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Abstract. We present a novel program verification approach based on
coinduction, which takes as input an operational semantics. No interme-
diates like program logics or verification condition generators are needed.
Specifications can be written using any state predicates. We implement
our approach in Coq, giving a certifying language-independent verifi-
cation framework. Our proof system is implemented as a single module
imported unchanged into language-specific proofs. Automation is reached
by instantiating a generic heuristic with language-specific tactics. Man-
ual assistance is also smoothly allowed at points the automation can-
not handle. We demonstrate the power and versatility of our approach
by verifying algorithms as complicated as Schorr-Waite graph marking
and instantiating our framework for object languages in several styles
of semantics. Finally, we show that our coinductive approach subsumes
reachability logic, a recent language-independent sound and (relatively)
complete logic for program verification that has been instantiated with
operational semantics of languages as complex as C, Java and JavaScript.

1 Introduction

Formal verification is a powerful technique for ensuring program correctness, but
it requires a suitable verification framework for the target language. Standard
approaches such as Hoare logic [1] (or verification condition generators) require
significant effort to adapt and prove sound and relatively complete for a given
language, with few or no theorems or tools that can be reused between languages.
To use a software engineering metaphor, Hoare logic is a design pattern rather
than a library. This becomes literal when we formalize it in a proof assistant.

We present instead a single language-independent program verification frame-
work, to be used with an executable semantics of the target programming lan-
guage given as input. The core of our approach is a simple theorem which gives
a coinduction principle for proving partial correctness.

To trust a non-executable semantics of a desired language, an equivalence
to an executable semantics is typically proved. Executable semantics of pro-
gramming languages abound in the literature. Recently, executable semantics of
several real languages have been proposed, e.g. of C [2], Java [3], JavaScript [4,5],
Python [6], PHP [7], CAML [8], thanks to the development of executable seman-
tics engineering frameworks like K [9], PLT-Redex [10], Ott [11], etc., which
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make defining a formal semantics for a programming language almost as easy as
implementing an interpreter, if not easier. Our coinductive program verification
approach can be used with any of these executable semantics or frameworks,
and is correct-by-construction: no additional “axiomatic semantics”, “program
logic”, or “semantics suitable for verification” with soundness proofs needed.

As detailed in Sect. 6, we are not the first to propose a language-independent
verification infrastructure that takes an operational semantics as input, nor the
first to propose coinduction for proving isolated properties about some pro-
grams. However, we believe that coinduction can offer a fresh, promising and
general approach as a language-independent verification infrastructure, with a
high potential for automation that has not been fully explored yet. In this paper
we make two steps in this direction, by addressing the following research ques-
tions:

RQ1 Is it feasible to have a sound and (relatively) complete verification infras-
tructure based on coinduction, which is language-independent and versa-
tile, i.e., takes an arbitrary language as input, given by its operational
semantics?

RQ2 Is it possible to match, or even exceed, the capabilities of existing language-
independent verification approaches based on operational semantics?

To address RQ1, we make use of a key mathematical result, Theorem 1, which
has been introduced in more general forms in the literature, e.g., in [12,13] and
in [14]. We mechanized it in Coq in a way that allows us to instantiate it with
a transition relation corresponding to any target language semantics, hereby
producing certifying program verification for that language. Using the resulting
coinduction principle to show that a program meets a specification produces a
proof which depends only on the operational semantics. We demonstrate our
proofs can be effectively automated, on examples including heap data structures
and recursive functions, and describe the implemented proof strategy and how
it can be reused across languages defined using a variety of operational styles.

To address RQ2, we show that our coinductive approach not only subsumes
reachability logic [15], whose practicality has been demonstrated with languages
like C, Java, and JavaScript, but also offers several specific advantages. Reacha-
bility logic consists of a sound and (relatively) complete proof system that takes
a given language operational semantics as a theory and derives reachability prop-
erties about programs in that language. A mechanical procedure can translate
any proof using reachability logic into a proof using our coinductive approach.

We first introduce our approach with a simple intuitive example, then prove
its correctness. We then discuss mechanical verification experiments across dif-
ferent languages, show how reachability logic proofs can be translated into coin-
ductive proofs, and conclude with related and future work. Our entire Coq for-
malization, proofs and experiments are available at [16].
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2 Overview and Basic Notions

Section 4 will show the strengths of our approach by means of verifying rather
complex programs. Here our objective is different, namely to illustrate it by ver-
ifying a trivial IMP (C-style) program: s=0; while (--n) {s=s+n;}. Let sum
stand for the program and loop for its while loop. When run with a positive ini-
tial value n of n, it sets s to the sum of 1, . . . , n−1. To illustrate non-termination,
we assume unbounded integers, so loop runs forever for non-positive n. An IMP
language syntax sufficient for this example and a possible execution trace are
given in Fig. 1. The exact step granularity is not critical for our approach, as
long as diverging executions produce infinite traces.

Pgm ::= Stmt

Exp ::= Id
| Int
| -- Id
| Exp op Exp

Stmt ::= skip

| Stmt Stmt
| Id = Exp ;

| if Exp { Stmt }

else { Stmt }

| while Exp { Stmt }

〈s=0; while (--n) {s=s+n;} | n �→ 4〉
〈while (--n) {s=s+n;} | n �→ 4, s �→ 0〉

〈if (--n) {s=s+n; loop} else {skip} | n �→ 4, s �→ 0〉
〈if (3) {s=s+n; loop} else {skip} | n �→ 3, s �→ 0〉

〈s=s+n; loop | n �→ 3, s �→ 0〉
〈s=0+n; loop | n �→ 3, s �→ 0〉
〈s=0+3; loop | n �→ 3, s �→ 0〉

〈s=3; loop | n �→ 3, s �→ 0〉
〈skip; loop | n �→ 3, s �→ 3〉

〈while (--n) {s=s+n;} | n �→ 3, s �→ 3〉
· · · | · · ·

〈while (--n) {s=s+n;} | n �→ 1, s �→ 6〉
〈if (--n) {s=s+n; loop} else {skip} | n �→ 1, s �→ 6〉

〈if (0) {s=s+n; loop} else {skip} | n �→ 0, s �→ 6〉
〈skip | n �→ 0, s �→ 6〉

Fig. 1. Syntax of IMP (left) and sample execution of sum (right)

While our coinductive program verification approach is self-contained and
thus can be presented without reliance on other verification approaches, we prefer
to start by discussing the traditional Hoare logic approach, for two reasons. First,
it will put our coinductive approach in context, showing also how it avoids some
of the limitations of Hoare logic. Second, we highlight some of the subtleties of
Hoare logic when related to operational semantics, which will help understand
the reasons and motivations underlying our definitions and notations.

