
Scientific Annals of Computer Science vol. ??, 201?, pp. 1–39

On Safety Properties and Their Monitoring

Grigore Roşu1

Abstract

This paper addresses the problem of runtime verification from a
foundational perspective, answering questions like “Is there a consen-
sus among the various definitions of a safety property?” (Answer:
Yes), “How many safety properties exist?” (Answer: As many as
real numbers), “How difficult is the problem of monitoring a safety
property?” (Answer: Arbitrarily complex), “Is there any formalism
that can express all safety properties?” (Answer: No), etc. Various
definitions of safety properties as sets of execution traces have been
proposed in the literature, some over finite traces, others over infinite
traces, yet others over both finite and infinite traces. By employing
cardinality arguments and a novel notion of persistence, this paper
first establishes the existence of bijective correspondences between the
various notions of safety property. It then shows that safety properties
can be characterized as “always past” properties. Finally, it proposes
a general notion of monitor, which allows to show that safety proper-
ties correspond precisely to the monitorable properties, and then to
establish that monitoring a safety property is arbitrarily hard.

1 Introduction

A safety property is a behavioral property which, once violated, cannot be
satisfied anymore. For example, a property “always x > 0” is violated when
x ≤ 0 is observed for the first time; this safety property remains violated
even though eventually x > 0 might hold. That means that one can identify
each safety property with a set of “bad” finite execution traces, with the
intuition that once one of those is reached the safety property is violated.

1 Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N.
Goodwin, Urbana, IL 61801, USA. grosu@illinois.edu

2 Grigore Roşu

There are several apparently different ways to formalize safety. Perhaps
the most immediate one is to complement the “bad traces” above and thus
to define a safety property as a prefix-closed property over finite traces
(containing the “good traces”) – by “property” in this paper we mean a set
of finite or infinite traces. Inspired by Lamport [9], Alpern and Schneider
[4] define safety properties over infinite traces as ones with the property
that if an infinite trace is unacceptable then there must be some finite
prefix of it which is already unacceptable, in the sense that there is no
acceptable infinite completion of it. Is there any relationship between these
two definitions of safety? We show rather indirectly that there is, by showing
that their corresponding sets of safety properties have the cardinal c of the
continuum (i.e., the cardinal of R, the set of real numbers), so there exists
some bijective mapping between the two. Unfortunately, the existence of
such a bijection is as little informative as the existence of a bijection between
the real numbers and the irrational numbers. To capture the relationship
between finite- and infinite-trace safety properties in a meaningful way, we
introduce a subset of finite-trace safety properties, called persistent, and then
construct an explicit bijection between that subset and the infinite-trace
safety properties. Interestingly, over finite traces there are as many safety
properties as unrestricted properties (finite-traces are enumerable and P(N)
is in bijection with R), while over infinite traces there are c safety properties
versus 2c unrestricted properties (infinite traces are in bijection with R).

It is also common to define safety properties as properties over both
finite and infinite traces, the intuition for the finite traces being that of
unfinished computations. For example, Lamport [10] extends the notion
of infinite-trace safety properties to properties over both finite and infinite
traces, while Schneider et al. [14, 7] give an alternative definition of safety
over finite and infinite traces, called “execution monitoring”. One immediate
technical advantage of allowing both finite and infinite traces is that one can
define prefix-closed properties. We indirectly show that prefix-closeness is
not a sufficient condition to define safety properties when infinite traces are
also allowed, by showing that there are 2c prefix-closed properties versus, as
expected, “only” c safety properties.

Another common way to specify safety properties is as “always past”
properties, that is, as properties containing only words whose finite prefixes
satisfy a given property. If P is a property on finite prefixes, then we write
�P for the “always P” safety property containing the words with prefixes
in P . We show that specifying safety properties as “always past” properties

On Safety Properties and Their Monitoring 3

is fully justified by showing that, for each of the three types of traces (finite,
infinite, and both), the “always past” properties are precisely the safety
properties as defined above. It is common to specify P using some logical
formalism, for example past time linear temporal logic (past LTL) [11]; for
example, one can specify “a before b” in past LTL as the formula b→ �· a.

The problem of monitoring safety properties is also investigated in this
paper. Since there are as many safety properties as real numbers, it is not
unexpected that some of them can be very hard to monitor. We show that
the problem of monitoring a safety property is arbitrarily hard, by showing
that it reduces to deciding membership of natural numbers to a set of natural
numbers. In particular, we can associate a safety property to any degree in
the arithmetic hierarchy as well as to any complexity class in the decidable
universe, whose monitoring is as hard as that degree or complexity class.

This paper makes three novel contributions, two technical and another
pedagogical. On the technical side, it first introduces the notion of a persistent
safety property, which appears to be the right finite-trace correspondent of
an infinite-trace safety property, and uses it to show the cardinal equivalence
of the various notions of safety property encountered in the literature. Also
on the technical side, it rigorously defines the problem of monitoring a safety
property, and it shows that it can be arbitrarily hard. On the pedagogical
side, this paper offers the first comprehensive study and uniform presentation
of safety properties and of their monitoring.

2 Preliminaries and Notations

We let N denote the set of natural numbers including 0 but excluding the
infinity symbol ∞ and let N∞ denote the set N ∪ {∞}. We also let Q
denote the set of rational numbers and R the set of real numbers; as for
natural numbers, the “∞” subscript can also be added to Q and R for the
corresponding extensions of these sets. Q+ and R+ denote the sets of strictly
positive (0 not included) rational and real numbers, respectively.

We fix a set Σ of elements called events or states. We call words in Σ?

finite traces and those in Σω infinite traces. If u ∈ Σ?∪Σω then ui is the i-th
state or event that appears in u. We call finite-trace properties sets P ⊆ Σ∗

of finite traces, infinite-trace properties sets P ⊆ Σω of infinite traces, and
just properties sets P ⊆ Σ∗ ∪ Σω of finite or infinite traces. If the finite or
infinite aspect of traces is understood from context, then we may call any
of the types or properties above just properties. We may write P (w) for a

4 Grigore Roşu

property P and a (finite or infinite) trace w whenever w ∈ P . Traces and
properties are more commonly called words and languages, respectively, in
the literature; we prefer to call them traces and properties to better reflect
the intuition that our target application is monitoring and system observance,
not formal languages. We take, however, the liberty to also call them words
and languages whenever that terminology seems more appropriate.

In some cases states can be simply identified with their names, or labels,
and specifications of properties on traces may just refer to those labels. For
example, the regular expression (s1 · s2)? specifies all those finite traces
starting with state s1 and in which states s1 and s2 alternate. In other cases,
one can think of states as sets of atomic predicates, that is, predicates that
hold in those states: if s is a state and a is an atomic predicate, then we
say that a(s) is true iff a “holds” in s; thus, if all it matters with respect
to states is which predicates hold and which do not hold in each state,
then states can be faithfully identified with sets of predicates. We prefer to
stay loose with respect to what “holds” means, because, depending on the
context, it can mean anything. In conventional software situations, atomic
predicates can be: boolean expressions over variables of the program, their
satisfaction being decided by evaluating them in the current state of the
program; or whether a function is being called or returned from; or whether
a particular variable is being written to; or whether a particular lock is
being held by a particular thread; and so on. In the presence of atomic
predicates, specifications of properties on traces typically only refer to the
atomic predicates. For example, the property “always a before b”, that is,
those traces containing no state in which b holds that is not preceded by some
state in which a holds (for example, a can stand for “authentication” and b
for “resource access”), can be expressed in LTL as the formula �(b→ �· a).

Let us recall some basic notions from formal languages, temporarily
using the consecrated terminology of “words” and “languages” instead of
traces and properties. For an alphabet Σ, let LΣ be the set of languages over
Σ, i.e., the powerset P(Σ?). By abuse of language and notation, let ∅ be the
empty language {} and ε the language containing only the empty word, {ε}.
If L1, L2 ∈ LΣ then L1 · L2 is the language {α1α2 | α1 ∈ L1 and α2 ∈ L2}.
Note that L · ∅ = ∅ · L = ∅ and L · ε = ε · L = L. If L ∈ LΣ then L? is
{α1α2 · · ·αn | n ≥ 0 and α1, α2, . . . , αn ∈ L} and ¬L is Σ? − L.

We next recall some notions related to cardinality. If A is any set, we
let |A| denote the cardinal of A, which expresses the size of A. When A is
finite, |A| is precisely the number of elements of A and we call it a finite

On Safety Properties and Their Monitoring 5

cardinal. Infinite sets can have different cardinals, called transfinite or even
infinite. For example, natural numbers N have the cardinal ℵ0 (pronounced
“aleph zero”) and real numbers R have the cardinal c, also called the cardinal
of the continuum. Two sets A and B are said to have the same cardinal,
written |A| = |B|, iff there is some bijective mapping between the two. We
write |A| ≤ |B| iff there is some injective mapping from A to B.

The famous Cantor-Bernstein-Schroeder theorem states that if |A| ≤ |B|
and |B| ≤ |A| then |A| = |B|. In other words, to show that there is some
bijection between sets A and B, it suffices to find an injection from A to B
and an injection from B to A. The two injections need not be bijections. For
example, the inclusion of the interval (0, 1) in R+ is obviously an injection,
so |(0, 1)| ≤ |R+|. On the other hand, the function x ; x/(2x + 1) from
R+ to (0, 1) (in fact its codomain is the interval (0, 1/2)) is also injective,
so |R+| ≤ |(0, 1)|. Neither of the two injective functions is bijective, yet by
the Cantor-Bernstein-Schroeder theorem there is some bijection between
(0, 1) and R+, that is, |(0, 1)| = |R+|. We will use this theorem to relate the
various types of safety properties; for example, we will show that there is an
injective function from safety properties over finite traces to safety properties
over infinite traces and another injective function in the opposite direction.
Unfortunately, the Cantor-Bernstein-Schroeder theorem is existential: it
only says that some bijection exists between the two sets, but it does not
give us an explicit bijection. Since the visualization of a concrete bijection
between different sets of safety properties can be very meaningful, we will
avoid using the Cantor-Bernstein-Schroeder theorem when we can find an
explicit bijection between two sets of safety properties.

If A is a set of cardinal α, then 2α is the cardinal of P(A), the power
set of A (the set of subsets of A). It is known that 2ℵ0 = c, that is, there
are as many sets of natural numbers as real numbers. The famous, still
unanswered continuum hypothesis, states that there is no set whose size is
strictly between ℵ0 and c; more generally, it states that, for any transfinite
cardinal α, there is no proper cardinal between α and 2α. If A and B are
infinite sets, then |A|+ |B| and |A| · |B| are the cardinals of the sets A ∪B
and A×B, respectively. An important property of transfinite cardinals is
that of absorption – the larger cardinal absorbs the smaller one: if α and
β are transfinite cardinals such that α ≤ β, then α + β = α · β = β; in
particular, c · 2c = 2c. Besides sets of natural numbers, there are several
other important sets that have cardinal c: streams (i.e., infinite sequences)
of booleans, streams of reals, non-empty closed or open intervals of reals, as

6 Grigore Roşu

well as the sets of all open or closed sets of reals, respectively.

