
Converting Parallel Code from Low-Level
Abstractions to Higher-Level Abstractions

Semih Okur1, Cansu Erdogan1 and Danny Dig2

1 University of Illinois at Urbana-Champaign, {okur2, cerdoga2}@illinois.edu
2 School of Electrical Engineering and Computer Science at Oregon State University,

digd@eecs.oregonstate.edu

Abstract. Parallel libraries continuously evolve from low-level to higher-
level abstractions. However, developers are not up-to-date with these
higher-level abstractions, thus their parallel code might be hard to read,
slow, and unscalable. Using a corpus of 880 open-source C# applica-
tions, we found that developers still use the old Thread and ThreadPool
abstractions in 62% of the cases when they use parallel abstractions.
Converting code to higher-level abstractions is (i) tedious and (ii) error-
prone. e.g., it can harm performance and silence the uncaught exceptions.
We present two automated migration tools, Taskifier and Simplifier
that work for C# code. The first tool transforms old style Thread and
ThreadPool abstractions to Task abstractions. The second tool trans-
forms code with Task abstractions into higher-level design patterns. Us-
ing our code corpus, we have applied these tools 3026 and 405 times,
respectively. Our empirical evaluation shows that the tools (i) are highly
applicable, (ii) reduce the code bloat, (iii) are much safer than manual
transformations. We submitted 66 patches generated by our tools, and
the open-source developers accepted 53.

1 Introduction

In the quest to support programmers with faster, more scalable, and readable
code, parallel libraries continuously evolve from low-level to higher-level abstrac-
tions. For example, Java 6 (2006) improved the performance and scalability of
its concurrent collections (e.g., ConcurrentHashMap), Java 7 (2011) added higher-
level abstractions such as lightweight tasks, and the next major release of Java 8
(2014) will add lambda expressions which dramatically improve the readability
of parallel code. Similarly, in the C# ecosystem, .NET 1.0 (2002) supported a
Threading library, .NET 4.0 (2010) added lightweight tasks, declarative parallel
queries, and concurrent collections, .NET 4.5 (2012) added reactive asynchronous
operations.

Low-level abstractions, such as Thread, make parallel code more complex,
less scalable, and slower. Because Thread represents an actual OS-level thread,
developers need to take into account the hardware (e.g., the number of cores)
while coding. Threads are heavyweight: each OS thread consumes a non-trivial
amount of memory, and starting and cleaning up after a retired thread takes
hundreds of thousands of CPU cycles. Even though a .NET developer can use

1

ThreadPool to amortize the cost of creating and recycling threads, she cannot
control the behavior of the computation on ThreadPool. Moreover, new platforms
such as Microsoft Surface Tablet no longer support Thread. .NET also does not
allow using the new features (e.g., async/await abstractions) with Thread and
ThreadPool. Furthermore, when developers mix old and new parallel abstrac-
tions in their code, it makes it hard to reason about the code because all these
abstractions have different scheduling rules.

Higher-level abstractions such as .NET Task, a unit of parallel work, make
the code less complex. Task gives advanced control to the developer (e.g., chain-
ing, cancellation, futures, callbacks), and is more scalable than Thread. Unlike
threads, tasks are lightweight: they have a much smaller performance overhead
and the runtime system automatically balances the workload. Microsoft now en-
courages developers to use Task in order to write scalable, hardware independent,
fast, and readable parallel code [19].

However, most developers are oblivious to the benefits brought by the higher-
level parallel abstractions. In recent empirical studies for C# [12] and Java [18],
researchers found that Thread is still the primary choice for most developers.
In this paper we find similar evidence. Our corpus of the most popular and
active 880 C# applications on Github [6] that we prepared for this paper, shows
that when developers use parallel abstractions they still use the old Thread and
ThreadPool 62% of the time, despite the availability of better options. Therefore,
a lot of code needs to be migrated from low-level parallel abstractions to their
higher-level equivalents.

The migration has several challenges. First, developers need to be aware of
the different nature of the computation. While blocking operations (e.g., I/O
operations, Thread.Sleep) do not cause a problem in Thread-based code, they
can cause a serious performance issue (called thread-starvation) in Task-based
code. Because the developers need to search for such operations deep in the call
graph of the concurrent abstraction, it is easy to overlook them. For example,
in our corpus of 880 C# applications, we found that 32% of tasks have at least
one I/O blocking operation and 9% use Thread.Sleep that blocks the thread
longer than 1 sec. Second, developers need to be aware of differences in handling
exceptions, otherwise exceptions can get lost and ineffective.

In this paper, we present an automated migration tool, Taskifier, that
transforms old style Thread and ThreadPool abstractions to higher-level Task
abstractions in C# code. During the migration, Taskifier automatically ad-
dresses the non-trivial challenges such as transforming blocking to non-blocking
operations, and preserving the exception-handling behavior.

The recent versions of parallel libraries provide even higher-level abstractions
on top of Tasks. For example, the Parallel abstraction in C# supports paral-
lel programming design patterns: data parallelism in the form of parallel loops,
and fork-join task parallelism in the form of parallel tasks co-invoked in par-
allel. These dramatically improve the readability of the parallel code. Consider
the example in Code Listing 1.1, taken from ravendb 3 application. Code List-
3 github.com/ravendb/ravendb

2

ing 1.2 represents the same code with a Parallel operation, which dramatically
reduces the code. According to a study [9] by Microsoft, these patterns may also
lead to better performance than when using Task, especially when there is a
large number of work items (Parallel reuses tasks at runtime to eliminate the
overhead).

Code 1.1 Forking Task in a loop
1 List <Task > tasks = new List <Task >();
2 for (int i = 0; i <= n; i++)
3 {
4 int copy = i;
5 Task taskHandle = new Task(
6 () => DoInsert (... , copy));
7 taskHandle . Start ();
8 tasks .Add(taskHandle);
9 }

10 Task. WaitAll (tasks);

Code 1.2 Equivalent Parallel.For
1 Parallel .For (0,n ,(i)=> DoInsert (... ,i));

Despite the advantages of the higher-level abstractions in the Parallel class,
developers rarely use them. In our corpus we found that only 6% of the applica-
tions use the Parallel operations. We contacted the developers of 10 applications
which heavily use Thread, ThreadPool, and Task abstractions, and asked why they
are not using the Parallel operations. The major reason given by developers was
lack of awareness. This indicates there is a need for tools that suggest transfor-
mations, thus educating developers about better coding practices.

Transforming the Task-related code into higher-level Parallel operations is
not trivial: it requires control- and data-flow analysis, as well as loop-carried
dependence analysis. For the example in Listing 1.1, the code does not execute
the assignment in Line 4 in parallel with itself in other iterations (only the code
in the task body – Line 6 – is executed in parallel). However, after converting
the original for into a Parallel.For, the assignment in Line 4 will also execute
in parallel with other assignments. Thus, the programmer must reason about
the loop-carried dependences.

Inspired from the problems that developers face in practice, we designed
and implemented a novel tool, Simplifier, that extracts and converts Task-
related code snippets into higher-level parallel patterns. To overcome the lack of
developer awareness, Simplifier operates in a mode where it suggests transfor-
mations as “quick-hints” in the Visual Studio IDE. If the developer agrees with
the suggestion, Simplifier automatically transforms the code.

