
Matching Logic: A Logic for Structural Reasoning
Grigore Roşu

University of Illinois at Urbana-Champaign
grosu@illinois.edu

Abstract—Matching logic is a first-order logic (FOL) variant
to reason about structure. Its sentences, called patterns, are
constructed using variables, symbols, connectives and quantifiers,
but no difference is made between function and predicate symbols.
In models, a pattern evaluates into a power-set domain (the set
of values that match it), in contrast to FOL where functions,
predicates and connectives map into a domain. Matching logic
generalizes several logical frameworks important for program
analysis, such as: propositional logic, algebraic specification,
FOL with equality, and separation logic. Patterns allow for
specifying separation requirements at any level in any program
configuration, not only in the heaps or stores, without any special
logical constructs for that: the very nature of pattern matching
is that if two structures are matched as part of a pattern, then
they can only be spatially separated. Like FOL, matching logic
can also be translated into pure predicate logic with equality, but
it also admits its own sound and complete proof system.

I. Introduction andMotivation

Matching logic’s formulae, called patterns, are defined using
variables, symbols from a signature, and FOL connectives and
quantifiers. We only treat the many-sorted first-order case in
this paper, but the same ideas can be extended to order-sorted
or higher-order contexts. Specifically, if (S ,Σ) is a many-sorted
signature and Var an S -sorted set of variables, the patterns ϕs

of sort s ∈ S are defined as follows:

ϕs ::= x ∈ Vars | σ(ϕs1 , . . . , ϕsn) where σ ∈ Σs1...sn,s

| ¬ϕs | ϕs ∧ ϕs | ∃x.ϕs where x ∈ Var

Semantically, a model M consists of a carrier Ms for each
sort s, same like in FOL, but interprets symbols σ ∈ Σs1...sn,s

as maps σM : Ms1 × · · · × Msn → P(Ms) associating a set of
elements to any tuple of arguments. In particular, σM can be
a function, when the result sets contain only one element, or
a partial function, when the result sets contain at most one
element. Any M-valuation ρ : Var → M extends to a map
ρ taking patterns to sets of values, where ¬ is interpreted
as complement, ∧ as intersection, and ∃ as union over all
compatible valuations. If ϕ is a pattern and a ∈ ρ(ϕ) then we
say that a matches ϕ (with ρ). A pattern ϕ is valid in M iff
ρ(ϕ) = M (i.e., it is matched by all elements of M), and it is
valid iff it is valid in all models. It turns out that, unlike in FOL,
equality can be defined in matching logic (Section III-C): i.e.,
ϕ1 = ϕ2 can be defined as a pattern so that, given any model M
and any M-valuation ρ : Var→ M, ϕ1 = ϕ2 is either matched
by all elements when ρ(ϕ1) = ρ(ϕ2), or by none otherwise.

For example, if Σ is the signature of Peano natural numbers
and M is the model of natural numbers with 0 and succ
interpreted accordingly, then the pattern ∃x . succ(x) is matched
by all positive numbers. If we want to only allow models in

which 0 and succ are total functions and succ is injective, and
whose elements are either zero or successors of other elements,
then we add the following axioms:

∃y . 0 = y
∃y . succ(x) = y
succ(x1) = succ(x2)→ x1 = x2
0 ∨ ∃x . succ(x)

where ∨ and → are defined as usual: ϕ1 ∨ ϕ2 is ¬(¬ϕ1 ∧ ¬ϕ2)
and ϕ1 → ϕ2 is ¬(ϕ1∧¬ϕ2). We can go further and axiomatize
plus the same way we are used to in algebraic specification:

plus(0, y) = y
plus(succ(x), y) = succ(plus(x, y))

or equivalently as the following equality pattern:

plus(x, y) = (x = 0 ∧ y ∨ ∃z . x = succ(z) ∧ succ(plus(z, y)))

Let us next define a matching logic specification whose
symbols are not all functions anymore. Consider a typical
algebraic specification of maps from natural to integer numbers,
with emp the empty map, _ 7→ _ constructing a map of one
binding and _ 7→ [_] constructing a map of consecutive bindings,
and _ ∗ _ the partial function merging two maps. In addition
to the usual unit, associativity and commutativity axioms for
emp and _ ∗ _, we also add the following pattern axioms:

¬(0 7→ a)
(x 7→ a ∗ y 7→ b)→ x , y
x 7→ [ε] = emp
x 7→ [a, S] = x 7→ a ∗ (x + 1) 7→ [S]

We purposely chose a syntax for maps which resembles that
used in separation logic [8]–[10], to ease the comparison. The
first pattern states that 0 cannot serve as the key of any binding,
the second that the keys of different bindings in a map must
be distinct, and the last two desugar the consecutive binding
construct. Consider now a symbol list ∈ ΣNat×Seq,Map taking a
natural number x and a sequence of integers S to a set of maps
list(x, S), together with the following two pattern axioms

list(0, ε) = emp
list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S)

which look similar to how the list predicate is defined in
separation logics using recursive predicates, although note
that in matching logic there is no predicate, let alone recursive
predicates. In matching logic, the equations above use the same
principle to define list as the Peano equations did to define
plus: pattern equations. We can now show (see Section IV) that

in the model whose Map carrier consists of the finite-domain
partial maps and 7→ and ∗ are interpreted appropriately, the
interpretation of list(x, S) is precisely the set of all singly-
linked lists starting with x , 0 and comprising the sequence of
integers S . That is, the list(x, S) pattern is matched by precisely
the desired lists in the intended model. Using the generic proof
system of matching logic in Section V, we can now derive
properties about lists in this specification, such as, for example,
(1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1)→ list(7, 9 · 5):

1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1
= 1 7→ [5, 0] ∗ 7 7→ [9, 1]
= 1 7→ [5, 0] ∗ list(0, ε) ∗ 7 7→ [9, 1]
→ (∃z . 1 7→ [5, z] ∗ list(z, ε)) ∗ 7 7→ [9, 1]
= list(1, 5) ∗ 7 7→ [9, 1]
→ ∃z . 7 7→ [9, z] ∧ list(z, 5)
= list(7, 9 · 5)

Section IV shows that separation logic is equivalent to the
matching logic theory above, in the finite-domain map model.

The benefits of matching logic can be perhaps best noticed
when there are no immediate existing logics that we can use to
reason about structure. Consider, for example, the operational
semantics of a real language like C, whose configuration can be
defined with ordinary algebraic specification but has more than
70 semantic cells [5]. The semantic cells can be nested, their
grouping is associative and commutative, and are written using
symbols 〈...〉cell. There is a top cell called 〈...〉cfg, holding a
subcell 〈...〉heap among many others. We can then globalize the
local reasoning above to the entire C configuration proving the
following property using the same proof system in Section V:

∀c :Cfg.∀h :Map . (〈〈1 7→5 ∗ 2 7→0 ∗ 7 7→9 ∗ 8 7→1 ∗ h〉heap c〉cfg

→ 〈〈list(7, 9 · 5) ∗ h〉heap c〉cfg)

Note that quantification over the heap or over the configuration
are still first-order in matching logic, since the heap or
fragments of it such as a singly-linked list, are terms/patterns
of sort Map (and not predicates, like in separation logic). We
refer to such variables like h and c matching the remaining
contents of a cell “cell” as (structural) cell frames; e.g., h is
the heap frame and c is the configuration frame, and write
them as ellipses “. . .” when their particular name is irrelevant.

The operational semantics of C consists of more than 1,200
rewrite rules between matching logic patterns (ordinary terms
with variables are particular patterns). Matching logic reasoning
can be used in-between semantic steps to re-arrange the
configuration so that semantic rules match or assertions can be
proved, yielding a sound and complete verification framework
based on symbolic execution using the language semantics,
but without employing any language-specific logic. This novel
verification approach is discussed in [11], [12]. Here we only
show one example using MatchC [11], a program verifier for C
based on an early variant of matching logic discussed shortly.

Fig. 1 shows a C function with specifications (in grey), which
can be automatically verified by MatchC1. It reads n elements

1The reader can check it, as well as dozens of other programs including
Schorr-Waite, using the online MatchC interface at http://matching-logic.org;
this function is under the io folder and it takes about 150ms to verify.

struct listNode { int val; struct listNode *next; };

void list_read_write(int n)
rule 〈$⇒ return; ···〉k 〈A⇒ · ···〉in 〈··· · ⇒ rev(A)〉out
requires n = len(A)

{ int i=0;
struct listNode *x=0;
inv 〈?B ···〉in 〈··· list(x, ?A) ···〉heap

∧ i ≤ n ∧ len(?B) = n − i ∧ A = rev(?A)@?B
while (i < n) {
struct listNode *y = x;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = y;
i += 1;

}
inv 〈··· ?A〉out 〈··· list(x, ?B) ···〉heap ∧ rev(A) = ?A@?B
while (x) {
struct listNode *y;
y = x->next;
printf("%d ",x->val);
free(x);
x = y;

}
} Fig. 1. Reading, storing, and reverse writing a sequence of integers

from the standard input and writes them to the standard output
in reverse order. Internally, it stores the elements into a singly-
linked list, which is allocated as the elements are read. Then
it outputs the elements from the list, which is deallocated as
the elements are written. In the end, the heap stays unchanged
(implicitly stated, because the heap does not appear in the
function specification). The rule specification of the function
states its semantics/summary: the body ($) returns in the code
cell 〈〉k possibly followed by other code (as mentioned, “...” are
structural frames, that is, universally quantified “anonymous”
variables), the sequence A of size n is consumed from the
prefix of the input buffer (A is rewritten to “·”, the unit of
sequences, possibly followed by more input), and the reversed
sequence rev(A) is put at the end of the output buffer.

The invariant specification of the first loop states that the
pattern list(x, ?A) can be matched somewhere in the heap, and
that the sequence ?B of size n − i is available in the input
buffer such that A is the reverse of the sequence that x points
to, rev(?A), concatenated with ?B. By convention, Boolean
patterns like i ≤ n can be used in any context and they are either
matched by all elements when they hold, or by no elements
when they don’t hold (Section III-E). The variables starting
with a ? are assumed existentially quantified. The invariant of
the second loop says that a sequence ?A can be matched as a
suffix of the output buffer and sequence ?B can be matched
within a list that x points to in the heap, such that the ?A@B is
the reverse of the original sequence A. The verification of this
function consists of executing the operational semantics of C
symbolically on all five paths starting with the left-hand-side
of the function specification rule, and each time a pattern is
encountered to defer a pattern implication proof task to the
matching logic prover. For example, the last proof task is:

∃?A .∃?B . 〈〈I〉in 〈O, ?A〉out 〈list(x, ?B) ∗ H〉heap C〉cfg

∧ rev(A) = ?A@?B ∧ x = 0
→ 〈〈I〉in 〈O, rev(A)〉out 〈H〉heap C〉cfg

2

http://matching-logic.org

which can be easily proved using the matching logic proof
system in Section V and the given pattern axioms.