2.1 Intuitive Hoare Logic Proof

A Hoare logic specification/triple has the form {|ϕpre |} code {|ϕpost |}. The conve-
nience of this notation depends on specializing to a particular target language,
such as allowing variable names to be used directly in predicates to stand for
their values, or writing only the current statement. This hides details of the
environment/state representation, and some framing conventions or composi-
tionality assumptions over the unmentioned parts. A Hoare triple specifies a set
of (partial correctness) reachability claims about a program’s behavior, and it is
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(IMP statement rules)
·

{|ϕ[e/x]|} x= e; {|ϕ|} (HL-asgn)

{|ϕ1|} s1 {|ϕ2|}, {|ϕ2|} s2 {|ϕ3|}
{|ϕ1|} s1 s2 {|ϕ3|} (HL-seq)

{|ϕ ∧ e �= 0|} s1 {|ϕ′|}, {|ϕ ∧ e = 0|} s2 {|ϕ′|}
{|ϕ|} if (e) then {s1} else {s2} {|ϕ′|} (HL-if)

{|ϕ ∧ e �= 0|} s {|ϕ|}
{|ϕ|} while (e) {s} {|ϕ ∧ e = 0|} (HL-while)

(Generic rule)
|= ψ → ϕ, {|ϕ|} s {|ϕ′|}, |= ϕ′ → ψ′

{|ψ|} s {|ψ′|} (HL-conseq)

Fig. 2. IMP program logic.

typically an over-approximation (i.e., it specifies more reachability claims than
desired or feasible). Specifically, assume some formal language semantics of IMP
defining an execution step relation R ⊆ C × C on a set C of configurations
of the form 〈code |σ〉, like those in Fig. 1. We write a →R b for (a, b) ∈ R.
Section 2.3 (Fig. 3) discusses several operational semantics approaches we exper-
imented with (Sect. 4), that yield such step relations R. A (partial correctness)
reachability claim (c, P ), relating an initial state c ∈ C and a target set of states
P ⊆ C, is valid (or holds) iff the initial state c can either reach a state in P or can
take an infinite number of steps (with →R); we write c ⇒R P to indicate that
claim (c, P ) is valid, and a → b or c ⇒ P instead of a →R b or c ⇒R P , resp.,
when R is understood. Then {|ϕpre |}code{|ϕpost |} specifies the set of reachability
claims

{(〈code |σpre〉, {〈skip |σpost 〉 | σpost � ϕpost}) | σpre � ϕpre}
and it is valid iff all of its reachability claims are valid. It is necessary for P
in reachability claims (c, P ) specified by Hoare triples to be a set of configura-
tions (and thus an over-approximation): it is generally impossible for ϕpost to
determine exactly the possible final configuration or configurations.

While one can prove Hoare triples valid directly using the step relation →R

and induction, or coinduction like we propose in this paper, the traditional app-
roach is to define a language-specific proof system for deriving Hoare triples from
other triples, also known as a Hoare logic, or program logic, for the target pro-
gramming language. Figure 2 shows such a program logic for IMP. Hoare logics
are generally not executable, so testing cannot show whether they match the
intended semantics of the language. Even for a simple language like IMP, if one
mistakenly writes e = 1 instead of e �= 0 in rule (HL-while), then one gets an
incorrect program logic. When trusted verification is desired, the program logic
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needs to be proved sound w.r.t. a reference executable semantics of the language,
i.e, that each derivable Hoare triple is valid. This is a highly non-trivial task for
complex languages (C, Java, JavaScript), in addition to defining a Hoare logic
itself. Our coinductive approach completely avoids this difficulty by requiring no
additional semantics of the programming language for verification purposes.

The property to prove is that sum (or more specifically loop) exits only when
n is 0, with s as the sum

∑n−1
i=1 i (or n(n−1)

2 ). In more detail, any configuration
whose statement begins with sum and whose store defines n as n can run indef-
initely or reach a state where it has just left the loop with n 	→ 0, s 	→∑n−1

i=1 i,
and the store otherwise unchanged. As a Hoare logic triple, that specification is

{|n = n|} s=0; while(--n){s=s+n;} {|s =
∑n−1

i=1
i ∧ n=0|}

As seen, this Hoare triple asserts the validity of the set of reachability claims

S ≡ {(cn,σ, Pn,σ) | ∀n,∀σ undefined in n} (1)

where

cn,σ ≡ 〈s=0; while(--n){s=s+n;} | n 	→n, σ〉
Pn,σ ≡ {〈skip | n 	→ 0, s 	→ ∑n−1

i=1 i, σ′〉 | ∀σ′ undefined in n, s}
We added the σ and σ′ state frames above for the sake of complete details about
what Hoare triples actually specify, and to illustrate why P in claims (c, P )
needs to be a set. Since the addition/removal of σ and σ′ does not change the
subsequent proofs, for the remainder of this section, for simplicity, we drop them.

Now let us assume, without proof, that the proof system in Fig. 2 is sound
(for the executable step relation →R of IMP discussed above), and let us use it to
derive a proof of the sum example. Note that the proof system in Fig. 2 assumes
that expressions have no side effects and thus can be used unchanged in state
formulae, which is customary in Hoare logics, so the program needs to be first
translated out into an equivalent one without the problematic --n where expres-
sions have no side effects. We could have had more Hoare logic rules instead of
needing to translate the code segment, but this would quickly make our program
logics significantly more complicated. Either way, with even a simple imperative
programming language like we have here, it is necessary to either add Hoare
logic rules to Fig. 2 or to modify our code segment. These inconveniences are
taken for granted in Hoare logic based verifiers, and they require non-negligible
additional effort if trusted verification is sought. For comparison, our coinductive
verification approach proposed in this paper requires no transformation of the
original program. After modifying the above problematic expression, our code
segment gets translated to the (hopefully) equivalent code:

s=0; n=n-1; while (n) {s=s+n; n=n-1;}
Let loop’ be the new loop and let ϕinv , its invariant, be

s =
((n − 1) − n) (n + n)

2
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The program variable n stands for its current value, while the mathematical
variable n stands for the initial (sometimes called “old”) value of n. Next, using
the assign and sequence Hoare logic rules in Fig. 2, as well as basic arithmetic
via the (HL-conseq) rule, we derive

{|n = n|} s=0; n=n-1; {|ϕinv |} (2)

Similarly, we can derive {|ϕinv ∧ n �= 0|} s=s+n; n=n-1; {|ϕinv |}. Then, applying
the while rule, we derive {|ϕinv |} loop’ {|ϕinv ∧ n = 0|}. The rest follows by the
sequence rule with the above, (2), and basic arithmetic.

This example is not complicated, in fact it is very intuitive. However, it
abstracts out a lot of details in order to make it easy for a human to understand.
It is easy to see the potential difficulties that can arise in larger examples from
needing to factor out the side effect, and from mixing both program variables
and mathematical variables in Hoare logic specifications and proofs. With our
coinduction verification framework, all of these issues are mitigated.

2.2 Intuitive Coinduction Proof

Since our coinductive approach is language-independent, we do not commit to
any particular, language-specific formalism for specifying reachability claims,
such as Hoare triples. Consequently, we will work directly with raw reachability
claims/specifications S ⊆ C × P(C) consisting of sets of pairs (c, P ) with c ∈ C
and P ⊆ C as seen above. We show how to coinductively prove the claim for
the example sum program in the form given in (1), relying on nothing but a
general language-independent coinductive machinery and the trusted execution
step relation →R of IMP. Recall that we drop the state frames (σ) in (1).