For our purposes, if Σ is an enumerable set of states, then Σ? is also
enumerable, so it has cardinal ℵ0. Also, if |Σ| ≤ c, in particular if it is finite,
then Σω has the cardinal c, because it is equivalent to streams of states. We
can then immediately infer that the set of finite-trace properties over Σ has
cardinal 2ℵ0 = c, while the set of infinite-trace properties has cardinal 2c.

3 Safety Properties

Intuitively, a safety property of a system is one stating that the system
cannot “go wrong”, or, as Lamport [9] put it, that the “bad thing” never
happens. In other words, in order for a system to violate a safety property, it
should eventually “go wrong” or the “bad thing” should eventually happen.
There is a very strong relationship between safety properties and runtime
monitoring: if a safety property is violated by a running system, then the
violation should happen during the execution of the system, in a finite
amount of time, so a monitor for that property observing the running system
should be able to detect the violation; an additional point in the favor of
monitoring is that, if a system violates a safety property at some moment
during its execution, then there is no way for the system to continue its
execution to eventually satisfy the property, so a monitor needs not wait for
a better future once it detects a bad present/past.

State properties or assertions that need only the current state of the
running system to check whether they are violated or not, such as “no
division by 0”, or “x positive”, or no deadlock, are common safety properties;
once violated, one can stop the computation or take corrective measures.
However, there are also interesting safety properties that involve more than
one state of the system, such as “if one uses resource x then one must have
authenticated at some moment in the past”, or “any start of a process must
be followed by a stop within 10 units of time”, or “take command from
user only if the user has logged in at some moment in the past and has
not logged out since then”, etc. Needless to say that the atomic events, or
states, which form execution traces on which safety properties are defined,
can be quite abstract: not all the details of a system execution are relevant
for the particular safety property of interest. In the context of monitoring,
these relevant events or states can be extracted by means of appropriate
instrumentation of the system. For example, runtime monitoring systems
such as Tracematches [3] and MOP [6] use aspect-oriented technology to

On Safety Properties and Their Monitoring 7

“hook” relevant observation points and appropriate event filters in a system.

It is customary to define safety properties as properties over infinite
traces, to capture the intuition that they are defined for systems that can
potentially run forever, such as reactive systems. A point in favor of infinite
traces is that finite traces can be regarded as special cases of infinite traces,
namely ones that “stutter” indefinitely in their last state (see, for example,
Abadi and Lamport [1, 2]). Infinite traces are particularly desirable when one
specifies safety properties using formalisms that have infinite-trace semantics,
such as linear temporal logics or corresponding automata.

While “infinity” is a convenient abstraction that is relatively broadly-
accepted nowadays in mathematics and in theoretical foundations of com-
puter science, there is no evidence so far that a system can have an infinite-
trace behavior (we have not seen any). A disclaimer is in place here: we do
not advocate finite-traces as a foundation for safety properties; all we try
to do is to argue that, just because they can be seen as a special case of
infinite traces, finite traces are not entirely uninteresting. For example, a
safety property associated to a one-time-access key issued to a client can
be “activate, then use at most once, then close”. Using regular patterns
over the alphabet of relevant events Σ = {activate, use, close}, this safety
property can be expressed as “activate · (ε+ use) · close”; any trace that is
not a prefix of the language of this regular expression violates the property,
including any other activation or use of the key after it was closed. While
these finite-trace safety properties can easily be expressed as infinite-trace
safety properties, we believe that that would be more artificial than simply
accepting that in practice we deal with many finite-trace safety properties.

In this section we discuss various approaches to formalize safety prop-
erties and show that they are ultimately directly or indirectly equivalent.
We categorize them into finite-trace safety properties, infinite-trace safety
properties, and finite- and infinite-trace safety properties:

1. Section 3.1 defines safety properties over finite traces as prefix closed
properties. A subset of finite-trace safety properties, that we call
persistent, contain only traces that “have a future” within the property,
that is, finite traces that can be continued into other finite traces that
are also in the safety property. Persistent safety properties appear to
be the right finite-trace variant that corresponds faithfully to the more
conventional infinite-trace safety properties. Even though persistent
safety properties form a proper subset of finite-trace safety properties
and each finite-trace safety property has a largest persistent safety

8 Grigore Roşu

property included in it, we show that there is in fact a bijection between
safety properties and persistent safety properties by showing them
both to have the cardinal of the continuum c.

2. In Section 3.2, we consider two standard infinite-trace definitions of a
safety property, one based on the intuition that violating behaviors must
manifest so after a finite number of events and the other based on the
intuition of a safety property as a closed set in an appropriate topology
over infinite-traces. We show them both equivalent to persistent safety
properties over finite traces, by constructing an explicit bijection (as
opposed to using cardinality arguments and infer the existence of a
bijection); consequently, infinite-trace safety properties also have the
cardinal of the continuum c. Since closed sets of real numbers are
in a bijective correspondence with the real numbers, we indirectly
rediscover Alpern and Schneider’s result [4] stating that infinite-trace
safety properties correspond to closed sets in infinite-trace topology.

3. Section 3.3 considers safety properties defined over both finite and
infinite traces. We discuss two definitions of such safety properties
encountered in the literature, and, using cardinality arguments, we
show their equivalence with safety properties over only finite traces. In
particular, safety properties over finite and infinite traces also have the
cardinality of the continuum c. We also show that prefix-closeness is not
a sufficient condition to characterize (not even bijectively) such safety
properties, by showing that there are significantly more (2c) prefix-
closed properties over finite and infinite traces than safety properties.

Therefore, each of the classes of safety properties is in bijection with the real
numbers. Since there are so many safety properties, we can also insightfully
conclude that there is no enumerable mechanism to define all the safety
properties, because ℵ0 � c. Therefore, particular logical or syntactic recursive
formalisms can only define some of the safety properties, but not all of them.

3.1 Safety Properties over Finite Traces

One of the most common intuitions for a safety property is as a prefix-closed
set of finite traces. This captures best the intuition that once something
bad happened, there is no way to recover: if w 6∈ P then there is no u
such that P (wu), which is equivalent to saying that if P (wu) then P (w),
which is equivalent to saying that P is prefix closed. From a monitoring

On Safety Properties and Their Monitoring 9

perspective, a prefix closed property can be regarded as one containing all
the good (complete or partial) behaviors of the observed system: once a
state is encountered that does not form a good behavior together with the
previously observed states, then a violation can be reported.

Definition 1 Let prefixes : Σ? → P(Σ?) be the prefix function returning
for any finite trace all its prefixes, and let prefixes :P(Σ?) → P(Σ?) be its
corresponding closure operator that takes sets of finite traces and closes them
under prefixes.

Note that prefixes :P(Σ?)→ P(Σ?) is indeed a closure operator, that is,
it is extensive (P ⊆ prefixes(P)), monotone (P ⊆ P ′ implies prefixes(P) ⊆
prefixes(P ′)), and idempotent (prefixes(prefixes(P)) = prefixes(P)).

Definition 2 Let Safety ? be the set of finite-trace prefix-closed properties,
that is, the set {P ∈ P(Σ?) | P = prefixes(P)}. In other words, Safety ? is
the set of fixed points of the prefix operator prefixes : P(Σ?)→ P(Σ?).

The star superscript in Safety ? reflects that its traces are finite; in the
next section we will define a set Safetyω of infinite-trace safety properties.
Since prefixes(P) ∈ Safety ? for any P ∈ P(Σ∗), we can assume from here on
that prefixes :P(Σ?)→ P(Σ?) is actually a function P(Σ∗)→ Safety ?.

Example 1 Consider the one-time-access key safety property discussed
above, saying that a client can “activate, then use at most once, and then
close” the key. If Σ = {activate, use, close}, then this safety property can be
expressed as the finite set of finite words

{ε, activate, activate close, activate use, activate use close}

No other behavior is allowed. Now suppose that the safety policy is extended
to allow multiple uses of the key once activated, but still no further events
once it is closed. The extended safety property has now infinitely many
finite-traces:

{ε} ∪ {activate} · {usen | n ∈ N} · {ε, close}.

Note that this property is indeed prefix-closed. A monitor in charge of online
checking this safety property would report a violation if the first event is
not activate, or if it encounters any second activate event, or if it encounters
any event after a close event is observed, including another close event.

10 Grigore Roşu

It is interesting to note that this finite-trace safety property encompasses
both finite and infinite aspects. For example, it does not preclude behaviors in
which one sees an activate event and then an arbitrary number of use events;
use events can persist indefinitely after an activate event without violating
the property. On the other hand, once a close event is encountered, no other
event can be further seen. We will shortly see that the safety property above
properly includes the persistent safety property {ε}∪{activate usen | n ∈ N},
which corresponds to the infinite-trace safety property {activate useω}. 2

While prefix closeness seems to be the right requirement for a safety
property, one can argue that it is not sufficient. For example, in the context
of reactive systems that supposedly run forever, one may think of a safety
property as one containing safe finite traces, that is, ones for which the
reactive system can always find a way to continue its execution safely. The
definition of safety properties above includes, among other safety properties,
the empty set of traces as well as all prefix-closed finite sets of finite traces;
any reactive system will eventually violate such safety properties, so one can
say that the definition of safety property above is too generous.

We next define persistent safety properties as ones that always allow
a future; intuitively, an observed reactive system that is in a safe state
can always (if persistent enough) find a way to continue its execution to
a next safe state. This notion is reminiscent of “feasibility”, a semantic
characterization of fairness in [5], and of “machine closeness” [1, 13], also
used in the context of fairness.

Definition 3 Let PersistentSafety ? be the set of finite-trace persistent safety
properties, that is, safety properties P ∈ Safety ? such that if P (w) for some
w ∈ Σ? then there is some a ∈ Σ such that P (wa).

If a persistent safety property is non-empty, then note that it must
contain an infinite number of words. The persistency aspect of a finite-trace
safety property can be regarded, in some sense, as a liveness argument.
Indeed, assuming that it is a “good thing” for a trace to be indefinitely
continued, then a persistent safety property is one in which the “good
thing” always eventually happens. If one takes the liberty to regard “stuck”
computations as unfair, then the persistency aspect above can also be
regarded as a fairness argument.

Another way to think of persistent safety properties is as a means to refer
to infinite behaviors by means of finite traces. This view is, in some sense,

On Safety Properties and Their Monitoring 11

dual to the more common approach to regard finite behaviors as infinite
behaviors that stutter infinitely in a “last” state (see, for example, Abadi
and Lamport [1, 2] for a formalization of such last-state infinite stuttering).