This is the first paper introducing matching logic in its full
generality. An earlier simpler variant was introduced as a state
specification logic in the context of larger verification works
during the last four years (we only mention the first [13] and
the last [12]), and implemented in MatchC [11] by reduction to
Maude [3] (for matching) and to Z3 [4] (for domain constraints).
However, that variant shares only the basic intuition of “terms
as formulae” with the logic presented in this paper, and was
only syntactic sugar for first-order logic (FOL) with equality
in a fixed model, essentially allowing only term patterns t and
regarding them as syntactic sugar for equalities � = t.

Matching logic builds upon intuitions from and relates
to at least three important logical frameworks: (1) Relation
algebra (RA) (see, e.g., [14]), noticing that our interpretations
of symbols as functions to powersets are equivalent to relations;
although our interpretation of symbols captures better the
intended meaning of pattern and matching, and our proof
system is quite different from that of RA, like with FOL we
expect a tight relationship between matching logic and RA,
which is left as future work; (2) Partial FOL (see, e.g., [6] for
a recent work and a survey), noticing that our interpretations of
symbols into powersets are more general than partial functions
(Section III-C shows how we define definedness); and (3)
Separation logics (SL) (see, e.g., [8]), discussed above.

Section II introduces the syntax and semantics of matching
logic, and shows that, like FOL with equality, it also translates
to predicate logic. Section III enumerates a series of examples.
Section IV discusses the important case of maps, and shows
how separation logic can be framed as a matching logic theory.
Finally, Section V introduces a sound and complete proof
system for matching logic, and Section VI concludes.

II. Matching Logic

We assume the reader familiar with many-sorted sets,
functions, and FOL. For any given set of sorts S , we assume
Var is an S -sorted set of variables, sortwise infinite and disjoint.
We may write x : s instead of x ∈ Vars; when the sort of x
is irrelevant, we just write x ∈ Var. We let P(M) denote the
powerset of a many-sorted set M, which is itself many-sorted.

A. Basic Definitions

Definition 1: Let (S ,Σ) be a many-sorted signature of
symbols. Matching logic formulae, also called patterns, of
all sorts s ∈ S are inductively defined as follows:

ϕs ::= x ∈ Vars | σ(ϕs1 , . . . , ϕsn) where σ ∈ Σs1...sn,s

| ¬ϕs | ϕs ∧ ϕs | ∃x.ϕs where x ∈ Var

Let Pattern be the S -sorted set of matching logic formulae. By
abuse of language, we refer to the symbols in Σ also as patterns;
we can think of σ ∈ Σs1...sn,s as the pattern σ(x1 : s1, . . . , xn : sn).

To compact notation, ϕ ∈ Pattern means ϕ is any pattern,
while ϕs ∈ Pattern or ϕ ∈ Patterns that it has sort s.

We adopt the following derived constructs:
⊥s ≡ x : s ∧ ¬x : s
>s ≡ ¬⊥s

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
∀x.ϕ ≡ ¬(∃x.¬ϕ)

and let FV(ϕ) denote the free variables of ϕ, defined as usual.
Definition 2: A matching logic (S ,Σ)-model M, or simply

a model when (S ,Σ) is understood, consists of
• An S -sorted set {Ms}s∈S , where each set Ms, called the

carrier of sort s of M, is assumed non-empty; and
• A function σM : Ms1×· · ·×Msn → P(Ms) for each symbol
σ ∈ Σs1...sn,s, called the interpretation of σ in M.

Note that usual (S ,Σ)-algebras are special cases of matching
logic models, where |σM(m1, . . . ,mn)| = 1 for any m1 ∈ Ms1 ,
. . . , mn ∈ Msn . Similarly, partial (S ,Σ)-algebras also fall as spe-
cial cases, where |σM(m1, . . . ,mn)| ≤ 1, because we can capture
undefinedness of σM in m1, . . . , mn with σM(m1, . . . ,mn) = ∅.

We tacitly use the same notation σM for its extension
P(Ms1) × · · · × P(Msn) → P(Ms) to sets of arguments, i.e.,
σM(A1, . . . , An) =

⋃
{σM(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An},

where A1 ⊆ Ms1 , . . . , An ⊆ Msn .
Definition 3: Given a model M and a map ρ : Var → M,

called M-valuation, let its extension ρ : Pattern → P(M) be
inductively defined as follows:
• ρ(x) = {ρ(x)}, for all x ∈ Vars

• ρ(σ(ϕs1 , . . . , ϕsn)) = σM(ρ(ϕ1), . . . ρ(ϕn))
• ρ(¬ϕs) = Ms \ ρ(ϕs) (where “\” is the set difference)
• ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2)
• ρ(∃x.ϕ) =

⋃
{ρ′(ϕ) | ρ′ : Var→ M, ρ′�Var\{x}= ρ�Var\{x}}

The extension of ρ works as expected with the derived
constructs. From here on we tacitly use the following properties:
• ρ(⊥s) = ∅ and ρ(>s) = Ms

• ρ(ϕ1 ∨ ϕ2) = ρ(ϕ1) ∪ ρ(ϕ2)
• ρ(ϕ1 → ϕ2) = {m ∈ Ms | m ∈ ρ(ϕ1) implies m ∈ ρ(ϕ2)} =

Ms \ (ρ(ϕ1) \ ρ(ϕ2))
• ρ(ϕ1 ↔ ϕ2) = {m ∈ Ms | m ∈ ρ(ϕ1) iff m ∈ ρ(ϕ2)} =

Ms \ (ρ(ϕ1) ∆ ρ(ϕ2)) (“∆” is set symmetric difference)
• ρ(∀x.ϕ) =

⋂
{ρ′(ϕ) | ρ′ : Var→ M, ρ′�Var\{x}= ρ�Var\{x}}

Definition 4: Model M satisfies pattern ϕs, written M |= ϕs,
if and only if ρ(ϕs) = Ms for all ρ : Var→ M.

Proposition 1: The following properties hold:
• If ρ1, ρ2 : Var→ M, ρ1�FV(ϕ)= ρ2�FV(ϕ) then ρ1(ϕ) = ρ2(ϕ)
• If x ∈ Vars then M |= x iff |Ms| = 1
• If σ ∈ Σs1...sn,s and ϕ1, . . . , ϕn are patterns of sorts

s1, . . . , sn, respectively, then M |= σ(ϕ1, . . . , ϕn) iff
σM(ρ(ϕ1), . . . ρ(ϕn)) = Ms for any ρ : Var→ M

• M |= ¬ϕ iff ρ(ϕ) = ∅ for any ρ : Var→ M
• M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2
• If ∃x.ϕs is closed, then M |= ∃x.ϕs iff

⋃
{ρ(ϕs) | ρ : Var→

M} = Ms; in particular, M |= ∃x.x
• M |= ϕ1 → ϕ2 iff ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→ M
• M |= ϕ1 ↔ ϕ2 iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→ M
• M |= ∀x.ϕ iff M |= ϕ

3

Note that property “if ϕ closed then M |= ¬ϕ iff M 6|= ϕ”,
which holds in FOL, does not hold in matching logic. Indeed,
suppose ϕ is a constant symbol, say 0, of sort s. Then M |= ¬0
is equivalent to 0M = ∅, while M 6|= 0 is equivalent to 0M , Ms.

Definition 5: Pattern ϕ is valid, written |= ϕ, iff M |= ϕ for
all M. If F ⊆ Pattern then M |= F iff M |= ϕ for all ϕ ∈ F. F
entails ϕ, written F |= ϕ, iff M |= F implies M |= ϕ. A matching
logic specification is a triple (S ,Σ, F) with F ⊆ Pattern.

B. Reduction to Predicate Logic

It is well-known that FOL formulae (with function symbols)
can be translated into equivalent predicate logic formulae,
by replacing each function symbol with a predicate symbol
and then systematically transforming terms into formulae. We
can similarly translate patterns into equivalent predicate logic
formulae. Consider pure predicate logic with equality and no
constant symbols, whose satisfaction relation is written |==

PL. If
(S ,Σ) is a matching logic signature, let (S ,ΠΣ) be the predicate
logic signature with ΠΣ = {πσ : s1 × · · · × sn × s | σ ∈ Σs1...sn,s}.
We define the translation PL of matching logic (S ,Σ)-patterns
into predicate logic (S ,ΠΣ)-formulae inductively as follows:

PL(ϕ) = ∀r .PL(ϕ, r)

PL(x, r) = (x = r)
PL(σ(ϕ1, . . . , ϕn), r) = ∃r1 · · · ∃rn .PL(ϕ1, r1) ∧ · · · ∧ PL(ϕn, rn)

∧ πσ(r1, . . . , rn, r)
PL(¬ϕ, r) = ¬PL(ϕ, r)

PL(ϕ1 ∧ ϕ2, r) = PL(ϕ1, r) ∧ PL(ϕ2, r)
PL(∃x . ϕ, r) = ∃x .PL(ϕ, r)

PL({ϕ1, . . . , ϕn}) = {PL(ϕ1), . . . ,PL(ϕn)}

Then the following result holds, same like for FOL:
Proposition 2: F |= ϕ iff PL(F) |==

PL PL(ϕ)
Proof: It suffices to show that there is a bijective correspon-

dence between matching logic (S ,Σ)-models M and predicate
logic (S ,ΠΣ)-models M′, such that M |= ϕ iff M′ |==

PL PL(ϕ)
for any (S ,Σ)-pattern ϕ. The bijection is defined as follows:
• M′s = Ms for each sort s ∈ S ;
• πσM′ ⊆ Ms1 ×· · ·×Msn ×Ms with (a1, . . . , an, a) ∈ πσM′ iff
σM : Ms1 × · · · × Msn → P(Ms) with a ∈ σM(a1, . . . , an).