This paper makes the following contributions:
Problem: To the best of our knowledge, this is the first paper that describes

the novel problem of migrating low-level parallel abstractions into their high-
level counterparts. We show that this problem appears in real-life applica-
tions by bringing evidence of its existence from a corpus of 880 C# open-
source applications.

Algorithms: We describe the analysis and transformation algorithms which
address the challenges of (i) migrating Thread-code into Task abstractions
and (ii) transforming Task code snippets into higher-level Parallel design
patterns.

3

Tools: We implemented our algorithms into two tools, Taskifier and Sim-
plifier. We implemented them as extensions to Visual Studio, the primary
development environment for C#.

Evaluation: We empirically evaluated our implementations by using our code
corpus of 880 C# applications. We applied Taskifier 3026 times and Sim-
plifier 405 times. First, the results show that the tools are widely applicable:
Taskifier successfully migrated 87% of Thread and ThreadPool abstractions
to Task. Simplifier successfully transformed 94% of suggested snippets to
Parallel. Second, these transformations are valuable: Taskifier reduces the
size of the converted code snippets by 2617 SLOC and Simplifier reduces
by 2420 SLOC in total. Third, the tools save the programmer from manu-
ally changing 10991 SLOC for the migration to Task and 7510 SLOC for the
migration to Parallel. Fourth, automated transformations are safer. Several
of the manually written Task-based codes by open-source developers con-
tain problems: 32% are using blocking operations in the body of the Task,
which can result in thread-starvation. Fifth, open-source developers found
our transformations useful. We submitted 66 patches generated by our tools
and the open-source developers accepted 53.

2 Background on Parallel abstractions in .NET

Our tools target the parallelism paradigms in .NET. Here we give a gentle in-
troduction to parallel programming in .NET. There are four main abstractions
that allow developers to spawn asynchronous computation.

2.1 Thread

Operating systems use processes to separate the different applications that they
are executing. Thread is the basic unit to which an operating system allocates
processor time, and more than one thread can be executing code inside one
process. Threading library in .NET provides an abstraction of threads, Thread
class since its first version, 2003.

Thread represents an actual OS-level thread, so it is expensive to use; cre-
ating a Thread needs about 1.5 MB memory space. Windows also creates many
additional data structures to work with this thread, such as a Thread Environ-
ment Block (TEB), a user mode stack, and a kernel mode stack. Bringing in
new Thread may also mean more thread context switching, which further hurts
performance. It takes about 200,000 CPU cycles to create a new thread, and
about 100,000 cycles to retire a thread.

On one hand, Thread class allows the highest degree of control; developers
can set many thread-level properties like the stack size, priority, background and
foreground. However, general-purpose apps do not need most of these low-level
features. On that matter, Microsoft discourages developers to use these features
because they are usually misused [19]. In modern C# code, developers should
rarely need to explicitly start their own thread.

4

On the other hand, Thread has some limitations. For example, a Thread con-
structor can take at most one parameter and this parameter must be of type
Object. In Code listing 1.3, a Thread is first created with its body which is
MailSlotChecker method. ParameterizedThreadStart indicates that this method
needs to take a parameter. After priority and background properties are set, the
parameter, info is created and given to Start method that asynchronously exe-
cutes the Thread. When the instance info of MailSlotThreadInfo type is passed to
Thread body, it will be forced to upcast to Object type. Developers manually need
to downcast it to MailSlotThreadInfo type in MailSlotChecker method. Hence,
this introduced verbose code like explicit casting, ParameterizedThreadStart ob-
jects. To wait for the termination of the Thread, the code invokes a blocking
method, Join.

Code 1.3 Thread usage example from Triaggo4app
Thread thread = new Thread (new ParameterizedThreadStart (MailSlotChecker));
thread . Priority = ThreadPriority . Lowest ;
thread . IsBackground = true;
MailSlotThreadInfo info = new MailSlotThreadInfo (channelName , thread);
thread . Start (info);
...
thread .Join(info);

2.2 ThreadPool

To amortize the cost of creating and destroying threads, a pool of threads can be
used to execute work items. There is no need to create or destroy threads for each
work item; the threads are recycled in the pool. .NET provides an abstraction,
the ThreadPool class, since its first version.

Although ThreadPool class is efficient to encapsulate concurrent computation,
it gives developers no control at all. Developers only submit work which will
execute at some point. The only thing they can control about the pool is its
size. ThreadPool offers no way to find out when a work item has been completed
(unlike Thread.Join()), neither a way to get the result.

Code Listing 1.4 shows two main examples of ThreadPool usage. QueueUserWorkItem
is used to put work items to the thread pool. The first example executes foo(param)
method call in the thread pool but it is unclear because of the syntax. The second
example executes the same thing with a lambda function which is introduced
in C# 4.0. Developers can directly pass the parameters to the lambda function.
However, QueueUserWorkItem only accepts a lambda function that takes one pa-
rameter: (x)=> Developers always need to provide one parameter, regardless
of whether they use it or not, thus many times they call this parameter unused
or ignored.

Code 1.4 ThreadPool example
1 ThreadPool . QueueUserWorkItem (new WaitCallback (foo), param);
2 ThreadPool . QueueUserWorkItem ((unused)=> foo(param));

4 github.com/BrewDawg/Tiraggo

5

2.3 Task

The Task abstraction was introduced in the Task Parallel Library [10] with
the release of .NET 4.0 in 2010. Task offers the best of both worlds, Thread
and ThreadPool. Task is simply a lightweight thread-like entity that encapsu-
lates an asynchronous operation. Like ThreadPool, a Task does not create its
own OS thread so it does not have high-overhead of Thread. Instead, it is exe-
cuted by a TaskScheduler; the default scheduler simply runs on the thread pool.
TaskScheduler use work-stealing techniques which are inspired by the Java fork-
join framework [8].

Unlike the ThreadPool, Task also allows developers to find out when it fin-
ishes, and (via the generic Task<T>) to return a result. A developer can call
ContinueWith() on an existing Task to make it run more code once the task
finishes; if it’s already finished, it will run the callback immediately. A devel-
oper can also synchronously wait for a task to finish by calling Wait() (or, for a
generic task, by getting the Result property). Like Thread.Join(), this will block
the calling thread until the task finishes.

The bottom line is that Task is almost always the best option; it provides a
much more powerful API and avoids wasting OS threads. All newer high-level
concurrency APIs, including PLINQ, async/await language features, and modern
asynchronous methods are all built on Task. It is becoming the foundation for
all parallelism, concurrency, and asynchrony in .NET. According to Microsoft,
Task is the only preferred way to write multithreaded and parallel code [19].

2.4 Parallel

The Parallel class is a part of the TPL library. It provides three main methods to
support parallel programming design patterns: data parallelism (via Parallel.For
and Parallel.ForEach), and task parallelism (via Parallel.Invoke).