Note that if Σ is a degenerate set of events containing only one element,
that is, if |Σ| = 1, then |Safety ?| = ℵ0 and |PersistentSafety ?| = 2; indeed, if
Σ = {a} then Safety ? contains precisely the finite properties a≤n = {ai | 0 ≤
i ≤ n} for each n ∈ N plus the infinite property {an | n ∈ N}, so a total of
ℵ0 + 1 = ℵ0 properties, while PersistentSafety ? contains only two properties,
namely ∅ and {an | n ∈ N}. The case when there is only one event or state in
Σ is neither interesting nor practical. Therefore, from here on in this paper
we take the liberty to assume that |Σ| ≥ 2. Since in practice Σ contains
states or events generated by a computer, for simplicity in stating some of the
subsequent results, we also take the liberty to assume that |Σ| ≤ ℵ0; therefore,
Σ can be any finite or recursively enumerable set, including N, N∞, Q, etc.,
but cannot be R or any set “larger” than R. With these assumptions, it
follows that |Σ?| = ℵ0 (finite words are recursively enumerable) and |Σω| = c
(infinite streams have the cardinality of the continuum).

Proposition 1 Safety ? and PersistentSafety ? are closed under union; Safety ?

is also closed under intersection.

Proof: The union and the intersection of prefix-closed properties is also
prefix-closed. Also, the union of persistent prefix-closed properties is also
persistent. 2

The intersection of persistent safety properties may not be persistent:

Example 2 Let Σ be the set {0, 1}. Let P = {1m | m ∈ N} and P ′ =
{ε} ∪ {10m | m ∈ N} be two persistent safety properties, where ε is the
empty word (the word containing no letters). Then P ∩ P ′ is the finite
safety property {ε, 1}, which is not persistent. If one thinks that this
happened because P ∩ P ′ does not contain any proper (i.e., non-empty)
persistent property, then one can take instead the persistent safety properties
P = {0n | n ∈ N}·{1m |m ∈ N} and P ′ = {0n | n ∈ N}·({ε}∪{10m |m ∈ N},
whose intersection is the safety property {0n | n ∈ N} ∪ {0n1 | n ∈ N}. This
safety property is not persistent because its words ending in 1 cannot persist,
but it contains the proper persistent safety property {0n | n ∈ N}. 2

Therefore, we can associate to any safety property in Safety ? a largest
persistent safety property in PersistentSafety ?, by simply taking the union

12 Grigore Roşu

of all persistent safety properties that are included in the original safety
property (the empty property is one of them, the smallest):

Definition 4 For a safety property P ∈ Safety ?, let P ◦ ∈ PersistentSafety ?

be the largest persistent safety property with P ◦ ⊆ P .

The following example shows that one may need to eliminate infinitely
many words from a safety property in order to obtain a persistent safety
property:

Example 3 Let Σ = {0, 1} and let P be the safety property {0n | n ∈
N} ∪ {0n1 | n ∈ N}. Then P ◦ can contain no word ending with a 1 and can
contain all the words of 0’s. Therefore, P ◦ = {0n | n ∈ N}. 2

Finite safety properties obviously cannot contain any non-empty persis-
tent safety property, that is, P ◦ = ∅ if P is finite. But what if P is infinite?
Is it always the case that it contains a non-empty persistent safety property?
Interestingly, it turns out that this is true if and only if Σ is finite:

Proposition 2 If Σ is finite and P is a safety property containing infinitely
many words, then P ◦ 6= ∅.

Proof: For each letter a ∈ Σ, let us define the derivative of P wrt a,
written δa(P), as the language {w ∈ Σ? | aw ∈ P}. Since

P = {ε} ∪
⋃
a∈Σ

{a} · δa(P)

since Σ is finite, and since P is infinite, it follows that there is some a1 ∈ Σ
such that δa1(P) is infinite; note that a1 ∈ P since P is prefix closed.
Similarly, since δa1(P) is infinite, there is some a2 ∈ Σ such that δa2(δa1(P))
is infinite and a1a2 ∈ P . Iterating this reasoning, we can find some an ∈ Σ
for each n ∈ N, such that a1a2 . . . an ∈ P and δan(· · · (δa2(δa1(P))) · · ·) is
infinite, that is, the set {w ∈ Σ? | a1a2 . . . anw ∈ P} is infinite. It is now
easy to see that the set {a1a2 . . . an | n ∈ N} ⊆ P is persistent. Therefore,
P ◦ 6= ∅. 2

The following example shows that Σ must indeed be finite in order for
the result above to hold:

On Safety Properties and Their Monitoring 13

Example 4 Consider some infinite set of events or states Σ. Then we can
label distinct elements in Σ with distinct labels in N ∪ {∞}. We only need
these elements from Σ; therefore, without loss of generality, we can assume
that Σ = N ∪ {∞}. Let P be the safety property

{ε} ∪ {∞n (n− 1) . . . (m+ 1)m | 0 ≤ m ≤ n+ 1},

where ε is the empty word (the word containing no letters) and n . . . (n+ 1)
is also the empty word for any n ∈ N. Then P ◦ is the empty property.
Indeed, note that any persistent safety property P ′ included in P cannot
have traces ending in 0, because those cannot be continued into other traces
in P ; since P ′ cannot contain traces ending in 0, it cannot contain traces
ending in 1 either, because such traces can only be continued with a 0 letter
into traces in P , but those traces have already been decided that cannot be
part of P ′; inductively, one can show that P ′ can contain no words ending in
letters that are natural numbers in N. Since the only trace in P ending in∞
is ∞ itself and since ∞ can only be continued with a natural number letter
into a trace in P but such trace cannot belong to P ′, we deduce that P ′ can
contain no word with letters in Σ. In particular, P ◦ must be empty. 2

Even though we know that the largest persistent safety property P ◦

included into a safety property P always exists because PersistentSafety ?

is closed under union, we would like to have a more constructive way to
obtain it. A first and obvious thing to do is to eliminate from P all the
“stuck” computations, that is, those which cannot be added any new state
to obtain a trace that is also in P . This removal step does not destroy the
prefix-closeness of P , but it may reveal new computations which are stuck.
By iteratively eliminating all the computations that get stuck in a finite
number of steps, one would expect to obtain a persistent safety property,
namely precisely P ◦. It turns out that this is indeed true only if Σ is finite.
If that is the case, then the following can also be used as an alternative
definition of P ◦:

Proposition 3 Given safety property P ∈ Safety ?, then let P− be the
property {w ∈ P | (∃a ∈ Σ)wa ∈ P}. Also, let {Pi | i ∈ N} be properties
defined as P0 = P and Pi+1 = P−i for all i ≥ 0. Then P ◦ =

⋂
i≥0 Pi

whenever Σ is finite.

Proof: It is easy to see that if P is prefix-closed then P− ⊆ P is also
prefix-closed, so P− is also a property in Safety ?. Therefore, the properties

14 Grigore Roşu

Pi form a sequence P = P0 ⊇ P1 ⊇ P2 ⊇ · · · of increasingly smaller safety
properties.

Let us first prove that
⋂
i≥0 Pi is a persistent safety property. Assume

by contradiction that for some w ∈
⋂
i≥0 Pn there is no a ∈ Σ such that

wa ∈
⋂
i≥0 Pi. In other words, we can find for each a ∈ Σ some ia ≥ 0

such that wa 6∈ Pia . Since Σ is finite, we can let i be the largest among
the natural numbers ia ∈ N for all a ∈ Σ. Since Pi ⊆ Pia for all a ∈ Σ,
it should be clear that there is no a ∈ Σ such that wa ∈ Pi, which means
that w 6∈ Pi+1. This contradicts the fact that w ∈

⋂
i≥0 Pi. Therefore,⋂

i≥0 Pi ∈ PersistentSafety ?.
Let us now prove that

⋂
i≥0 Pi is the largest persistent safety property

included in P . Let P ′ be any persistent safety property included in P . We
show by induction on i that P ′ ⊆ Pi for all i ∈ N. The base case, P ′ ⊆ P0,
is obvious. Suppose that P ′ ⊆ Pi for some i ∈ N and let w ∈ P ′. Since P ′

is persistent, there is some a ∈ Σ such that wa ∈ P ′ ⊆ Pi, which means
that w ∈ Pi+1. Since w was chosen arbitrarily, it follows that P ′ ⊆ Pi+1.
Therefore, P ′ ⊆

⋂
i≥0 Pi. 2

We next show that the finiteness of Σ was a necessary requirement in
order for the result above to hold. In other words, we show that if Σ is
allowed to be infinite then we can find a safety property P ∈ Safety ? over Σ
such that P ◦ ∈ PersistentSafety ? and

⋂
i≥0 Pi ∈ Safety ? are distinct. Since

we showed in the proof of Proposition 3 that any persistent safety property
P ′ is included in

⋂
i≥0 Pi, it follows that P ◦ ⊆

⋂
i≥0 Pi. Since P ◦ is the

largest persistent safety property included in P , one can easily show that
P ◦ = (

⋂
i≥0 Pi)

◦. Therefore, it suffices to find a safety property P such that⋂
i≥0 Pi is not persistent, which is what we do in the next example:

Example 5 Consider the safety property P over infinite Σ = N ∪ {∞}
discussed in Example 4, namely {ε} ∪ {∞n (n− 1) . . . (m+ 1)m | 0 ≤ m ≤
n+ 1}. Then one can easily show by induction on i ∈ N that the properties
Pi defined in Proposition 3 are the sets {ε}∪{∞n (n− 1) . . . (m+ 1)m | i ≤
m ≤ n+ 1}; in other words, each Pi excludes from P all the words whose
last letters are smaller than i when regarded as natural numbers. Then the
intersection

⋂
i≥0 Pi contains no trace ending in a natural number; the only

possibility left is then
⋂
i≥0 Pi = {ε,∞}, which is different from P ◦ = ∅ (see

Example 4).
One may argue that P ◦ 6=

⋂
i≥0 Pi above happened precisely because

P ◦ was empty. One can instead pick the safety property Q = {0n | n ∈
N} · P . Then one can show following the same idea as in Example 4 that

On Safety Properties and Their Monitoring 15

Q◦ = {0n | n ∈ N}. Further, one can show that Qi = {0n | n ∈ N} · Pi, so⋂
i≥0Qi = {0n | n ∈ N} ∪ {0n∞ | n ∈ N}, which is different from Q◦. 2

Persistency is reminiscent of “feasibility” introduced by Apt et al. [5] in
the context of fairness, and of “machine closeness” introduced by Abadi and
Lamport [1, 2] (see also Schneider [13]) in the context of refinement. Let us
use the terminology “machine closeness”: a property L (typically a liveness
or a fairness property) is machine closed for a property M (typically given
as the language of some state machine) iff L does not prohibit any of the
observable runtime behaviors of M , that is, iff prefixes(M) = prefixes(M ∩L);
for example, if M is the total property (i.e., every event is possible at
any moment, i.e., M = Σ?) and L is the property stating that “always
eventually event a”, then any prefix of M can be continued to obtain a
property satisfying L. Persistency is related to machine closeness in that a
safety property P is persistent if and only if P ◦ is machine closed for P . In
other words, there is nothing P can do in a finite amount of time that P ◦

cannot do. However, there is a caveat here: since liveness and fairness are
inherently infinite-trace notions, machine closeness (or feasibility) have been
introduced in the context of infinite-traces. On the other hand, persistency
makes sense only in the context of finite traces.