Intuitively, our approach consists of symbolic execution with the language
step relation, plus coinductive reasoning for circular behaviors. Specifically, sup-
pose that Scirc ⊆ C × P(C) is a specification corresponding to some code with
circular behavior, say some loop. Pairs (c, P ) ∈ Scirc with c ∈ P are already
valid, that is, c ⇒R P for those. “Execute” the other pairs (c, P ) ∈ Scirc with
the step relation →R, obtaining a new specification S′ containing pairs of the
form (d, P ), where c →R d; since we usually have a mathematical description of
the pairs in Scirc and S′, this step has the feel of symbolic execution. Note that
Scirc is valid if S′ is valid. Do the same for S′ obtaining a new specification S′′,
and so on and so forth. If at any moment during this (symbolic) execution pro-
cess we reach a specification S that is included in our original Scirc , then simply
assume that S is valid. While this kind of cyclic reasoning may not seem sound,
it is in fact valid, and justified by coinduction, which captures the essence of par-
tial correctness, language-independently. Reaching something from the original
specification shows we have reached some fixpoint, and coinduction is directly
related to greatest fixpoints. This is explained in detail in Sect. 3.

In many examples it is useful to chain together individual proofs, similar to
(HL-seq). Thus, we introduce the following sequential composition construct:
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Definition 1. For S1, S2 ⊆ C × P(C), let S1
o
9 S2 ≡ {(c, P ) | ∃Q . (c,Q) ∈

S1 ∧ ∀d ∈ Q, (d, P ) ∈ S2}. Also, we define trans(S) as S o
9 S (trans can be

thought of as a transitivity proof rule).

If S1 and S2 are valid then S1
o
9 S2 is also valid (Lemma 2).

Given n, let Qn and Tn be the following sets of configurations, where Qn and
Tn represent the invariant set and terminal set, respectively:

Qn ≡ {〈loop | n 	→n′, s 	→∑n−1
i=n′ i〉 | ∀n′}

Tn ≡ {〈skip | n 	→ 0, s 	→ ∑n−1
i=1 i〉}

and let us define the following specifications:

S1 ≡ {(〈s=0; loop | n 	→n〉, Qn) | ∀n}
S2 ≡ {(〈loop | n 	→n′, s 	→∑n−1

i=n′ i〉, Tn) | ∀n, n′}

Our target S in (1) is included in S1
o
9S2, so it suffices to show that S1 and S2 are

valid. S1 clearly is: 〈s=0;loop | n 	→n〉 →+
R 〈loop | n 	→ n, s 	→ 0〉 represents the

(symbolic) execution step or steps taken to assign program variable s, and the
set of specifications {(〈loop | n 	→ n, s 	→ 0〉, Qn) | ∀n} is vacuously valid (note
∑n−1

i=n i = 0). For the validity of S2, we partition it in two subsets, one where
n′ = 1 and another with n′ �= 1 (case analysis). The former holds same as S1,
noting that

〈loop | n 	→ 1, s 	→∑n−1
i=1 i〉 →+

R 〈skip | n 	→ 0, s 	→∑n−1
i=1 i〉

The latter holds by coinduction (for S2), because first

〈loop | n 	→ n′, s 	→ ∑n−1
i=n′ i〉 →+

R 〈loop | n 	→ n′ − 1, s 	→∑n−1
i=n′−1 i〉

and second the following inclusion holds:

{(〈loop | n 	→n′ − 1, s 	→ ∑n−1
i=n′−1 i〉, Tn) | ∀n, n′} ⊆ S2

The key part of the proof above was to show that the reachability claim
about the loop (S2) was stable under the language semantics. Everything else was
symbolic execution using the (trusted) operational semantics of the language. By
allowing desirable program properties to be uniformly specified as reachability
claims about the (executable) language semantics itself, our approach requires
no auxiliary formalization of the language for verification purposes, and thus no
soundness or equivalence proofs and no transformations of the original program
to make it fit the restrictions of the auxiliary semantics. Unlike for the Hoare
logic proof, the main “proof rules” used were just performing execution steps
using the operational semantics rules, as well as the generic coinductive principle.
Section 3 provides all the technical details.
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Structural Operational Semantics

〈x | σ〉 → 〈σ(x) | σ〉
〈--x | σ〉 → 〈i | σ[i/x]〉 if i = σ(x) −Int 1

〈e1 | σ〉 → 〈e′
1 | σ′〉

〈e1 op e2 | σ〉 → 〈e′
1 op e2 | σ′〉

〈e2 | σ〉 → 〈e′
2 | σ′〉

〈i1 op e2 | σ〉 → 〈i1 op e′
2 | σ′〉

〈i1 op i2 | σ〉 → 〈i1 opInt i2 | σ〉
〈s1 | σ〉 → 〈s′

1 | σ′〉
〈s1 s2 | σ〉 → 〈s′

1 s2 | σ′〉
〈skip s | σ〉 → 〈s | σ〉

〈e | σ〉 → 〈e′ | σ′〉
〈x := e | σ〉 → 〈x := e′ | σ′〉

〈x := i | σ〉 → 〈skip | σ[i/x]〉
〈e | σ〉 → 〈e′ | σ′〉

〈if e then {s1} else {s2} | σ〉 → 〈if e′
then {s1} else {s2} | σ′〉

〈if i then {s1} else {s2} | σ〉 → 〈s1 | σ〉 if i �= 0

〈if 0 then {s1} else {s2} | σ〉 → 〈s2 | σ〉
〈while e {s} | σ〉 → 〈if e then {s while e {s}} else {skip} | σ〉

Reduction Semantics
(evaluation contexts syntax omitted— [17])

r → r′

E[r] → E[r′]

〈E | σ〉[x] → 〈E | σ〉[σ(x)]
〈E | σ〉[--x] → 〈E | σ[i/x]〉[i] if i = σ(x) −Int 1

〈E | σ〉[x:= i] → 〈E | σ[i/x]〉[skip]
i1 op i2 → i1 opInt i2

skip s → s
if i then {s1} else {s2} → s1 if i �= 0

if 0 then {s1} else {s2} → s2
while e {s} → if e then {s while e {s}} else {skip}

K Semantics
(configuration and strictness omitted— [9])

〈x
i

...〉k 〈... x �→ i ...〉state

〈 -- x

i −Int 1
...〉k 〈... x �→ i

i −Int 1
...〉state

〈x := i

skip

...〉k 〈... x �→
i

...〉state

(plus the last five simple rules under reduction semantics)

Fig. 3. Three different operational semantics of IMP, generating the same execution
step relation R (or →R).
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2.3 Defining Execution Step Relations

Since our coinductive verification framework is parametric in a step relation,
which also becomes the only trust base when certified verification is sought, it is
imperative for its practicality to support a variety of approaches to define step
relations. Ideally, it should not be confined to any particular semantic style that
ultimately defines a step relation, and it should simply take existing semantics
“off-the-shelf” and turn them into sound and relatively complete program veri-
fiers for the defined languages. We briefly recall three of the semantic approaches
that we experimented with in our Coq formalization [16].