Parallel.For method accepts three parameters: an inclusive lower-bound, an
exclusive upper-bound, and a lambda function to be invoked for each iteration.
By default, it uses the work queued to .NET thread pool to execute the loop
with as much parallelism as it can muster. Parallel.For(0, n, (i)=> foo(i));

Parallel.ForEach is a very specialized loop. Its purpose is to iterate through
a specific kind of data set, a data set made up of numbers that represent a range.
Parallel.ForEach(books, (book)=>foo(book))

Parallel.Invoke runs the operations (lambda functions) given as parameters
concurrently and waits until they are done. It parallelizes the operations, not
the data. Parallel.Invoke(()=> foo(), ()=> boo());

Parallel class works efficiently even if developers pass in an array of one mil-
lion lambda functions to Parallel.Invoke or one million iterations to Parallel.For.
This is because Parallel class does not necessarily use one Task per iteration
or operation, as that could add significantly more overhead than is necessary.
Instead, it partitions the large number of input elements into batches and then
it assigns each batch to a handful of underlying tasks. Under the covers, it tries
to use the minimum number of tasks necessary to complete the loop (for For

6

and ForEach) or operations (for Invoke) as fast as possible. Hence, Microsoft
shows that Parallel class performs faster than equivalent Task-based code in
some cases [9].

Parallel class will run iterations or operations in parallel unless this is more
expensive than running them sequentially. The runtime system handles all thread
scheduling details, including scaling automatically to the number of cores on the
host computer.

3 Motivation

Before explaining Taskifier and Simplifier, we explore the motivations of
these tools by answering two research questions:

Q1: What level of parallel abstractions do developers use?
Q2: What do developers think about parallel abstractions?

We first explain how we gather the code corpus to answer these questions. We
use the same code corpus to evaluate our tools (Section 6).

3.1 Methodology

We created a code corpus of C# apps by using our tool Collector. We chose
GitHub [6] as the source of the code corpus because Github is now the most pop-
ular open-source software repository, having surpassed Google Code and Source-
Forge.

Collector downloaded the most popular 1000 C# apps which have been
modified at least once since June 2013. Collector visited each project file in
apps in order to resolve/install dependencies by using nuget [11], the package
manager of choice for apps targeting .NET. Collector also eliminated the
apps that do not compile due to missing libraries, incorrect configurations, etc.
Collector made as many projects compilable as possible (i.e., by resolving/in-
stalling dependencies).

Collector also eliminated 72 apps that targeted old platforms (e.g., Win-
dows Phone 7, .NET Framework 3.5, Silverlight 4) because these old platforms
do not support new parallel libraries.

After all, Collector successfully retained 880 apps, comprising 42M SLOC,
produced by 1859 developers. This is the corpus that we used in our analysis
and evaluation.

In terms of the application domain, the code corpus has (1) 364 libraries or
apps for desktops, (2) 185 portable-libraries for cross-platform development, (3)
137 Windows Phone 8 apps, (4) 84 web apps (ASP.NET), (5) 56 tablet appli-
cations (Surface WinRT), and (6) 54 Silverlight apps (i.e., client-side runtime
environment like Adobe Flash). Hence, the code corpus has apps which (i) span
a wide domain and (ii) are developed by different teams with 1859 contributors
from a large and varied community.

7

Roslyn: The Microsoft Visual Studio team has released Roslyn [15], as a
community technology preview, with the goal to expose compiler-as-a-service
through APIs to other tools like code generation, analysis, and refactoring.
Roslyn has components such as Syntax, Symbol Table, Binding, and Flow Anal-
ysis APIs. We used these APIs in our tools for analyzing our code corpus.

Roslyn also provides the Services API allowing to extend Visual Studio. De-
velopers can customize and develop IntelliSense, refactorings, and code format-
ting features. We used Services API for implementing our tools.

3.2 Q1: What level of parallel abstractions do developers use?

Okur et al. [12] found out that developers prefer to use old style threading code
over Task in C# apps. We wanted to have a newer code corpus which includes
the recently updated most popular apps. We used Roslyn API to get the usage
statistics of the abstractions.

As we explained in Section 2, there are 4 main ways to offload a compu-
tation to another thread: (1) creating a Thread, (2) accessing the ThreadPool
directly, (3) creating a Task, (4) using task or data parallelism patterns with
Parallel.Invoke and Parallel.For(Each). Table 1 tabulates the usage statistics
of all these approaches.

App App%
Creating a Thread 2105 269 31%
Using ThreadPool 1244 191 22%
Creating a Task 1542 170 19%
Data Parallelism Pattern with Parallel.For(Each) 432 51 6%
Task Parallelism Pattern with Parallel.Invoke 53 12 1%

Table 1: Usage of parallel idioms. The three columns show the total number of ab-
straction instances, the total number of apps with instances of the abstraction, and the
percentage of apps with instances of the abstraction.

As we see from the table, developers use Thread and ThreadPool more than
Task and Parallel even though our code corpus contains recently updated apps
which target the latest versions of various platforms. The usage statistics of
Parallel are also very low compared to Task. These findings definitely show that
developers use low-level parallel abstractions.

Surprisingly, we also found that 96 apps use Thread, ThreadPool, and Task
at the same time. This can easily confuse the developer about the scheduling
behavior.

3.3 Q2: What do developers think about parallel abstractions?

In this question, we explore why developers use low-level abstractions and whether
they are aware of the newer abstractions.

8

We first asked the experts on parallel programming in C#. We looked for
the experts on StackOverflow [13] which is the pioneering Q&A website for
programming. We contacted the top 10 users for the tags “multithreading” and
“C#”, and got replies from 7 of them. Among them are Joe Albahari who is the
author of several books on C# (e.g., “C# in a Nutshell”), and John Skeet who
is the author of “C# in Depth” and he is regarded as one of the most influential
people on StackOverflow.

All of them agree that Task should be the only way for parallel and con-
current programming in C#. For example, one said “Tasks should be the only
construct for building multithreaded and asynchronous applications”. According
to them, Thread should be used for testing purposes: “threads are actually useful
for debugging” (e.g., guaranteeing a multithreading environment, giving names
to threads). When we asked them whether an automated tool is needed to con-
vert Thread to Task, they concluded that the existence of some challenges makes
the automation really hard. For example, one said that “I wonder whether doing
it nicely in an automated fashion is even feasible” and another said that ”Often
there’s in-brain baggage about what the thread is really doing which could affect
what the target of the refactoring should actually be”.

Second, we contacted the developers of 10 applications which heavily mix
Thread, ThreadPool, and Task. Most of them said that the legacy code uses Thread
and ThreadPool and they always prefer Task in the recent code. The developer
of the popular ravendb application [1], Oren Eini, said that “We intend to move
most stuff to tasks, but that is on an as needed basis, since the code works” and
another said that his team “never had time to change them”. This comment
indicates that the changes are tedious.

We also asked the developers whether they are aware of the Parallel class.
Developers of 7 of the apps said that they are not aware of the Parallel class
and they were surprised seeing how much it decreases the code complexity: “Is
this in .NET framework? It is the most elegant way of a parallel loop”.

4 Taskifier

We developed Taskifier, a tool that migrates Thread and ThreadPool abstrac-
tions to Task abstractions. Section 4.1 presents the algorithms for the migration
from Thread to Task. Section 4.2 presents the migration from ThreadPool to Task.
Section 4.3 presents the special cases to handle some challenges. Section 4.4
presents how developers interact with Taskifier.

4.1 Thread to Task

First, Taskifier needs to identify the Thread instances that serve as the target
of the transformation. In order to do this, Taskifier detects all variable decla-
rations of Thread type (this also includes arrays and collections of Thread). For
each Thread variable, it iterates over its method calls (e.g., thread.Start()) and
member accesses (e.g., thread.IsAlive=...). Then, Taskifier replaces each of

9

them with their correspondent from the Task class. However, corresponding op-
erations do not necessarily use the same name. For instance, thread.ThreadState,
an instance field of Thread class gets the status of the current thread. The same
goal is achieved in Task class by using task.Status.

