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Abstract. We present a sound and complete axiomatization of finite
words using matching logic. A unique feature of our axiomatization is
that it gives a shallow embedding of regular expressions into matching
logic, and a logical representation of finite automata. The semantics
of both expressions and automata are precisely captured as matching
logic formulae that evaluate to the corresponding language. Regular
expressions are matching logic formulae as is, while the embedding of
automata is a structural analog—computational aspects of automata are
captured as syntactic features. We demonstrate that our axiomatization
is sound and complete by showing that runs of Brzozowski’s procedure for
equivalence checking correspond to matching logic proofs. We propose this
as a general methodology for producing machine-checkable formal proofs,
enabled by capturing structural analogs of computational artifacts in logic.
The proofs produced can be efficiently checked by the Metamath Zero
verifier. Work presented in this paper contributes to the general scheme of
achieving verifiable computing via logical methods, where computations
are reduced to logical reasoning, encoded as machine-checkable proof
objects, and checked by a trusted proof checker.

1 Motivation

Regular expressions are a powerful lens for studying the description, classification,
and implementation of regular languages [14]. A typical presentation of the syntax
of extended regular expressions (ERE) over a finite alphabet A is as follows:

α := ∅ | ϵ | a ∈ A | α1 · α2 | α1 + α2 | α∗ | ¬α

where ϵ is the empty word, α1 · α2 is concatenation, α1 + α2 is alternation (aka
choice; sum; union), and α∗ is the Kleene star. Given a regular expression α,
L(α) is the set of finite words that match α.

A second lens, of finite automata, allows us to view these languages from a
computational perspective. [14] and [27] show that a language is regular if and
only if it is accepted by a finite automaton. Besides providing deeper insight into
the study of languages, this dual viewpoint has practical importance—some tasks
are easier to tackle when viewed under one lens than another. For example, in
the implementation of a parser, it is easier to express the desired language as an
expression, whereas an automaton may be used to recognize that language. Model
checking [13], and runtime monitoring [3] also exploit these dual perspectives.
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Much research has been carried out in the logical aspects of regular expressions,
and the computational aspects of finite automata. For example, [23] gives an
axiomatization of regular expressions in terms of eleven axioms and two inference
rules, while automata are used extensively to study complexity theory [13].

In this paper, we instead study logical aspects of automata. We present a new
axiomatization of finite words using matching logic [8]. This axiomatization
gives us a shallow embedding of regular expressions into matching logic where
expressions are matching logic formulae as is. Uniquely, we can also represent
automata as logical formulae. These formulae are a structural analog of the
automaton—computational aspects such as non-determinism and cycles are
captured using syntactic constructs such as logical disjunction and fixpoint
operators. We will compare our shallow embedding with prior work using second-
order logic, and other formalizations and axiomatizations in Section 2.

Based on our axiomatization, we propose a general technique for generating
machine checkable proofs of algorithms that manipulate finite automata. We
show that this technique is practical by generating proofs of equivalence between
regular expressions from a derivative of Brzozowski’s method [4], producing
concrete proofs in matching logic’s proof system realized in Metamath Zero [6].
As touched on in Section 7, an extension to this work may produce proofs for a
symbolic execution based compiler [25] allowing us to trust its correctness.

Work presented here contributes to the scheme of verifiable computing [2] via
logical methods: computations are reduced to logical reasoning, encoded as
machine-checkable proofs, and checked by a small trusted checker, thus reducing
our trust-base to the checker while avoiding the expense of full formal verification.

The rest of the paper is organized as follows:

– Section 2 briefly describes prior work in relation to our work.
– Section 3 reviews regular expressions, automata and related concepts.
– Section 4 introduces matching logic and presents a model of finite words.
– Section 5 shows how we may axiomatize this model, and prove equivalent

regular expressions and automata.
– Section 6 gives a brief description of our implementation.
– Section 7 lays out some future avenues for research.

Detailed proofs may be found in the companion technical report [21].

2 Related Work

Monadic Second-order-logic (MSO) over Words There is a well-known
connection between MSO and regular languages. Büchi, Elgot, and Trakhtenbrot
showed that MSO formulae and regular expressions are equally expressive [5, 11,
28]. Moreover, the transformation from expressions to formulae and back is easily
computable [26]. Models are sets of labeled positions, representing a word. The
set of models that satisfy a formula give us its language—e.g. the MSO formula



⊥ defines the empty language—no word satisfies it, while ∃x. Pax ∧ ∀y. x = y
defines the language containing the word a. Here, Pax indicates the letter at
position x is a. The concatenation of languages may be defined as:

∃X.∀y, z. ((y ∈ X ∧ z ̸∈ X) → y < z) ∧ [φα]x∈X ∧ [φβ ]x ̸∈X

Here, [φ]ψ(x) denotes the relativization of the formula φ to the formula ψ, a
transformation that forces it to apply to a particular subdomain of the model.
The translation of Kleene star is even more complex. This connection has been
used, e.g. in the verification of MSO formulae [29].

One concern about this connection between MSO and regular expressions is that
the translation of expressions is quite involved, including complex auxiliary clauses
and quantification, as well as the relativization transformation. Our goal here is
to define a shallow embedding, rather than a translation—regular expressions
are directly embedded as matching logic with minimal representational distance.

