables, which unlike in Hoare logics are not logical variables; in matching logic they
are constants used to build programs or fragments of programs):

〈〈x=*y; y=x; ...〉k 〈x 7→ 7, y 7→ 3, ...〉env 〈3 7→ 5〉heap ...〉cfg

〈〈x 7→ 3〉env 〈3 7→ 5, 2 7→ 7〉heap 〈1, 2, 3, ...〉in 〈..., 7, 8, 9〉out ...〉cfg

Different languages may have different configuration structures. For example, lan-
guages whose semantics are intended to be purely syntactic and based on substitution,
such as λ-calculi, may contain only one cell, holding the program itself. Other languages
may contain dozens of cells in their configurations. For example, the C semantics has
more than 70 nested cells. However, no matter how complex a language is, its configu-
rations can be defined as ground terms over an algebraic signature, using conventional
algebraic techniques. Matching logic takes an arbitrary algebraic definition of configu-
rations as parameter and, as mentioned, allows configuration patterns (i.e., terms with
variables) as particular formulae. To simplify terminology, all matching logic’s formulae

2 In mathematical mode, we prefer the notation 〈...〉k for cells instead of the XML-like notation
<k>...</k> preferred in ASCII.

7

are called patterns. As a purposely artificial example, consider the pattern

∃c :Cells, e :Env, p :Nat, i : Int, σ :Heap
〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p , i

This is satisfied by all configurations where program variable x points to a location p
holding a positive integer i different from p. Variables matching the irrelevant parts
of a cell, such as the variables e, σ, and c above, are called structural frames; when
reasoning about languages defined using K, the structural frames typically result from
ellipses in rules, that is, from the parts of the configuration which do not change. They
are needed in order for the pattern to properly match the expected structure of the desired
configurations. For example, if we want to additionally state that p is the only location
allocated in the heap, then we can just remove σ from the pattern above and obtain:

∃c :Cells, e :Env, p :Nat, i : Int 〈〈x 7→ p, e〉env 〈p 7→ i〉heap c〉cfg ∧ i > 0 ∧ p , i

Matching logic allows us to reason about configurations, e.g., to prove:

|= ∀c :Cells, e :Env, p :Nat
〈〈x 7→ p, e〉env 〈p 7→ 9〉heap c〉cfg ∧ p > 10
→ ∃i : Int, σ :Heap 〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p , i

To specify more complex properties, one can use abstractions (e.g., singly-linked lists
matched in the heap, etc.), which can be axiomatized and proved sound using conven-
tional means. In fact, as shown in [35–37], like separation logic, matching logic can also
be used as a program logic in the context of conventional axiomatic (Hoare) semantics,
allowing us to more easily specify structural properties about the program state. However,
this way of using matching logic comes with a big disadvantage, shared with Hoare
logics in general: the formal semantics of the target language needs to be redefined
axiomatically and tedious soundness proofs need to be done. Instead, we prefer to use
reachability logic, which allows us to use the operational semantics of the language for
program verification as well.

An unconditional reachability rule is a pair ϕ⇒ ϕ′, where ϕ and ϕ′ are matching
logic patterns (not necessarily closed). The semantics of a reachability rule captures the
intuition of partial correctness in axiomatic semantics: any configuration satisfying ϕ
either rewrites/transits forever or otherwise reaches through (zero or more) successive
transitions a configuration satisfying ϕ′. In K, programming languages can be given
operational semantics based on rewrite rules of the form “l⇒ r if b”, where l and r
are configuration terms with variables constrained by boolean condition b. Such rules
can be expressed as reachability rules l ∧ b ⇒ r. On the other hand, a Hoare triple
of the form {ψ} code {ψ′} can be regarded as a reachability rule 〈··· 〈code〉k ···〉cfg ∧

ψ⇒ 〈··· 〈〉k ···〉cfg ∧ ψ′ between patterns over minimal configurations holding only the
code. Here the ellipses represent appropriate structural frames, 〈〉k is the configuration
holding the empty code, and ψ and ψ′ are variants of the original pre/post conditions
replacing program variables with appropriate logical variables (an example will be
shown shortly). Therefore, reachability rules smoothly capture the basic ingredients of
both operational and axiomatic semantics, in that both operational semantics rules and
axiomatic semantics Hoare triples are instances of reachability rules.