It is clear that PersistentSafety ? is properly included in Safety ?. Yet,
we next show that, surprisingly, there is a bijective correspondence between
Safety ? and PersistentSafety ?, both having the cardinal of the continuum:

Theorem 1 |PersistentSafety ?| = |Safety ?| = c.

Proof: Since Σ? is recursively enumerable and since 2ℵ0 = c, we can
readily infer that |PersistentSafety ?| ≤ |Safety ?| ≤ |P(Σ?)| = c.

Let us now define an injective function ϕ from the open interval of
real numbers (0, 1) to PersistentSafety ?. Since |Σ| ≥ 2, let us distinguish
two different elements in Σ and let us label them 0 and 1. For a real
r ∈ (0, 1), let ϕ(r) be the set {α | α ∈ {0, 1}? and 0.α < r}, where 0.α
is the (rational) number in (0, 1) whose decimals in binary representation
are α, and where α is the word in Σ? corresponding to α. Note that the
set ϕ(r) ∈ P(Σ?) is prefix-closed for any r ∈ (0, 1), and that if w ∈ ϕ(r)
then also w0 ∈ ϕ(r) (the latter holds since, by real numbers conventions,
0.α = 0.α0), so ϕ(r) ∈ PersistentSafety ?. Since the set of rationals with
finite number of decimals in binary representation is dense in R (i.e., it
intersects any open interval in R) and in particular in the interval (0, 1), it

16 Grigore Roşu

follows that the function ϕ : (0, 1)→ PersistentSafety ? is injective: indeed,
if r1 6= r2 ∈ (0, 1), say r1 < r2, then there is some α ∈ {0, 1}? such
that r1 < 0.α < r2, so ϕ(r1) 6= ϕ(r2). Since the interval (0, 1) has the
cardinal of the continuum c, the existence of the injective function ϕ implies
that c ≤ |PersistentSafety ?|. By the Cantor-Bernstein-Schroeder theorem it
follows that |PersistentSafety ?| = |Safety ?| = c. 2

With regards to finite-traces, persistent safety properties appear to
be more natural in the context of reactive systems than just prefix-closed
properties. Also, persistent safety properties play a technical bridge role in
the next section to show that the infinite-trace safety properties also have
the cardinal c.

3.2 Safety Properties over Infinite Traces

The finite-trace safety properties defined above, persistent or not, rely on the
intuition of a correct prefix: a safety property is identified with the set of all
its finite prefixes. In the case of a persistent safety property, each “informal”
infinite acceptable behavior is captured by its infinite set of finite prefixes.
Even though persistent safety properties appear to capture well in a finite-
trace setting the intuition of safety in the context of (infinite-trace) reactive
systems, one could argue that it does not say anything about unacceptable
infinite traces. Indeed, one may think that persistent safety properties do not
capture the intuition that if an infinite trace is unacceptable then there must
be some finite prefix of it which is already unacceptable. In this section we
show that there is in fact a bijection between safety properties over infinite
traces and persistent safety properties over finite traces as we defined them
in the previous section.

We start by extending the prefixes function to infinite traces:

Definition 5 Let prefixes : Σω → P(Σ?) be the function returning for any
infinite trace u all its finite prefixes prefixes(u), and let prefixes :P(Σω) →
P(Σ?) be its corresponding extension to sets of infinite traces.

Note that prefixes(S) ∈ PersistentSafety ? for any S ∈ P(Σω), so prefixes
is in fact a function P(Σω)→ PersistentSafety ?.

The definition of safety properties over infinite traces below appears
to be the most used definition of a safety property in the literature; at our
knowledge, it was formally introduced by Alpern and Schneider [4], but they
credit the insights of their definition to Lamport [9].

On Safety Properties and Their Monitoring 17

Definition 6 Let Safetyω be the set of infinite-trace properties Q ∈ P(Σω)
s.t.: if u 6∈ Q then there is a finite trace w ∈ prefixes(u) s.t. wv 6∈ Q for any
v ∈ Σω.

In other words, if an infinite behavior violates the safety property then
there is some finite-trace “violation threshold”; once the violation threshold
is reached, there is no chance to recover.

The following proposition can serve as an alternative and more compact
definition of Safetyω:

Proposition 4 Safetyω = {Q ∈ P(Σω) | u ∈ Q iff prefixes(u) ⊆ prefixes(Q)}.

Proof: Since u ∈ Q implies prefixes(u) ⊆ prefixes(Q), the only thing left
to show is that Q ∈ Safetyω iff “prefixes(u) ⊆ prefixes(Q) implies u ∈ Q”;
the latter is equivalent to “u 6∈ Q implies prefixes(u) 6⊆ prefixes(Q)”, which
is further equivalent to “u 6∈ Q implies there is some w ∈ prefixes(u) s.t.
w 6∈ prefixes(Q)”, which is indeed equivalent to Q ∈ Safetyω. 2

Another common intuition for safety properties over infinite traces is
as closed sets in the topology corresponding to Σω. Alpern and Schneider
captured formally this intuition for the first time in [4]; then it was used as
a convenient definition of safety by Abadi and Lamport [1, 2] among others:

Definition 7 An infinite sequence u(1), u(2), ..., of infinite traces in Σω

converges to u ∈ Σω, or u is a limit of u(1), u(2), ...,, written u = limi u
(i),

iff for all m ≥ 0 there is an n ≥ 0 such that u
(i)
1 u

(i)
2 . . . u

(i)
m = u1u2 . . . um for

all i ≥ n. If Q ∈ P(Σω) then Q, the closure of Q, is the set {limi u
(i) | u(i) ∈

Q for all i ∈ N}.

It can be easily shown that the overline closure above is indeed a closure
operator on Σω, that is, it is extensive (Q ⊆ Q), monotone (Q ⊆ Q′ implies

Q ⊆ Q′), and idempotent (Q = Q).

Definition 8 Let Safetyωlim be the set of properties {Q ∈ P(Σω) | Q = Q}.

As expected, the two infinite-trace safety property definitions are equiv-
alent; we have not found any formal proof in the literature, so for the sake
of completeness we give a simple proof here:

Proposition 5 Safetyωlim = Safetyω.

18 Grigore Roşu

Proof: All we need to prove is that for any Q ∈ P(Σω) and any u ∈ Σω,
prefixes(u) ⊆ prefixes(Q) iff u = limi u

(i) for some infinite sequence of infinite
traces u(1), u(2). If prefixes(u) ⊆ prefixes(Q) then one can find for each i ≥ 0

some u(i) ∈ Σω such that u1u2 . . . ui = u
(i)
1 u

(i)
2 . . . u

(i)
i , so for each m ≥ 0

one can pick n = m such that u1u2 . . . um = u
(i)
1 u

(i)
2 . . . u

(i)
m for all i ≥ n, so

u = limi u
(i). Conversely, if u = limi u

(i) for some infinite sequence of infinite
traces u(1), u(2), ... in Σω, then for any m ≥ 0 there is some n ≥ 0 such

that u1u2 . . . um = u
(n)
1 u

(n)
2 . . . u

(n)
m , that is, for any prefix of u there is some

u′ ∈ Q having the same prefix, that is, prefixes(u) ⊆ prefixes(Q). 2

The next result establishes the relationship between infinite-trace safety
properties and finite-trace persistent safety properties, by proposing a con-
crete bijective mapping relating the two (as opposed to using cardinality
arguments to indirectly show only the existence of such a mapping). There-
fore, there is also a bijective correspondence between safety properties over
infinite traces and the real numbers:

Theorem 2 |Safetyω| = |PersistentSafety ?| = c.

Proof: We show that there is a bijective function between the two sets
of safety properties. Recall that prefixes(S) ∈ PersistentSafety ? for any S ∈
P(Σω), that is, that prefixes is a function P(Σω) → PersistentSafety ?. Let
prefixes : Safetyω → PersistentSafety ? be the restriction of this prefix function
to Safetyω. Let us also define a function ω : PersistentSafety ? → Safetyω as
follows: ω(P) = {u ∈ Σω | prefixes(u) ⊆ P}. This function is well-defined: if
u 6∈ ω(P) then by the definition of ω(P) there is some w ∈ prefixes(u) such
that w 6∈ P ; since w ∈ prefixes(wv) for any v ∈ Σω, it follows that wv 6∈ ω(P)
for any v ∈ Σω.

We next show that prefixes and ω are inverse to each other. Let us first
show that prefixes(ω(P)) = P for any P ∈ PersistentSafety ?. The inclusion
prefixes(ω(P)) ⊆ P follows by the definition of ω(P): prefixes(u) ⊆ P for any
u ∈ ω(P). The inclusion P ⊆ prefixes(ω(P)) follows from the fact that P is a
persistent safety property: for any w ∈ P one can iteratively build an infinite
sequence v1, v2, ..., such that wv1, wv1v2, ... ∈ P , so wv1v2... ∈ ω(P). Let us
now show that ω(prefixes(Q)) = Q for any Q ∈ Safetyω. The inclusion Q ⊆
ω(prefixes(Q)) is immediate. For the other inclusion, let u ∈ ω(prefixes(Q)),
that is, prefixes(u) ⊆ prefixes(Q). Suppose by contradiction that u 6∈ Q.
Then there is some w ∈ prefixes(u) such that wv 6∈ Q for any v ∈ Σω. Since
w ∈ prefixes(u) and prefixes(u) ⊆ prefixes(Q), it follows that w ∈ prefixes(Q),

On Safety Properties and Their Monitoring 19

that is, that there is some u′ ∈ Q such that u′ = wv for some v ∈ Σω. This
contradicts the fact that wv 6∈ Q for any v ∈ Σω. Consequently, u ∈ Q.

The second part follows by Theorem 1. 2

3.3 Safety Properties over Finite and Infinite Traces

It is also common to define safety properties as properties over both finite
and infinite traces, the intuition for the finite traces being that of unfinished
computations. For example, Lamport [10] extends the notion of safety in
Definition 6 to properties over both finite and infinite traces, while Schneider
et al [14, 7] give an alternative definition of safety over finite and infinite
traces. We define both approaches shortly and then show their equivalence
and their bijective correspondence with real numbers. Before that, we argue
that the mix of finite and infinite traces is less trivial than it may appear,
by showing that there are significantly more prefix closed properties than in
the case when only finite traces were considered.