Some low-level operations in Thread do not have a correspondent in the Task
class. For example, (1) Priority, (2) Dedicated Name, (3) Apartment State.

After studying both Thread and Task, we came up with a mapping between
them. Taskifier uses this map for the conversion. If Taskifier finds operations
that have no equivalents, it will discard the whole conversion from Thread to Task
for that specific Thread variable.

The most important transformations in the uses of Thread variables are for
creating, starting, and waiting thread operations. Code listing 1.5 shows a basic
usage of Thread and Code listing 1.6 represents the equivalent code with Task
operations. Developers create Thread by using its constructor and providing the
asynchronous computation. There are various ways of specifying the computa-
tion in the constructor such as delegates, lambda functions, and method names.
In the example below, a delegate (ThreadStart) is used. Taskifier gets the com-
putation from the delegate constructor and transforms it to a lambda function.
For starting the Thread and Task, the operation is the same and for waiting, Task
uses Wait instead of Join.

Code 1.5 Simple Thread example
ThreadStart t = new ThreadStart (doWork);
Thread thread = new Thread (t);
thread . Start ();
thread .Join ();

Code 1.6 Equivalent Task code
Task task = new Task (()= > doWork ());
task. Start ();
task.Wait ();

While the transformation in Code listings 1.5 and 1.6 shows the most ba-
sic case when the asynchronous computation does not take any arguments, the
transformation is more involved when the computation needs arguments. Con-
sider the example in Code listing 1.7. The asynchronous computation is the
one provided by the Reset method (passed in line 1), but the parameter of the
Reset method is passed as an argument to the Thread.Start in line 3. Since the
Thread.Start can only take Object arguments, the developer has to downcast
from Object to a specific type (in line 7).

Code Listing 1.8 shows the refactored version, that uses Task. Unlike in
Thread, Task.Start does not take a parameter. In order to pass the state ar-
gument e to the asynchronous computation Reset, the code uses a lambda pa-
rameter in the Task constructor. In this case, since there is no need to cast
parameters in the Reset method body, Taskifier also eliminates the casting
statement (Line 7 from Code list. 1.7).
Code 1.7 Thread with dependent operators from Dynamo5app

1 ParameterizedThreadStart threadStart = new ParameterizedThreadStart (Reset);
2 Thread workerThread = new Thread (threadStart);
3 workerThread . Start (e);
4 ...
5 private void Reset (object state)
6 {

10

7 var args = (MouseButtonEventArgs) state ;
8 OnClick (this , args);
9 ...

10 }

⇓

Code 1.8 Code listing 1.7 migrated to Task
1 Task workerTask = new Task (()= > Reset (e));
2 workerTask . Start ();
3 ...
4 private void Reset (MouseButtonEventArgs args)
5 {
6 OnClick (this , args);
7 ...
8 }

Taskifier also changes the variable names such as from workerThread to
workerTask by using the built-in Rename refactoring of Visual Studio.

After Taskifier migrates the Thread variable to Task, it makes an over-
all pass over the code again to find some optimizations. For instance, in Code
Listing 1.8, there is no statement between Task constructor and Start method.
In Task, there is a method combining these two statements: Task.Run creates a
Task, starts running it, and returns a reference to it. Taskifier replaces the
first two lines of Code listing 1.8 with only one statement: Task workerTask =
Task.Run(()=>Reset(e));

Taskifier successfully detects all variable declarations of Thread class type;
however, we noticed that developers can use threads through an anonymous in-
stance. The example below from antlrcs app [2] shows such an anonymous usage
of Thread on the left-hand side, and refactored version with Task on the right-
hand side. Taskifier replaces the Thread constructor and the start operation
with a static method of Task.

new Thread (t1.Run). Start (arg); => Task.Run (()= > t1.Run(arg));

4.2 ThreadPool to Task

The conversion from ThreadPool to Task is less complex than the previous
transformation. There is only one static method that needs to be replaced,
ThreadPool.QueueUserWorkItem(...). Taskifier simply replaces this method
with the static Task.Run method and removes the parameter casting from
Object to actual type in the beginning of the computation. The example below
illustrates the transformation.

WaitCallback operation = new WaitCallback (doSendPhoto);
ThreadPool . QueueUserWorkItem (operation , e);

⇓
Task.Run (()= > DoSendPhoto (e));

5 github.com/ikeough/Dynamo

11

4.3 Special Cases

There are three special cases that make it non-trivial to migrate from Thread
and ThreadPool to Task manually:

1. I/O or CPU-bound Thread: During manual migration, developers need
to understand whether the candidate thread for migration is I/O or CPU bound
since it can significantly affect performance. If an I/O-bound Thread is trans-
formed to a Task without special consideration, it can cause starvation for
other tasks in the thread pool. Some blocking synchronization abstractions like
Thread.Sleep can also cause starvation when the delay is long.

Manually determining whether the code in a Thread transitively calls some
blocking operations is non-trivial. It requires deep inter-procedural analysis.
When developers convert Thread to Task manually, it is easy to miss such block-
ing operations that appear deep inside the methods called indirectly from the
body of the Thread. In our code corpus, we found that 32% of tasks have at least
one I/O blocking operation and 9% use Thread.Sleep that blocks the thread
longer than 1 second. It shows that developers are not aware of this issue and
their tasks can starve.

Thus, it is crucial for Taskifier to determine whether the nature of the
computation is I/O or CPU-bound. If it finds blocking calls, it converts them
into non-blocking calls, in order to avoid starvation.

To do so, Taskifier checks each method call in the call graph of the Thread
body for a blocking I/O operation by using a blacklist approach. For this check,
we have the list of all blocking I/O operations in .NET. If Taskifier finds
a method call to a blocking I/O operation, it tries to find an asynchronous
(non-blocking) version of it. For example, if it comes across a stream.Read()
method call, Taskifier checks the members of the Stream class to see if there
is a corresponding ReadAsync method. Upon finding such an equivalent, it gets
the same parameters from the blocking version. ReadAsync is now non-blocking
and returns a future Task to get the result when it is available. After finding the
corresponding non-blocking operation, Taskifier simply replaces the invocation
with the new operation and makes it await’ed. When a Task is awaited in an await
expression, the current method is paused and control is returned to the caller.
The caller is the thread pool so the thread pool will choose another task instead
of busy-waiting. When the await’ed Task’s background operation is completed,
the method is resumed from right after the await expression.

var string = stream .Read (); => var string = await stream . ReadAsync ();

If Taskifier cannot find asynchronous versions for all blocking I/O op-
erations in the Thread body, it does not take any risks of blocking the cur-
rent thread and, instead, it inserts a flag to the Task creation statement:
TaskCreationOptions.LongRunning. This flag forces the creation of a new thread

12

outside the pool. This has the same behavior as the original code, i.e., it explic-
itly create a new Thread. But now the code still enjoys the many other benefits
of using Tasks, such as compatibility with the newer libraries and brevity.

In the case of Thread.Sleep, Taskifier replaces this blocking operation with
a timer-based non-blocking version, await Task.Delay. Upon seeing this state-
ment, the thread in the thread pool does not continue executing its task and
another task from the thread pool is chosen (cooperative-blocking).