To show M |= ϕ iff M′ |==
PL PL(ϕ), it suffices to show a ∈ ρ(ϕ)

iff ρ[a/r] |==
PL PL(ϕ, r) for any ρ : Var → M, which follows

easily by structural induction on ϕ.
Proposition 2 gives a sound and complete procedure for

matching logic reasoning: translate the specification (S ,Σ, F)
and pattern to prove ϕ into the predicate logic specification
(S ,ΠΣ,PL(F)) and formula PL(ϕ), respectively, and then derive
it using the sound and complete proof system of predicate
logic. However, translating patterns to predicate logic formulae
makes reasoning harder not only for humans, but also for
machines, since new quantifiers are introduced. For example,
(1 7→ 5 ∗ 2 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1)→ list(7, 9 · 5) discussed and
proved in Section I, translates into the formula (to keep it small,
we do not translate the numbers) ∀r . (∃r1 .∃r2 . π7→(1, 5, r1) ∧
(∃r3 .∃r4 . π7→(2, 0, r3) ∧ (∃r5 .∃r6 . π7→(7, 9, r5) ∧ π 7→(8, 1, r6) ∧
π∗(r5, r6, r4))∧ π∗(r3, r4, r2))∧ π∗(r1, r2, r))→ ∃r7 . π·(9, 5, r7)∧

πlist(7, r7, r). What we would like is to reason directly with
matching logic patterns, the same way we reason directly with
terms in FOL without translating them to predicate logic.

Proposition 3: The following hold for matching logic:

1) |= ϕ, where ϕ is a propositional tautology (over patterns)
2) Modus ponens: |= ϕ1 and |= ϕ1 → ϕ2 implies |= ϕ2
3) |= (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x < FV(ϕ1)
4) Universal generalization: |= ϕ implies |= ∀x . ϕ

Proposition 3 states that the proof system of pure predicate
logic is actually sound for matching logic as is, so we do
not need to translate patterns to predicate logic formulae in
order to reason about them. Section V will show that a few
additional proof rules yield a sound and complete proof system
for matching logic, in a similar vein to how the Substitution
rule (∀x . ϕ → ϕ[t/x]) together with the four proof rules of
pure predicate logic yield a sound and complete proof system
for FOL. But before that, we demonstrate the usefulness of
matching logic by a series of examples and applications.

III. Examples and Notations

We have already seen some simple patterns in Section II,
such as ∃x.x which is satisfied by all models, and ∀x.x which is
satisfied only by models whose carrier of the sort of x contains
only one element. In this section we illustrate matching logic
by means of a series of more complex examples.

A. Propositional logic

If we take S to contain only one sort, Prop, Σ to be empty,
and drop the existential quantifier, then the syntax of matching
logic becomes that of propositional calculus:

ϕ ::= VarProp | ¬ϕ | ϕ ∧ ϕ

The following expected result holds:
Proposition 4: For any proposition ϕ, |=Prop ϕ iff |= ϕ.
An alternative way to capture propositional calculus is to add

a constant symbol to Σ for each propositional variable, and then
associate a ground pattern to each proposition. Proposition 4
still holds, despite the fact that propositional constants can be
interpreted as arbitrary sets. That is because (P(M),¬M ,∩) is
a model of propositional logic for any set M.

B. Pure predicate logic

If S is a sort set and Π is a set of predicate symbols, the
syntax of pure predicate logic formulae (without equality) is

ϕ ::= π(x1, . . . , xn) where π ∈ Πs1...sn

| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

We can pick a new sort name, Pred, and construct a matching
logic signature (S ∪ {Pred},Σ) where Σs1...sn,Pred = Πs1...sn .
Then any predicate logic formula can be trivially regarded as
a matching logic pattern. The following result then holds:

Proposition 5: For any predicate formula ϕ, |=PL ϕ iff |= ϕ.

4

C. Definedness, Equality, Membership

Pattern definedness, equality and membership can be defined
in matching logic, without any special support or logic
extensions. Before we do so, it is insightful to understand why
we cannot use ↔ as an equality. Indeed, since M |= ϕ1 ↔ ϕ2
iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→ M, one may be tempted to
blindly adopt ↔ as equality everywhere. For example, given
a signature with one sort and one unary symbol f , one may
think that the following matching logic specification captures
precisely the models in which f is interpreted as a function:

∃y . f (x)↔ y

Unfortunately, there are models of the above specification in
which the interpretation of f is not a function. Consider, for
example, a model M with M = {1, 2} and with fM defined as
fM(1) = {1, 2} and fM(2) = ∅. Let ρ : Var→ M. If ρ(x) = 1 then
ρ(∃y . f (x)↔ y) = (M \ ({1, 2} ∆ {1}))∪ (M \ ({1, 2} ∆ {2})) =

{1, 2} = M. If ρ(x) = 2 then ρ(∃y . f (x)↔ y) = (M \ (∅ ∆ {1}))∪
(M \ (∅ ∆ {2})) = {1, 2} = M. Therefore, M |= ∃y . f (x)↔ y.

The problem above was that the interpretation of ϕ1 ↔ ϕ2 is
not equivalent to either > or ⊥, as we are used to think in FOL.
Specifically, ρ(ϕ1) , ρ(ϕ2) does not suffice for ρ(ϕ1 ↔ ϕ2) = ∅

to hold. Indeed, ρ(ϕ1 ↔ ϕ2) = M \ (ρ(ϕ1) ∆ ρ(ϕ2)) and
there is nothing to prevent, e.g., ρ(ϕ1) ∩ ρ(ϕ2) , ∅, in which
case ρ(ϕ1) ∆ ρ(ϕ2) , M. What we would like to have is
a proper equality, ϕ1 = ϕ2, which behaves like a predicate:
ρ(ϕ1 = ϕ2) = ∅ when ρ(ϕ1) , ρ(ϕ2), and ρ(ϕ1 = ϕ2) = M when
ρ(ϕ1) = ρ(ϕ2). Moreover, we want equalities to be used with
terms of any sort, and in contexts of any sort.

The above can be achieved methodologically in matching
logic, by adding to the signature a definedness symbol [_]s2

s1 ∈

Σs1,s2 for any sorts s1 and s2, together with the pattern axiom

[x : s1]s2
s1

The axiom enforces ([_]s2
s1)M(m1) = Ms2 in all models M for

all m1 ∈ Ms1 , which means that for any ρ : Var→ M, ρ([ϕ]s2
s1)

is either ∅ when ρ(ϕ) = ∅ (i.e., ϕ undefined in ρ), or is Ms2

when ρ(ϕ) , ∅ (i.e., ϕ defined). We can now use _ =
s2
s1 _ and

_ ∈s2
s1 _, respectively, as aliases for the following patterns:

ϕ =
s2
s1 ϕ

′ ≡ ¬[¬(ϕ↔ ϕ′)]s2
s1 where ϕ, ϕ′ ∈ Patterns1

x ∈s2
s1 ϕ ≡ [x ∧ ϕ]s2

s1 where x ∈ Vars1 , ϕ ∈ Patterns1

Proposition 6: With the above, the following hold:
1) ρ(ϕ =

s2
s1 ϕ

′) = ∅ iff ρ(ϕ) , ρ(ϕ′)
2) ρ(ϕ =

s2
s1 ϕ

′) = Ms2 iff ρ(ϕ) = ρ(ϕ′)
3) |= ϕ =

s2
s1 ϕ

′ iff |= ϕ↔ ϕ′

4) ρ(x ∈s2
s1 ϕ) = ∅ iff ρ(x) < ρ(ϕ)

5) ρ(x ∈s2
s1 ϕ) = Ms2 iff ρ(x) ∈ ρ(ϕ)

6) |= (x ∈s2
s1 ϕ) =

s3
s2 (x ∧ ϕ =

s2
s1 x)

From now on we assume equality and membership in match-
ing logic specifications, without mentioning the constructions
above. Moreover, since s1 and s2 can usually be inferred from
context, we write [_], = and ∈ instead of [_]s2

s1 , =
s2
s1 , and ∈s2

s1 ,
respectively. If the sort decorations cannot be inferred from
context, then we assume the stated property/axiom/rule holds

for all such sorts. For example, the generic pattern axiom “[x]
where x ∈ Var” replaces all the axioms [x : s1]s2

s1 above for the
definedness symbol, for all the sorts s1 and s2. Similarly, the
axiom in Section IV-A defining list patterns within maps,

list(x) = (x = 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z))
is equivalent to the explicit axioms (for all sorts s):

list(x) =s
Map (x =

Map
Nat 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z))

Proposition 3 showed that four of the proof rule/axiom
schemas of FOL are already sound for matching logic. Below
we show the soundness of several other rule/axiom schemas,
essentially proving the soundness of the matching logic proof
system, except one rule, Substitution, deferred to Section V:

Proposition 7: The following hold:
1) Equality introduction: |= ϕ = ϕ
2) Equality elimination: |= ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]
3) |= ∀x . x ∈ ϕ iff |= ϕ
4) |= (x ∈ y) = (x = y) when x, y ∈ Var
5) |= (x ∈ ¬ϕ) = ¬(x ∈ ϕ)
6) |= (x ∈ ϕ1 ∧ ϕ2) = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
7) |= (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
8) |= x ∈ σ(ϕ1, . . . , ϕi−1, ϕi, ϕi+1, . . . ϕn)

= ∃y.(y ∈ ϕi ∧ x ∈ σ(ϕ1, . . . , ϕi−1, y, ϕi+1, . . . ϕn))

D. Defining special relations
Here we show how to define special relations using patterns.
1) Functions: We can state that a symbol σ ∈ Σs1...sn,s is to

be interpreted as a function in all models as follows:
∃y . σ(x1, . . . , xn) = y

Indeed, if M is any model satisfying the pattern above and a1 ∈

Ms1 , . . . , an ∈ Msn then let ρ : Var→ M be an M-valuation such
that ρ(x1) = a1, . . . , ρ(xn) = an. Since M satisfies the pattern,
it follows that Ms =

⋃
{ρ′(σ(x1, . . . , xn) = y) | ρ′ : Var →

M, ρ′�Var\{x}= ρ�Var\{x}}. Since ρ′(σ(x1, . . . , xn) = y) is either
Ms or ∅, depending upon whether σM(x1, . . . , xn) = {ρ′(y)}
holds or not, we conclude that there exists some ρ′ : Var→ M
such that σM(a1, . . . , an) = {ρ′(y)}, that is, σM(a1, . . . , an) is a
one-element set. Therefore, σM represents a total function.