Small-step structural operational semantics [18] (Fig. 3 top) is one of the most
popular semantic approaches. It defines the transition relation inductively. This
semantic style is easy to use, though often inconvenient to define some features
such as abrupt changes of control and true concurrency. Additionally, finding
the next successor of a configuration may take longer than in other approaches.
Reduction semantics with evaluation contexts [17], depicted in the middle of
Fig. 3, is another popular approach. It allows us to elegantly and compactly define
complex evaluation strategies and semantics of control intensive constructs (e.g.,
call/cc), and it avoids a recursive definition of the transition relation. On the
other hand, it requires an auxiliary definition of contexts along with splitting
and plugging functions.

As discussed in Sect. 1, several large languages have been given formal seman-
tics using K [9] (Fig. 3 bottom). K is more involved and less conventional than
the other approaches, so it is a good opportunity to evaluate our hypothesis that
we can just “plug-and-play” operational semantics in our coinductive framework.
A K-style semantics extends the code in the configuration to a list of terms, and
evaluates within subterms by having a transition that extracts the term to the
front of the list, where it can be examined directly. This allows a non-recursive
definition of transition, whose cases can be applied by unification.

In practice, in our automation, we only need to modify how a successor for
a configuration is found. Besides that, the proofs remain exactly the same.

3 Coinduction as Partial Correctness

The intuitive coinductive proof of the correctness of sum in Sect. 2.2 likely raised
a lot of questions. We give formal details of that proof in this section as well
go through some definitions and results of the underlying theory. All proofs,
including our Coq formalization, are in [16].

3.1 Definitions and Main Theorem

First, we introduce a definition that we used intuitively in the previous section:

Definition 2. If R ⊆ C × C, let validR ⊆ C × P(C) be defined as validR =
{(c, P ) | c ⇒R P holds}.
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Recall from Sect. 2.1 that c ⇒R P holds iff the initial state c can either reach
a state in P or can take an infinite number of steps (with →R). Pairs (c, P ) ∈
C × P(C) are called claims or specifications, and our objective is to prove they
hold, i.e., c ⇒R P . Sets of claims S ⊆ C × P(C) are valid if S ⊆ validR. To
show such inclusions by coinduction, we notice that validR is a greatest fixpoint,
specifically of the following operator:

Definition 3. Given R ⊆ C × C, let stepR : P(C × P(C)) → P(C × P(C)) be

stepR(S) = {(c, P ) | c ∈ P ∨ ∃d . c →R d ∧ (d, P ) ∈ S}
Therefore, to prove (c, P ) ∈ stepR(S), one must show either that c ∈ P or

that (succ(c), P ) ∈ S, where succ(c) is a resulting configuration after taking a
step from c by the operational semantics.

Definition 4. Given a monotone function F : P(D) → P(D), let its F -closure
F ∗ : P(D) → P(D) be defined as F ∗(X) = μY. F (Y ) ∪ X, where μ is the least
fixpoint operator. This is well-defined as Y 	→ F (Y )∪X is monotone for any X.

The following lemma suffices for reachability verification:

Lemma 1. For any R⊆C×C and S ⊆C×P(C), we have S ⊆ stepR(step∗
R(S))

implies S ⊆ validR.

The intuition behind this lemma is captured in Sect. 2.2: we continue taking
steps and once we reach a set of states already seen, we know our claim is valid.
This would not be valid if stepR(step∗

R(S)) was replaced simply with step∗
R(S),

as X ⊆ F ∗(X) hold trivially for any F and X. Lemma 1 (along with elementary
set properties) replaces the entire program logic shown in Fig. 2. The only formal
definition specific to the target language is the operational semantics. Lemma 1
does not need to be modified or re-proven to use it with other languages or
semantics. It generalizes into a more powerful result, that can be used to derive
a variety of coinductive proof principles:

Theorem 1. If F,G : P(D) → P(D) are monotone and G(F (A)) ⊆ F (G∗(A))
for any A ⊆ D, then X ⊆ F (G∗(X)) implies X ⊆ νF for any X ⊆ D, where
νF is the greatest fixpoint of F .

Proofs, including a verified proof in our Coq formulation are in [16]. The
proof can also be derived from [12–14], though techniques from these papers
had previously not been applied to program verification. Lemma1 is an easy
corollary, with both F and G instantiated as stepR, along with a proof that
ν stepR = validR (see [16]). However, instantiating F and G to be the same
function is not always best. An interesting and useful G is the transitivity func-
tion trans in Definition 1, which satisfies the hypothesis in Theorem 1 when F is
stepR. [16] shows other sound instantiations of G.

We can also use Theorem 1 with other definitions of validity expressible as
a greatest fixpoint, e.g., all-path validity. For nondeterministic languages we
might prefer to say c ⇒∀ P holds if no path from c reaches a stuck configuration
without passing through P . This is the greatest fixpoint of

step∀
R(S) = {(c, P ) | c ∈ P ∨ ∃d . c →R d ∧ ∀d . (c →R d implies (d, P ) ∈ S)}
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The universe of validity notions that can be expressed coinductively, and thus
the universe of instances of Theorem 1 is virtually limitless. Below is another
notion of validity that we experimented with in our Coq formalization [16].
When proving global program invariants or safety properties of non-deterministic
programs, we want to state not only reachability claims c ⇒ P , but also that all
the transitions from c to configurations in P respect some additional property,
say T . For example, a global state invariant I can be captured by a T such that
(a, b) ∈ T iff I(a) and I(b), while an arbitrary safety property can be captured by
a T that encodes a monitor for it. This notion of validity, which we call (all-path)
“until” validity, is the greatest fixpoint of:

until∀R(S) ={(c, T, P ) | c ∈ P ∨
∃d . c →R d ∧ ∀d . (c →R d implies (c, d) ∈ T ∧ (d, T, P ) ∈ S)}

This allows verification of properties that are not expressible using Hoare logic.

3.2 Example Proof: Sum

Now we demonstrate the results above by providing all the details that were
skipped in our informal proof in Sect. 2.2. The property that we want to prove,
expressed as a set of claims (c, P ), is

S ≡ {(〈s=0;while(--n){s=s+n;} T | n 	→n, σ[⊥/s]〉,
{〈T | n 	→ 0, s 	→∑n−1

i=1 i, σ〉}) | ∀n, T, σ}

We have to prove S ⊆ validR. Note that this specification is more general than
the specifications in Sect. 2.2. Here, T represents the remainder of the code to
be executed, while σ represents the remainder of the store, with σ[⊥/s] as σ
restricted to Dom(σ)/{s}. Thus, we write out the entire configuration here,
which gives us freedom in expressing more complex specifications if needed.

Instead of proving this directly, we will prove two subclaims valid and connect
them via sequential composition (Definition 1). First, we need the following:

Lemma 2. S1
o
9 S2 ⊆ validR if S1 ⊆ validR and S2 ⊆ validR.