8

Axiom :
ϕ⇒ ϕ′ ∈ A, ψ is a FOL formula (the logical frame)

A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Reflexivity : A `∅ ϕ⇒ ϕ

Transitivity :
A `C ϕ1⇒ ϕ2 A∪ C `∅ ϕ2⇒ ϕ3

A `C ϕ1⇒ ϕ3

Consequence :
|= ϕ1 → ϕ′1 A `C ϕ

′
1⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1⇒ ϕ2

Case Analysis :
A `C ϕ1⇒ ϕ A `C ϕ2⇒ ϕ

A `C ϕ1 ∨ ϕ2⇒ ϕ

Abstraction :
A `C ϕ⇒ ϕ′ where X ∩ FV(ϕ′) = ∅

A `C ∃X ϕ⇒ ϕ′

Circularity :
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Fig. 2. Proof system for (one-path) reachability using unconditional rules.

Figure 2 shows the reachability logic proof system for unconditional reachability
rules. This is a simplification of a more general proof system in [30], where conditional
reachability rules were also considered, for the particular rewrite logic theories supported
byK (recall that inK the reachability rules are unconditional, because the side conditions
can be moved into the LHS of the rule). We here only discuss the one-path variant of
reachability logic, where ϕ⇒ϕ′ means that ϕ′ is matched by some configuration reached
after some sequence of transitions from a configuration matching ϕ. The all-path variant
is more complex and can be found in [29]. The one-path and all-path reachability logic
variants are equally expressive when the target programming language is deterministic.
The target language is given as a reachability system S (from “semantics”). The sound-
ness result in [30] guarantees that ϕ⇒ ϕ′ holds semantically in the transition system
generated by S if S ` ϕ⇒ ϕ′ is derivable. Note that the proof system derives more
general sequents of the formA `C ϕ⇒ ϕ′, whereA and C are sets of reachability rules.
Rules inA are called axioms and rules in C are called circularities. If C does not appear
in a sequent, it means it is empty:A ` ϕ⇒ ϕ′ is a shorthand forA `∅ ϕ⇒ ϕ′. Initially,
C is empty andA is S. During the proof, circularities can be added to C via Circularity
and flushed intoA by Transitivity or Axiom.

The intuition is that rules in A can be assumed valid, while those in C have been
postulated but not yet justified. After making progress it becomes (coinductively) valid
to rely on them. The intuition for sequent A `C ϕ⇒ ϕ′, read “A with circularities C
proves ϕ⇒ ϕ′”, is: ϕ⇒ ϕ′ is true if the rules inA are true and those in C are true after
making progress, and if C is nonempty then ϕ reaches ϕ′ (or diverges) after at least one
transition. Let us now discuss the proof rules.

9

Axiom states that a trusted rule can be used in any logical frame ψ. The logical frame
is formalized as a patternless formula, as it is meant to only add logical but no structural
constraints. Incorporating framing into the axiom rule is necessary to make logical
constraints available while proving the conditions of the axiom hold. Since reachability
logic keeps a clear separation between program variables and logical variables the logical
constraints are persistent, that is, they do not interfere with the dynamic nature of the
operational rules and can therefore be safely used for framing.

Reflexivity and Transitivity correspond to homonymous closure properties of
the reachability relation. Reflexivity requires C to be empty to meet the requirement
above, that a reachability property derived with nonempty C takes one or more steps.
Transitivity releases the circularities as axioms for the second premise, because if there
are any circularities to release the first premise is guaranteed to make progress.

Consequence and Case Analysis are adapted from Hoare logic. In Hoare logic Case
Analysis is typically a derived rule, but there does not seem to be any way to derive it
language-independently. Ignoring circularities, we can think of these five rules discussed
so far as a formal infrastructure for symbolic execution.

Abstraction allows us to hide irrelevant details of ϕ behind an existential quantifier,
which is particularly useful in combination with the next proof rule.

Circularity has a coinductive nature and allows us to make a new circularity claim at
any moment. We typically make such claims for code with repetitive behaviors, such as
loops, recursive functions, jumps, etc. If we succeed in proving the claim using itself as a
circularity, then the claim holds. This would obviously be unsound if the new assumption
was available immediately, but requiring progress before circularities can be used ensures
that only diverging executions can correspond to endless invocation of a circularity.