To avoid writing such boring function patterns, from now
on we automatically assume such an axiom whenever we write
a symbol σ ∈ Σs1...sn,s using the function notation

σ : s1 × · · · × sn → s
2) Injective functions: (f (x) = f (y))→ (x = y) states that f

is injective. If (M, fM : M → M) is any model satisfying this
specification, then fM must be injective. Indeed, let a, b ∈ M
such that a , b and fM(a) = fM(b). Pick ρ : Var→ M such that
ρ(x) = a and ρ(y) = b. Since M satisfies the axiom above, we
get ρ(f (x) = f (y)) ⊆ ρ(x = y). But Proposition 6 implies that
ρ(x = y) = ∅ and ρ(f (x) = f (y)) = M, which is a contradiction.
We can also show that any model whose f is injective satisfies
the axiom. Let (M, fM : M → M) be any model such that fM is
injective. It suffices to show ρ(f (x) = f (y)) ⊆ ρ(x = y) for any
ρ : Var → M, which follows by Proposition 6: if ρ(x) = ρ(y)
then ρ(f (x) = f (y)) = ρ(x = y) = M, and if ρ(x) , ρ(y) then
ρ(f (x) = f (y)) = ρ(x = y) = ∅ because fM is injective.

We write ϕ , ϕ′ instead of ¬(ϕ = ϕ′). With this, another
way to capture the injectivity of f is (x , y)→ (f (x) , f (y)).

5

3) Partial functions: Partial functions σ ∈ Σs1...sn,s can be
specified with σ(x1, . . . , xn) = ⊥s ∨ ∃y . σ(x1, . . . , xn) = y and
from now on we use the notation (note the “⇀” symbol)

σ : s1 × · · · × sn ⇀ s

to automatically assume a pattern like the above. For example,
a division partial function which is undefined in all models
when the denominator is 0 can be specified as follows:

/ : Nat × Nat ⇀ Nat ¬(x/0)

4) Total relations: Total relations can be defined with
[σ(x1, . . . , xn)]s

s, equivalent to σ(x1, . . . , xn) , ⊥s. We write

σ : s1 × · · · × sn⇒ s

to automatically assume that σ is a total relation.

E. Algebraic specifications and matching logic modulo theories

An algebraic specification consists of a many-sorted signature
(S ,Σ) together with a set of equations E over Σ-terms with
variables. To translate an algebraic specification into a matching
logic specification we only need to ensure that operation
symbols get a function interpretation by adding axioms of
the form described in the previous section, and to regard each
equation t = t′ as an equality pattern t = t′.

Proposition 8: Let (S ,Σ, F) be the matching logic speci-
fication associated to the algebraic specification (S ,Σ, E) as
above, that is, F interprets each equation in E as a pattern and
adds patterns stating that the symbols in Σ are interpreted as
functions. Then for any Σ-equation e, E |=alg e iff F |= e.

Using the notations introduced so far, the Peano natural
numbers would be defined as follows in matching logic:

0 : → Nat succ : Nat → Nat plus : Nat × Nat → Nat

plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))

This looks identical to the algebraic specification definition.
Note, however, that matching logic allows us to add more

than just equational patterns. For example, we can add to F
the pattern 0 ∨ ∃x . succ(x) stating that any number is either
0 or the successor of another number. Nevertheless, since
matching logic ultimately has the same expressive power as
predicate logic (Proposition 2), we cannot finitely axiomatize in
matching logic any mathematical domains which do not already
admit finite FOL axiomatizations. In practice, we follow the
same standard approach as the first-order SMT solvers, namely
desired domains are theoretically presented with potentially
infinitely many axioms but are implemented using specialized
decision procedures. Indeed, our MatchC prover [11] defers to
Z3 [4] the solving of all the domain constraints.

Algebraic specifications and decision procedures of mathe-
matical domains abound in the literature. All of these can now
be leveraged and used in the context of matching logic. We do
not discuss these further, but only mention that from now on in
this paper we tacitly assume definitions of integer and of natural
numbers, as well as of Boolean values, with common operations
on them. We assume that these come with three sorts, Int, Nat

and Bool, and the operations on them use the conventional
syntax and writing; e.g., _ ≤ _ : Nat × Nat → Bool, x ≤ y, etc.
To compact writing, we take the freedom to write b instead of
b = true for Boolean expressions b, in any sort context. For
example, we write ϕs ∧ x ≤ y instead of ϕs ∧ (x ≤ y =s

Bool true).

F. First-Order Logic

First-order logic (FOL) allows both function and predicate
symbols. The function symbols are used to build terms, and
then predicates are defined over terms. Formally, the syntax of
(many-sorted) FOL is defined as follows:

ts ::= x ∈ Vars | σ(t1, . . . , tn) where σ ∈ Σs1...sn,s

ϕ ::= π(x1, . . . , xn) where π ∈ Πs1...sn

| ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

Let (S ,Σ,Π) be a FOL signature. Like in pure predicate logic,
we add a Pred sort and regard the predicate symbols as symbols
of result sort Pred. Specifically, let (S ML,ΣML) be the matching
logic signature where S ML = S ∪ {Pred} and where ΣML = Σ ∪

{π : s1 . . . sn → Pred | π ∈ Πs1...sn }, and let F be the set

{∃z : s . σ(x1 : s1, . . . , xn : sn) = z | σ ∈ Σs1...sn,s}

requiring that each function symbol is interpreted as a function.
Proposition 9: For any FOL formula ϕ, |=FOL ϕ iff F |= ϕ.

IV. Maps, Separation Logic and Structural Framing

Matching logic has inherent support for separation, without
a need for any special logic constructs or extensions. That
is because pattern matching has a spatial meaning by its
very nature, in that matching a subterm already separates that
subterm from the rest of the context, so matching two or more
terms can only happen when there is no overlapping between
them. We show that separation logic reduces to matching logic
reasoning within the canonical model of a straightforward
specification of maps. The P1−∗ P2 construct of separation logic
becomes an alias for the pattern ∃H :Map .H ∧ [H ∗ P1 → P2].

A. Maps and Map Patterns

We start by specifying maps. We only discuss maps from
natural numbers to natural numbers, but they can be similarly
defined over arbitrary domains as keys and as values. We use a
syntax for maps that resembles that of separation logic [8], but
recall there are no predicates in what follows, only patterns.

_ 7→ _ : Nat × Nat ⇀ Map
emp : → Map
_ ∗ _ : Map ×Map ⇀ Map

¬(0 7→ a)
emp ∗ H = H
H1 ∗ H2 = H2 ∗ H1
(H1 ∗ H2) ∗ H3 = H1 ∗ (H2 ∗ H3)
(x 7→ a ∗ y 7→ b)→ x , y

Consider the canonical model of maps-as-heaps M, where:
MNat = {0, 1, 2, . . .}; MMap = partial maps from natural numbers
to natural numbers with finite domains and undefined in 0, with
emp interpreted as the map undefined everywhere, with _ 7→ _

6

interpreted as the corresponding one-element partial map except
when the first argument is 0 in which case it is undefined (note
that _ 7→ _ was declared using ⇀), and with _ ∗ _ interpreted
as map merge when the two maps have disjoint domains, or
undefined otherwise (note that _ ∗ _ was also declared using
⇀). If h, h′ ∈ MMap then we use the dedicated notation h#h′

to denote the fact that maps h and h′ are merge-able (their
domains are disjoint). M satisfies all axioms above.

Let us now define a basic data-type over maps, the lists. We
define two patterns, for complete lists and for list fragments:

list : Nat⇒Map
list(0) = emp
list(x) ∧ x , 0 = ∃z . x 7→ z ∗ list(z)

lseg : Nat × Nat⇒Map
lseg(x, x) = emp
lseg(x, y) ∧ x , y = ∃z . x 7→ z ∗ lseg(z, y)

There are two questions: Does this specification admit any
solution (i.e., interpretations listM : MNat → P(MMap) and
lsegM : MNat × MNat → P(MMap)) in M? If yes, is the solution
unique? We answer these positively. We only discuss lsegM ,
because the other is similar and simpler.

A solution lsegM : MNat × MNat → P(MMap) exists iff it
satisfies the two axioms for lseg above, that is,

lsegM(n, n) = {empM} for all n ≥ 0
lsegM(n,m) =

⋃
{({n 7→M n1} ∗M lsegM(n1,m)) | n1 ≥ 0}, n , m

where _ ∗M _ is M’s merge function explained above extended
to sets of maps for each argument; recall that the map merge
function is undefined (i.e., it yields an empty set of maps)
when the two argument maps are not merge-able.

First, we claim that the following is a solution:

lsegM(n, n) = {empM} for all n ≥ 0
lsegM(n,m) = { n 7→M n1 ∗M n1 7→M n2 ∗M · · · ∗M nk 7→M m

| k ≥ 0, and n0 = n, n1, n2, . . . , nk > 0 all different}

Indeed, the first axiom vacuously holds, while for the second
all we need to note is that the “junk” maps where n is 0 or in
the domain of a map in lsegM(n1,m) are simply discarded by
the map merge interpretation of _ ∗ _.

Second, the above is the unique solution. It suffices to prove,
by induction on the size k of the domain of h ∈ MMap that:
h ∈ lsegM(n,m) for n,m ∈ MNat iff either n = m and h = empM
(i.e., k = 0), or otherwise n , 0 and n , m and k > 0 and
there are distinct n0 = n, n1, . . . , nk such that h = (n 7→M

n1 ∗M n1 7→M n2 ∗M · · · ∗M nk−1 7→M m). Since the maps in
lsegM(n,m) when n , 0 and n , m contain at least one binding,
we conclude k = 0 can only happen iff h ∈ lsegM(n, n), and
then h = empM . Now suppose k > 0, which can only happen
iff h ∈ lsegM(n,m) for n , m, which can only happen iff n , 0
and h = n 7→M n1 ∗M h1 for some n1 ≥ 0 and h1 ∈ lsegM(n1,m).
It all follows now from the induction hypothesis applied to h1.