As before, let

Qn ≡ {〈loop; T | n 	→ n′, s 	→ ∑n−1
i=n′ i, σ〉 | ∀n′}

Tn ≡ {〈T | n 	→ 0, s 	→∑n−1
i=1 i〉}

and define

S1 ≡ {(〈s=0; loop; T | n 	→n, σ[⊥/s]〉, Qn) | ∀n, T, σ}
S2 ≡ {(〈loop; T | n 	→ n′, s 	→ ∑n−1

i=n′ i, σ〉, Tn) | ∀n, n′, T, σ}
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Since S ⊆ S1
o
9 S2 (by Qn), it suffices to show S1 ∪ S2 ⊆ validR. To prove

S1 ⊆ validR, by Lemma 1 we show S1 ⊆ stepR(step∗
R(S1)). Regardless of the

employed executable semantics, this should hold:

∀n, T, σ. 〈s=0; loop; T | n 	→n, σ[⊥/s]〉 →R 〈loop; T | n 	→ n, s 	→ 0, σ〉
Choosing the second case of the disjunction in stepR with d matching this step,
it suffices to show

{(〈loop; T | n 	→ n, s 	→ 0, σ〉, Qn) | ∀n, T, σ} ⊆ step∗
R(S1)

Note that we can unfold any fixpoint F ∗(S) to get the following two equations:

F (F ∗(S)) ⊆ F (F ∗(S)) ∪ S = F ∗(S) S ⊆ F (F ∗(S)) ∪ S = F ∗(S) (3)

We use the first equation to expose an application of stepR on the right hand
side, so it suffices to show the above is a subset of stepR(step∗

R(S)). We then use
the first case of the disjunction (showing c ∈ P ) in stepR, and instantiating n′

to n proves this goal, since
∑n−1

i=n i = 0. Thus S1 ⊆ validR.
Now we prove S2 ⊆ validR, or S2 ⊆ stepR(step∗

R(S2)). First, note the oper-
ational semantics of IMP rewrites while loops to if statements. Then, by the
definition of stepR, it suffices to show that

{(〈if(--n){s=s+n;loop};T | n �→ n′, s �→ ∑n−1
i=n′ i, σ〉, Tn) | ∀n, n′, T, σ} ⊆ step∗

R(S2)

Using the first unfolding from (3), it suffices to show the above is a subset of
stepR(step∗

R(S2)), i.e. we expose an application of stepR on the right hand side.
The definition of stepR thus allows the left hand side to continue taking execution
steps, as long as we keep unfolding the fixpoint. Continuing this, the if condition
becomes a single, but symbolic, boolean value. Specifically, it suffices to show:

{(〈if(n′
-1 �= 0){s=s+n;loop};T | n �→ n′-1, s �→ ∑n−1

i=n′ i, σ〉, Tn) |∀n, n′, T, σ}⊆step∗
R(S2)

Further progress requires making a case distinction on whether n′ − 1 = 0. A
case distinction corresponds to observing that A ∪ B ⊆ X if both A ⊆ X and
B ⊆ X. Here we split the current set of claims into those with n′ − 1 = 0 and
n′ − 1 �= 0, and separately establish the following inclusions:

{(〈if(false){s=s+n;loop};T | n �→ 0, s �→ ∑n−1
i=1 i, σ〉, Tn) | ∀n, T, σ} ⊆ step∗

R(S2)

{(〈if(true){s=s+n;loop};T | n �→ n′-1, s �→∑n−1
i=n′ i, σ〉, Tn)|∀n, n′�=1,T, σ} ⊆ step∗

R(S2)

Continuing symbolic execution and using
∑n−1

i=n′ i+(n′ −1) =
∑n−1

i=n′−1 i, we get

{(〈T | n �→ 0, s �→ ∑n−1
i=1 i, σ〉, Tn) | ∀n, T, σ} ⊆ step∗

R(S2)

{(〈loop; T | n �→ n′ − 1, s �→ ∑n−1
i=n′−1 i, σ〉, Tn) | ∀n, n′, T, σ, n′ − 1 �= 0} ⊆ step∗

R(S2)

In the n′ − 1 = 0 case, the current configuration is already in the corresponding
target set. To conclude, we expose another application of stepR as before, but use
the clause c ∈ P of the disjunction in stepR to leave the trivial goal ∀n, T, σ. 〈T |
n 	→ 0, s 	→ n(n−1)

2 , σ〉 ∈ {〈T | n 	→ 0, s 	→ n(n−1)
2 , σ〉}. For the n′ − 1 �= 0 case,
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we have a set of claims that are contained in the initial specification S2. We
conclude by showing S2 ⊆ step∗

R(S2) from the second equation in (3) by noting
that S ⊆ F ∗(S) for any F . So this set of claims is contained in S2 by instantiating
the universally quantified variable n′ in the definition of S2 with n′ − 1. Thus it
is contained in step∗

R(S2) and thus it is a subset of validR.

3.3 Example Proof: Reverse

Consider now the following program to reverse a linked list, written in the HIMP
language (Fig. 5a). We will discuss HIMP in more detail Sect. 4.

decl p; decl y; p := 0;

while (x<>0) { y := (x+1); *(x+1) := p; p := x; x := y; }

Call the above code rev and the loop rev-loop. We prove this program is
correct following intuitions from separation logic [19,20] but using the exact
same coinductive technical machinery as before. Assuming we have a predicate
that matches a heap containing only a linked list starting at address x and
representing the list l (which we will see in Sect. 4.2), our specification becomes:

S ≡ {(〈rev; T | list(l, x)〉, {〈T |λr.list(rev(l), r)〉}) | ∀l, x, T}

where rev is the mathematical list reverse. We proceed as in the previous exam-
ple, first using lemma then stepping with the semantics, but with Qn as

{〈rev-loop; T | list(A, x) ∗ list(B, p) ∗ x 	→ x ∗ p 	→ p ∗ y 	→ y ∗ λr.list(B++A, r)〉
| ∀A,B, p, y}

where ++ is list append. We continue as before to prove our original specification.
S1 and S2 follow from our choice for Qn, our “loop invariant.” Specifically,

S1 ≡ {(〈rev;T | list(l, x)〉, {〈rev-loop;T | list(A, x) ∗ list(B, p) ∗ x �→ x ∗ p �→ p ∗ y �→ y

∗ λr.list(B++A, r)〉 | ∀A, B, p, y}) | ∀l, x, T}
S2 ≡ {(〈rev-loop;T | list(A, x) ∗ list(B, p) ∗ x �→ x ∗ p �→ p ∗ y �→ y ∗ λr.list(B++A, r)〉,

{〈T | λr.list(rev(l), r)〉}) | ∀A, B, p, y, l, x, T}

Then, the individual proofs for these specifications closely follow the same
flavor as in the previous example: use stepR to execute the program via the
operational semantics, use unions to case split as needed, and finish when we
reach something in the target set or that was previously in our specification. The
inherent similarity between these two examples hints that automation should not
be too difficult. We go into detail regarding such automation in Sect. 4.