Consider, for example, the simple imperative language together with the sum program
fragment, SUM, discussed in Section 2, but without the initial assignment n=100, that is:

s = 0;
while(n>0) {
s = s + n;
n = n - 1;

}

In conventional Hoare logic, the property to verify here is

{n = oldn ∧ n > 0} SUM {n = 0 ∧ s = oldn ∗Int (oldn +Int 1) /Int 2}

where {n = oldn ∧ n > 0} is the precondition and {n = 0 ∧ s = oldn ∗Int (oldn +Int

1) /Int 2} is the postcondition, with Int-subscripted operations being the corresponding
mathematical domain operations (note that in Hoare logic no distinction is made between
program variables and logical variables). In order to prove it, an axiomatic semantics of
the language is needed, which is given as a proof system in terms of such Hoare triples.
When correctness is paramount, a proof of correctness of the Hoare logic proof system
wrt a trusted semantics, typically an executable one which acts as a reference model of
the language, is also needed. This may look easy and even desirable, but the reality is
that semantics of real languages are not trivial to define and they continuously evolve as
the language itself evolves. Therefore, giving two different semantics and maintaining

10

proofs of correctness between them are highly non-trivial and demotivating tasks. Finally,
if one wants the Hoare logic to also be as powerful as it can be for the target language,
that is, to allow us to derive any semantically valid Hoare triples, then one has to also
prove its relative completeness, yet another highly non-trivial task. Moreover, and even
worse from an engineering perspective, each of the above needs to be done for each
programming language separately.

On the other hand, reachability logic requires no additional semantics for the target
language and no correctness or completeness proofs specific to each language. It takes
the executable semantics of the programming language, which is regarded as reference
model, as input axioms, and then the language-independent proof rules (e.g., those in
Figure 2) are proved correct and relatively complete once and for all languages [29–32].
Without any syntactic sugar, the reachability logic specifications may be more verbose
than the Hoare logic ones. However, we have found that in practice one spends a lot
more time on coming up with the conceptually right properties to verify than on writing
them in a particular notation. Moreover, in both Hoare logic and reachability logic we
typically develop syntactic sugar notations that reduce the user burden (e.g., writing a
loop invariant as a formal comment in the code). Without any sugar, the reachability rule
below captures the same specification of SUM as the Hoare triple above:

〈〈SUM〉k 〈s 7→ s, n 7→ n〉state〉cfg ∧ n ≥Int 0
⇒ 〈〈〉k 〈s 7→ n ∗Int (n +Int 1)/Int2, n 7→ 0〉state〉cfg

We encourage the reader to derive the reachability rule above on her own, using the
proof system in Figure 2. Complete details can be found in [34]. We here only give the
high-level structure of the proof. By Axiom with the semantic rule of assignment shown
in Section 2 and by Transitivity, we reduce the above reachability rule to one where
the s in the left-hand-side pattern is replaced with 0. Let LOOP be the while loop of the
SUM program. Like in Hoare logic proofs, we have to derive an invariant for LOOP. In
reachability logic, we formalize invariants also as reachability rules, in our case as

〈〈LOOP〉k 〈s 7→ (n −Int n′) ∗Int (n +Int n′ +Int 1)/Int2, n 7→ n′〉state〉cfg ∧ n′ ≥Int 0
⇒ 〈〈〉k 〈s 7→ n ∗Int (n +Int 1)/Int2, n 7→ 0〉state〉cfg

If this “invariant” reachability rule holds, then our original reachability rule can be
derived using Abstraction, Consequence and Transitivity. To derive this invariant rule,
we first use Circularity to claim it as a circularity, and then unroll the LOOP using the
executable semantic rule for while, then do a Case Analysis for the resulting conditional,
and then run the executable semantics of the corresponding assignments via Axiom,
intermingled with applications of Consequence and Transitivity. Note that we can use
the circularity claim in the proof of the positive branch of the conditional, because the
Transitivity added it to the set of axioms once the unrolling of the while loop took place.
We leave the rest of the details to the reader, as an exercise.
K implements reachability logic, the same way Maude implements rewriting logic.

Since patterns allow variables and constraints on them in configurations, K rewriting
becomes symbolic execution with the semantic rules of the language. Its symbolic
execution engine is connected to the Z3 SMT solver [38]. We next show an example C
program verified with our current implementation of reachability logic in K, mentioning

11

struct listNode { int val; struct listNode *next; };
struct listNode* reverseList(struct listNode *x)

rule 〈$⇒ return ?p; ···〉k 〈··· list(x)(A)⇒ list(?p)(rev(A)) ···〉heap

{
struct listNode *p, *y;
p = NULL;

inv 〈··· list(p)(?B), list(x)(?C) ···〉heap ∧ A = rev(?B)@?C
while(x != NULL) {
y = x->next;
x->next = p;
p = x;
x = y;
}
return p;
}

Fig. 3. C function reversing a singly-linked list.

that we have similarly verified various programs manipulating lists and trees, performing
arithmetic and I/O operations, and implementing sorting algorithms, binary search trees,
AVL trees, and the Schorr-Waite graph marking algorithm. The Matching Logic web
page, http://matching-logic.org, contains an online interface to run MatchC, an
instance of our verifier for C, where users can try more than 50 existing examples
(or upload their own). To simplify writing properties, MatchC allows users to write
reachability rules and invariant patterns as comments in the C program.