Salomaa’s Axiomatization In [23] Salomaa provides a complete axioma-
tization of regular expressions that may be used to prove equivalences. This
axiomatization is specific to unextended regular expressions and does not support
other representations such as negations in EREs, and finite automata.

Deep Embeddings of Automata and Languages There are several existing
formalizations of regular expressions and automata using mechanical theorem
provers, such as Coq [10] and Isabelle [16]. To the best of our knowledge, all
these formalizations use deep embeddings. In [10], the authors formalize regular
expressions and Brzozowski derivatives, with the denotations of regular expres-
sions defined using a membership predicate. Besides proving the soundness of
Brzozowski’s method, the authors also prove that the process of taking derivatives
terminates through a notion of finiteness called inductively finite sets. This is
something that is not likely provable in a shallow embedding like ours.

Fixpoint Reasoning in Matching Logic We consider our work an extension
of the work in [9], where the authors begin tackling the problem of fixpoint
reasoning in matching logic. Their goal was to use matching logic as unified
framework for fixpoint reasoning across domains. Using a small set of derived
matching logic inference rules, they proved various results in LTL, reachability,
and separation logic with inductive definitions. We employ many of the techniques
first described there, but in addition deal with more complex inductive proofs
and recursion schemes, besides producing formal proof certificates.

3 Preliminaries

3.1 Languages, Automata, and Expressions
A language is a set of finite sequences over letters of an alphabet. ERE and finite
automata are two ways to represent a class of languages called regular languages.



Definition 1. Let A = {a1, a2, . . . an} be a finite alphabet. Then ERE over the
alphabet A are defined using the following grammar:

α := ∅ | ϵ | a ∈ A | α · α | α+ α | α∗ | ¬α

The language that an ERE represents, denoted L(α) is defined inductively:

L(∅) = ∅ L(ϵ) = {ϵ} L(a) = {a}
L(α1 + α2) = L(α1) ∪ L(α2)
L(α1 · α2) = {w1 · w2 | w1 ∈ L(α1) and w2 ∈ L(α2)}

L(α∗) =
⋃∞
n=0 L(αn) where α0 = ϵ, and αn = α · αn−1

L(¬α) = A∗ \ L(α)

Since EREs include both complement and choice, other operators like intersection,
subsumption and equivalence are definable as notation. We denote these as
α∧β ≡ ¬(α+¬β), α→β ≡ ¬α+β, and α ↔ β ≡ (α→β)∧ (β→α) respectively.

Definition 2. A non-deterministic finite automaton (NFA) is a tuple Q =
(Q,A, δ, q0, F ), where

– Q is a finite set of states,
– A is a finite set of input symbols called the alphabet,
– δ : Q×A → P(Q) is a transition function,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of accepting states.

If range(δ) has only singleton sets, Q is a deterministic finite automaton (DFA).

3.2 Brzozowski’s Method
In [4], Brzozowski introduced an operation over languages called its derivative,
denoted δa(α). This operation “consumes” a prefix from each word in the language:

Definition 3. Given a language L and a word s, the derivative of L with respect
to s is denoted by δs(L) and is defined as {t | s · t ∈ L}.

For EREs, it turns out that the derivative can also be defined syntactically, as a
recursive function, through the following equalities:

δa(ϵ) = ∅
δa(∅) = ∅
δa(a) = ϵ

δa(b) = ∅ if a ̸= b.
δϵ(α) = α

δa(α1 + α2) = δa(α1) + δa(α1)
δa(α1 · α2) = δa(α1) · α2 + α1|ϵ · δa(α2)

δa(α∗) = δa(α) · α∗

δa(¬α) = ¬δa(α)
δa·w(α) = δw(δa(α))

Here, α |ϵ is ϵ if the language of α contains ϵ and ∅ otherwise. There are two
properties of derivatives that are important to us. First, every ERE may be
transformed into an equivalent one partitioning its language per the initial letter:



Theorem 1 (Brzozowski Theorem 4.4). Every ERE α can be expressed as:

α = α|ϵ +
∑
a∈A

a · δa(α)

Second, repeatedly taking the derivative converges:

Theorem 2 (Brzozowski Theorem 5.2). Two EREs are similar iff they are
identical modulo associativity, commutativity and idempotency of the + operator.
Every ERE has only a finite number of dissimilar derivatives.

These two properties give rise to an algorithm for converting an ERE into a DFA,
illustrated in Figure 1. The automaton is constructed starting from the root node,
identifying each node with an ERE. The root node is identified with the original
ERE. Every node has transitions for each input letter to the node identified
by the derivative. A state is accepting if its language contains the empty word,
a property easily checked as a syntactic function of the identifying ERE. This
process must terminate by Theorem 2, giving us a DFA. We can check if the
ERE is valid by simply checking that all states are accepting.

4 Matching Logic and the Standard Model of Words

In this section, we will review the syntax and semantics of matching logic and
present a matching logic model W of finite words. We show how it may be used
to embed both EREs and finite automata. Matching logic, originally proposed
in [22], was revised in [8] to include a fixpoint operator. We present a variant,
called polyadic matching logic, omitting sorts since we do not need them1.

4.1 An Overview of Matching Logic

Matching logic has three parts—a syntax of formulae, also called patterns; a
semantics, defining a satisfaction relation ⊨; and a Hilbert-style proof system,
defining a provablility relation ⊢. We will only go over the first two, and then
return to matching logic’s proof system in the Section 5.