Reasoning with fixpoints and functions like stepR can be thought of as rea-
soning with proof rules, but ones which interact with the target programming
language only through its operational semantics. The stepR operation corre-
sponds, conceptually, to two such proof rules: taking an execution step and
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HIMP

append(x, y)

decl p;

if (!x) return y;

p := x;

while (*(p+1)<>0) p := *(p+1);

*(p+1) := y;

return x;

Stack

: append over if over begin

1+ dup @ dup while nip repeat

drop ! else nip then ;

Lambda

(λ (λ IfNil 1 0

((λ (λ 0 0)

(λ 1 (λ 1 1 0))) (λ
(λ (λ (λ 0 1)) (Deref 0)

(λ IfNil (Cdr 0)

((λ 5) (Assign 0

(Cons (Car 0) 3)))

(2 (Cdr 0)))))

1)))

Fig. 4. Destructive list append in three languages.

showing that the current configuration is in the target set. Sequential composi-
tion and the trans rule corresponds to a transitivity rule used to chain together
separate proofs. Unions correspond to case analysis. The fixpoint in the closure
definition corresponds to iterative uses of these proof rules or to referring back
to claims in the original specification.

4 Experiments

Now that we have proved the correctness of our coinductive verification approach
and have seen some simple examples, we must consider the following pragmatic
question: “Can this simple approach really work?”. We have implemented it in
Coq, and specified and verified programs in a variety of languages, each language
being defined as an operational semantics [16]. We show not only that coinductive
program verification is feasible and versatile, but also that it is amenable to
highly effective proof automation. The simplifications in the manual proof, such
as taking many execution steps at once, translate easily into proof tactics.

We first discuss the example languages and programs, and the reusable ele-
ments in specifications, especially an effective style of representation predicates
for heap-allocated data structures. Then we show how we wrote specifications
for example programs. Next we describe our proof automation, which was based
on an overall heuristic applied unchanged for each language, though parameter-
ized over subroutines which required somewhat more customization. Finally, we
conclude with discussion of our verification of the Schorr-Waite graph-marking
example and a discussion of our support for verification of divergent programs.

4.1 Languages

We discuss three languages following different paradigms, each defined opera-
tionally. Many language semantics are available with the distributions of K [9],
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PLT-Redex [10], and Ott [11], e.g., but we believe these three languages are suf-
ficient to illustrate the language-independence of our approach. Figure 4 shows
a destructive linked list append function in each of the three languages.

HIMP (IMP with Heap) is an imperative language with (recursive) functions
and a heap. The heap addresses are integers, to demonstrate reasoning about low-
level representations, and memory allocation/deallocation are primitives. The
configuration is a 5-tuple of current code, local variable environment mapping
identifiers to values, call stack with frames as pairs of code and environment,
heap, and a collection of functions as a map from function name to definition.

Stack is a Forth-like stack based language, though, unlike in Forth, we do
make control structures part of the grammar. A shared data stack is used both
for local state and to communicate between function invocations, eliminating the
store, formal parameters on function declarations, and the environment of stack
frames. Stack’s configuration is also a 5-tuple, but instead of a current environ-
ment there is a stack of values, and stack frames do not store an environment.

Lambda is a call-by-value lambda calculus, extended with primitive integers,
pair and nil values, and primitive operations for heap access. Fixpoint combina-
tors enable recursive definitions without relying on primitive support for named
functions. We use De Bruijn indices instead of named variables. The semantics
is based on a CEK/CESK machine [21,22], extended with a heap. Lambda’s
configuration is a 4-tuple: current expression, environment, heap, continuation.

Pgm ::= FunDef ∗

FunDef ::=
Id ( Id∗

, ) { Stmt }

Exp ::= Id ( Exp∗
, )

| alloc | load Exp
| Exp . Id
| build Map
| ...

Stmt ::= * Exp := Exp
| dealloc Exp
| Id ( Exp∗

, ) | decl Id
| return Exp ;

| return ;

| ...
(a) HIMP syntax, ex-
tending the IMP syntax

Pgm ::= FunDef *

FunDef ::=
name : Inst*

Inst ::= Dup n
| Roll n
| Pop | Push z
| BinOp f
| Load | Store
| Call name | Ret
| If Inst* Inst*
| While

Inst* Inst*

(b) Stack syntax

Pgm ::= Val

Val ::= Nat | Inc | Dec | Add
| Add1 Nat | Eq | Eq Val
| Nil | Cons | Cons1 Val
| Car | Cdr
| Closure (Exp, Env)
| Pair (Val , Val)

Exp ::= Exp Exp | λ Exp
| Var Nat
| if Exp then Exp else Exp
| Exp ; Exp | Deref Exp
| & Exp | * Exp | Exp := Exp

Env ::= Val∗

(c) Lambda syntax

Fig. 5. Syntax of HIMP, Stack, and Lambda
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4.2 Specifying Data Structures

Our coinductive verification approach is agnostic to how claims in C ×P(C) are
specified. In Coq, we can specify sets using any definable predicates. Within this
design space, we chose matching logic [23] for our experiments, which introduces
patterns that concisely generalize the formulae of first order logic (FOL) and
separation logic, as well as term unification. Symbols apply on patterns to build
other patterns, just like terms, and patterns can be combined using FOL con-
nectives, just like formulae. E.g., pattern P ∧Q matches a value if P and Q both
match it, [t] matches only the value t, ∃x.P matches if there is any assignment of
x under which P matches, and [[ϕ]] where ϕ is a FOL formula matches any value
if ϕ holds, and no values otherwise (in [23] neither [t] nor [[ϕ]] require a visible
marker, but in Coq patterns are a distinct type, requiring explicit injections).

To specify programs manipulating heap data structures we use patterns
matching subheaps that contain a data structure representing an abstract value.
Following [24], we define representation predicates for data structures as func-
tions from abstract values to more primitive patterns. The basic ingredients are
primitive map patterns: pattern emp for the empty map, k 	→ v for the singleton
map binding key k to value v, and P ∗ Q for maps which are a disjoint union
of submaps matching P and, resp., Q. We use abbreviation 〈ϕ〉 ≡ [[ϕ]] ∧ emp
to facilitate inline assertions, and p 	→{v0, . . . , vi} ≡ p 	→ v0 ∗ . . . ∗ (p + i) 	→ vi to
describe values at contiguous addresses. A heap pattern for a linked list starting
at address p and holding list l is defined recursively by

list(nil, p) = 〈p = 0〉
list(x : l, p) = 〈p �= 0〉 ∗ ∃pl . p 	→{x, pl} ∗ list(l, pl)

We also define list seg(l, e, p) for list segments, useful in algorithms using pointers
to the middle of a list, by generalizing the constant 0 (the pointer to the end of
the list) to the trailing pointer parameter e. Also, simple binary trees:

tree(leaf, p) = 〈p = 0〉
tree(node(x, l, r), p) = 〈p �= 0〉 ∗ ∃pl, pr.p 	→{x, lp, rp} ∗ tree(l, lp) ∗ tree(r, rp)

Given such patterns, specifications and proofs can be done in terms of the
abstract values represented in memory. Moreover, such primitive patterns are
widely reusable across different languages, and so is our proof automation that
deals with primitive patterns. Specifically, our proof scripting specific to such
pattern definitions is concerned exclusively with unfolding the definition when
allowed, deciding what abstract value, if any, is represented at a given address
in a partially unfolded heap. This is further used to decide how another claim
applies to the current state when attempting a transitivity step.