Figure 3 shows the classic list reverse program, together with all the specifications
that the user of MatchC has to provide (grayed areas, given as code annotations). MatchC
verifies this program for full correctness, not only memory safety, in 0.06 seconds.
The user-provided specifications are translated into reachability rule proof obligations
by MatchC and then attempted to be proved automatically. The “$” stands for the
function body, the “···” for structural frame variables, the variables starting with “?”
are existentially quantified over the current formula, etc. We do not mean to explain
the MatchC notation in detail here; we only show this example to highlight the fact
that reachability logic verification, in spite of being based on “low-level” operational
semantics, still allows a comfortable level of abstraction.

Let A be the rewrite system giving the semantics of the C language, and let C be
the set of reachability rules corresponding to user-provided specifications (properties
that one wants to verify, like the grayed ones above). MatchC derives the rules in C
using the proof system in Figure 2. It begins by applying Circularity for each rule
in C and reduces the task to deriving individual sequents of the form A `C ϕ⇒ ϕ′.
To prove them, MatchC rewrites ϕ using rules in A ∪ C searching for a formula that
implies ϕ′. Whenever the semantics rule for if inA cannot apply because its condition
is symbolic, a Case Analysis is applied and formula split into a disjunction. When no
rule can be applied, abstraction axioms are attempted. If application of an abstraction
axiom would result into a more concrete formula, the verifier applies the respective

12

http://matching-logic.org

axiom (for instance, knowing the head of a linked list is not null results in an automatic
list unrolling).

Regarding from reachability logic’s perspective, K consists of a collection of heuris-
tics and optimizations to perform proof search, that is, to derive proof derivations using
the reachability logic proof system. For example, suppose that the initial configuration
pattern is all concrete/ground (i.e., when it contains no variables) and that K is requested
to use its rewrite engine to simply execute the program in its initial state. In terms of
proof derivation with the one-path reachability proof system in Figure 2 and its more
general variant in [30], this corresponds to a derivation of a one-path reachability rule. If
K is requested to search the entire configuration-space to find all the configurations that
can be reached as a consequence of a non-deterministic semantics, that corresponds to
a derivation of an all-path reachability rule using the generalized proof system in [29].
Similarly, when using K ‘s model-checking capabilities or when deductively verify-
ing programs like above, all we do can be framed in terms of deriving proofs using a
rigorously defined sound and relatively complete proof system.

4 Additional Related Work

The idea of developing K as a programming language semantic framework has been first
suggested in 2003, in a programming language class taught at the University of Illinois
by the author, whose lecture notes were published as a technical report [39]. One year
later, the main idea was published in [40]. At that time, we used Maude as an execution
language and hand-translated K definitions to Maude, one language at a time, so K was
simply a Maude methodology for defining rewriting logic semantics to programming
languages. K had several implementations in the meanwhile, most of them consisting
of parsers and translators to Maude using Perl or Haskell. The current implementation,
reachable from http://kframework.org, is implemented fully in Java except for the
mathematical domain solver needed for program verification, which currently is Z3 [38].

In addition to the complete language semantics already mentioned in Section 2,
there are several incomplete or yet unfinished language semantics, such as Python [41],
Scheme [42], as well as various aspects of features of Haskell [43], X10 [44], a RISC
assembly [45, 46], LLVM [47], Verilog [48], as well as a static policy checker for C [49]
and a framework for domain specific languages [50, 51].
K’s ability to express truly concurrent computations has been used in researching

safe models for concurrency [52], synchronization of agent systems [53], models for
P-Systems [54, 55], and for the x86-TSO relaxed memory model [56]. K has been
used for designing type checkers/inferencers [57], for model checking executions with
predicate abstraction [58, 59] and heap awareness [60], for symbolic execution [61–64],
computing worst case execution times [65–67], studying program equivalence [68, 69],
programming language aggregation [70], and runtime verification [56, 71]. Additionally,
the C definition mentioned above has been used as a program undefinedness checker to
analyze C programs [72]. The theoretical relationships between K language definitions
and their Maude counterparts, both at the concrete and at the symbolic level, are studied
in [73]. K, through its underlying reachability logic foundation, is organized as an

13

http://kframework.org

institution in [74]. Finally, some techniques for automatic inference of matching logic
specifications are investigated in [75, 76].