Syntax Matching logic formulae, or patterns, are built from propositional
operators, symbol applications, variables, quantifiers, and a fixpoint binder.

Definition 4. Let EVar, SVar, Σ be disjoint countable sets. Here, EVar contains
element variables, SVar contains set variables and the signature Σ = {Σn} is an
arity-indexed set of symbols. A Σ-pattern over Σ is defined by the grammar:

φ := σ(φ1, . . . , φn) | ¬φ | φ1 ∨ φ2 | φ1 = φ2 | φ1 ⊆ φ2 | x | ∃x. φ | X | µX.φ
1 It has since been observed that sorts may be defined axiomatically, and it is unneces-

sary to build them into the logic. It is called polyadic to distinguish it from applicative
matching logic with only nullary symbols but includes an explicit application operator.



Note that we have assumed more operators than necessary—equality and subset
may be defined in terms of the remaining operators. Please refer to [8] for details.
We assume the usual notation for operators such as ⊤, ∨, ∧, ∀, ν etc. Here, ν is
the greatest fixpoint operator, defined as νX.φ ≡ ¬µX.¬φ[¬X/X].

Semantics: An Informal Overview Matching logic formulae have a pattern
matching semantics. Each pattern φ matches a set of elements |φ| in the model,
called its interpretation. As an example, consider the naturals N as a model
with symbols zero and succ. Here, the pattern ⊤ matches every natural, whereas
succ(x) matches x + 1. Conjunctions and disjunctions behave as intersections
and unions—the φ ∨ ψ matches every pattern that either φ or ψ match.

Unlike first-order logic, matching logic makes no distinction between terms and
formulae. We may write succ(x ∨ y) to match both x + 1 and y + 1. While
unintuitive at first, this syntactic flexibility allows us to shallowly embed varied
and diverse logics in matching logic with ease. Examples include first-order logic,
temporal logics, separation logic, and many more [8, 7]. Formulae are embedded
as patterns with little to no representational distance, quite often verbatim.

Patterns aren’t two valued as in first-order logic. We can restore the classic
semantics by using the set M to indicate “true” and ∅ for “false”. The operators
= and ⊆ are predicate patterns—they are either true or false. For example,
x ⊆ succ(⊤) matches every natural if x is non-zero, and no element otherwise.
This allows us to build constrained patterns of the form φstructure ∧ φconstraints.
Here, φstructure defines the structure, while φconstraints places logical constraints
on matched elements. For example, the pattern x ∧ (x ⊆ succ(⊤)) matches x,
but only if it is the successor of some element—i.e. non-zero.

Existential quantification works just as in first-order logic when working over
predicate patterns. Over more general patterns, it behaves as the union over a set
comprehension. For example, the pattern ∃x. x ∧ (x ⊆ succ(⊤)) matches every
non-zero natural. Finally, the fixpoint operator allows us to inductively build
sets, as in algebraic datatypes or inductive functions. For example, the pattern
µX. zero ∨ succ(succ(X)) defines the set of even numbers.

Semantics: A Formal Treatment We will now formally define the semantics
of matching logic. In the interest of brevity we keep things concise. For a more
detailed treatment please refer to [8]. Matching logic patterns are interpreted in
a model, consisting of a nonempty set M of elements called the universe, and an
interpretation σM : Mn → P(M) for each n-ary symbol σ ∈ Σ.

Definition 5 (Matching logic semantics). An M -valuation is a function
EVar ∪ SVar → P(M), such that each x ∈ EVar evaluates to a singleton. For a
model M and an M -valuation ρ, the interpretation of patterns is defined as:



|x|ρM = ρ(x), |X|ρM = ρ(X)
|¬φ|ρM = M \ |φ|ρM

|∃x. φ|ρM =
⋃
a∈M

|φ|M,ρ[a/x]

|φ1 ⊆ φ2|ρM =
{
M if |φ1|ρM ⊆ |φ2|ρM
∅ otherwise

|σ(φ1, . . . , φn)|ρM =
⋃

ai∈|φi|ρ
M

σM (φ1, . . . , φn)

|φ1 ∨ φ2|ρM = |φ1|ρM ∪ |φ2|ρM
|µX.φ|ρM = lfp

{
A 7→ |φ|M,ρ[A/X]

}
|φ1 = φ2|ρM =

{
M if |φ1|ρM = |φ2|ρM
∅ otherwise

For the most part, this definition is as expected. For the predicate patterns, the
corresponding patterns evaluate to M if they hold, otherwise to the empty set.
Besides these, patterns have the obvious evaluation—set and element variables
are evaluated according to ρ; logical operators are evaluated as the corresponding
set operation; symbols as defined by the model; existentials as the union for x
ranging over M ; and µ as the fixpoint of the interpretation of the pattern.

4.2 A Model of Finite Words

Let us introduce a model W as the standard model of finite words. Define
signature ΣWord containing constants ϵ and a for each a ∈ A, and a binary
symbol concat for concatenation. This model allows us to describe languages,
including those of regular expressions and finite automata as patterns.

Definition 6. Let W be a model for the signature ΣWord with universe the set
of finite sequences over alphabet A, and the following interpretations of symbols:

– ϵW := {()},
– for each letter a, aW := {(a)}, and
– concatW(s1, s2) := {s1 · s2}.