4.3 Specifying Reachability Claims

As mentioned, claims in C × P(C) can be specified using any logical formalism,
here the full power of Coq. An explicit specification can be verbose and low-level,
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Table 1. Example list specifications

call(Head, [x], [H] ∧ list(v : l, x), λr.〈r = v〉 ∗ [H])

call(Tail, [x], [H] ∧ list(v : l, x), λr.[H] ∧ ∗ list(l, r))

call(Add, [y, x], list(l, x), λr.list(y : l, r))

call(Add′, [y, x], [H] ∧ list(l, x), λr.list seg([y], x, r) ∗ [H])

call(Swap, [x], list(a : b : l, x), λr.list(b : a : l, x))

call(Dealloc, [x], list(l, x), λr.emp)

call(Length, [x], [H] ∧ list(l, x), λr.〈r = len(l)〉 ∗ [H])

call(Sum, [x], [H] ∧ list(l, x), λr.〈r = sum(l)〉〉 ∗ [H])

call(Reverse, [x], list(l, x), λr.list(rev(l), r))

call(Append, [x, y], list(a, x) ∗ list(b, y), λr.list(a++b, r))

call(Copy, [x], [H] ∧ list(l, x), λr.list(l, r) ∗ [H])

call(Delete, [v, x], list(l, x), λr.list(delete(v, l), r))

especially when many semantic components in the configuration stay unchanged.
However, any reasonable logic allows making definitions to reduce verbosity and
redundancy. Our use of matching logic particularly facilitates framing conditions,
allowing us to regain the compactness and elegance of Hoare logic or separation
logic specifications with definable syntactic sugar. For example, defining

call(f(formals){body}, args, Pin , Pout) =

{(〈f(args)�rest , env , stk , heap, funs〉, {〈r � rest , env , stk , heap′, funs〉
| ∀r, heap′. heap′ � Pout(r) ∗ [Hf ]})

| ∀rest , env , stk , heap, Hf , funs. heap �Pin ∗ [Hf ] ∧ f �→f(formals){body}∈ funs}

gives the equivalent of the usual Hoare pre-/post-condition on function calls,
including heap framing (in separation logic style). The notation x � y represents
the order of evaluation: evaluate x first followed by y. This is often used when y
can depend on the value x takes after evaluation.

The first parameter is the function definition. The second is the arguments.
The heap effect is described as a pattern Pin for the allowable initial states of
the heap and function Pout from returned values to corresponding heap pat-
terns. For example, we specify the definition D of append in Fig. 4 by writing
call(D, [x, y], (list(a, x) ∗ list(b, y)), (λr.list(a++b, r))), which is as compact and
elegant as it can be. More specifications are given in Table 1. A number of
specifications assert that part of the heap is left entirely unchanged by writ-
ing [H] ∧ . . . in the precondition to bind a variable H to a specific heap, and
using the variable in the postcondition (just repeating a representation predi-
cate might permit a function to reallocate internal nodes in a data structure to
different addresses). The specifications Add and Add’ show that it can be a bit
more complicated to assert that an input list is used undisturbed as a suffix of
a result list. Specifications such as Length, Append, and Delete are written in
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terms of corresponding mathematical functions on the lists represented in the
heap, separating those functional descriptions from details of memory layout.

When a function contains loops, proving that it meets a specification often
requires making some additional claims about configurations which are just
about to enter loops, as we saw in Sect. 2.2. We support this with another pat-
tern that takes the current code at an intermediate point in the execution of a
function, and a description of the environment:

stmt(code, env , Pin , Pout) =
{(〈code, (env , ef ), stk , heap, funs〉, {〈return r � rest , env ′, stk , heap′, funs〉

| ∀r, rest , env ′, heap′.heap′ � Pout(r) ∗ [Hf ]})
| ∀ef , stk , heap,Hf , funs . heap � Pin ∗ [Hf ]}

Verifying the definition of append in Fig. 4 meets the call specification above
requires an auxiliary claim about the loop, which can be written using stmt as

stmt(while (*(p+1)<>0) . . . , (x 	→ x, y 	→ y, p 	→ p),
(list seg(lx, p, x) ∗ list(lp, p) ∗ list(ly, y)), (λr.list(lx++lp++ly, r)))

The patterns above were described using HIMP’s configurations; we defined
similar ones for Stack and Lambda also.

4.4 Proofs and Automation

The basic heuristic in our proofs, which is also the basis of our proof automation,
is to attack a goal by preferring to prove that the current configuration is in the
target set if possible, then trying to use claims in the specification by transitivity,
and only last resorting to taking execution steps according to the operational
semantics or making case distinctions. Each of these operations begins, as in
the example proofs, with certain manipulations of the definitions and fixpoints
in the language-independent core. Our heuristic is reusable, as a proof tactic
parameterized over sub-tactics for the more specific operations. A prelude to the
main loop begins by applying the main theorem to move from claiming validity
to showing a coinduction-style inclusion, and breaking down a specification with
several classes of claims into a separate proof goal for each family of claims.

Additionally, our automation leverages support offered by the proof assis-
tant, such as handling conjuncts by trying to prove each case, existentials by
introducing a unification variable, equalities by unification, and so on. More-
over, we added tactics for map equalities and numerical formulae, which are
shared among all languages involving maps and integers. The current proof goal
after each step is always a reachability claim. So even in proofs which are not
completely automatic, the proof automation can give up by leaving subgoals for
the user, who can reinvoke the proof automation after making some proof steps
of their own as long as they leave a proof goal in the same form.
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Proving the properties in Table 1 sometimes required making additional
claims about while loops or auxiliary recursive functions. All but the last four
were proved automatically by invoking (an instance of) our heuristic proof tactic:

Proof. list_solver. Qed.

Append and copy needed to make use of associativity of list append. Reverse
used a loop reversing the input list element by element onto an output list, which
required relating the tail recursive rev app(x : l, y) = rev app(l, x : y) with the
Coq standard library definition rev(x : l) = rev(l)++[x]. Manually applying these
lemmas merely modified the proof scripts to

list_solver. rewrite app_ass in * |- . list_run.
list_solver. rewrite <- rev_alt in * |- . list_run.

These proofs were used verbatim in each of our example languages. The only
exceptions were append and copy for Lambda, for which the app ass lemma was
not necessary. For Delete, simple reasoning about delete(v , l) when v is and is
not at the head of the list is required, though the actual reasoning in Coq varies
between our example languages. No additional lemmas or tactics equivalent to
Hoare rules are needed in any of these proofs.

4.5 Other Data Structures

Matching logic allows us to concisely define many other important data struc-
tures. Besides lists, we also have proofs in Coq with trees, graphs, and stacks [16].
These data structures are all used for proving properties about the Schorr-Waite
algorithm. In the next section we go into more detail about these data structures
and how they are used in proving the Schorr-Waite algorithm.

4.6 Schorr-Waite

Our experiments so far demonstrate that our coinductive verification approach
applies across languages in different paradigms, and can handle usual heap pro-
grams with a high degree of automation. Here we show that we can also handle
the famous Schorr-Waite graph marking algorithm [25], which is a well-known
verification challenge, “The Schorr-Waite algorithm is the first mountain that
any formalism for pointer aliasing should climb” [26]. To give the reader a feel
for what it takes to mechanically verify such an algorithm, previous proofs in [27]
and [28] required manually produced proof scripts of about 470 and, respectively,
over 1400 lines and they both used conventional Hoare logic. In comparison our
proof is 514 lines. Line counts are a crude measure, but we can at least conclude
that the language independence and generality of our approach did not impose
any great cost compared to using language-specific program logics.