2. Foreground and Background Thread: By default, a Thread runs in the
foreground, whereas threads from ThreadPool and Task run in the background.
Background threads are identical to foreground threads with one exception: a
background thread does not keep the managed execution environment running.
Thread is created on the foreground by default but can be made background by
“thread.IsBackground = true” statement. If a developer wants to execute Task
in a foreground thread, she has to add some extra-code in the body of Task.

Since the intention is to preserve the original behavior as much as possible,
Taskifier should do the transformations accordingly. In the example below,
the program will not terminate until the method, LongRunning reaches the end.
However, when this Thread is turned into Task without any special consideration,
the program will not wait for this method and it will immediately terminate.
While it is easy to diagnose the problem in this simple example, it can be really
hard for a fairly complex app.
public static void main(String args [])
{

...
new Thread (LongRunning);

}

Although, in some cases, Taskifier is able to tell from the context if the
thread is foreground or background, it is usually hard to tell if the developer re-
ally intended to create a foreground thread. Developers usually do not put much
thought into a thread’s being a foreground thread when created. We chose to im-
plement our algorithm for Taskifier to transform Thread to Task by default to
work in the background. The developer still has the option of telling Taskifier
to create foreground tasks; however, the reasoning behind going with the back-
ground by default is that when we contacted the developers, most of them did
not want the Task to work in the foreground even though they created foreground
threads.

3. Exception Handling: Another difference between Thread and Task is the
mechanism of unhandled exceptions. An unhandled exception in Thread and
ThreadPool abstractions results in termination of the application. However, un-
handled exceptions that are thrown by user code that is running inside Task
abstractions are propagated back to the joining thread when the static or in-
stance Task.Wait methods are used. For a thrown exception to be effective in a
Task, that Task should be waited; otherwise, the exceptions will not cause the
termination of the process.

13

A simple direct migration from Thread and ThreadPool to Task can make the
unhanded exceptions silenced so developers will not notice them. This situation
may destroy the reliability and error-recovery mechanism that developers put
into the original program.

To take care of this, Taskifier adds a method call to make sure exception
handling is preserved and unhandled exceptions are not ignored when non-waited
threads are migrated to tasks. During the transformation of the example below,
Taskifier adds a new method, FailFastOnException to the project just once.
Other instances of Task in the project can use this method. However, this stage
is optional and can be enabled by the user upon request.
new Thread (method). Start ();
void method ()
{

throw new Exception ();
}

⇓

Task.Run (()= > method ()). FailFastOnException ();
void method ()
{

throw new Exception ();
}
public static Task FailFastOnException (this Task task)
{

task. ContinueWith (c => Environment . FailFast ("Task faulted ", c. Exception),
TaskContinuationOptions . OnlyOnFaulted |
TaskContinuationOptions . ExecuteSynchronously |
TaskContinuationOptions . DetachedFromParent);

return task;
}

4.4 Workflow

We implemented Taskifier as a Visual Studio plugin, on top of the Roslyn
API [15].

Because developers need to run Taskifier only once per migration, Task-
ifier operates in a batch mode. The batch option allows the programmer to
migrate automatically by selecting any file or project in the IDE. Before starting
the migration, Taskifier asks the user for two preferences: Foreground Thread
option and Exception Handling option. When it operates at the file levels, Task-
ifier might still modify other files when necessary (e.g., if the method in Thread
body is located in another file). Taskifier migrates Thread and ThreadPool ab-
stractions to Task in about 10 seconds on an average project (100K SLOC).

5 Simplifier

Taskifier automatically migrates old-style parallel abstractions (Thread and
ThreadPool) to the modern Task. However, there are still some opportunities for
higher-level abstractions that can make the code faster and more readable.

14

Parallel class (see Section 2.4) provides parallel programming design pat-
terns as a higher-level abstraction over Task class. Implementing these design
patterns with tasks requires developers to write code with several instances of
Tasks. A much simpler alternative is to use a single instance of the Parallel
class, which encapsulates the main skeleton of the design patterns. While the
direct usage of Tasks affords more flexibility and control, we found out that in
many cases, developers do not use the extra flexibility, and their code can be
greatly simplified with a higher-level design pattern.

We developed Simplifier that converts multiple Task instances to one of
three Parallel operations (Parallel.For, Parallel.ForEach, Parallel.Invoke).
Simplifier suggests code snippets that can be transformed to Parallel opera-
tions and then does the actual transformation on demand. Hence, we divided the
explanation of the algorithms into two parts: Suggestion and Transformation. In
the Suggestion part, we explain how Simplifier chooses the code candidates.
In the Transformation part, we explain how Simplifier transforms these candi-
dates to Parallel operations. After explaining the three algorithms, we discuss
how developers interact with Simplifier in Section 5.4.

5.1 Multiple Tasks to Parallel.Invoke

Simplifier offers the transformation of task parallelism pattern composed of a
group of Task instances to Parallel.Invoke. First we explain the properties of
code snippets that can be transformed to this operation.

Suggestion: As we explained in Section 2.4, Parallel.Invoke is a succinct way
of creating and starting multiples tasks and waiting for them. Consider the
example below. Parallel.Invoke code on the right-hand side is the equivalent
of the code on the left-hand side. For the purpose of simplifying the code with
Parallel.Invoke, Simplifier needs to detect such a pattern before suggesting a
transformation.

Code 1.9 Multiple Tasks
Task t1 = new Task (()= > sendMsg (arg1));
Task t2 = new Task (()= > sendMsg (arg2));
t1. Start ();
t2. Start ();
Task. WaitAll (t1 ,t2);

Code 1.10 Equivalent with Invoke
Parallel . Invoke (()= > sendMsg (arg1),

()= > sendMsg (arg2));

Listing 1.9 shows the simplest form of many variations of code snippets. In
order to find as many fits as possible, we need to relax and expand this pattern
to detect candidates. First step to detect the pattern is that the number of Task
variables should be at least 2, as Parallel.Invoke can take unlimited work items
as parameters. Second, Simplifier has to consider that there are many syntac-
tic variations of task creation and task starting operations. Also, there are some
operations that combine both creation and starting like Task.Factory.StartNew
and Task.Run methods. Third, one should keep in mind that there is no need to

15

separate the creation of Tasks into one phase and starting them into another.
Each Task can be created then started immediately. Fourth, there may be other
statements executing concurrently in between the start of a Task and the barrier
instruction that waits for all spawned tasks. In case of such statements, Simpli-
fier encapsulates them in another Task and passes the task to Parallel.Invoke.
Code Listing 1.11 shows a more complex pattern of task parallelism from a
real-world app and demonstrates the last point.

After Simplifier finds out the code snippets that fit into the pattern stated
above, it checks if some preconditions hold true to ensure that the transformation
is safe. These preconditions are not limitations of Simplifier; they are caused
by how Parallel.Invoke encapsulates the task parallelism pattern. Because it
is a higher-level abstraction, it waives some advanced features of Task. The
preconditions are:

P1: None of the Task variables in the pattern can be result-bearing compu-
tations, i.e., a future – Task<ResultType> – also called a promise in C#.
The reason is that after the transformation, there is no way to access the
result-bearing from the Parallel class.

P2: There should be no reference to the Task variables outside of code snippet
of the design pattern. Such references will no longer bind to a Task after the
transformation eliminates the Task instances.

P3: None of the Task variables in the pattern can use the chaining operation
(ContinueWith). Since the chaining requires access to the original task, this
task will no longer exist after the transformation.