5 Conclusion

This paper presented a glimpse of the K framework for formally defining programming
languages, which was inspired from using rewrite logic as a semantic framework. K
aims at bringing formal semantics mainstream, by providing an intuitive notation and
an attractive set of language-independent tools that can be used with any language
once a semantics is given to that language. K builds upon our firm belief that all
programming languages must have formal semantics, and that their semantics is not only
a mathematical artifact that helps us better understand the language in question, but that
it can in fact be incredibly useful in practice. Virtually all program analysis tools can be
generated automatically from formal semantics. K may not be the final answer to this
quest, but we believe that it has proven the concept, that it is indeed possible to build an
effective collection of language tools based entirely and only on the language semantics.

References

1. ISO/IEC, “Programming languages—C,” ISO/IEC WG14, ISO 9899:2011, December 2011.
[Online]. Available: http://www.open-std.org/JTC1/SC22/WG14/www/standards

2. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies, “VCC: A practical system for verifying concurrent C,” in Theorem Proving in
Higher Order Logics, ser. LNCS. Springer, 2009, vol. 5674, pp. 23–42.

3. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-C,”
in Software Engineering and Formal Methods. Springer, 2012, pp. 233–247.

4. J. Meseguer, “Conditioned rewriting logic as a united model of concurrency,” Theoretical
Computer Science, vol. 96, no. 1, pp. 73–155, 1992.

5. A. Verdejo and N. Martí-Oliet, “Executable structural operational semantics in Maude,” De-
partamento de Sistemas Informàticos y Programaciòn, Universidad Complutense de Madrid,
Tech. Rep. 134-03, 2003.

6. ——, “Executable structural operational semantics in Maude,” Journal of Logic and Algebraic
Programming, vol. 67, no. 1-2, pp. 226–293, 2006.

7. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet, and C. Talcott, All
About Maude, ser. LNCS, 2007, vol. 4350.

8. G. Kahn, “Natural semantics,” in STACS 87, 4th Annual Symposium on Theoretical Aspects of
Computer Science, Passau, Germany, February 19-21, 1987, Proceedings, ser. LNCS, F.-J.
Brandenburg, G. Vidal-Naquet, and M. Wirsing, Eds., vol. 247. Springer, 1987, pp. 22–39.

9. G. D. Plotkin, “A structural approach to operational semantics,” University of Aarhus, Tech.
Rep. DAIMI FN-19, 1981, republished in Journal of Logic and Algebraic Programming,
Volume 60-61, 2004.

10. ——, “A structural approach to operational semantics,” Journal of Logic and Algebraic
Programming, vol. 60-61, pp. 17–139, 2004.

11. T.-F. S, erbănut, ă, G. Ros, u, and J. Meseguer, “A rewriting logic approach to operational seman-
tics,” Information & Computation, vol. 207, no. 2, pp. 305–340, 2009.

12. G. Berry and G. Boudol, “The chemical abstract machine,” in POPL, 1990, pp. 81–94.

14

http://www.open-std.org/JTC1/SC22/WG14/www/standards

13. ——, “The chemical abstract machine,” Theoretical Computer Science, vol. 96, no. 1, pp.
217–248, 1992.

14. M. Felleisen and R. Hieb, “The revised report on the syntactic theories of sequential control
and state,” Theoretical Computer Science, vol. 103, no. 2, pp. 235–271, 1992.

15. A. K. Wright and M. Felleisen, “A syntactic approach to type soundness,” Information and
Computation, vol. 115, no. 1, pp. 38–94, 1994.

16. M. Hennessy, The Semantics of Programming Languages: an Elementary Introduction using
Structural Operational Semantics. New York, N.Y.: John Wiley and Sons, 1990.

17. P. D. Mosses, “Foundations of modular SOS,” in MFCS, ser. LNCS, M. Kutylowski, L. Pa-
cholski, and T. Wierzbicki, Eds., vol. 1672. Springer, 1999, pp. 70–80.

18. ——, “Pragmatics of modular SOS,” in Algebraic Methodology and Software Technology,
9th International Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France,
September 9-13, 2002, Proceedings, ser. LNCS, H. Kirchner and C. Ringeissen, Eds., vol.
2422, 2002, pp. 21–40.

19. ——, “Modular structural operational semantics,” Journal of Logic& Algebraic Programming,
vol. 60-61, pp. 195–228, 2004.

20. J. Meseguer and C. Braga, “Modular rewriting semantics of programming languages,” in Al-
gebraic Methodology and Software Technology, 10th International Conference, AMAST 2004,
Stirling, Scotland, UK, July 12-16, 2004, Proceedings, ser. LNCS, C. Rattray, S. Maharaj, and
C. Shankland, Eds., vol. 3116. Springer, 2004, pp. 364–378.