Patterns interpreted in model W define languages. ϵ is interpreted as the singleton
set containing the zero-length word, each letter as the singleton set containing the
corresponding single-letter sequence, and finally, concat as the function mapping
each pair of input words to the singleton containing their concatenation.

We may define the empty language simply as ⊥. The concatenation of two
patterns gives the concatenation of their languages. Matching logic’s disjunction
allows us to take the union for any languages, while negation gives us the
complement. Finally, we may define the Kleene closure of a language using the
fixpoint operator—µX. ϵ ∨ φ ·X gives us the Kleene closure of the language of φ.

A Shallow Embedding of Extended Regular Expressions It is easy to
define regular expressions as patterns, once we have the following notation:

∅ ≡ ⊥ (φ+ ψ) ≡ φ ∨ ψ φ∗ ≡ µX. ϵ ∨ (φ ·X)

Any ERE taken verbatim is interpreted in model W as its language.



(aa)∗ → a∗a

a(aa)∗ → a∗a + ϵ ∅ → ∅

(aa)∗ → a∗a + ϵ + ∅

a b

a

b

b
a

a, b

1

2 3

4

L: 1
pat( 1 ) : a · pat( 2 ) ∨ b · pat( 3 )

L: 2
pat( 2 ) : µY. ϵ ∨ a · pat( 4 ) ∨ b · pat( 3 )

L: 4

pat( 4 ) : ϵ ∨ a · pat( 2’ ) ∨ b · pat( 3 )

L: 3
pat( 3 ) : ...

L: 3

pat( 3’ ) : X

L: 2

pat( 2’ ) = Y

a b

a

b

a b

a

b

1

2 3

4

2’

3’

Fig. 1: A DFA Q for the ERE (aa)∗ → a∗a, and its corresponding unfolding
tree. Each node n shows its label L(n), and the pattern pat(n). Here pat( 3 ) ≡
µX. ϵ ∨ a · pat( 3’ ) ∨ b · pat( 3’ ). The pattern for the automaton, patQ, is that
of the root node pat( 1 ). Observe that its structure closely mirrors that of Q.
Accepting nodes include ϵ as a disjunct, whereas others do not. Starting a cycle
in the graph introduces a fixpoint binder, whereas completing one employs the
bound variable corresponding to that cycle. The major structural differences are
due to duplicate states to allow backlinks and nodes reachable via muliple paths.

Contrast this to the MSO translation of concatenation, shown in Section 2, and
especially of Kleene star.

Theorem 3. Let α be an ERE. Then L(α) = |α|W

4.3 Embedding Automata

While it is obvious how to embed expressions the representation of automata, be-
ing computational rather than logical, is less clear. Here, we define a pattern patQ
whose interpretation is the language of a finite automaton Q, either deterministic
or non-deterministic. Crucially, this pattern captures not just the language of
the automaton (in Section 2 we mentioned that it is possible to do this in MSO
as well), but also its structure—as shown in Table 1, structural elements of the
automata map to syntactic elements of the pattern—non-determinism maps to
logical disjunctions; cycles map to fixpoints. This allows us to represent transfor-
mations of automata, such as making a transition, union, or complementation,
as logical manipulations of this pattern in a proof system. This is imperative to
capturing the execution of an algorithm employing these in a formal proof. To
define patQ, we must first define the unfolding tree of the automaton Q.

Definition 7. For a finite automaton Q = (Q,A, δ, q0, F ), its unfolding tree
is a labeled tree (N,E,L) where N is the set of nodes, E ⊆ A × N × N is a



Computational aspect of Q Syntactic aspect of patQ
Node n is accepting ϵ is a subclause of pat(n)
Non-determinism, union of FAs Logical union
Graph cycles Fixpoint binder and its bound variable
Changing the initial node Unfolding, framing
Table 1: Structural aspects of Q become syntactic aspects of patQ. This is crucial
to capturing the traces of algorithms as proofs.

labeled edge relation, and L : N → Q is a labeling function. It is the tree defined
inductively:

– the root node has label q0,
– if a node n has label q with no ancestors also labeled q, then for each a ∈ A

and q′ ∈ δ(q, a), there is a node n′ ∈ N with L(n′) = q′, and (a, n, n′) ∈ Ea.

When Q is a DFA, we use na to denote the unique child of node n along edge a.
All leaves in this tree are labeled by states that complete a cycle in the automaton.
We define a secondary labeling function, pat : N → Pattern over this tree.

Definition 8. Let (N,E,L) be an unfolding tree for Q = (Q,A, δ, q0, F ). Let
X : Q → SVar be an injective function. Then, we define pat recursively as follows:

1. For a leaf node n, pat(n) := X(L(n)).
2. For a non-leaf node,

a. if n doesn’t have a descendant with the same label, then:

pat(n) =


ϵ ∨

∨
(a,n,n′)∈E

a · pat(n′) if L(n) is accepting.∨
(a,n,n′)∈E

a · pat(n′) otherwise.

b. if n has a descendant with the same label, then:

pat(n) =


µX(L(n)). ϵ ∨

∨
(a,n,n′)∈E

a · pat(n′) if L(n) is accepting.

µX(L(n)).
∨

(a,n,n′)∈E

a · pat(n′) otherwise.