Transformation: If Simplifier finds a good match of code snippets, its sug-
gestion can be executed and turned into a transformation which yields Parallel.Invoke
code. Code Listing 1.12 shows the code after the transformation of Code List-
ing 1.11.

During transformation, the main operation is to get work items from Task
variables. In the example below, the work item of first Task is ()=> DoClone(...).
These work items can be in different forms such as method identifiers, delegates,
or lambda functions as in the example below. Simplifier handles this variety
of forms by transforming the work items to lambda functions.

After Simplifier gets the work items for the tasks t1 and t2, it forms another
work item to encapsulate the statements between task creation and task waiting
statements (line 3 and 4 in Code List. 1.11).

Simplifier gives all these work items in the form of lambda functions to
Parallel.Invoke method as parameters. It replaces the original lower-level task
parallelism statements with this Parallel.Invoke method.
Code 1.11 Candidate from kudu6app

1 var t1 = Task. Factory . StartNew (() => DoClone (" PClone1 ", appManager));
2 var t2 = Task. Factory . StartNew (() => DoClone (" PClone2 ", appManager));
3 ParseTheManager ();
4 DoClone (" PClone3 ", appManager);
5 Task. WaitAll (t1 , t2);

16

⇓

Code 1.12 Equivalent Parallel.Invoke code
1 Parallel . Invoke (() => DoClone (" PClone1 ", appManager),
2 () => DoClone (" PClone2 ", appManager),
3 () => { ParseTheManager ();
4 DoClone (" PClone3 ", appManager);})

5.2 Tasks in Loop to Parallel.For

Simplifier can transform a specific data parallelism pattern to Parallel.For.
First we explain the properties of code snippets that can be transformed to this
operation.

Suggestion: As we explained in Section 2.4, Parallel.For is a more concise
way to express the pattern of forking several tasks and then waiting for them all
to finish at a global barrier.

Considering the example below, the Parallel.For code on the right is the
equivalent of the code on the left.

Code 1.13 Forking tasks in a loop
Task [] tasks = new Task [n];
for(int i=0; i<n; i++)
{

int temp = i;
tasks [i]= new Task(

()= > Queues [temp]. Stop ());
tasks [i]. Start ();

}
Task. WaitAll ();

Code 1.14 Equivalent with Parallel.For
Parallel .For (0,n ,(i)=> Queues [i]. Stop ());

Simplifier needs to detect usages of Tasks that form the pattern on the
left example above. The code snippet in Listing 1.13 is one of the basic repre-
sentatives of this design pattern; there are other variations who fit the pattern.
First thing the tool looks for in the code to decide if it matches the pattern is
that the increment operation of the loop must be of the form ++ or += 1 (i.e.,
increments should only be by 1). The loop boundaries do not matter as long as
they are integers. Second, as explained in Sec. 5.1, there may be many syntactic
variations for the task creation and starting operations.

Third, the collection of tasks does not have to be of type Array, they may
be of another type like List. In this case, tasks are added with tasks.add(...)
method to the collection in the loop. Fourth, as long as there is no modification
to the collection, there may be other statements between creating the collection
of tasks and the for loop. During the transformation, these statements are not
discarded and they take place before Parallel.For.

Fifth, there might be other statements in the loop besides task creation,
starting, and adding to the collection. In the Code List. 1.13 above, there is one
6 github.com/projectkudu/kudu

17

such statement: int temp=i;. This causes each task to have its own copy of the
loop index variable during the iteration of the loop.

Sixth and last, some simple assignment operations may also exist between the
loop and the barrier operation that waits for all spawned tasks. Code Listing 1.15
shows a more complex pattern of data parallelism from a real-world app and
demonstrates the last point with the statements in Line 8-9.

After Simplifier detects the code snippets that fit into the pattern stated
above, it checks some preconditions ensuring that the transformation is safe.
These preconditions are the result of how the Parallel.For encapsulates the
date parallelism pattern.

P1, P2, P3: The first three preconditions are the same as the first three
preconditions in Sec. 5.1.

P4: The operations in the loop except the task-related statements should not
carry any dependence between iterations. Consider the Code Listing 1.15,
the statements in Line 4-5 will sequentially execute because they are not
included in Task. After transforming to Parallel.For, the whole body of the
loop will be parallelized.

P5: The statements after the loop (e.g., Line 8-9 in Code List. 1.15) but before
the Task.Wait should not access any data from the Task body.

Transformation: Code Listing 1.16 shows the code after the transformation
of Code Listing 1.15 showing a more complex example.

During transformation, the main operation is to the get loop boundaries and
the work item from the task in the loop. In the example below (Line 6), the
work item is ()=> MultiSearcherCallableNoSort(...). The loop boundaries are
0 and tasks.Length. However, the collection of tasks will be deleted after the
transformation. Hence, when Simplifier detects such a dependence on the size
of task collections in the loop boundaries, it replaces this boundary with the
original size of the task collection, which is searchables.Length.

Then, Simplifier needs to make sure that the statements in the loop (e.g.
Line 4-5 in List. 1.15) are not dependent on loop iterations. If they are not, these
statements are put in the beginning of the work item; otherwise, the transfor-
mation will not occur. If one of these statements is the temporary holder of the
iteration value like cur = i in the example below, Simplifier removes it and
replaces the holder (cur) with the iteration variable (i) in the work item as seen
in List. 1.16.

Lastly, Simplifier replaces the original lower-level data parallelism state-
ments with the Parallel.For method.
Code 1.15 Candidate from lucene.net7app

1 Task [] tasks = new Task[searchables . Length];
2 for (int i = 0; i < tasks . Length ; i++)
3 {
4 int cur = i;
5 cur = callableIterate (cur);

6 github.com/apache/lucene.net

18

6 tasks [i] = Task. Factory . StartNew (() => MultiSearcherCallableNoSort (cur , ...));
7 }
8 int totalHits = 0;
9 float maxScore = float . NegativeInfinity ;

10 Task. WaitAll (tasks);

⇓

Code 1.16 Equivalent Parallel.For code
1 Parallel .For (0, searhables .Length , (i) => {
2 i = callableIterate (i);
3 MultiSearcherCallableNoSort (i, ...);});
4 int totalHits = 0;
5 float maxScore = float . NegativeInfinity ;

5.3 Tasks in Loop to Parallel.ForEach

While this transformation is very similar to Parallel.For, it transforms foreach
loops instead of for loops. foreach loops are a special case of loops that are used
to iterate over the elements of a collection.

First we explain the properties of code snippets that can be transformed to
this operation.

Suggestion: Considering the example below, the Parallel.ForEach code on the
right is the equivalent of the code on the left.

Code 1.17 Equivalent Task example
Task [] tasks = new Task[sables . Length];
foreach (var sable in sables)
{

tasks [i] = Task.Run(
() => sable . DocFreq (term));

}
Task. WaitAll (tasks);

Code 1.18 Parallel.ForEach example
Parallel . ForEach (sables ,

(sable)=> sable . DocFreq (term));

Simplifier needs to detect usages of Tasks in a foreach loop that form the
pattern on the left example above. We will generalize this pattern with the same
5 variations in the Parallel.For algorithm, except the first one which represents
the custom loop boundaries.

After Simplifier detects the code snippets that fit into the pattern, it checks
for the same preconditions as in the Parallel.For transformation.