21. C. Braga and J. Meseguer, “Modular rewriting semantics in practice,” Electronic Notes in
Theoretical Computer Science, vol. 117, pp. 393–416, 2005.

22. F. Chalub and C. Braga, “Maude MSOS tool,” in Proceedings of the Sixth International
Workshop on Rewriting Logic and its Applications (WRLA 2006), ser. Electronic Notes in
Theoretical Computer Science, G. Denker and C. Talcott, Eds., vol. 176(4), 2007, pp. 133–146.

23. G. Ros, u and T. F. S, erbănut, ă, “An overview of the K semantic framework,” Journal of Logic
and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010.

24. C. Ellison and G. Ros, u, “An executable formal semantics of C with applications,” in POPL,
2012, pp. 533–544.

25. C. Hathhorn, C. Ellison, and G. Ros, u, “Defining the undefinedness of C,” in Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’15). ACM, 2015.

26. D. Bogdănas, and G. Ros, u, “K-Java: A Complete Semantics of Java,” in Proceedings of the
42nd Symposium on Principles of Programming Languages (POPL’15). ACM, January
2015, pp. 445–456.

27. D. Park, A. S, tefănescu, and G. Ros, u, “KJS: A complete formal semantics of JavaScript,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15). ACM, 2015.

28. A. W. Appel, “Verified software toolchain,” in ESOP, ser. LNCS, vol. 6602, 2011, pp. 1–17.
29. A. S, tefănescu, S. Ciobâcă, R. Mereut, ă, B. M. Moore, T. F. S, erbănut, ă, and G. Ros, u, “All-path

reachability logic,” in Proceedings of the Joint 25th International Conference on Rewriting
Techniques and Applications and 12th International Conference on Typed Lambda Calculi
and Applications (RTA-TLCA’14), ser. LNCS, vol. 8560. Springer, July 2014, pp. 425–440.

30. G. Ros, u, A. S, tefănescu, S. Ciobâcă, and B. M. Moore, “One-path reachability logic,” in
LICS’13. IEEE, 2013.

31. G. Ros, u and A. S, tefănescu, “Checking reachability using matching logic,” in Proceedings of
the 27th Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’12). ACM, 2012, pp. 555–574.

32. ——, “Towards a unified theory of operational and axiomatic semantics,” in Proceedings of
the 39th International Colloquium on Automata, Languages and Programming (ICALP’12),
ser. LNCS, vol. 7392. Springer, 2012, pp. 351–363.

15

33. G. Ros, u, “Matching logic — extended abstract,” in Proceedings of the 26th International
Conference on Rewriting Techniques and Applications (RTA’15), ser. LNCS, vol. to appear.
Springer, 2015.

34. G. Ros, u and A. S, tefănescu, “From Hoare logic to matching logic reachability,” in FM, ser.
LNCS, D. Giannakopoulou and D. Méry, Eds., vol. 7436. Springer, 2012, pp. 387–402.

35. ——, “Matching logic: a new program verification approach,” in ICSE (NIER track), 2011,
pp. 868–871.

36. G. Ros, u, C. Ellison, and W. Schulte, “Matching logic: An alternative to Hoare/Floyd logic,”
in AMAST, ser. LNCS, vol. 6486, 2010, pp. 142–162.

37. G. Ros, u and A. S, tefănescu, “Matching logic rewriting: Unifying operational and ax-
iomatic semantics in a practical and generic framework,” University of Illinois, Tech. Rep.
http://hdl.handle.net/2142/28357, November 2011.

38. L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS, ser. LNCS, vol.
4963, 2008, pp. 337–340.

39. G. Ros, u, “CS322, Fall 2003 - Programming language design: Lecture notes,” University of
Illinois at Urbana-Champaign, Department of Computer Science, Tech. Rep. UIUCDCS-R-
2003-2897, Dec. 2003, lecture notes of a course taught at UIUC.

40. J. Meseguer and G. Ros, u, “Rewriting logic semantics: From language specifications to formal
analysis tools,” in Proceedings of the 2nd International Joint Conference on Automated
Reasoning (IJCAR’04), ser. LNCS, vol. 3097. Springer, 2004, pp. 1–44.

41. D. Guth, “A formal semantics of Python 3.3,” Master’s thesis, University of Illinois at Urbana-
Champaign, July 2013. [Online]. Available: https://github.com/kframework/python-semantics

42. P. Meredith, M. Hills, and G. Ros, u, “An Executable Rewriting Logic Semantics of K-Scheme,”
in Proceedings of the 2007 Workshop on Scheme and Functional Programming (SCHEME’07),
Technical Report DIUL-RT-0701, D. Dube, Ed. Laval University, 2007, pp. 91–103.