It should be clear that patterns can be specified many different
ways. E.g., the first list pattern can also be specified as:

list(x) = (x = 0 ∧ emp ∨ ∃z . x 7→ z ∗ list(z))

In a similar style, we can define more complex patterns,
such as lists with data. But first, we specify a convenient
operation for defining maps over contiguous locations/keys,
making use of a sequence data-type; the latter can be defined,
for example, using a conventional algebraic specification style
(Section III-E) with an associative binary comma construct for
sequences and a unit ε (see, e.g., Appendix I):

_ 7→ [_] : Nat × Seq→ Map

x 7→ [ε] = emp
x 7→ [a, S] = x 7→ a ∗ (x + 1) 7→ [S]

To continue the construction of our canonical model M, we
take MSeq to be the finite sequences of natural numbers, with
ε : Seq and _ · _ : Seq × Seq → Seq interpreted as the empty
sequence and, respectively, the sequence concatenation.

We can now define lists with data as follows:

list : Nat × Seq⇒Map
list(0, ε) = emp
list(x, n · S) = ∃z . x 7→ [n, z] ∗ list(z, S)

lseg : Nat × Seq × Nat⇒Map
lseg(x, ε, x) = emp
lseg(x, n · S , y) = ∃z . x 7→ [n, z] ∗ lseg(z, S , y)

We can show, using a similar approach like for lists without
data, that the pattern lseg(x, S , y) matches in M precisely the
lists starting with x, exiting to y, and holding data sequence S .

It is easy now to devise other similar data-type specifications:

none : → Tree node : Nat × Tree × Tree→ Tree
tree : Nat × Tree⇒Map

tree(0, none) = emp
tree(x, node(n,t1,t2)) = ∃y z . x 7→ [n, y, z] ∗ tree(y, t1) ∗ tree(z, t2))

Therefore, fixing the interpretations of the basic mathematical
domains, such as those of natural numbers, sequences, maps,
etc., suffices in order to define interesting heap patterns, in the
sense that the axioms themselves uniquely define the desired
data-types. No “inductive predicates” or inductive principles
of any kind were needed in this case (although they may be
needed in other definitions). Note, however, that choosing the
right basic mathematical domains is crucial. For example, if
we allow the maps in MMap to have infinite domains then the
list patterns without data above (the first ones) also include
infinite lists. The lists with data cannot include infinite lists,
because we only allow finite sequences. This would, of course,
change if we allow infinite sequences, or streams, in the model.

Although in the particular case of our basic domains
chosen in M it turned out that list and lseg admit unique
interpretations, that is neither general nor needed for the
subsequent developments. For example, if we allow infinite-
domain maps as described above, then list and lseg do not
admit unique interpretations anymore, because we can interpret
them to be either all the finite domain lists, or both the finite
and the infinite-domain lists. That we can write patterns which
admit the desired solution in the desired model suffices in
practice, because our reasoning techniques developed in the

7

rest of the paper allow us to derive properties that hold in all
models satisfying the axioms, so any derived property is sound
also for the intended model and interpretations.

B. Relationship to Separation Logic

We next formally capture the relationship between separation
logic and matching logic. We only discuss the well-established
separation logic variant in [8]. Moreover, here we only discuss
separation logic as an assertion-language, used for specifying
state properties, and not its extension as an axiomatic pro-
gramming language semantic framework. We regard the latter
as an orthogonal aspect, which can similarly be approached
using matching logic. Assume some basic syntax for integer
expressions coming with sorts Int and Bool, as discussed in
Section III-E, which for simplicity we use both in the definition
of separation logic and in its corresponding matching logic
specification. Note that [8] uses a syntactic category name for
integer expressions different from Int, and Int for the actual
integer values in the model, but this is irrelevant. Then the
syntax of separation logic (SL) can be defined as follows:

Bool ::= isatom?(Int) | isloc?(Int)
ϕ ::= Bool | Int 7→ Int (Atomic)

| false | ϕ→ ϕ | ∀x.ϕ (Classic)
| emp | ϕ ∗ ϕ | ϕ−∗ϕ (Spatial)

The predicates isatom? and isloc? partition the set of integers
into atoms and locations. The SL semantics is based on a
model of stores and heaps, which are finite-domain maps
from variables and respectively from locations to integers. The
semantics of each syntactic construct is given in terms of a
pair (s, h) of a store and a heap, called a state. For example,
(s, h) |=SL E1 7→ E2 iff Dom(h) = s(E1) and h(s(E1)) = s(E2),
and (s, h) |=SL P1 ∗P2 iff there exist h1#h2 such that h = h1 ∗h2
and (s, h1) |=SL P1 and (s, h2) |=SL P2. The semantics of P1−∗ P2
is the states whose heaps extended with a fragment satisfying
P1 result in ones satisfying P2: (s, h) |=SL P1−∗ P2 iff for any
h1 with h#h1, if (s, h1) |=SL P1 then (s, h ∗ h1) |=SL P2.

Let us now define a matching logic specification and a model
of it, which precisely capture the SL variant above. The sorts
Int and Bool, as well as all the operation symbols on them are
the same. The classic logic predicate constructs are already
captured by the generic syntax of patterns. The heaplet and
spatial constructs, except for the −∗ , are given by the matching
logic specification of maps discussed above, in which we
substitute Int for Nat. The only additional specification is:

isatom?, isloc? : Int → Bool
_−∗ _ : Map ×Map ⇀ Map

P1−∗ P2 = ∃H .H ∧ [H ∗ P1 → P2]

Recall from Section III-C that [_] is the symbol whose
semantics leverages the non-emptyness of its argument to the
total set. In words, P1−∗ P2 is the set of all maps h which
merged with maps satisfying P1 yield only maps satisfying
P2. Thanks to the matching logic notational convention that
Booleans b stand for equalities b = true, a SL formula can be
regarded, as is, as a matching logic pattern of sort Map.

We next construct our model. Let M be identical to the
model for maps above, except that we replace natural numbers
with integer numbers. We define isatom?M : MInt → MBool

and isloc?M : MInt → MBool to partition the set of integers
into atoms and locations the same way as in the SL semantics.
The only thing left is to define the partial function _−∗M_ :
Map ×Map→ P(Map), which we do as follows:

h1−∗M h2 = {h | h#h1 and h ∗ h1 = h2}

Note that h1−∗M h2 is either the empty set or it is a set of
precisely one map. Then the following result holds:

Proposition 10: If ϕ is a SL formula, then |=SL ϕ iff M |= ϕ.
Proof: We show by structural induction on ϕ the more

general result that for any store s and any heap h, we have
(s, h) |= ϕ iff h ∈ s(ϕ). The only interesting case is ϕ ≡ ϕ1−∗ϕ2:

h ∈ s(ϕ1−∗ϕ2)
iff h ∈ s(∃H .H ∧ [H ∗ ϕ1 → ϕ2])
iff {h} ∗M s(ϕ1) ⊆ s(ϕ2)
iff h ∗ h1 ∈ s(ϕ2) for any h1 ∈ s(ϕ1) with h#h1
iff (s, h ∗ h1) |=SL ϕ2 for any h1 with (s, h1) |=SL ϕ1 and h#h1
iff (s, h) |=SL ϕ1−∗ϕ2

Discussion: The loose-model approach of matching logic is
in sharp technical, but not conceptual, contrast to separation
logic. In separation logic, the syntax of maps and separation
constructs is part of the syntax of the logic itself, and the
model of maps is intrinsically integrated within the semantics
of the logic: its satisfaction relation is defined in terms of a
fixed syntax and the fixed model of the basic domains (maps,
sequences, etc.). Then specialized proof rules and theorem
provers need to be devised. If any changes to the syntax
or semantics are desired, for example adding a new stack,
or an I/O buffer, etc., then a new logic is obtained. Proof
rules and theorem provers may also need to change as the
logic changes. In matching logic, the basic ingredients of
separation logic become one particular theory, with a particular
syntax and particular axioms, together with a particular but
carefully chosen model. This enables us to use generic first-
order reasoning with the axioms of matching logic theories
(Section V), as well as theorem provers or SMT solvers for
reasoning about the intended model (the M in Proposition 10).

C. Structural Framing

Heap framing is a major outcome of the use of separation
logic for program verification, since it enables local reasoning:

` {ϕpre} c {ϕpost} implies2 ` {ϕpre ∗ ϕ} c {ϕpost ∗ ϕ}

Matching logic can be identically used instead of separation
logic in axiomatic semantics (see [13] for an early example). In
particular, the heap framing rule above would stay unchanged.

However, if used in combination with reachability logic [11],
[12], matching logic enables us to develop more flexible and
more general types of framing. Regarding flexibility, note
that we may not always want to automatically assume heap

2Depending on the language, the rule may also have side conditions on the
locations accessed by c and ϕ, but those are irrelevant for our discussion here.

8

framing (e.g., when memory is finite—embedded systems,
device drivers, etc.—, or when the language has functions like
getTotalMemory() returning the available memory). Regarding
generality, we may want similar framing rules for other se-
mantic cells in the program configuration, such as input/output
buffers, exception stacks, thread resources, etc.

Consider the (operational) semantic rule of assignment in a
C-like language, whose configuration contains an environment
map from variables to locations and a heap map from locations
to values (say due to the “address” construct &):

〈〈x = v; R〉k 〈x 7→ l ∗ e〉env 〈l 7→ _ ∗ h〉heap c〉cfg

⇒ 〈〈 R〉k 〈x 7→ l ∗ e〉env 〈l 7→ v ∗ h〉heap c〉cfg

The variables R, e, h and c can all be thought of as structural
frames: R is the code frame, e is the environment frame, h is the
heap frame, and c is the configuration frame. The assignment
rule above says that the value at the location l of x in the heap
changes to v regardless of what the structural frames match.

The same specification style extends to arbitrary reachability
properties, without a need to define an axiomatic semantics.
For example, MatchC desugars the grayed rule specification
of the function in Fig. 1 into the following reachability rule

〈〈body; R〉k〈n 7→ l ∗ e〉env〈l 7→n ∗ h〉heap〈A, I〉in〈O〉out c〉cfg

∧ n = len(A)
⇒ ∃n′.〈〈R〉k〈n 7→ l ∗ e〉env〈l 7→n′ ∗ h〉heap〈I〉in〈O, rev(A)〉out c〉cfg

If we want to also state that n is not modified, then we remove
the existential quantifier and replace n′ with n. If we want to
say, for whatever reason, that the heap must be empty when
this function is invoked, then we remove the heap frame h.
If we want to state that the size of the available memory
must be larger than a certain limit, then we add the constraint
size(h) ≥ limit to the LHS pattern. Similarly for the other
structural frames, O, I, and c. It should be clear that this gives
us significant power in what kind of properties we can specify.
Reachability logic [12] provides a language-independent sound
and complete proof system to derive such reachability rules,
starting with the formal (operational) semantics of the language.