Transformation: Code Listing 1.20 shows the code after the transformation
of Code Listing 1.19. The transformation is done in a very similar manner with
the Parallel.For version, except the loop boundaries.

After the work item is extracted from Task, Simplifier needs to get the
collection variable and iteration variable from the loop declaration (functions,
functionText). Then, Simplifier replaces the original lower-level data paral-
lelism statements with the Parallel.ForEach method.
7 github.com/pieterderycke/Jace

19

Code 1.19 Candidate from Jace8app
1 List <Task > tasks = new List <Task >();
2 foreach (string functionText in functions)
3 {
4 Task task = new Task (() =>
5 {...
6 function (functionText , ...); ...
7 });
8 tasks .Add(task);
9 task. Start ();

10 }
11 Task. WaitAll (tasks . ToArray ());

⇓

Code 1.20 Equivalent Parallel.ForEach code
1 Parallel . ForEach (functions ,(functionText) = >{...
2 function (functionText , ...); ...
3 });

5.4 Workflow

We implemented Simplifier as a plugin for Visual Studio. Simplifier’s work-
flow is similar to a “quick hint” option which exists in major IDEs such as
Eclipse, Netbeans, IntelliJ. Simplifier scans the file that is open in the edi-
tor in real-time. It tries to find code snippets that fit into the patterns of the
three transformations discussed above. Because it executes on the background
(triggered by any keystroke), the analysis of finding code snippets should be fast
enough to prevent sluggishness. However, the analyses for Parallel.For(Each)
require some expensive checking of preconditions such as P4 and P5 in Sec. 5.2.
Because they require dependence and data-flow analyses, we do not execute them
in the suggestion phase, but in the transformation phase.

If Simplifier finds candidates, it suggests the places where the transfor-
mations can be useful by underlining the code snippet and displaying a hint
in the sidebar. After the user clicks the hint and confirms, Simplifier trans-
forms the code for the Parallel.Invoke. Simplifier tests long-running precon-
ditions, such as for the Parallel.For(Each), in the transformation phase. If the
candidate passes these preconditions too, the code will be transformed to the
Parallel.For(Each). If not, Simplifier will give an informative warning.

6 Evaluation

We conducted two kinds of empirical evaluation. First, we quantitatively evaluate
based on case studies of using our tools on open-source software. Second, we
qualitatively evaluate based on patches that we sent to open-source developers.

6.1 Quantitative

To quantitatively evaluate the usefulness of Taskifier and Simplifier, we an-
swer the following research questions:

20

RQ1: How applicable are the tools?
RQ2: Do the tools reduce the code bloat?
RQ3: How much programmer effort is saved by the tools?
RQ4: Are the automated transformations safe?

Experimental Setup: To answer the questions above, we ran Taskifier and
Simplifier on our code corpus that we gathered from Github. The code corpus
has 880 C# apps, comprising 42M SLOC, spanning a wide spectrum from web
& desktop apps to libraries and mobile apps.

We ran both tools in batch mode over this code corpus. Even though Sim-
plifier was not designed to run in a batch mode, we implemented a batch
mode specifically for the purpose of the evaluation. Taskifier visits all Thread
variable declarations and anonymous instances, and applies the migration algo-
rithm. Simplifier finds the candidates of code snippets for each source file, then
transforms the snippets to the targeted pattern.

Table 2 summarizes the results for the first three research questions.

Applicability Reduction Modified
Applied Conv. Conv. % SLOC %. SLOC

Thread to Task 1782 1390 78% 2244 24% 8876
ThreadPool to Task 1244 1244 100% 173 14% 2115
Task to Parallel.Invoke 85 85 100% 502 44% 1870
Task to Parallel.For(Each) 205 188 92% 1918 62% 5640

Table 2: Taskifier and Simplifer Conversion Results. The first column shows the total
number of instances that the tool applied. The second column shows the total num-
ber of instances that the tool successfully converted and the third column shows the
percentage of successfully transformed instances. The fourth column shows the total
number of reduced SLOC by the transformations and the fifth column shows the per-
centage of the reduced lines. The last column shows the total number of modified
SLOC.

RQ1: How applicable are the tools? Out of our corpus of 880 apps, 269
used Threads (see Table 1). Together, they account for 2105 Thread instances.
Based on our discussion with experts (see Section 3.3), they suggested we discard
Thread usages in test code because developers may need threads for enforcing a
multithreading testing environment. After eliminating the Thread usages in test
code, we were left with 1782 Thread instances in production code, as shown in
Table 2.

Taskifier migrated 78% of them. The remaining 22% of Thread instances
used operations that are not available in the Task class, thus are not amenable
for migration. However, Taskifier migrated 100% of ThreadPool instances to
Task.

21

As for Simplifier, it successfully transformed 100% of the 85 Task-based
fork-join patterns to Parallel.Invoke. Out of the 205 identified Task-based data-
parallelism patterns, it transformed 92% to Parallel.For or Parallel.ForEach.
The remaining 8% did not pass the preconditions. A major number of them was
failed due to P4: loop-carried dependence.

RQ2: Do the tools reduce the code bloat? The last column of Table 2
shows by how much each tool eliminates bloated code. As we expect, because
Simplifier transforms multiple Task operations and helper operations to one
equivalent method in the Parallel class (i.e., a many-to-one transformation),
it has the largest impact. For the transformation to Parallel.Invoke, Simpli-
fier achieved on average a 44% reduction in SLOC for each code snippet that
it transformed. For the transformation to Parallel.For(Each), it achieved on
average a 62% reduction for each transformed code snippet.

Taskifier migrates one Thread operation to one equivalent Task operation
(i.e., a one-to-one transformation), so we expect modest reductions in LOC.
These come from optimizations such as combining the creation and start Task
operations, removing explicit casting statements which are not needed in Task
bodies, etc. However, the advantages brought by Taskifier are (i) the modern-
ization of the legacy code so that it can now be used with the newer platforms,
and (ii) the transformation of blocking operations to the equivalent non-blocking
operations.

RQ3: How much programmer effort is saved by the tools? The last
column of Table 2 shows that the transformations are tedious. Had the pro-
grammers manually changed the code, they would have had to manually modify
10991 SLOC for the migration to Task and 7510 SLOC for the migration to
Parallel.

Moreover, these changes are non-trivial. Taskifier found that 37% of Thread
instances had at least one I/O blocking operation. To find these I/O blocking
operations, Taskifier had to check deeper in the call-graphs of Thread bodies,
which span 3.4 files on average. Simplifier found that 42% of the loops it tried
to transform contained statements that needed a deeper analysis to identify
loop-carried dependences.

RQ4: Are the automated transformations safe? We used two means to
check the safety of our transformations. First, after our tools applied any trans-
formation, our evaluation script compiled the app in-memory and determined
that no compilation errors were introduced. Second, we sampled and manually
checked 10% of all transformed instances and determined that they were correct.
Also, the original developers of the source code thought that the transformations
were correct (see Section 6.2).

In contrast to the code that was transformed with the tools, we found that
32% of the Task-code manually written by open-source developers contained at

22

least one I/O blocking operation which can cause serious performance issues (see
Section 4.3). However, the code transformed by Taskifier into Task instances
does not have this problem.