43. D. Lazar, “K definition of Haskell’98,” 2012. [Online]. Available: https://github.com/

davidlazar/haskell-semantics
44. M. Gligoric, D. Marinov, and S. Kamin, “CoDeSe: fast deserialization via code generation,”

in ISSTA, M. B. Dwyer and F. Tip, Eds. ACM, 2011, pp. 298–308.
45. M. Asăvoae, “K semantics for assembly languages : A case study,” in K’11, ser. Electronic

Notes in Theoretical Computer Science, M. Hills, Ed., vol. 304, 2014, pp. 111–125.
46. ——, “A K-based methodology for modular design of embedded systems,” in WADT

(preliminary proceedings), ser. TR-08/12, Universidad Complutense de Madrid, 2012, p. 16.
[Online]. Available: http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf

47. C. Ellison and D. Lazar, “K definition of the LLVM assembly language,” 2012. [Online].
Available: https://github.com/davidlazar/llvm-semantics

48. P. O. Meredith, M. Katelman, J. Meseguer, and G. Ros, u, “A formal executable semantics of
Verilog,” in Eighth ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE’10). IEEE, 2010, pp. 179–188.

49. M. Hills, F. Chen, and G. Ros, u, “A rewriting logic approach to static checking of units of
measurement in C,” in RULE’08, ser. Electronic Notes in Theoretical Computer Science,
G. Kniesel and J. S. Pinto, Eds., vol. 290. Elsevier, 2012, pp. 51–67.

50. V. Rusu and D. Lucanu, “A K-based formal framework for domain-specific modelling lan-
guages,” in FoVeOOS, ser. LNCS, B. Beckert, F. Damiani, and D. Gurov, Eds., vol. 7421.
Springer, 2011, pp. 214–231.

51. A. Arusoaie, D. Lucanu, and V. Rusu, “Towards a K semantics for OCL,” in K’11, ser.
Electronic Notes in Theoretical Computer Science, M. Hills, Ed., vol. 304, 2014, pp. 81–96.

52. S. Heumann, V. S. Adve, and S. Wang, “The tasks with effects model for safe concurrency,”
in PPOPP, A. Nicolau, X. Shen, S. P. Amarasinghe, and R. Vuduc, Eds. ACM, 2013, pp.
239–250.

16

https://github.com/kframework/python-semantics
https://github.com/davidlazar/haskell-semantics
https://github.com/davidlazar/haskell-semantics
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
https://github.com/davidlazar/llvm-semantics

53. P. Dinges and G. Agha, “Scoped synchronization constraints for large scale actor systems,” in
COORDINATION, ser. LNCS, M. Sirjani, Ed., vol. 7274. Springer, 2012, pp. 89–103.

54. T. F. S, erbănut, ă, G. S, tefănescu, and G. Ros, u, “Defining and executing P systems with struc-
tured data in K,” in WMC, ser. LNCS, D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, and
A. Salomaa, Eds., vol. 5391. Springer, 2008, pp. 374–393.

55. C. Chira, T.-F. S, erbănut, ă, and G. S, tefănescu, “P systems with control nuclei: The concept,”
Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp. 326–333, 2010.

56. T. F. S, erbănut, ă, “A rewriting approach to concurrent programming language design and
semantics,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, December 2010,
https://www.ideals.illinois.edu/handle/2142/18252.

57. C. Ellison, T. F. S, erbănut, ă, and G. Ros, u, “A rewriting logic approach to type inference,” in
WADT, ser. LNCS, A. Corradini and U. Montanari, Eds., vol. 5486. Springer, 2008, pp.
135–151.

58. I. M. Asăvoae and M. Asăvoae, “Collecting semantics under predicate abstraction in the
K framework,” in WRLA, ser. LNCS, P. C. Ölveczky, Ed., vol. 6381. Springer, 2010, pp.
123–139.

59. I. M. Asăvoae, “Systematic design of abstractions in K,” in WADT (preliminary proceedings),
ser. TR-08/12, Universidad Complutense de Madrid, 2012, p. 9. [Online]. Available:
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf

60. J. Rot, I. M. Asăvoae, F. S. de Boer, M. M. Bonsangue, and D. Lucanu, “Interacting via
the heap in the presence of recursion,” in ICE, ser. Electronic Proceedings in Theoretical
Computer Science, M. Carbone, I. Lanese, A. Silva, and A. Sokolova, Eds., vol. 104, 2012,
pp. 99–113.

61. I. M. Asăvoae, M. Asăvoae, and D. Lucanu, “Path directed symbolic execution in the K
framework,” in SYNASC, T. Ida, V. Negru, T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie,
Eds. IEEE Computer Society, 2010, pp. 133–141.