Definition 9 Let PrefixClosed ?,ω be the set of prefix-closed sets of finite and
infinite traces: for Q ⊆ Σ? ∪ Σω, Q ∈ PrefixClosed ?,ω iff prefixes(Q) ⊆ Q.
Also, let PersistentPrefixClosed ?,ω be the set of persistent prefix-closed sets
of finite and infinite traces: for Q ∈ PrefixClosed ?,ω, it is the case that
Q ∈ PersistentPrefixClosed ?,ω ⇐⇒ if Q(w) for some w ∈ Σ? then that there
is some a ∈ Σ such that Q(wa).

The next result says that there is a bijective correspondence between
prefix-closed and persistent prefix-closed properties also in the case of finite
and infinite traces, but that there are exponentially more such properties
than in the case of just finite traces:

Proposition 6 |PersistentPrefixClosed ?,ω| = |PrefixClosed ?,ω| = 2c.

Proof: We show 2c ≤ |PersistentPrefixClosed ?,ω| ≤ |PrefixClosed ?,ω| ≤ 2c,
where the middle inequality is immediate. For 2c ≤ |PersistentPrefixClosed ?,ω|,
let us define ϕ :P((0, 1))→ PersistentPrefixClosed ?,ω as

ϕ(R) =
⋃

0.α∈R
{α} ∪ prefixes(α)

where we assume for any real number in the interval (0, 1) its decimal binary
representation 0.α with α ∈ {0, 1}ω (if the number is rational then α may

20 Grigore Roşu

contain infinitely many ending 0’s), and α is the infinite trace in Σω replacing
each 0 and 1 in α by 0 and 1, respectively, where 0 and 1 are two arbitrary
but fixed distinct elements in Σ (recall that |Σ| ≥ 2. Note that ϕ(R) is
well-defined: it is clearly prefix-closed and it is also persistent because its
finite traces are exactly prefixes of infinite traces, so they admit continuations
in ϕ(R). It is easy to see that ϕ is injective. Since |(0, 1)| = c, we conclude
that 2c ≤ |PersistentPrefixClosed ?,ω|.

To show |PrefixClosed ?,ω| ≤ 2c, note that any property in PrefixClosed ?,ω

is a union of a subset in Σ? and a subset in Σω, so |PrefixClosed ?,ω| ≤
2|Σ

?| · 2|Σω |. Since |Σ?| = ℵ0, |Σω| = c, 2ℵ0 = c, and c · 2c = 2c (by absorption
of transfinite cardinals), we get that |PrefixClosed ?,ω| ≤ 2c. 2

The fact that properties in PersistentPrefixClosed ?,ω contain also infinite
traces was crucial in showing the injectivity of ϕ in the proof above. A
similar construction for the finite trace setting does not work. Indeed, if
one tries to define a function ϕ :P((0, 1)) → PersistentSafety ? as ϕ(R) =⋃

0.α∈R prefixes(α), then one can show it well-defined but cannot show it
injective: e.g., ϕ((0, 0.5)) = ϕ((0, 0.5]).

Since safety properties over finite and infinite traces are governed by
the same intuitions as safety properties over only finite or over only infinite
traces, the result above tells us that prefix closeness is not a sufficient
condition to properly capture the safety properties. Schneider [14] proposes
an additional condition in the context of his EM (execution monitoring)
framework, namely that if an infinite trace is not in the property, then there
is a finite prefix of it which is not in the property either. It is easy to see
that this additional condition is equivalent to saying that an infinite trace
is in the property whenever all its finite prefixes are in the property, which
allows us to compactly define safety properties over finite and infinite traces
in the EM style as follows:

Definition 10 Safety ?,ωEM = {Q ⊆ Σ? ∪ Σω | u ∈ Q iff prefixes(u) ⊆ Q}.

Note that Safety ?,ωEM ⊂ PrefixClosed ?,ω. We will shortly show that
Safety ?,ωEM is in fact exponentially smaller than PrefixClosed ?,ω, by showing
that |Safety ?,ωEM | = c.

The consecrated definition of a safety property in the context of both
finite and infinite traces is perhaps the one proposed by Lamport in [10],
which relaxes the one in Definition 6 by allowing u to range over both finite
and infinite traces:

Definition 11 Let Safety ?,ω be the set of finite- and infinite-trace properties

On Safety Properties and Their Monitoring 21

{Q ⊆ Σ? ∪ Σω | u 6∈ Q⇒ (∃w ∈ prefixes(u)) (∀v ∈ Σ? ∪ Σω) wv 6∈ Q}

Schneider informally stated in [14] that the two definitions of safety
above are equivalent. It is not hard to show it formally:

Proposition 7 Safety ?,ωEM = Safety ?,ω.

Proof: First note that Safety ?,ω ⊆ PrefixClosed ?,ω: if wu ∈ Q ∈ Safety ?,ω

and w 6∈ Q then there is some w′ ∈ prefixes(w), say w = w′w′′, such that
w′v 6∈ Q for any v, in particular w′w′′u 6∈ Q, which contradicts wu ∈ Q.

Safety ?,ω ⊆ Safety ?,ωEM : letQ ∈ Safety ?,ω and u ∈ Σ?∪Σω s.t. prefixes(u) ⊆
Q; if u 6∈ Q then there is some w ∈ prefixes(u) s.t. wv 6∈ Q for any v, in partic-
ular for v the empty word, that is, w 6∈ Q, which contradicts prefixes(u) ⊆ Q.

Safety ?,ωEM ⊆ Safety ?,ω: let u 6∈ Q ∈ Safety ?,ωEM ; then prefixes(u) 6⊆ Q, that
is, there is some w ∈ prefixes(u) s.t. w 6∈ Q; since Q is prefix-closed, it
follows that wv 6∈ Q for any v ∈ Σ? ∪ Σω. 2

We next show that there is a bijective correspondence between the
safety properties over finite or infinite traces above and the finite trace safety
properties in Section 3.1:

Theorem 3 |Safety ?,ω| = |Safety ?,ωEM | = |Safety ?| = c.

Proof: Safety ? ⊂ Safety ?,ωEM since the properties in Safety ?,ωEM are prefix-
closed, so |Safety ?| ≤ |Safety ?,ωEM |.

Since the functions prefixes :P(Σ?) → P(Σ?) and prefixes :P(Σω) →
P(Σ?) have actual co-domains Safety ? and PersistentSafety ?, respectively,
they can be organized as a function prefixes : Safety ?,ωEM → Safety ?. Let us
show that this function is injective. Let us assume Q 6= Q′ ∈ Safety ?,ωEM ,
say u ∈ Q and u 6∈ Q′, s.t. prefixes(Q) = prefixes(Q′). Since u ∈ Q ∈
Safety ?,ωEM it follows that prefixes(u) ⊆ prefixes(Q) ⊆ Q, which implies that
prefixes(u) ⊆ prefixes(Q′) ⊆ Q′; since Q′ ∈ Safety ?,ωEM , it follows that u ∈ Q′,
contradiction. Therefore, prefixes : Safety ?,ωEM → Safety ? is injective, which
proves that Safety ?,ωEM ≤ Safety ?.

The rest follows by Proposition 7 and Theorem 1. 2

3.4 “Always Past” Characterization of Safety Properties

Another common way to specify safety properties is by giving an arbitrary
property on finite traces, not necessarily prefix closed, and then to require
that any acceptable behavior must have all its finite prefixes in the given

22 Grigore Roşu

property. A particularly frequent case is when one specifies the property
of the finite-prefixes using the past-time fragment of linear temporal logics
(LTL). For example, Manna and Pnueli [11] call the resulting “always (past
LTL)” properties safety formulae; many other authors, including ourselves,
adopted the terminology “safety formula” from Manna and Pnueli, although
some qualify it as “LTL safety formula”. An example of an LTL safety
formula is “always (b implies eventually in the past a)”, written using LTL
notation as “�(b→ �· a)”; here the past time formula “b→ �· a” compactly
specifies all the finite-traces

{wsw′s′ | w,w′ ∈ Σ?, s, s′ ∈ Σ, a(s) and b(s′) hold}
⋃

{ws | w ∈ Σ?, s ∈ Σ, b(s) does not hold}.

In the remainder of this section we assume that the past time prefix properties
are given as ordinary sets of finite-traces (so we make abstraction of how
these properties are expressed) and show not only that the resulting “always
past” properties are safety properties, but also that any safety properties can
be expressed as an “always past” property. This holds for all the variants
of safety properties (i.e., over finite traces, over infinite traces, or over both
finite and infinite traces).

Definition 12 Let P ⊆ Σ? be any property over finite traces. Then we
define the “always past” property �P as follows:

(finite traces) {w ∈ Σ? | prefixes(w) ⊆ P}; and

(infinite traces) {u ∈ Σω | prefixes(u) ⊆ P}; and

(finite and infinite traces) {u ∈ Σ? ∪ Σω | prefixes(u) ⊆ P}.

Let Safety ?�, Safetyω� and Safety ?,ω� be the corresponding sets of properties.

Intuitively, one can regard the square “�” as a closure operator. Tech-
nically, it is not precisely a closure operator because it does not operate
on the same set: it takes finite-trace properties to any of the three types
of properties considered. Since prefixes takes properties back to finite-trace
properties, we can show the following result saying that the square is a
“closure operator via prefixes”, and that safety properties are precisely the
sets of words which are closed this way:

Proposition 8 The following hold for all three types of safety properties:

On Safety Properties and Their Monitoring 23

• �(prefixes(�P)) = �P for any P ⊆ Σ?;

• Q is a safety property iff �(prefixes(Q)) = Q.

Proof: Left as an exercise to the reader. 2

We next show that the “always past” properties are all safety properties
and, moreover, that any safety property can be expressed as an “always past”
property:

Theorem 4 The following hold:

• Safety ?� = Safety ?,

• Safetyω� = Safetyω, and

• Safety ?,ω� = Safety ?,ω.

Therefore, each of the “always past” safety properties have the cardinal c.

Proof: We prove each of the equalities by double inclusion.

Safety ?� ⊆ Safety ?. It is true because any property �P in Safety ?� is prefix-
closed.

Safety ? ⊆ Safety ?�. If P ∈ Safety ? then we claim that P = �P , so P ∈
Safety ?�. Indeed, since P is prefix-closed, prefixes(w) ⊆ P for any
w ∈ P , so w ∈ �P ; also, since w ∈ prefixes(w), it follows that for any
w ∈ �P , w ∈ P .

Safetyω� ⊆ Safetyω. Let �P be an “always past” property in Safetyω� , and
let u be an infinite trace in Σω such that u 6∈ �P . Then it follows
that prefixes(u) 6⊆ P , that is, there is some w ∈ prefixes(u) such that
w 6∈ P . Since w ∈ prefixes(wv) for any v ∈ Σω, it means that there
is no v ∈ �P such that prefixes(wv) ⊆ P , that is, there is no v ∈ Σω

such that wv ∈ �P . Therefore, �P ∈ Safetyω.