Finally, define patQ := pat(R), where R is the root of this tree.

For nodes of the form (2b), we “name” them by binding the variable X(L(n))
using the fixpoint operator. When we return to that state we use the bound
variable to complete a cycle. The use of fixpoints allows us to clearly embody the
inductive structure as a pattern. Figure 1 shows an example of unfolding tree.
The following theorem shows that this representation of automata is as expected.

Theorem 4. Let Q be a finite automaton. Then L(Q) = |patQ|W



4.4 Embedding Brzozowski’s Derivative
Besides regular languages, other important constructs may be defined using this
model. Let us look at derivatives, needed to capture Brzozowski’s method as a
proof. The Brzozowski derivative of a language L w.r.t. a word w, is the set of
words obtainable from a word in L by removing the prefix w. Defining this is
quite simple in matching logic—for any word w and pattern ψ, we may define its
Brzozowski derivative as the pattern δw(ψ) ≡ ∃x. x ∧ (w · x ⊆ ψ).

This definition is quite interesting because it closely parallels the embedding of
separation logic’s magic wand in matching logic: φ−∗ψ ≡ ∃x. x∧ (φ ∗ x ⊆ ψ). At
first glance, this seems like a somewhat weak connection, but on closer inspection,
magic wand and derivatives are semantically quite similar—we may think of
magic wand as taking the derivative of one heap with respect to the other.

It is these connections between seemingly disparate areas of program verification
that matching logic seeks to bring to the foreground. In fact, both derivates and
magic wand generalize to a matching logic operator called contextual implication:
C ⊸ ψ ≡ ∃□.□ ∧ (C[□] ⊆ ψ) for any pattern ψ and application context C [9].
Using this notation, derivatives and magic wand become δw(φ) ≡ w · □ ⊸ φ
and φ −∗ ψ ≡ φ ∗ □ ⊸ φ respectively. This operator has proven key to many
techniques for fixpoint reasoning in matching logic, especially the derived rules
(wrap) and (unwrap) that enable applying Park induction within contexts [9]:

⊢ C[φ] → ψ
(unwrap)−−−−−−⇀↽−−−−−−

(wrap)
⊢ φ→ (C ⊸ ψ)

5 Proof Generation
In the previous section, we showed how we may capture languages as matching
logic patterns. Specifically, automata are captured as patterns that are structural
analogs. In this section, we will demonstrate how we capture runs of algorithms
that manipulate automata as proofs. In particular, we capture runs of Brzozowski’s
method using matching logic’s Hilbert style proof system.

This technique is only possible because of the structural similarity between an au-
tomata Q, and its pattern patQ. It gives us the ability to represent computational
transformations on automata as logical transformations of these patterns using
matching logic’s proof system. This section focuses on the theory and proofs
involved. The subsequent section, Section 6, will present our concrete implemen-
tation producing matching logic proofs that can be checked using Metamath
Zero. Let us first introduce matching logic’s proof system, and a theory ΓWord
within which we do our reasoning.

5.1 Matching Logic’s Proof System
The third component to matching logic is its proof system, shown in Figure 2. It
defines the provability relation, written Γ ⊢ φ, meaning that φ can be proved
using the proof system using the theory Γ as additional axioms.



(Propos. 1) φ→ (ψ → φ)
(Propos. 2) (φ→ (ψ → θ))

→((φ→ ψ) → (φ→ θ))
(Propos. 3) ((φ→ ⊥) → ⊥) → φ

(MP) φ φ→ ψ

ψ

(∃-Quant.) φ[y/x] → ∃x. φ

(Pre-fp) φ[(µX.φ)/X] → µX.φ

(Existence) ∃x. x
(Singleton) ¬(C1[x ∧ φ] ∧ C2[x ∧ ¬φ])

(Propag⊥) C[⊥] → ⊥
(Propag∨) C[φ ∨ ψ] → C[φ] ∨ C[ψ]
(Propag∃) C[∃x. φ] → ∃x.C[φ]

where x /∈ FV (C)

(Framing) φ→ ψ

C[φ] → C[ψ]

(∃-Gen.) φ→ ψ

(∃x. φ) → ψ

where x /∈ FV (ψ)

(kt) φ[ψ/X] → ψ

(µX.φ) → ψ

(Subst) φ

φ[ψ/X]

Fig. 2: Matching logic proof system. Here C,C1, C2 are application contexts, a
pattern in which a distinguished element variable □ occurs exactly once, and
only under applications. We use the notation C[φ] ≡ C[φ/□].

These proof rules fall into four categories. First, the FOL rules provide complete
FOL and propositional reasoning. The (propagation) rules allow applications
to commute through constructs with a “union” semantics, such as disjunction
and existentials. The proof rule (knaster-tarski) is an embodiement of the
Knaster-Tarski fixpoint theorem [24], and together with (prefixedpoint) corre-
spond to the Park induction rules of modal logic [18, 15]. Finally, (existence),
(singleton), and (subst) are technical rules, needed to work with variables.