If a language semantics is so that structural framing
in a particular semantic cell is always sound, say in the
〈...〉heap cell, then one can prove a property “〈〈h1〉heap c1〉cfg⇒

〈〈h2〉heap c2〉cfg implies 〈〈h1 ∗ h〉heap c1〉cfg⇒〈〈h2 ∗ h〉heap c2〉cfg

when side-condition”. Such a property can be proved, e.g., when
all semantic rules use an unconstrained heap frame h (like in the
assignment rule above). However, such a rule would not hold
in a language providing, e.g., a construct that returns the size
of the available memory. It is worth mentioning that although
possible, such structural framing rules are unnecessary. That
is because the structural frames are plain first-order variables
that obey the general pattern matching principles like the other
variables, so nothing special needs to be done about them.
Indeed, in MatchC, the only difference between a framed and
an unframed variant of a property is the use of “. . . ”.

V. Sound and Complete Deduction
As shown in Section II-B, the proof system of predicate logic

is sound for matching logic as is. Ideally, we would like the

FOL axioms and rules:
1. ` propositional tautologies
2. Modus ponens: ` ϕ1 and ` ϕ1 → ϕ2 imply ` ϕ2
3. ` (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x < FV(ϕ1)
4. Universal generalization: ` ϕ implies ` ∀x . ϕ
5. Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]
6. Equality introduction: ` ϕ = ϕ
7. Equality elimination: ` ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]

Membership axioms and rules:
8. ` ∀x . x ∈ ϕ iff ` ϕ
9. ` x ∈ y = (x = y) when x, y ∈ Var
10. ` x ∈ ¬ϕ = ¬(x ∈ ϕ)
11. ` x ∈ ϕ1 ∧ ϕ2 = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
12. ` (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), with x and y distinct
13. ` x ∈ σ(ϕ1, . . . , ϕi−1, ϕi, ϕi+1, . . . ϕn)

= ∃y.(y ∈ ϕi ∧ x ∈ σ(ϕ1, . . . , ϕi−1, y, ϕi+1, . . . ϕn))
Fig. 2. Sound and complete proof system of matching logic.

same to hold true for FOL with equality, that is, we would like
its proof system to be sound as is for matching logic reasoning,
where we replace terms and predicates with arbitrary patterns.
This would enable us to use off-the-shelf FOL provers for
matching logic reasoning with minimal changes.

Unfortunately, FOL’s Substitution axiom, (∀x . ϕ)→ ϕ[t/x],
is not sound if we replace t with any pattern. For example,
consider the tautology ∀x .∃y . x = y and let ϕ be ∃y . x = y. If
FOL’s Substitution were sound for arbitrary patterns ϕ′ instead
of t, then the formula ∃y . ϕ′ = y, stating that ϕ′ evaluates to
a unique element for any valuation, would be valid for any
pattern ϕ′. However, this is not true in matching logic, because
patterns can evaluate to any set of elements, including the
empty set or the total set; several examples of such patterns
were discussed in Section III. We need to modify Substitution
to indicate that ϕ′ admits unique evaluations:

Substitution: ` (∀x . ϕ) ∧ (∃y . ϕ′ = y)→ ϕ[ϕ′/x]
Condition ∃y . ϕ′ = y holds when ϕ′ is a term built with
symbols σ obeying the functional axioms ∃y . σ(x1, . . . , xn) = y
discussed in Section III-D. So the constrained substitution
axiom is still more general that the original substitution axiom
in FOL, since it can also apply when ϕ′ is not built only
from functional symbols but can be proved to have unique
evaluation. It is interesting to note that a similar modification of
Substitution was needed in the context of partial FOL [6], where
the interpretations of functional symbols are partial functions,
so terms may be undefined; axiom PFOL5 in [6] requires ϕ′ to
be defined in the Substitution rule, and several rules for proving
definedness are provided. Note that our condition ∃y . ϕ′ = y is
equivalent to definedness in the special case of PFOL, and that,
thanks to the equality which can be defined in matching logic,
we do not need special machinery for proving definedness.

Our approach to obtain a sound and complete proof system
for matching logic is to build upon its reduction to predicate
logic in Section II-B. Specifically, to use Proposition 2 and the
complete proof system of predicate logic. Given a matching
logic signature (S ,Σ), let (S ,ΠΣ) be the predicate logic signature
obtained like in Section II-B. In addition to the PL translation

9

there, we also define a backwards translation ML of (S ,ΠΣ)-
formulae into (S ,Σ)-patterns inductively as follows:

ML(x = r) = x = r
ML(πσ(r1, . . . , rn, r)) = r ∈ σ(r1, . . . , rn)

ML(¬ψ) = ¬ML(ψ)
ML(ψ1 ∧ ψ2) = ML(ψ1) ∧ML(ψ2)

ML(∃x . ψ) = ∃x .ML(ψ)

ML({ψ1, . . . , ψn}) = {ML(ψ1), . . . ,ML(ψn)}

Recall from Section III-C that we tacitly assume equality and
membership in all matching logic specifications.

Figure 2 shows our sound and complete proof system for
matching logic reasoning, which was specifically crafted to
include the proof system of first-order logic. Indeed, the first
group of axiom and rule schemas include all the axioms
and proof rules of FOL with equality as instances (the rules
Substitution, Equation introduction and Equation elimination
allow more general patterns instead of terms). The second group
of proof rules, for reasoning about membership, is introduced
for technical reasons, namely for the proof of Theorem 1. We
have not used them so far in any of our program verification
efforts using matching logic, and our current matching logic
prover provides no reasoning support for membership.

Theorem 1: The proof system in Figure 2 is sound and
complete for matching logic reasoning: F |= ϕ iff F ` ϕ.

Proof: Propositions 3 and 7 showed the soundness of
all rules except for Substitution. To show the soundness of
Substitution, we show ρ((∀x . ϕ)∧(∃y . ϕ′ = y)) ⊆ ρ(ϕ[ϕ′/x]) for
any model M and valuation ρ : Var→ M. Let s be the sort of
ϕ and s′ be the sort of ϕ′. We have ρ((∀x . ϕ)∧ (∃y . ϕ′ = y)) =⋂
{ρ′(ϕ) | ρ′�Var\{x}= ρ�Var\{x}} ∩

⋃
{Ms | ρ

′�Var\{x}= ρ�Var\{x}

, ρ′(ϕ′) = {ρ′(y)}}. Since y < FV(ϕ′), it follows that ρ′(ϕ′) =

ρ(ϕ′). Therefore, all we have to show is the following: if
ρ(ϕ′) = {a} for some a ∈ Ms′ then

⋂
{ρ′(ϕ) | ρ′�Var\{x}= ρ�Var\{x}

} ⊆ ρ(ϕ[ϕ′/x]). This holds because ρ(ϕ[ϕ′/x]) = ρ[a/x](ϕ).
We now show the completeness. First, note that Proposition 2

and the completeness of predicate logic imply that F |= ϕ iff
PL(F) `=PL PL(ϕ). Second, note that PL(F) `=PL PL(ϕ) implies
ML(PL(F)) ` ML(PL(ϕ)), because the ML translation only
replaces predicates πσ(r1, . . . , rn, r) with r ∈ σ(r1, . . . , rn) and
the proof rules of predicate logic are a subset of the proof rules
of matching logic. Third, notice that the completeness result
holds if we can show F ` ϕ iff F ` ML(PL(ϕ)) for any pattern
ϕ: indeed, then F ` ML(PL(F)), which together with the above
implies F ` ML(PL(ϕ)), which further implies F ` ϕ.

Let us now prove that F ` ϕ iff F ` ML(PL(ϕ)) for any
pattern ϕ. We first show ` r ∈ ϕ = ML(PL(ϕ, r)) by induction
on ϕ. The cases ϕ ≡ x, ϕ ≡ ¬ϕ′, ϕ ≡ ϕ1∧ϕ2, and ϕ ≡ ∃y.ϕ′ are
immediate consequences of the axioms 9-12 in Figure 2, using
the induction hypothesis and Equality elimination (rule 7). For
the case ϕ ≡ σ(ϕ1, . . . , ϕn), we can first derive ML(PL(ϕ, r)) =

∃r1 · · · ∃rn . r1 ∈ ϕ1 ∧ · · · ∧ rn ∈ ϕn ∧ r ∈ σ(r1, . . . , rn) using
the induction hypothesis and Equality elimination, and then
r ∈ ϕ = ∃r1 · · · ∃rn . r1 ∈ ϕ1 ∧ · · · ∧ rn ∈ ϕn ∧ r ∈ σ(r1, . . . , rn)
using axiom 13 in Figure 2 and conventional FOL reasoning.

Therefore, ` r ∈ ϕ = ML(PL(ϕ, r)). Our result now follows by
rule 8 in Figure 2, since ML(PL(ϕ)) ≡ ∀r .ML(PL(ϕ, r)).

VI. Conclusion and FutureWork

Matching logic is a sound and complete FOL variant that
makes no distinction between function and predicate symbols.
Its formulae, called patterns, mix symbols, logical connectives
and quantifiers, and in models evaluate to sets of elements,
those that “match” them, instead of just one value as terms
do or a truth value as predicates do in FOL. Equality can
be defined in matching logic, and several important variants
of FOL fall as special fragments. Separation logic can be
framed as a matching logic theory within the particular model
of partial finite-domain maps, and heap patterns (lists, trees,
etc.) elegantly specified using equations. Matching logic allows
spatial specification and reasoning anywhere in a program
configuration, and for any language, not only in the heap or
other particular and fixed semantic components.

We made no efforts to minimize the number of rules in
our proof system, because our main objective here was to
include the proof system for FOL with equality. It is quite
likely that an elegant minimal proof system working directly
with the core symbols [_]s2

s1 ∈ Σs1,s2 for all sorts s1, s2 ∈ S can
be obtained such that the equality and membership axioms and
rules in Figure 2 can be proved as lemmas, but that was not
our objective here. Likewise, we refrained from discussing any
computationally effective fragments of matching logic in this
paper, although MatchC implements such a fragment. Finally,
complexity results in the style of [1], [2], [7] for separation
logic can likely also be obtained for fragments of matching
logic, both with respect to axioms and with respect to models.