Safetyω ⊆ Safetyω� . If Q ∈ Safetyω then we claim that Q = �prefixes(Q).
The inclusion Q ⊆ �prefixes(Q) is clear, because u ∈ Q implies
prefixes(u) ⊆ prefixes(Q). For the other inclusion, note that if prefixes(u) ⊆
prefixes(Q) for some u ∈ Σω, then u must be in Q: if u 6∈ Q then by
the definition of Q ∈ Safetyω, there is some w ∈ prefixes(u) which
cannot be completed into an infinite trace in Q, which contradicts
prefixes(u) ⊆ prefixes(Q).

24 Grigore Roşu

Safety ?,ω� ⊆ Safety ?,ω. By Proposition 7, it suffices to show that Safety ?,ω� ⊆
Safety ?,ωEM . Let �P be an “always past” property in Safety ?,ω� , and let
u ∈ Σ?∪Σω such that prefixes(u) ⊆ prefixes(�P). Since prefixes(�P) ⊆
P , it follows that u ∈ �P ; therefore, �P ∈ Safety ?,ωEM .

Safety ?,ω ⊆ Safety ?,ω� . It is straightforward to see that Q ∈ Safety ?,ωEM implies
Q = �prefixes(Q).

The cardinality part follows by Theorems 1, 2, and 3. 2

Proposition 8 and Theorem 4 give yet another characterization for safety
properties over any of the three combinations of traces, namely one in the
style of the equivalent formulation of safety over infinite traces in Proposition
4: Q is a safety property iff it contains precisely the words whose prefixes
are in prefixes(Q).

4 On Monitoring Safety Properties

In this section we give yet another characterization of safety properties,
namely as monitorable properties. Specifically, we formally define a monitor
as a (possibly infinite) state machine without final states but with a partial
transition function, and then we show that safety properties are precisely
the properties that can be monitored with such monitors. We then elaborate
on the problem of defining the complexity of monitoring a safety property,
discussing some pitfalls and guiding principles, and show that monitoring a
safety property can be an arbitrarily hard problem. Finally, we give a more
compact and mathematical equivalent definition of a monitor, which may be
useful in further foundational efforts in this area.

4.1 Specifying Safety Properties as Monitors

Safety properties are difficult to work with as flat sets of finite or infinite
words, not only because they can contain infinitely many words, but also
because such a flat representation is inconvenient for further analysis. It is
important therefore to specify safety properties using formalisms that are
easier to represent and reason about. Formalisms known to be useful for
specifying safety properties include regular expressions and temporal logics,
which can be efficiently translated into finite-state machines which can then
be used as monitors. In this section we formalize the intuitive notion of a
monitor as a special state machine and give yet another characterization

On Safety Properties and Their Monitoring 25

of safety properties, namely as monitorable properties. Since monitorable
properties are completely defined by their monitors, it follows that all safety
properties can be specified by their corresponding monitors.

Recall that we work under the assumption that Σ is a set of events or
program states such that |Σ| ≤ ℵ0.

Definition 13 A Σ-monitor, or just a monitor (when Σ is understood), is
a triple M = (S, s0,M :S × Σ ⇁ S), where S is a set of states, s0 ∈ S is
the initial state, and M is a deterministic partial transition function.

Therefore, a monitor as defined above is nothing but a deterministic
state machine without final states. Moreover, the set of states is allowed to
be infinite, and the transition function has no complexity requirements (it
can even be undecidable). We could have defined monitors to be standard
state machines, but the subsequent technical developments would have been
slightly more involved. The intuition for a monitor is the expected one: the
monitor is driven by events generated by the observed program (the letters
in Σ)—each newly received event drives the monitor from its current state to
some other state, as indicated by the transition function M ; if the monitor
ever gets stuck, that is, if the transition function M is undefined on the
current state and the current event, then the monitored property is declared
violated at that point by the monitor.

For any partial function M :S × Σ ⇁ S, we obey the following com-
mon notational convention. If s ∈ S and w = w1w2 . . . wk ∈ Σ?, we
write “M(s, w) ↓” whenever M(s, w) is defined, that is, whenever M(s, w1)
and M(M(s, w1), w2) and ... and M(...(M(s, w1), w2)..., wk) are all defined,
which is nothing but only saying that M(...(M(s, w1), w2)..., wk) is defined.
If we write M(s, w) = s′ for some s′ ∈ S, then, as expected, we mean that
M(...(M(s, w1), w2)..., wk) is defined and equal to s′.

A monitor specifies a finite-trace property, an infinite-trace property, as
well as a finite- and infinite-trace property:

Definition 14 Given a monitor M = (S, s0,M :S ×Σ ⇁ S), we define the
following properties:

• L?(M) = {w ∈ Σ? | M(s0, w) ↓},

• Lω(M) = {u ∈ Σω | M(s0, w) ↓ for all w ∈ prefixes(u)}, and

• L?,ω(M) = L?(M) ∪ Lω(M).

26 Grigore Roşu

We call L?(M) the finite-trace property specified by M, call Lω(M) the
infinite-trace property specified by M, and call L?,ω(M) the finite- and
infinite-trace property specified by M. Also, we let

SM = {s ∈ S | (∃w ∈ Σ?)M(s0, w) = s}

denote the set of reachable states of M.

A monitorable property is a property which can be specified by a monitor.
We next capture this intuitive notion formally:

Definition 15 For a property P ⊆ Σ? ∪ Σω, we let Monitors(P) be the set
of monitors {M | L?,ω(M) = P}. If Monitors(P) 6= ∅ then P is called
monitorable and the elements of Monitors(P) are called monitors of P . We
define the following classes of properties:

• Monitorable ? = {P ⊆ Σ? | P monitorable},

• Monitorableω = {P ⊆ Σω | P monitorable}, and

• Monitorable ?,ω = {P ⊆ Σ? ∪ Σω | P monitorable}.

The notion of persistence can also be adapted to monitors:

Definition 16 A monitor M = (S, s0,M :S × Σ ⇁ S) is persistent iff for
any reachable state s ∈ SM, there is an a ∈ Σ such that M(s, a) ↓. Let

• PersistentMonitorable ? = {L?(M) | M persistent}

be the set of finite-trace properties monitorable by persistent monitors.

Our next goal is to show that each monitor admits a largest persistent
“submonitor”. To formalize it, we lift the conventional partial order relation
on partial functions to monitors:

Definition 17 If M1 = (S, s0,M1 :S × Σ ⇁ S) and M2 = (S, s0,M2 :S ×
Σ ⇁ S) are two monitors sharing the same states and initial state, then let
M1 vM2, read M1 a submonitor of M2, iff for any s ∈ S and any a ∈ Σ,
if M1(s, a) is defined then M2(s, a) is also defined and M2(s, a) = M1(s, a).

The above can be easily generalized to allow M1 to only have a subset
of the states of M2, but we found that generalization unnecessary so far.

The above partial-order on monitors allows us to use conventional
mathematics to obtain the largest persistent sub-monitor of a monitor:

On Safety Properties and Their Monitoring 27

Proposition 9 ({K | K v M and K persistent},v) is a complete (join)
semilattice for any monitor M.

Proof: If {Ki = (S, s0,Ki :S × Σ ⇁ S) ∈ M}i∈I is a set of persistent
monitors, then their supremum (or join) is the monitor K = (S, s0,K :S ×
Σ ⇁ S) where K(s, a) = s′ iff there is some i ∈ I such that Ki(s, a) = s′. It
is easy to see that K is a well-defined monitor and that it is persistent. 2

Since complete semilattices have maximum elements, the following
definition is fully justified:

Definition 18 For any monitor M = (S, s0,M :S ×Σ ⇁ S), we let M◦ =
(S, s0,M

◦ :S × Σ ⇁ S) be the v-maximal element of the complete lattice
({K | K vM and K persistent},v).

We next show that, as expected, there is a tight relationship between
persistent safety properties (Definition 3) and persistent canonical monitors.

Proposition 10 Let M = (S, s0,M :S ×Σ ⇁ S). Then the following hold:

• Lω(M) = Lω(M◦),

• L?(M◦) = L?(M)◦, and

• M persistent iff L?(M) persistent.

Proof: The first property can be shown by the following sequence of
equivalences: u ∈ Lω(M) iff M(s0, w) ↓ for all w ∈ prefixes(u), iff there is
some persistent monitor K vM such as K(s0, w) ↓ for all w ∈ prefixes(u),
iff M◦(s0, w) ↓ for all w ∈ prefixes(u), iff u ∈ Lω(M◦).

The second property can be shown as follows: w ∈ L?(M◦) iffM◦(s0, w) ↓,
iff there is some u ∈ Lω(M◦) such that w ∈ prefixes(u) (because M◦ is per-
sistent), iff there is some u ∈ Lω(M) such that w ∈ prefixes(u) (by the first
property), iff there is some u ∈ Σω such that w ∈ prefixes(u) ⊆ L?(M),
iff there is some u ∈ Σω such that w ∈ prefixes(u) ⊆ L?(M)◦ (because
prefixes(u) is a persistent safety property), iff w ∈ L?(M)◦.

Finally, the third property is an immediate consequence of the second,
noticing that M is persistent iff it is equal to M◦, and that L?(M) is
persistent iff it is equal to L?(M)◦. 2

Theorem 5 The following hold:

28 Grigore Roşu

• Monitorable ? = Safety ?,

• Monitorableω = Safetyω,

• Monitorable ?,ω = Safety ?,ω, and

• PersistentMonitorable ? = PersistentSafety ?.

Proof: First, note that the following hold for any monitor M:

• L?(M) ∈ Safety ?,

• Lω(M) ∈ Safetyω, and

• L?,ω(M) ∈ Safety ?,ω.

These all follow by Theorem 4: taking P in Definition 12 to be the property
{w ∈ Σ? | M(s0, w) ↓}, then �P over finite traces is precisely L?(M),
over infinite traces is precisely Lω(M), and over finite and infinite traces
is precisely L?,ω(M), so the three languages are in Safety ?�, Safetyω� , and
Safety ?,ω� , respectively. Therefore, Monitorable ? ⊆ Safety ?, Monitorableω ⊆
Safetyω, and Monitorable ?,ω ⊆ Safety ?,ω.

Second, note that we can associate a default monitor MP to any finite-
trace property P ⊆ Σ?, namely (SP , ε,MP :SP × Σ ⇁ SP), where SP =
prefixes(P), ε is the empty word, and MP (w, a) is defined iff wa ∈ prefixes(P),
and in that case MP (w, a) = wa. Moreover, it is easy to check that

• L?(MP) = {w ∈ Σ? | prefixes(w) ⊆ P} = �P (over finite traces) ,

• Lω(MP) = {u ∈ Σω | prefixes(u) ⊆ P} = �P (over infinite traces),

• L?,ω(MP) = {u ∈ Σ? ∪ Σω | prefixes(w) ⊆ P} = �P (over both finite
and infinite traces).