5.2 A Theory of Finite Words

We may use a theory Γ , a set of patterns called axioms, to restrict the models we
consider to those in which every axiom is “true”. We say a pattern φ holds in a
model M , or that φ is valid in M , written M ⊨ φ if its interpretation is M under
all evaluations. For a theory Γ , we write M ⊨ Γ if every axiom in Γ is valid in
M . For a pattern ψ, we write Γ ⊨ ψ if for every model where M ⊨ Γ we have
M ⊨ ψ. These axioms also extend the provability relation ⊢ defined by the proof
system, allowing us to proof additional theorems. The soundness of matching
logic guarantees that each proved theorem holds in every model of the theory.

Figure 3 defines a theory, ΓWord, of finite words. The first set of the axioms
in ΓWord, (funcσ), gives each symbol a functional interpretation: for an n-ary
symbol σ, the axiom ∀x1, . . . , xn.∃y. σ(x1, . . . , xn) = y, forces the interpretation
σM to return a single output for any input. This is because element variables are
always interpreted as singleton sets. Next, the (no-conf) axioms ensure that



Signature: ϵ, _ · _, and a for each a ∈ A.
Axioms:

For each a ∈ A,

∃w. a = w (funca)
∃w. ϵ = w (funcϵ)

∀u, v. ∃w. u · v = w (func•)
∀u, v, w. (u · v) · w = u · (v · w)

(assoc)
∀x. (ϵ · x) = x (idL)
∀x. (x · ϵ) = x (idR)

For each distinct a, b ∈ A,

a ̸= b (no-confa)
ϵ ̸⊆ a ∨ b (no-confϵ)

∀u, v.ϵ = u · v →
u = ϵ ∧ v = ϵ (no-conf•-1)

∀x, y : Letter.∀u, v.
x · u = y · v → x = y ∧ u = v (no-conf•-2)

µX.ϵ ∨
∨

a∈A
a ·X (domain)

Fig. 3: ΓWord: A theory of finite words in matching logic. This theory is complete
for proving equivalence between representations of both automata and extended
regular expressions. Here, ∀x : Letter. φ is notation for ∀x. x ∈

(∨
a∈A a

)
→ φ.

interpretations of symbols are injective modulo AU—they have distinct interpre-
tations unless their arguments are equal modulo associativity of concatenation
with unit ϵ. Here, ∀x : Letter. φ is notation for ∀x. x ∈ (

∨
a∈A a) → φ, i.e. we

quantify over letters. The axioms (assoc), and (idL), and (idR) enforce the
corresponding properties and allow their use in proofs. The final axiom (domain)
defines our domain to be inductively constructed from ϵ, concatenation and
letters. It is easy to see the standard model W satisfies these axioms, giving us
the theorem, proved in the appendix [21]:

Theorem 5. W ⊨ ΓWord

The rest of this section is dedicated to showing that ΓWord is complete with respect
to both equivalence of automata and EREs—if two automata or expressions have
the same language their representations are provably equivalent.

5.3 Proving Equivalence between EREs

We are now ready to demonstrate our proof generation method. We will use
it to capture equivalence of expressions using matching logic’s Hilbert-style
proof system. Brzozowski’s method consists of two parts—converting an ERE
into a DFA Q, and checking that Q is total. Mirroring this, the proof for
equivalence between EREs ΓWord ⊢ α ↔ β has two parts. First, we prove that
ΓWord ⊢ patQ → (α ↔ β)—the language of α ↔ β subsumes that of Q. Second,
that ΓWord ⊢ patQ—the language of Q is total. We put these together using
(modus-ponens), giving us ΓWord ⊢ α ↔ β—the EREs are provably equivalent.

Proving ΓWord ⊢ patQ → (α ↔ β) To prove this, we prove a more general,
inductive, lemma:



Lemma 1. Let n be a node in the unfolding tree of the DFA Q of the regular
expression α ↔ β, where α and β have the same language. Then,

Γ ⊢ pat(n)[Λn] → δpath(n)(α ↔ β)

where,

Λn =


λ, the empty substitution if n is the root node
Λp[δpath(p)(α ↔ β)/X(p)] if n has parent p, and pat(p) binds X(p)
Λp otherwise.

The substitution Λn provides the inductive hypothesis—as we use the (knaster-
tarski) rule on each µ-binder in patQ, it replaces the bound variable with the
right-hand side of the goal. The left-hand side then becomes a disjuntion of the
form ϵ∨ a · pat(na)[Λna ] ∨ b · pat(nb)[Λnb

]. We decompose the right-hand side into
a similar structure using an important property of derivatives, proved in ΓWord:

Lemma 2. For any pattern φ, ΓWord ⊢ φ =
(
(ϵ ∧ φ) ∨

∨
a∈A a · δa(φ)

)
The derivatives are reduced to expressions using proved syntactic simplifications:

Lemma 3. For EREs α, β and distinct letters a and b, the following hold:

– ΓWord ⊢ δa(∅) = ∅; ΓWord ⊢ δa(ϵ) = ∅;
– ΓWord ⊢ δa(b) = ∅; ΓWord ⊢ δa(a) = ϵ;
– ΓWord ⊢ δa(α1 + α2) = δa(α1) + δa(α1);
– ΓWord ⊢ δa(α1 · α2) = δa(α1) · α2 + (α1 ∧ ϵ) · δa(α2);
– ΓWord ⊢ δa(¬α) = ¬δa(α);
– ΓWord ⊢ δa(α∗) = δa(α) · α∗.