6.2 Qualitative evaluation

To further evaluate the usefulness our of tools in practice, we identified actively
developed C# applications, we ran our tools on them, and submitted patches 9

to the developers.
For Taskifier, we selected 10 applications that use Thread and ThreadPool

and transformed them with Taskifier. We submitted 52 patches via a pull
request. Developers of 8 apps out of 10 responded, and accepted each one of our
patches.

We received very positive feedback on these pull requests. Some developers
said that migration to Task is on their TODO list but they always postponed it
because of working on new features. It is tedious to migrate Task and developers
can easily miss some important issues such as blocking I/O operations during the
migration. Taskifier helps them migrate their code in a fast and safe manner.

For Simplifier, we selected a different set of 10 applications that had a high
chance of including good matches of code snippets for Parallel.For(Each) or
Parallel.Invoke patterns. We submitted 14 patches. Developers of 7 apps out
of 10 responded, and accepted 11 patches. All of them liked the new code after
the transformation and asked us whether we can make the tool available now.

6.3 Discussion

As explained in Section 4.3, Taskifier analyzed the call graph of Thread body
to detect I/O blocking operations, using a blacklist approach. Although we have
the list of I/O blocking operations in .NET framework, Taskifier is not aware
of I/O blocking operations implemented by 3rd-party libraries whose source code
is not available in the app. However, we don’t expect that the number of blocking
I/O operations implemented by external libraries to be high.

Most of non-blocking I/O and synchronization operations were released in
.NET 4.5 (2012). If an application does not target .NET 4.5, it cannot take ad-
vantage of the non-blocking operations. However, applications that are targeting
the new platforms (e.g, Windows Phone 8, Surface) are forced to use .NET 4.5.

With respect to releasing Taskifier and Simplifier, we will be able to
publish the tools when Microsoft publicly releases the new version of Roslyn
(expected by Spring ’14). Because we used an internal version of Roslyn, we had
to sign an NDA, which prohibits us from releasing tools based on Roslyn.

7 Related Work

Empirical Studies about Parallelism Pankratius et al. [14] analyzed concurrency-
related transformations in a few Java applications. Okur et al. [12] analyzed the
9 Patches are available in the supplementary material

23

usage of parallel libraries in C# in a large experiment. Torres et al. [18] con-
ducted a study on the usage of concurrent programming constructs in Java, by
analyzing around 2000 applications.

Our study does not only target the usage statistics of parallel abstractions
but also provides Taskifier and Simplifier for helping developers migrate
from low-level parallel abstractions to higher-level abstractions.

Refactoring Tools for Parallelism: There are a few refactoring tools that
specifically target concurrency. Dig et al. [4,5] retrofit parallelism into sequential
applications via Java concurrent libraries. In the same spirit, Wloka et al. [20]
present a refactoring for replacing global state with thread local state. Schafer et
al. present Relocker [17], a refactoring tool that lets programmers replace usages
of Java built-in locks with more flexible locks. Schafer et al. also investigated
the problem of whether existing sequential refactorings are concurrency-aware.
Gyori et al. present Lambdaficator [7], that refactors existing Java code to use
lambda expressions to enable parallelism. A well-known refactoring tool for C#,
ReSharper [16] supports some basic refactorings for introducing parallelism into
the code. However, none of these previous tools address the problem of migrating
between different levels of abstractions in (already) parallel code.

Balaban et al. [3] present a tool for converting between obsolete classes and
their modern replacements. The developer specifies a mapping between the old
APIs and the new APIs. Then, the tool uses a type-constraint analysis to de-
termine if it can replace all usages of the obsolete class. Their tool supports a
one-to-one transformation whereas Simplifier supports many-to-one transfor-
mations. Even our one-to-one transformations from Taskifier require custom
program analysis, e.g., detecting I/O blocking operations, and cannot be simply
converted by a mapping program.

8 Conclusions

To make existing parallel code readable, faster, and scalable, it is essential to
use higher-level parallel abstractions. Their usage is encouraged by the industry
leaders as the old, low-level abstractions are subject to deprecation and removal
in new platforms.

Our motivational study of a corpus of 880 C# applications revealed that
many developers still use the lower-level parallel abstractions and some are not
even aware of the better abstractions. This suggests a new workflow for transfor-
mation tools, where suggestions can make developers aware of new abstractions.

Converting from low-level to high-level abstractions can not be done by a
simple find-and-replace tool, but it requires custom program analysis and trans-
formation. For example, 37% of Thread instances use blocking I/O operations,
which need special treatment when they are converted to Task instances, oth-
erwise it can create severe performance bugs. We found that 32% instances of
manually written Task indeed contain blocking I/O operations.

In this paper we presented two tools. Our first tool, Taskifier, converts
Thread-based usage to lightweight Task. We were surprised that despite some

24

differences between Thread and Task abstractions, 78% of the code that uses
Thread can be successfully converted to Task. Our second tool, Simplifier, con-
verts Task-based code into higher-level parallel design patterns. Such conversions
reduce the code bloat by 57%. The developers of the open-source projects ac-
cepted 53 of our patches and are looking forward to using our tools.

25

References

1. RavenDB 2nd generation document database. December’13, http://ravendb.net.
2. Antlrcs. December’13, http://github.com/antlr/antlrcs.
3. Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class library

migration. In OOPSLA’05, volume 40, New York, New York, USA, October 2005.
ACM Press.

4. Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential Java code
for concurrency via concurrent libraries. In ICSE’09, pages 397–407, May 2009.

5. Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea, and Ralph Johnson.
Relooper. In OOPSLA ’09, New York, New York, USA, October 2009. ACM
Press.

6. Github. December’13, https://github.com.
7. Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. Crossing the gap from

imperative to functional programming through refactoring. In FSE’13, page 543,
New York, New York, USA, August 2013. ACM Press.

8. Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 conference
on Java Grande - JAVA ’00, pages 36–43, New York, New York, USA, June 2000.
ACM Press.

9. Daan Leijen and Judd Hall. Parallel Performance: Optimize Managed Code For
Multi-Core Machines. MSDN, October 2007.

10. Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task
parallel library. ACM SIGPLAN Notices, 44(10):227, October 2009.

11. Nuget. December’13, http://www.nuget.org/.
12. Semih Okur and Danny Dig. How do developers use parallel libraries? In FSE ’12,

New York, New York, USA, November 2012. ACM Press.
13. Stack Overflow. December’13, http://stackoverflow.com.
14. Victor Pankratius, Christoph Schaefer, Ali Jannesari, and Walter F. Tichy. Soft-

ware engineering for multicore systems. In IWMSE’08, page 53, New York, New
York, USA, May 2008. ACM Press.

15. The Roslyn Project. December’13, http://msdn.microsoft.com/en-us/
hh500769.

16. ReSharper. December’13, http://www.jetbrains.com/resharper/.
17. Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Refactoring Java

programs for flexible locking. In ICSE ’11, page 71, New York, New York, USA,
May 2011.

18. Weslley Torres, Gustavo Pinto, Benito Fernandes, João Paulo Oliveira, Filipe Alen-
car Ximenes, and Fernando Castor. Are Java programmers transitioning to multi-
core?: a large scale study of java FLOSS. In SPLASH’11 Workshops, SPLASH ’11
Workshops, pages 123–128, New York, NY, USA, 2011. ACM.

19. Steven Toub. Patterns of Parallel Programming. Microsoft Corporation, 2010.
20. Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for reentrancy. In

FSE’09, page 173, New York, New York, USA, August 2009. ACM Press.

26