Since P was chosen arbitrarily, it follows then by Theorem 4 that Safety ? ⊆
Monitorable ?, Safetyω ⊆ Monitorableω, and Safety ?,ω ⊆ Monitorable ?,ω.

Finally, the equality PersistentMonitorable ? = PersistentSafety ? follows
by the first fact and by Proposition 10. 2

On Safety Properties and Their Monitoring 29

4.2 The Complexity of Monitoring a Safety Property

We here address the problem of defining the complexity of monitoring. Before
we give our definition, let us first discuss some pitfalls in defining this notion.
Our definition for the complexity of monitoring resulted as a consequence of
trying to avoid these pitfalls. Let P be a safety property.

Pitfall 1.

The complexity of monitoring P is nothing but the complexity of
checking, for an input word w ∈ Σ?, whether w ∈ prefixes(P).

This would be an easy to formulate decision problem, but, unfortunately,
does not capture well the intuition of monitoring, because it does not require
that the word w be processed incrementally, as its letters become available
from the observed system. Incremental processing of letters can make a huge
difference in both how complex monitoring is and how monitoring complexity
can be defined. For example, it is well-known that the membership problem
of a finite word to the language of an extended regular expression (ERE), i.e.,
a regular expression extended with complement operators, is a polynomial
problem (the classic algorithm by Hopcroft and Ullman [8] runs in space
O(m2 · n) and time O(m3 · n), where m is the size of the word and n that
of the expression). However, there are EREs defining safety properties
whose monitoring requires non-elementary space and time. Of course, this
non-elementary lower-bound is expressed only as a function of the size of
the ERE representing the safety property; it does not take into account the
size of the monitored trace. This leads us to our first guiding principle:

Principle 1.

The complexity of monitoring a safety property P should depend
only upon P , not upon the trace being monitored.

Indeed, since monitoring is a process that involves potentially unbounded
traces, if the complexity of monitoring a property P were expressed as a
function of the execution trace as well, then that complexity measure would
be close to meaningless in practice, because monitoring reactive systems
would have unbounded complexity. For example, consider an operating
system monitoring some safety property on how its resources are being used
by the various running processes; what one would like to know here is what
is the runtime overhead of monitoring that safety property at each relevant
event, and not the obvious fact that the more the operating system runs the
larger the total runtime overhead is.

30 Grigore Roşu

Nevertheless, one can admittedly argue that it would still be useful
to know how complex the monitoring of P against a given finite trace w
is, in terms of both the size of (some representation of) P and the size of
w; however, this is nothing but a conventional membership test decision
problem, that has nothing to do with monitoring. If one picks some arbitrary
off-the-shelf efficient algorithm for membership testing and uses that at
each newly received event on the existing finite execution trace, then one
may obtain a “monitoring” algorithm whose complexity to process each
event grows in time, as events are processed. In the context of monitoring
a reactive system, that means that eventually the monitoring process may
become unfeasible, regardless of how many resources are initially available
and regardless of how efficient the membership testing algorithm is. What
one needs in order for the monitoring process to stay feasible regardless
of how many events are observed, is a special membership algorithm that
processes each event as received and whose state or processing time does
not increase potentially unbounded as events are received. Therefore, one
needs an algorithm which, if it takes resources R to check w, then it takes
at most R+ ∆ to check a one-event continuation wa of w, where ∆ does not
depend on w. In other words, one needs a monitor for P of complexity ∆.

Pitfall 2.

P is typically infinite, so the complexity of monitoring P should
be a function of the size of some finite specification, or represen-
tation, of P .

Indeed, since Principle 1 tells us that the complexity of monitoring P is a
function of P only and not of the monitored trace, one may be tempted to
conclude that it is a function of the size of some convenient encoding of P .
There are at least two problems with this approach, that we discuss below.

• One problem is that the same property P can be specified in many
different ways as a structure of finite size; for example, it can be
specified as a regular expression, as an extended regular expression, as
a temporal logic formula, as an ordinary automaton, as a push-down
automaton, etc. These formalisms may represent P as specifications of
quite different sizes. Which is the most appropriate? It is, nevertheless,
interesting and important to study the complexity of monitoring safety
properties expressed using different specification formalisms, as a func-
tion of the property representation size, because that can give us an

On Safety Properties and Their Monitoring 31

idea of the amount of resources needed to monitor a particular specifi-
cation. However, one should be aware that such a complexity measure
is an attribute of the corresponding specification formalisms, not of the
specified property itself. Indeed, the higher this complexity measure
for a particular formalism, the higher the encoding strength of safety
properties in that formalism: for example, the complexity of monitoring
safety properties expressed as EREs is non-elementary in the size of the
original ERE, while the complexity of monitoring the same property
expressed as an ordinary regular expression is linear in the size of
the regular expression. Does that mean that one can monitor safety
properties expressed as regular expressions non-elementarily more ef-
ficiently than one can monitor safety properties expressed as EREs?
Of course not, because EREs and regular expressions have the same
expressiveness, so they specify exactly the same safety properties. All
it means is that EREs can express safety-properties non-elementarily
more compactly than ordinary regular expressions.

• Another problem with this approach is that apparently appropriate
representations of P may be significantly larger than it takes to monitor
P . One may say, for example, that, whenever possible, a natural way
to specify a particular safety property is as a finite-state machine, e.g.,
as a monitor like in Definition 13 . To be more concrete, consider that
the safety property Pn saying “every 2n-th event is a” is specified as a
monitor of 2n states that transits with any event from each state to
the next one, except for the 2n-th state, which has only one transition,
with event a, back to state 1. Therefore, the size of this representation
of Pn is Ω(2n). Assuming that each state takes n bits of storage (for
example, assume that states are exactly the binary encodings of the
numbers 1, 2, 3, ..., 2n) and that the next state can be calculated from
the current state in linear complexity with the size of the state (which
is true in our scenario), then it is clear that the actual complexity of
monitoring Pn is O(n). If the complexity of monitoring Pn were a
function of the size of the specification of Pn, then one could wrongly
conclude that the complexity of monitoring “every 2n-th event is a” is
O(2n).

Therefore, a safety property P has an inherent complexity w.r.t. monitoring,
complexity which has nothing to do with how P is represented, or encoded,
or specified. It is that inherent complexity attribute of safety properties that

32 Grigore Roşu

we are after here. From the discussion above, we draw our second guiding
principle:

Principle 2.

The monitoring complexity of a safety property P is an attribute of
P alone, not a function of the size of some adhoc representation
of P .

By Theorem 5, safety properties are precisely those properties that are
monitorable, that is, those properties P for which there are (finite-state or
not) monitors M = (S, s0,M :S ×Σ ⇁ S) whose (finite-trace, infinite-trace,
or finite- and infinite-trace—this depends upon the type of P) language
is precisely P . Any algorithm, program or system that one may come up
with to be used as a monitor for P , can be organized as a monitor of the
form M = (S, s0,M :S × Σ ⇁ S) for P . Consequently, the complexity of
monitoring P cannot be smaller than the functional complexity of the partial
function M :S ×Σ ⇁ S) corresponding to some “best” monitor M for P ; if
there are no additional restrictions, then by “best” monitor we mean the
one whose functional complexity of M is smallest. In particular, if there
is no monitor for P whose transition partial function M is decidable, then
we can safety say that the problem of monitoring P is undecidable. This
discussion leads to the following:

Pitfall 3.

The complexity of monitoring P is the functional complexity of
function M , where M = (S, s0,M :S × Σ ⇁ S) is the “best”
monitor for P .

Since safety properties are precisely the monitorable properties, this appears
to be a very natural definition for the complexity of monitoring. While the
functional complexity of the monitor function is indeed important because it
directly influences the efficiency of monitoring, it is not a sufficient measure
for the complexity of monitoring. That is because the functional complexity
of M only says how complex M is in terms of the size of its input; it does
not say anything about how large the state of the monitor can grow in time.
For example, the rewriting-based monitoring algorithm for EREs from [12],
whose states are EREs and whose transition is a derivative operation of
functional complexity O(n2) taking an ERE of size n into an ERE of size
O(n2). It would be very misleading to say that the complexity of monitoring
EREs is O(n2), because it may sound much better than it actually is: the n2

On Safety Properties and Their Monitoring 33

factor accumulates as events are processed. Any monitor for EREs, including
the one based on derivatives, eventually requires non-elementary resources
(in the size of the ERE) to process a new event.

Therefore, while the complexity of the function M being executed at
each newly received event by a monitor M is definitely a necessary and
important factor to be considered when defining the complexity of monitoring
using M, it is not sufficient. One also needs to take into account the size of
the input that is being passed to the monitoring function, that is, the size of
the monitor state together with the size of the received event. In particular,
a monitor storing all the observed trace has unbounded complexity, say
∞, even though its monitoring function has trivial complexity (e.g., the
“event storing” function has linear complexity). More generally, if a property
admits no finite-state monitor, than we’d like to say that its monitoring
complexity is ∞: indeed, for any monitor for such a property and for any
amount of resources R, there is some sequence of events that would lead
the monitor to a state that needs more than R resources to be stored or
computed. These observations lead us to the following:

Principle 3. The complexity of monitoring P is a function of
both the functional complexity of M and of the size of the states in
S, where M = (S, s0,M :S × Σ ⇁ S) is an appropriately chosen
(“best”) monitor for P .

We next follow the three principles above and derive our definition for
the complexity of monitoring a safety property P . Before that, let us first
define the complexity of monitoring a safety property using a particular
monitor for that property, or in other words, let us first define the complexity
of a monitor.

During a monitoring session using a monitor, at any moment in time
one needs to store at least one state, namely the state that the monitor is
currently in. When receiving a new event, the monitor launches its transition
function on the current state and the received input. Therefore, the (worst-
case) complexity of monitoring with M = (S, s0,M :S × Σ ⇁ S) could be
defined as

max{FC(M(s, a)) | s ∈ S, a ∈ Σ},

where FC(M(s, a)) is the functional complexity of evaluating M on state
s and event a, as a function of the sizes of s and a. In other words, the
worst-case monitoring complexity of a particular monitor is the maximal
functional complexity that its transition function has on any state and any

34 Grigore Roşu

input; this functional complexity is expressed as a function of the size of the
pair (state,event). In order for such a definition to make sense formally, one
would need to define or axiomatize the size of monitor states and the size
of events. Since in order to distinguish N elements one needs log(N) space,
we deduce that one needs at least log(|S|) space to store the state of the
monitor in its worst-case monitoring scenario (each state in S is reachable).

Definition 19 Given a monitor M = (S, s0,M :S ×Σ ⇁ S), we define the
complexity of monitoring M, written CMon(M), as the function

FC(M)(log |S|) : N→ N,

which is the “uncurried” version applied on log |S| of the worst-case functional
complexity FC(M) : N× N→ N of the partial function M as a function of
the size of the pair (state,event) being passed to it.