Proving ΓWord ⊢ patQ The next part of the proof is a bit more technical,
requiring us to exploit the equivalence ΓWord ⊢ (µX. ϵ∨X ·φ) ↔ (µX. ϵ∨φ ·X),
and induct using the (domain) axiom. This reduces our goal to ΓWord ⊢ patQ ·
(
∨
a∈A a) → patQ, a consequence of the following inductive lemma:

Lemma 4. Let n be a node in the unfolding tree of a total DFA Q. Then,

ΓWord ⊢ pat(n)[Θn] ·
(∨

a∈A a
)

→ pat(n)[Un]

where,

Θn =


λ, the empty substitution if n is the root node
Θp[Ψp/XL(p)] if n has parent p, and pat(p) binds X(p)
Θp otherwise

Ψp = □ ·
(∨

a∈A a
)
⊸ pat(p)[Up]

Un =


λ, the empty substitution if n is the root node
Up[pat(p)[Up]/XL(p)] if n has parent p, and pat(p) binds X(p)
Up otherwise



def checkValid (φ: Regex , prev: set[Regex] = ∅) → bool:
if φ ∈ prev: return True
if ¬hasEWP (φ): return False
return checkValid ( canonicalize (δa(φ), prev ∪ {φ}))

and checkValid ( canonicalize (δb(φ), prev ∪ {φ}))

Fig. 4: The algorithm instrumented to generate proofs. The canonicalize func-
tion reduces the pattern δa(φ) to an ERE, simplifying it to a form where choice
is left-associative, and the idemopotency and unit identities have been applied.

Again, Θn gives us the inductive hypothesis, this time in the form of a contex-
tual implication. To apply it, we leverage a general property about contextual
implications: ⊢ C[C ⊸ φ] →φ, allowing us combine framing with Park induction.
This gives us our main theorem, showing that our axiomatization is complete
with respect to extended regular expressions:

Theorem 6. For any EREs α and β with the same language, ΓWord ⊢ α ↔ β.

5.4 From Expressions to Automata

Our uniform treatment of automata and expressions as patterns allows us to
apply Brzozowski’s method not just to EREs but also to more general patterns.
For example, it can be used to determinize NFAs, or take the complement, union,
or intersection of DFAs. The general principle is the same as above, except instead
of α ↔ β, we use a pattern corresponding to the operation we wish to perform.
For example, to prove that the DFA Q has the same language as the intersection
of those of A and B, we prove ΓWord ⊢ patQ ↔ (patA ∧ patB). All we need is
the ability to take the derivative of arbitrary fixpoint patterns enabled by the
equivalence ΓWord ⊢ δa(µX.φ) ↔ δa(φ[µX.φ/X]).

6 Implementation and Evaluation

In this section, we describe the implementation of our method. The algorithm
implemented is shown in Figure 4. It recursively checks that the expression
and its derivatives have the empty-word property, keeping track of when it
has already visited an expression. Here, δa(φ) represents a pattern using the
derivative notation, and not the fully simplified regular expression. This notation
is simplified away in the (also instrumented) canonicalize function that also
normalizes the choice operator to be left-associative and commutes subterms into
lexicographic order, allowing the application of the idemopotency and unit axioms.
This results in a canonnical representation of expressions modulo similarity.

The intrumentation of successful runs of this method produces a proof-hint, an
example of which is shown in Figure 5. A proof-hint is an informal artifact



(der (a+ b)∗,

a : (simpl δa((a+ b)∗), der-∗, □, α 7→ (a+ b); l 7→ a,

(simpl (δa((a+ b)) · (a+ b)∗ der-∨, □ · (a+ b)∗, . . . ,

(simpl (δa(a) + δa(b))(a+ b)∗, der-same-letter, (□ + δa(b)) · (a+ b)∗, . . . ,

(simpl (ϵ+ δa(b))(a+ b)∗, der-diff-letter( ϵ+ □) · (a+ b)∗, . . . ,

(simpl (ϵ+ ⊥)(a+ b)∗, choice-identity-right, □ · (a+ b)∗, . . . ,

(simpl ϵ · (a+ b)∗, concat-identity-left, □, . . . ,

(backlink (a+ b)∗)))))))),
b : (simpl δb((a+ b)∗), . . . ))

Fig. 5: An snippet of a proof-hint for expression (a + b)∗ produced by the in-
strumentation. Most substitutions are omitted for brevity. The lemma id der-∗
corresponds to the metamath theorem for ΓWord ⊢ δl(α∗) = δl(α) · α∗

containing all the information necessary to produce a formal proof. It is a term
defined by the following grammar.

Node := (backlink Pattern)
| (der Pattern, a : Node, b : Node)
| (simpl Pattern,LemmaID,Context,Subst,Node)

These terms are more detailed structures than unfolding trees—if we ignore the
simplification nodes, we get an unfolding tree. Each backlink and der node is
labeled by a regular expression, and correspond to the leaf and interior nodes of
an unfolding tree. In addition, der nodes have child nodes labeled by the patterns
δa(φ) and δb(φ). Note that these are patterns and not regular expressions—they
use the matching logic notation for derivative, and are distinct from the fully
simplified EREs. Each simpl node keeps track of equational simplifications needed
to reduce the derivative notation, and employs associativity, commutativity, and
idempotency of choice to reduce the expression into a canonical form, allowing
the construction of unfolding tree to terminate. The simpl nodes contain the
name of the simplification applied, the context in which it was applied, as well
as the substitutions with which it was applied. The LemmaID corresponds to a
hand-proved lemma in the Metamath Zero formalization.