References
[1] T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouak-

nine. Foundations for decision problems in separation logic with general
inductive predicates. In FOSSACS’14, LNCS. Springer, 2014. To appear.

[2] J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Pérez. A decision
procedure for satisfiability in separation logic with inductive predicates.
Technical Report RN/13/15, University College London, 2013.

[3] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet,
and C. Talcott. All About Maude, volume 4350 of LNCS. Springer, 2007.

[4] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS,
pages 337–340, 2008. LNCS 4963.

[5] C. Ellison and G. Roşu. An executable formal semantics of C with
applications. In POPL, pages 533–544. ACM, 2012.

[6] W. M. Farmer and J. D. Guttman. A set theory with support for partial
functions. Studia Logica, 66(1):59–78, 2000.

[7] R. Iosif, A. Rogalewicz, and J. Simácek. The tree width of separation
logic with recursive definitions. In CADE’13, LNCS 7898, 2013.

[8] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL, pages 1–19. LNCS 2142, 2001.

[9] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999.

[10] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74. IEEE, 2002.

[11] G. Roşu and A. Ştefănescu. Checking reachability using matching logic.
In OOPSLA, pages 555–574. ACM, 2012.

[12] G. Roşu, A. Ştefănescu, Ştefan Ciobâcă, and B. M. Moore. One-path
reachability logic. In LICS, pages 358–367. IEEE, 2013.

[13] G. Roşu, C. Ellison, and W. Schulte. Matching logic: An alternative to
Hoare/Floyd logic. In AMAST, pages 142–162. LNCS 6486, 2010.

[14] A. Tarski and S. Givant. A Formalization of Set Theory Without Variables.
Number 41. AMS, 1987.

10

Appendix

A. Proof of Proposition 1

• If ρ1, ρ2 : Var→ M, ρ1�FV(ϕ)= ρ2�FV(ϕ) then ρ1(ϕ) = ρ2(ϕ)

Structural induction on ϕ. The only interesting case is when ϕ
has the form ∃x.ϕ′, so FV(ϕ) = FV(ϕ′) \ {x}. Then

ρ1(∃x.ϕ′) =
⋃
{ρ′1(ϕ′) | ρ′1 : Var→ M, ρ′1�Var\{x}= ρ1�Var\{x}}

(by the induction hypothesis)
=
⋃
{ρ′1(ϕ′) | ρ′1 : Var→ M, ρ′1�FV(ϕ)= ρ1�FV(ϕ)}

(since ρ1�FV(ϕ)= ρ2�FV(ϕ))
=
⋃
{ρ′2(ϕ′) | ρ′2 : Var→ M, ρ′2�FV(ϕ)= ρ2�FV(ϕ)}

(by the induction hypothesis)
=
⋃
{ρ′2(ϕ′) | ρ′2 : Var→ M, ρ′2�Var\{x}= ρ2�Var\{x}}

= ρ2(∃x.ϕ′)

• If x ∈ Vars then M |= x iff |Ms| = 1

M |= x iff ρ(x) = Ms for all ρ : Var → M, iff {ρ(x)} = Ms for
all ρ : Var→ M, iff Ms has only one element.

• If σ ∈ Σs1...sn,s and ϕ1, . . . , ϕn are patterns of sorts
s1, . . . , sn, respectively, then M |= σ(ϕ1, . . . , ϕn) iff
σM(ρ(ϕ1), . . . ρ(ϕn)) = Ms for any ρ : Var→ M

M |= σ(ϕ1, . . . , ϕn) iff ρ(σ(ϕ1, . . . , ϕn)) = Ms for all ρ : Var→
M, iff σM(ρ(ϕ1), . . . ρ(ϕn)) = Ms for any ρ : Var→ M.

• M |= ¬ϕ iff ρ(ϕ) = ∅ for any ρ : Var→ M

M |= ¬ϕ iff ρ(¬ϕ) = Ms for any ρ : Var→ M, iff Ms \ ρ(ϕ) =

Ms for any ρ : Var→ M, iff ρ(ϕ) = ∅ for any ρ : Var→ M.

• M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= ϕ1 ∧ ϕ2 iff ρ(ϕ1 ∧ ϕ2) = Ms for any ρ : Var → M, iff
ρ(ϕ1) ∩ ρ(ϕ2) = Ms for any ρ : Var → M, iff ρ(ϕ1) = Ms and
ρ(ϕ2) = Ms for any ρ : Var→ M, iff M |= ϕ1 and M |= ϕ2.

• If ∃x.ϕs is closed, then M |= ∃x.ϕs iff
⋃
{ρ(ϕs) | ρ : Var→

M} = Ms; in particular, M |= ∃x.x

M |= ∃x.ϕs iff ρ(∃x.ϕs) = Ms for any ρ : Var → M, iff⋃
{ρ′(ϕs) | ρ′ : Var → M, ρ′�Var\{x}= ρ�Var\{x}} = Ms for any

ρ : Var → M, iff (by the first property in this proposition,
since FV(ϕs) ⊆ {x})

⋃
{ρ′(ϕs) | ρ′ : Var → M} = Ms for any

ρ : Var → M, iff
⋃
{ρ(ϕs) | ρ : Var → M} = Ms. In particular,

if ϕs = x then
⋃
{ρ(x) | ρ : Var→ M} = Ms, so M |= ∃x.x.

• M |= ϕ1 → ϕ2 iff ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→ M

M |= ϕ1 → ϕ2 iff ρ(ϕ1 → ϕ2) = M for all ρ : Var → M, iff
ρ(¬(ϕ1 ∧ ¬ϕ2)) = M for all ρ : Var→ M, iff ρ(ϕ1 ∧ ¬ϕ2) = ∅

for all ρ : Var → M, iff ρ(ϕ1) ∩ (M \ ρ(ϕ2)) = ∅ for all
ρ : Var→ M, iff ρ(ϕ1) ⊆ ρ(ϕ2) for all ρ : Var→ M.

• M |= ϕ1 ↔ ϕ2 iff ρ(ϕ1) = ρ(ϕ2) for all ρ : Var→ M

Follows from the previous similar properties for ∧ and →.

• M |= ∀x.ϕ iff M |= ϕ

M |= ∀x.ϕ iff ρ(∀x.ϕ) =
⋂
{ρ′(ϕ) | ρ′ : Var → M, ρ′�Var\{x}=

ρ�Var\{x}} = M for all ρ : Var → M, iff ρ′(ϕ) = M for all
ρ, ρ′ : Var → M with ρ′�Var\{x}= ρ�Var\{x}, iff ρ(ϕ) = M for all
ρ : Var→ M, iff M |= ϕ.

B. Proof of Proposition 3

Propositional tautologies
They hold because (P(M),¬M ,∩) is a model of propositional
logic for any set M. A similar argument is used underneath
Proposition 4.

Modus ponens: |= ϕ1 and |= ϕ1 → ϕ2 imply |= ϕ2

If ρ : Var→ M is a matching logic model valuation such that
ρ(ϕ1) = MPred and ρ(ϕ1) ⊆ ρ(ϕ2), then ρ(ϕ2) = MPred.

|= (∀x . ϕ1 → ϕ2)→ (ϕ1 → ∀x . ϕ2) when x < FV(ϕ1)
Follows by properties in Proposition 1.

Universal generalization: |= ϕ implies |= ∀x . ϕ
Immediate by Proposition 1.

C. Proof of Proposition 4

The implication “|=Prop ϕ implies |= ϕ” follows by 1) in
Proposition 3. The other implication follows by the 1) and
2) in Proposition 3, noting that propositional logic admits
complete deduction using a subset of propositional tautologies
as axioms and modus ponens.

D. Proof of Proposition 5

Any predicate logic model ({Ms}s∈S , {πM}π∈Π) extends into a
matching logic model ({Ms}s∈S∪{Pred}, {πM}π∈Σ), where MPred =

{1} and πM(a1, . . . , an) = {1} iff πM(a1, . . . , an) holds, and
πM(a1, . . . , an) = ∅ otherwise. Therefore, |= ϕ implies |=PL ϕ.
The converse follows by Proposition 3, which shows that each
of the four proof rules of the complete proof system of pure
predicate logic is sound for matching logic.

E. Proof of Proposition 6

1) ρ(ϕ =
s2
s1 ϕ

′) = ∅ iff ρ(ϕ) , ρ(ϕ′)
Since ϕ =

s2
s1 ϕ

′ = ¬[¬(ϕ↔ ϕ′)]s2
s1 , we have ρ(ϕ =

s2
s1 ϕ

′) equal to
Ms2 \ ([_]s2

s1)M(Ms1 \ (Ms1 \ (ρ(ϕ1) ∆ ρ(ϕ2)))), which is further
equal to Ms2 \ ([_]s2

s1)M(ρ(ϕ1) ∆ ρ(ϕ2)). So ρ(ϕ =
s2
s1 ϕ

′) = ∅

iff ([_]s2
s1)M(ρ(ϕ1) ∆ ρ(ϕ2)) = Ms2 , iff ρ(ϕ1) ∆ ρ(ϕ2) , ∅, iff

ρ(ϕ) , ρ(ϕ′).
2) ρ(ϕ =

s2
s1 ϕ

′) = Ms2 iff ρ(ϕ) = ρ(ϕ′)
Similarly to the property above, we have ρ(ϕ =

s2
s1 ϕ

′) = Ms2

iff ([_]s2
s1)M(ρ(ϕ1) ∆ ρ(ϕ2)) = ∅, iff ρ(ϕ1) ∆ ρ(ϕ2) = ∅, iff

ρ(ϕ) = ρ(ϕ′).
3) |= ϕ =

s2
s1 ϕ

′ iff |= ϕ↔ ϕ′

|= ϕ =
s2
s1 ϕ

′ iff M |= ϕ =
s2
s1 ϕ

′ for any model M, iff ρ(ϕ =
s2
s1

ϕ′) = Ms2 for any model M and ρ : Var→ M, iff ρ(ϕ) = ρ(ϕ′)
for any model M and ρ : Var → M, iff (by Proposition 1)
M |= ϕ↔ ϕ′ for any model M, iff |= ϕ↔ ϕ′.