We assume that the complexity of monitoring a safety property P is
the worst-case complexity of monitoring it using some appropriate, “best”
monitor for P :

min{max{FC(M(s, a)) | s ∈ S, a ∈ Σ} | M = (S, s0,M) ∈ Monitors(P)},

This gives us the following:

Definition 20 We let

CMon(P) = min{FC(M) ◦ 〈log(|S|), 1Σ〉 | M = (S, s0,M) ∈ Monitors(P)}

be the complexity of monitoring a safety property P .

4.3 Monitoring Safety Properties is Arbitrarily Hard

We show that the problem of monitoring a safety property can be arbitrarily
complex. The previous section tells us that there are as many safety prop-
erties as real numbers. Therefore, it is not surprising that some of them
can be very hard or impossible to monitor. In this section we formalize
this intuitive argument. Our approach is to show that we can associate a
safety property PS to any set of natural numbers S, such that monitoring
that safety property is as hard as checking membership of arbitrary natural
numbers to S. The result then follows from the fact that checking member-
ships of natural numbers to sets of natural numbers is a problem that can
be arbitrarily complex.

On Safety Properties and Their Monitoring 35

Theorem 1 indirectly says that we can associate a persistent safety
property to any set of natural numbers (sets of natural numbers are in a
bijective correspondence with the real numbers). However, it is not clear
how that safety property looks and neither how to monitor it. We next
give a more concrete mapping from sets of natural numbers to (persistent)
safety properties and show that monitoring the property is equivalent to
testing membership to the set. It suffices to assume that Σ contains only
two elements, say Σ = {0, 1}.

Definition 21 Let P :P(N) → PersistentSafety ? be the mapping defined
as follows: for any S ⊆ N, let PS be the set 1? ∪ {1k0 | k ∈ S} · {0, 1}?.

It is easy to see that PS is a persistent safety property over finite traces.
Also, it is easy to see that the bijection in the proof of Theorem 2 associates
to PS the safety property over infinite traces 1ω ∪ {1k0 | k ∈ S} · {0, 1}ω.

Let us now investigate the problem of monitoring PS .

Proposition 11 For any S ⊆ N, monitoring PS is equivalent to deciding
membership of natural numbers to S.

Proof: If MS is an oracle deciding membership of natural numbers to S,
that is, if MS(n) is true iff n ∈ S, then one can build a monitor for PS as
follows: for a given trace, incrementally read and count the number of prefix
1’s; if no 0 is ever observed then monitor indefinitely without reporting any
violation; when a first 0 is observed, if any, ask if M(k), where k is the
number of 1’s observed; if M(k) is false, then report violation; if M(k) is
true, then continue monitoring indefinitely and never report violation. It is
clear that this is indeed a monitor for PS .

Conversely, if we had any monitor for PS then we could build a decision
procedure for membership to S as follows: given k ∈ N, send to the monitor
a sequence of k ones followed by a 0; if the monitor reports violation then
deduce that k 6∈ S; if the monitor does not report violation, then deduce
that k ∈ S. It is clear that this is a decision procedure for membership to S.

The proof works for both persistent safety properties over finite traces
and for safety properties over infinite traces. 2

The claim in the title of this section follows now from the fact that the
set S of natural numbers can be chosen so that its membership problem is
arbitrarily complex. For example, since there are as many subsets of natural
numbers as real numbers while there are only as many Turing machines as

36 Grigore Roşu

natural numbers, it follows that there are many (exponentially) more sets
of natural numbers that are not recognized by Turing machines than those
that are. In particular, there are sets of natural numbers corresponding
to any degree in the arithmetic hierarchy, i.e., to predicates A(k) of the
form (Q1k1)(Q2k2) · · · (Qnkn) R(k, k1, k2, · · · , kn), where Q1, Q2, ..., Qn are
alternating (universal or existential) quantifiers andR is a recursive/decidable
relation: for A such a predicate, let SA be the set of natural numbers
{k | A(k)}. Recall that if Q1 is ∀ then A is called a Πn property, while if Q1

is ∃ then A is called a Σn property. In particular, Σ0 = Π0 and they contain
precisely the recursive/decidable properties, Σ1 contains precisely the class
of recursively enumerable problems, Π1 contains precisely the co-recursively
enumerable problems, etc.; a standard Π2 problem is TOTALITY: given
k ∈ N, is it true that Turing machine with Gödel number k terminates on all
inputs? Since each level in the arithmetic hierarchy contains problems strictly
harder than problems on the previous layer (because Σn∪Πn (Σn+1∩Πn+1),
the arithmetic hierarchy gives us a universe of safety properties whose
monitoring can be arbitrarily hard.

Within the decidable fragment, as expected, monitoring safety proper-
ties can also have any complexity. Indeed, pick for example any NP-complete
problem and let S be the set of inputs (coded as natural numbers) for
which the problem has a positive answer; then, as explained in the proof
of Proposition 11, monitoring PS against input 1k0 is equivalent to decid-
ing membership of k to S, which is further equivalent to answering the
NP-complete problem on input k. Of course, in practice a particular (im-
plementation of a) monitor can be more complex than the corresponding
membership problem; for example, monitors corresponding to NP-complete
problems are most likely exponential. Also, note that a monitor for PS needs
not necessarily do its complex computation on an input 1k0 when it encoun-
ters the 0. It can perform intermediate computations as it reads the prefix
1’s and thus pay a lesser computational price when the 0 is encountered.
What Proposition 11 says is that the total complexity to process the input
1k0 can be no lower than the complexity of checking whether k ∈ S.

4.4 Canonical Monitors

We conclude this section with an alternative definition of a monitor, called
canonical monitor, which is more compact than our previous definition and
which appears to be sufficient to capture any safety property. We do not
make any use of this alternative definition in this paper, but it may serve as

On Safety Properties and Their Monitoring 37

a basis for further foundational endeavors in this area.
The set of states S of a monitor (S, s0,M :S×Σ ⇁ S) are typically enu-

merable, so they can be very well replaced with natural numbers. Moreover,
the initial state s0 can be encoded, by convention, as the first natural number,
0. A monitor then becomes nothing but a partial function N× Σ ⇁ N. We
therefore rightfully call these particular monitors canonical:

Definition 22 A canonical Σ-monitor is a partial function N :N× Σ ⇁ N.
Let SN = {n | (∃w)N (0, w) = n} be the states of N . As before, let

• L?(N) = {w ∈ Σ? | N (0, w) ↓},

• Lω(N) = {u ∈ Σω | N (0, w) ↓ for all w ∈ prefixes(u)}, and

• L?,ω(N) = L?(N) ∪ Lω(N).

Although the set of states S in a monitor (S, s0,M :S × Σ ⇁ S) is
allowed to have any cardinal while the states in canonical monitors are
restricted to natural numbers, it turns out that canonical monitors can in
fact express all monitorable properties:

Proposition 12 A property P ⊆ Σ? (resp. P ⊆ Σω, resp. P ∈ Σ? ∪ Σω)
is monitorable iff there is some canonical monitor N such that P = L?(N)
(resp. P = Lω(N), resp. P = L?,ω(N)).

Proof: Since any canonical monitor is a monitor, it follows that any prop-
erty specifiable by a canonical monitor is indeed monitrable. For the converse,
let P be a property monitorable by some monitorM = (S, s0,M :S×Σ ⇁ S).
Since |Σ| ≤ ℵ0, we can enumerate all the states of M that can be reached
from s0 with its transition function M . There are many different ways to
do this (e.g., in breadth-first order, in depth-first order, etc.), but these are
all ultimately irrelevant. If we let Sr = {s0, s1, s2, . . .} denote the result-
ing set of reachable states, then it is easy to first note that the monitor
Mr = (Sr, s0,M :Sr × Σ ⇁ Sr) specifies the same property P as M, and
second note that Mr specifies the same property as the canonical monitor
N :N× Σ ⇁ N defined by N (i, a) = j iff M(si, a) = sj . 2

5 Conclusion

This paper presented a comprehensive study of safety properties and of their
monitoring, using a uniform formalism and notation. Technically, the paper

38 Grigore Roşu

made two novel contributions. First, it introduced the notion of a persistent
safety property, which is the finite-trace correspondent of an infinite-trace
safety property, and used it to show the cardinal equivalence of the various
notions of safety property encountered in the literature. Second, it rigorously
defined the problem of monitoring a safety property, and it showed that it can
be arbitrarily hard. We believe that this paper establishes a firm foundation
for studying safety properties and corresponding monitors and algorithms
for various domains of interest, where requirements can be expressed using
domain-specific formalisms, such as future-time and past-time temporal
logics, context-free grammars, push-down automata, and so on.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.
In LICS, pages 165–175. IEEE Computer Society, 1988.

[2] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, 1991.

[3] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace matching with free
variables to AspectJ. In Richard P. Gabriel, editor, ACM Conference
on Object-Oriented Programming, Systems and Languages (OOPSLA),
pages 345–364. ACM Press, 2005.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. IPL, 21(4):181–
185, 1985.

[5] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness
in languages for distributed programming. In POPL, pages 189–198,
1987.

[6] Feng Chen, Marcelo D’Amorim, and Grigore Roşu. Checking and
correcting behaviors of Java programs at runtime with Java-MOP. In
RV’05, volume 144(4) of ENTCS, 2005.

[7] Kevin W. Hamlen, J. Gregory Morrisett, and Fred B. Schneider. Com-
putability classes for enforcement mechanisms. ACM Trans. Program.
Lang. Syst., 28(1):175–205, 2006.

On Safety Properties and Their Monitoring 39

[8] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[9] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Trans. Software Eng., 3(2):125–143, 1977.

[10] Leslie Lamport. Logical foundation. In M. W. Alford, J. P. Ansart,
G. Hommel, L. Lamport, B. Liskov, G. P. Mullery, F. B. Schneider,
M. Paul, and H. J. Siegert, editors, Distributed systems: Methods and
tools for specification. An advanced course, volume 190 of LNCS, pages
119–130. Springer-Verlag, 1985.

[11] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems:
safety. Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[12] G. Roşu and M. Viswanathan. Testing extended regular language
membership incrementally by rewriting. In RTA’03, volume 2706 of
LNCS. Springer, 2003.

[13] Fred B. Schneider. On Concurrent Programming. Springer, 1997.

[14] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.
Secur., 3(1):30–50, 2000.

	Introduction
	Preliminaries and Notations
	Safety Properties
	Safety Properties over Finite Traces
	Safety Properties over Infinite Traces
	Safety Properties over Finite and Infinite Traces
	``Always Past'' Characterization of Safety Properties

	On Monitoring Safety Properties
	Specifying Safety Properties as Monitors
	The Complexity of Monitoring a Safety Property
	Monitoring Safety Properties is Arbitrarily Hard
	Canonical Monitors

	Conclusion