To produce the proof of validity, proof-hints are used in three contexts. First,
to produce the pattern patQ; next, to produce an instance of Lemma 1; and
finally, to produce an instance of Lemma 4. For each lemma, we inductively
build up the proof from two manually proven Metamath Zero theorems, one
for the backlink node case, and another for the der node case. In the case of
Lemma 1, the simpl nodes are ignored. In the case of Lemma 4 we use them to
reduce the patterns to their canonical form. This is done by lifting a manually



Benchmark Nodes .mmb size Gen. time Check time
Manual Lemmas 307 3
(a+ b)∗ 3 2 64 3
a∗∗ → a∗ 5 4 82 3
(aa)∗ → a∗a+ ϵ 9 15 179 3
¬(⊤ · a · ⊤) + ¬(b∗) 5 5 90 3
matchl(2) / matchl(8) 19 /43 13 / 266 273 / 27483 3 / 4
matchr(2) / matchr(8) 19 /43 13 / 228 337 / 21085 3 / 4
eql(2) / eql(8) 13 /37 15 / 446 374 / 91661 3 / 5
eqr(2) / eqr(8) 13 /37 15 / 330 368 / 31489 3 / 5

Table 2: Statistics for certificate generation. Sizes are in KiB, times in milliseconds.
We show the unfolding tree nodes, proof size, generation and checking time.

proven theorem corresponding to the LemmaId into the context, and applying
the substitution, all supplied by the simpl node.

Trust Base Our trust base consists of the Metamath Zero formalization of
matching logic proof system, including its syntax and meta-operations for its
sound application such as substitution, freshness (272 lines); the theory of words
instantiated with A = {a, b}, (13 lines); and the Metamath Zero proof checker,
mm0-c. Each of these are defined in .mm0 files in our repository [20, 19]. From these,
we prove by hand 354 supporting general theorems and 163 specific to ΓWord,
such as Lemmas 1 and 4, and those about derivatives and their simplification.

Evaluation We have evaluated our work against handcrafted tests, as well as
standard benchmarks for deciding equivalence presented in [17]. Some statistics
are shown in Table 2. Each match{l,r}(n) test, by [12], is an ERE asserting
that an matches (a+ ϵ) · an, that is, an → (a+ ϵ) · an. Here αn indicates n-fold
concatenation of α, with the l version using concatenation from the left, and the
r version on the right. That is, α3 may be either ((α ·α) ·α) or (α · (α ·α)). Each
eq{l,r}(n) test, by [1], checks if a∗ and (a0 +· · ·+an)·(an)∗ are equivalent. We also
include property testing using the Hypothesis testing framework. We randomly
generate an ERE α, and check that α→ α. Our procedure does not optimize for
this, so it allows testing correctness for a variety of expressions, augmenting the
few handcrafted ones, and the structurally monotonous benchmarks.

Performance In this work, our goal was to prove that this process is feasible—
we have not focused on performance. In fact, we find the performance numbers
here are quite poor. There are a number of reasons for this.

First, we made some poor implementation choices with reference to instrumenta-
tion. The prototype uses Maude and its meta-level to produce the instrumentation.
While Maude’s search command collects all the information needed for the proof
hint, it does not make it accessible. This forced us to repeatedly enter and exit



the meta-level to collect this information, bringing the running time of, e.g.,
matchl(8) to 27 seconds, compared to 3ms when implemented idiomatically.

Another reason is that we targeted simplicity, rather than even the most basic
optimizations. For example, when multiple identical nodes occur in an unfolding
tree, we do not reuse the subproofs for identical notes in the derivative tree, and
instead re-prove the result each time. This causes a significant blow up in proof
size. We believe that a relatively small engineering effort would greatly improve
performance both in terms of proof size and generation time.

Another issue is that handling machine generated proofs is not one of Metamath
Zero’s design goals. It is intended as a human-readable language, for human-
written proofs. We would rather output a succinct binary representation of proofs.
Although Metamath Zero does allow generation of proofs directly in the mmb
format, this seems closer to an embedded systems format than a formal language.

7 Future Work and Conclusion

Study of Languages Definable in ΓWord While this paper has focused on
regular languages in ΓWord, we can define more languages. For example, the
context-free language {an · bn|n ∈ N} may be defined as an · bn ≡ µX. ϵ∨ a ·X · b.
Extending this, we may define an · bn · ci, and ai · bn · cn for n, i ∈ N as the
patterns an · bn · c∗ and a∗ · bn · cn respectively. Finally, since patterns are closed
under intersection we may define the context-sensitive language an · bn · cn ≡
(an · bn · c∗) ∧ (a∗ · bn · cn). Extensive research has been done regarding languages
definable in fragments of MSO. A corresponding effort for matching logic would
be interesting. Likely, quantifiers and fixpoint operators will allow defining most
computable languages.

Application to Control Flow Graphs (CFGs) Through the K Framework,
the transition systems of programming languages are defined in matching logic.
The CFGs of programs in these languages may be viewed as automata. Our
technique would allow formal proofs of correctness of algorithms over the CFGs
of programs, such as the semantics-based compiler in [25].
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