4) ρ(x ∈s2
s1 ϕ) = ∅ iff ρ(x) < ρ(ϕ)

Since x ∈s2
s1 ϕ is equivalent to [x ∧ ϕ]s2

s1 , we have ρ(x ∈s2
s1 ϕ) =

([_]s2
s1)M({ρ(x)} ∩ ρ(ϕ)), so ρ(x ∈s2

s1 ϕ) = ∅ iff {ρ(x)} ∩ ρ(ϕ) = ∅,
that is, iff ρ(x) < ρ(ϕ).

5) ρ(x ∈s2
s1 ϕ) = Ms2 iff ρ(x) ∈ ρ(ϕ)

Similarly to above, ρ(x ∈s2
s1 ϕ) = Ms2 iff {ρ(x)} ∩ ρ(ϕ) , ∅, that

is, iff ρ(x) ∈ ρ(ϕ).
6) |= x ∈s2

s1 ϕ =
s3
s2 (x ∧ ϕ =

s2
s1 x)

11

Let M be some model and ρ : Var→ M. By 1) and 2) above,
the property holds iff we can show ρ(x ∈s2

s1 ϕ) = ρ(x∧ ϕ =
s2
s1 x).

Since the membership and equality patterns evaluate either
to the entire set or to the empty set, the following completes
the proof: by 5) we have ρ(x ∈s2

s1 ϕ) = Ms2 iff ρ(x) ∈ ρ(ϕ), iff
{ρ(x)} ∩ ρ(ϕ) = {ρ(x)}, iff, by 2), ρ(x ∧ ϕ =

s2
s1 x) = Ms2 .

F. Proof of Proposition 7

1) Equality introduction: |= ϕ = ϕ

By 3) in Proposition 6

2) Equality elimination: |= ϕ1 = ϕ2 ∧ ϕ[ϕ1/x]→ ϕ[ϕ2/x]

Let M be some model and ρ : Var → M. By Proposition 1,
it suffices to show ρ(ϕ1 = ϕ2) ∩ ρ(ϕ[ϕ1/x]) ⊆ ρ(ϕ[ϕ2/x]). If
ρ(ϕ1) , ρ(ϕ1) then ρ(ϕ1 = ϕ2) = ∅ by Proposition 6, so
the inclusion holds. Now suppose that ρ(ϕ1) = ρ(ϕ1), which
implies ρ(ϕ1 = ϕ2) = M by Proposition 6, so it suffices to show
ρ(ϕ[ϕ1/x]) ⊆ ρ(ϕ[ϕ2/x]). The stronger result ρ(ϕ[ϕ1/x]) =

ρ(ϕ[ϕ2/x]) in fact holds, because the first element is a function
of ρ(ϕ1), the second element is the same function but of ρ(ϕ2),
and ρ(ϕ1) = ρ(ϕ2).

3) |= ∀x . x ∈ ϕ iff |= ϕ

Let M be a model. Then M |= ∀x . x ∈ ϕ iff M |= x ∈ ϕ
(Proposition 1), iff ρ(x ∈ ϕ) = M for any ρ : Var → M,
iff ρ(x) ∈ ρ(ϕ) for any ρ : Var → M (by Proposition 6), iff
ρ(ϕ) = M for any ρ : Var→ M, iff M |= ϕ.

4) |= x ∈ y = (x = y) when x, y ∈ Var

By Proposition 6, it suffices to show ρ(x ∈ y) = M iff ρ(x =

y) = M for any model M and any ρ : Var → M, that is, also
by Proposition 6, that ρ(x) ∈ {ρ(y)} iff ρ(x) = ρ(y), which
obviously holds.

5) |= x ∈ ¬ϕ = ¬(x ∈ ϕ)

By Proposition 6, it suffices to show ρ(x ∈ ¬ϕ) = M iff
ρ(x ∈ ϕ) = ∅ for any model M and any ρ : Var → M, that
is, also by Proposition 6, that ρ(x) ∈ M\ρ(ϕ) iff ρ(x) < ρ(ϕ),
which obviously holds.

6) |= x ∈ ϕ1 ∧ ϕ2 = (x ∈ ϕ1) ∧ (x ∈ ϕ2)

By Proposition 6, it suffices to show ρ(x) ∈ ρ(ϕ1) ∩ ρ(ϕ2)
iff ρ(x) ∈ ρ(ϕ1) and ρ(x) ∈ ρ(ϕ2) for any model M and any
ρ : Var→ M, which obviously holds.

7) |= x ∈ ∃y.ϕ = ∃y.(x ∈ ϕ), with x and y distinct

By Proposition 6, it suffices to show for any model M and any
ρ : Var → M, that ρ(x) ∈

⋃
{ρ′(ϕ) | ρ′ : Var → M, ρ′�Var\{y}=

ρ�Var\{y}} iff
⋃
{ρ′(x ∈ ϕ) | ρ′ : Var→ M, ρ′�Var\{y}= ρ�Var\{y}} =

M. It is easy to see that each of the two statements holds iff
there exists some ρ′ : Var → M with ρ′�Var\{y}= ρ�Var\{y} such
that ρ(x) ∈ ρ′(ϕ).

8) |= x ∈ σ(ϕ1, . . . , ϕi−1, ϕi, ϕi+1, . . . , ϕn)
= ∃y.(y ∈ ϕi ∧ x ∈ σ(ϕ1, . . . , ϕi−1, y, ϕi+1, . . . ϕn))

By Proposition 6, it suffices to prove for any model M and
any valuation ρ : Var→ M, that

ρ(x) ∈ σM(ρ(ϕ1), . . . , ρ(ϕi−1), ρ(ϕi), ρ(ϕi+1), . . . , ρ(ϕn))

iff there exists some ρ′ : Var → M with ρ′�Var\{y}= ρ�Var\{y}

such that ρ′(y) ∈ ρ(ϕi) and

ρ(x) ∈ σM(ρ(ϕ1), . . . , ρ(ϕi−1), {ρ′(y)}, ρ(ϕi+1), . . . , ρ(ϕn))

which obviously holds.

G. Proof of Proposition 8

The key observation is that, in a similar style to the proof of
Proposition 5, there is a bijection between the matching logic
models M satisfying F and the (S ,Σ)-algebras M′ satisfying
E, such that M |= e iff M′ |=alg e for any Σ-equation e. The
model bijection is defined as follows:
• M′s = Ms for each sort s ∈ S ;
• σM′ : Ms1 × · · · × Msn × Ms with σM′(a1, . . . , an) = a iff
σM : Ms1 × · · · ×Msn → P(Ms) with σM(a1, . . . , an) = {a}.

H. Proof of Proposition 9

The proof is similar to that of Proposition 5. Like there,
any FOL model extends into a matching logic model whose
Pred carrier contains only one element. Moreover, that model
satisfies F because the interpretations of all the function
symbols are functions. Therefore, F |= ϕ implies |=FOL ϕ.

Conversely, we can show exactly as in the proof of Proposi-
tion 5 that the axioms and proof rules of pure predicate logic
are also sound here. FOL has only one additional proof rule:

Substitution: ` (∀x : s . ϕ)→ ϕ[t/x], with t of sort s
Let M |= F be any matching logic model and let ρ : Var→ M.
Then ρ(∀x . ϕ) =

⋂
{ρ′(ϕ) | ρ′�Var\{x}= ρ�Var\{x}} ⊆ ρ′(ϕ) where

ρ′�Var\{x}= ρ�Var\{x} and {ρ′(x)} = ρ(t). Such ρ′ can only be
ρ′ = ρ[m/x] where ρ(t) = {m}, so ρ′(ϕ) = ρ(ϕ[t/x]).

I. Sequences, Multisets and Sets

Sequences, multisets and sets are typical data-types defined
using algebraic specification. Matching logic enables, however,
some useful developments and shortcuts. For simplicity, we
only discuss collections over Nat, and name the corresponding
sorts Seq, MultiSet, and Set. Ideally, we would build upon an
order-sorted algebraic signature setting, so that we can regard
x :Nat not only as an element of sort Nat, but also as one of
sort Seq (a one-element sequence), as one of sort MultiSet, as
well as one of sort Set. Extending matching logic to an order-
sorted setting is not difficult, but would deviate from our main
objective in this paper, so we refrain from doing it. Instead,
we rely on the reader to assume either that order-sortedness
does not bring additional complications (besides those of order-
sortedness itself in the context of algebraic specification) or
that elements of sort Nat used in a Seq, MultiSet, or Set context
are wrapped with some injection symbol; e.g., Nat2Seq(x).

Sequences (assume Nat < Seq, as discussed above) can be
defined with two symbols and corresponding equations:

ε : → Seq _ · _ : Seq × Seq→ Seq

ε · x = x x · ε = x (x · y) · z = x · (y · z)

We assume that lower cap variables have sort Nat, and upper
cap ones have the appropriate collection sort. To avoid adding

12

initiality constraints on models yet be able to do proofs by case
analysis and elementwise equality, we may add the following:

ε ∨ ∃x .∃S . x · S (x · S = x′ · S ′) = (x = x′) ∧ (S = S ′)

We next define some operations on sequences:

rev : Seq→ Seq _ ∈ _ : Nat × Seq→ Bool

rev(ε) = ε ¬(x ∈ ε) x ∈ x · S
rev(x · S) = rev(S) · x x ∈ y · S ∧ (x , y) = x ∈ S

We can transform sequences into multisets adding the
equality axiom x · y = y · x, and into sets adding also the
idemoptence equality x · x = x. Here are some set operations:

_ ∩ _ : Set × Set → Set _∆_ : Set × Set → Set

ε ∩ S 2 = S 2
x · S 1 ∩ S 2 = ((x ∈ S 2 → x) ∧ (¬(x ∈ S 2)→ ε)) · (S 1 ∩ S 2)
x · S 1 ∆ x · S 2 = S 1 ∆ S 2
(S 1 ∩ S 2 = ε)→ (S 1 ∆ S 2 = S 1 · S 2)

13

	Introduction and Motivation
	Matching Logic
	Basic Definitions
	Reduction to Predicate Logic

	Examples and Notations
	Propositional logic
	Pure predicate logic
	Definedness, Equality, Membership
	Defining special relations
	Functions
	Injective functions
	Partial functions
	Total relations

	Algebraic specifications and matching logic modulo theories
	First-Order Logic

	Maps, Separation Logic and Structural Framing
	Maps and Map Patterns
	Relationship to Separation Logic
	Structural Framing

	Sound and Complete Deduction
	Conclusion and Future Work
	References
	Appendix
	Proof of Proposition 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 9
	Sequences, Multisets and Sets