62. I. M. Asăvoae, “Abstract semantics for alias analysis in K,” in K’11, ser. Electronic Notes in
Theoretical Computer Science, M. Hills, Ed., vol. 304, 2014, pp. 97–110.

63. A. Arusoaie, D. Lucanu, and V. Rusu, “A generic framework for symbolic execution,” in SLE,
ser. Lecture Notes in Computer Science, vol. 8225, 2013, pp. 281–301.

64. A. Arusoaie, “A generic framework for symbolic execution: Theory and applications,”
Ph.D. dissertation, Faculty of Computer Science, Alexandru I. Cuza, University of Iasi,
https://fmse.info.uaic.ro/publications/193/, sep 2014.

65. M. Asăvoae, D. Lucanu, and G. Ros, u, “Towards semantics-based WCET analysis,” in WCET,
ser. Austian Computer Society (OCG), C. Healy, Ed., 2011.

66. M. Asăvoae, I. M. Asăvoae, and D. Lucanu, “On abstractions for timing analysis in
the K framework,” in FOPARA, ser. LNCS, R. Pena, M. Eekelen, and O. Shkaravska,
Eds., vol. 7177. Springer Berlin Heidelberg, 2012, pp. 90–107. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32495-6_6

67. M. Asăvoae and I. M. Asăvoae, “On the modular integration of abstract semantics for WCET
analysis,” in Foundational and Practical Aspects of Resource Analysis - Third International
Workshop, FOPARA 2013, Bertinoro, Italy, August 29-31, 2013, Revised Selected Papers,
2013, pp. 19–37. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-12466-7_2

68. D. Lucanu and V. Rusu, “Program Equivalence by Circular Reasoning,” Formal Aspects of
Computing, 2014, to appear. [Online]. Available: https://hal.inria.fr/hal-01065830

69. S. Ciobâcă, D. Lucanu, V. Rusu, and G. Ros, u, “A Language-Independent Proof System for
Mutual Program Equivalence,” in ICFEM’14 - 16th International Conference on Formal
Engineering Methods, ser. LNCS, vol. 8829. Luxembourg-Ville, Luxembourg: Springer,
Nov. 2014, pp. 75–90. [Online]. Available: https://hal.inria.fr/hal-01030754

17

https://www.ideals.illinois.edu/handle/2142/18252
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://dx.doi.org/10.1007/978-3-642-32495-6_6
http://dx.doi.org/10.1007/978-3-319-12466-7_2
https://hal.inria.fr/hal-01065830
https://hal.inria.fr/hal-01030754

70. ——, “A Theoretical Foundation for Programming Languages Aggregation,” in 22nd
International Workshop on Algebraic Development Techniques, ser. LNCS (to appear). Sinaia,
Romania: Spriger Verlag, Sep. 2014. [Online]. Available: https://hal.inria.fr/hal-01076641

71. G. Ros, u, W. Schulte, and T. F. S, erbănut, ă, “Runtime verification of C memory safety,” in RV,
ser. LNCS, S. Bensalem and D. Peled, Eds., vol. 5779. Springer, 2009, pp. 132–151.

72. J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduction for C
compiler bugs,” in PLDI, J. Vitek, H. Lin, and F. Tip, Eds. ACM, 2012, pp. 335–346.

73. A. Arusoaie, D. Lucanu, V. Rusu, T.-F. S, erbănut, ă, A. S, tefănescu, and G. Ros, u, “Language
Definitions as Rewrite Theories,” in International Workshop on Rewriting Logic and
Application, Grenoble, France, Apr. 2014, (To appear in Springer LNCS). [Online]. Available:
https://hal.inria.fr/hal-00950775

74. C. E. Chirit, ă and T. F. S, erbănut, ă, “An institutional foundation for the s̨emantic framework,” in
22nd International Workshop on Algebraic Development Techniques (WADT’14), ser. LNCS,
2014, to appear.

75. M. A. Feliú, “Logic-based techniques for program analysis and specification synthesis,” Ph.D.
dissertation, Universitat Politècnica de València, Departamento de Sistemas Informáticos y
Computación, September 2013.

76. M. Alpuente, M. A. Feliú, and A. Villanueva, “Automatic inference of specifications using
matching logic,” in Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation
and Program Manipulation, PEPM 2013, Rome, Italy, January 21-22, 2013. ACM, 2013,
pp. 127–136.

18

https://hal.inria.fr/hal-01076641
https://hal.inria.fr/hal-00950775

	From Rewriting Logic, to Programming Language Semantics, to Program Verification