The version of Schorr-Waite that we verified is based on [29]. First, however,
we verify a simpler property of the algorithm, showing that the given code cor-
rectly marks a tree, in the absence of sharing or cycles. Then we prove the same
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code works on general graphs by considering the tree resulting from a depth first
traversal. We define graphs by extending the definition of trees to allow a child
of a node in an abstract tree to be a reference back to some existing node, in
addition to an explicit subtree or a null pointer for a leaf. To specify that graph
nodes are at their original addresses after marking, we include an address along
with the mark flag in the abstract data structure in the pattern

grph(leaf,m, p′) = 〈p′ = 0〉
grph(backref(p),m, p′) = 〈p′ = p〉
grph(node(p, l, r),m, p′) = 〈p′=p〉 ∗ ∃pl, pr .

p 	→{m, pl, pr} ∗ grph(l,m, pl) ∗ grph(r,m, pr)

The overall specification is call(Mark , [p], grph(G, 0, p), λr.grph(G, 3, p)).
To describe the intermediate states in the algorithm, including the clever

pointer-reversal trick used to encode a stack, we define another data structure for
the context, in zipper style. A position into a tree is described by its immediate
context, which is either the topmost context, or the point immediately left or
right of a sibling tree, in a parent context. These are represented by nodes
with intermediate values of the mark field, with one field pointing to the sibling
subtree and the other pointing to the representation of the rest of the context.

stack(Top, p) = 〈p = 0〉
stack(LeftOf(r, k), p) = ∃pr, pk . p 	→{1, pr, pk} ∗ grph(r, 0, pr) ∗ stack(k, pk)

stack(RightOf(l, k), p) = ∃pl, pk . p 	→{2, pk, pl} ∗ stack(k, pk) ∗ grph(l, 3, pl)

This is the second data structure needed to specify the main loop. When it is
entered, there are only two live local variables, one pointing to the next address
to visit and the other keeping context. The next node can either be the root of
an unmarked subtree, with the context as stack, or the first node in the implicit
stack when ascending after marking a tree, with the context pointing to the node
that was just finished. For simplicity, we write a separate claim for each case.

stmt(Loop, (p 	→ p, q 	→ q), (grph(G, 0, p) ∗ stack(S, q)), λr.grph(plug(G,S), 3))
stmt(Loop, (p 	→ p, q 	→ q), (stack(S, p) ∗ grph(G, 3, q)), λr.grph(plug(G,S), 3))

The application of all the semantic steps was handled entirely automatically,
the manual proof effort being entirely concerned with reasoning about the pred-
icates above, for which no proof automation was developed.

4.7 Divergence

Our coinductive framework can also be used to verify a program is divergent.
Such verification is often a topic that is given its own treatment, as in [30,31],
though in our framework, no additional care is needed. To prove a program is
divergent on all inputs, one verifies a set of claims of the form (c, ∅), so that no
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configuration can be determined valid by membership in the final set of states.
We have verified the divergence of a simple program under each style of IMP
semantics in Fig. 3, as well as programs in each language from Sect. 4.1. These
program include the omega combinator and the sum program from Sect. 3.2 with
true replacing the loop guard.

4.8 Summary of Experiments

Statistics are shown in Table 2. For each example, size shows the amount of
code to be verified, the size of the specification, and the size of the proof script.
If verifying an example required auxiliary definitions or lemmas specific to that
example, the size of those definitions were counted with the specification or proof.
Many examples were verified by a single invocation of our automatic proof tactic,
giving 1-line proofs. Other small proofs required human assistance only in the
form of applying lemmas about the domain. Proofs are generally smaller than
the specifications, which are usually about as large as the code. This is similar
to the results for Bedrock [32], and good for a foundational verification system.

Table 2. Proof statistics

Size (lines) Time (s)

Example Code Spec Proof Prove Check

Simple
undefined 2 3 1 2.1 1.1
average3 2 5 1 2.3 0.8

min 3 4 2 2.1 0.7
max 3 4 2 2.1 0.7

multiply 9 6 1 7.2 1.4
sum(rec) 6 7 6 4.2 1.0
sum(iter) 6 11 8 6.0 1.0

Trees
height 8 3 3 20.5 4.1

size 5 3 1 8.0 2.2
find 6 9 1 15.5 3.1

mirror 7 6 1 19.0 4.2
dealloc 15 7 1 19.6 4.1

flatten(rec) 12 10 1 30.9 6.8
flatten(iter) 24 17 4 150.3 22.8

Size (lines) Time (s)

Example Code Spec Proof Prove Check

Lists: head 2 4 1 2.1 0.8
tail 2 4 1 2.2 0.9
add 4 4 1 4.8 1.2

swap 6 4 1 19.6 3.6
dealloc 6 4 1 6.3 1.3

length(rec) 4 4 1 4.8 1.4
length(iter) 4 8 1 7.2 1.5

sum(rec) 4 4 1 8.2 2.0
sum(iter) 4 8 1 9.11 1.7

reverse 8 5 3 15.0 2.2
append 7 9 3 19.4 3.6

copy 14 11 3 55.0 9.3
delete 16 18 9 44.6 6.0

Schorr-Waite
tree 14 91 116 60.1 7.6

graph 14 91 203 133.6 18.2

The reported “Proof” time is the time for Coq to process the proof script,
which includes running proof tactics and proof searches to construct a com-
plete proof. If this run succeeds, it produces a proof certificate file which can
be rechecked without that overhead. For an initial comparison with Bedrock
we timed their SinglyLinkedList.v example, which verifies length, reverse,
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and append functions that closely resemble our example code. The total time
to run the Bedrock proof script was 93 s, and 31 s to recheck the proof cer-
tificate, distinctly slower than our times in Table 2. To more precisely match
the Bedrock examples we modified our programs to represent lists nodes with
fields at successive addresses rather than using HIMP’s records, but this only
improved performance, down to 20 s to run the proof scripts, and 4 s to check
the certificates.

5 Subsuming Reachability Logic

Reachability logic [33] is a closely related approach to program verification using
operational semantics. In fact, our coinductive approach came about when trying
to distill reachability logic into its mathematical essence. The practicality of
reachability logic has recently been demonstrated, as the reachability logic proof
system has been shown to work with several independently developed semantics
of real-world languages, such as C, Java, and JavaScript [15].

5.1 Advantages of Coinduction

Axiom :

ϕ ⇒ ϕ′ ∈ A
A �C ϕ ⇒ ϕ′

Reflexivity :

A � ϕ ⇒ ϕ

Transitivity :

A �C ϕ1 ⇒+ ϕ2 A ∪ C � ϕ2 ⇒ ϕ3

A �C ϕ1 ⇒ ϕ3

Logic Framing :

A �C ϕ ⇒ ϕ′ ψ is a FOL formula
A �C ϕ ∧ ψ ⇒ ϕ′ ∧ ψ

Consequence :

|= ϕ1 → ϕ′
1 A �C ϕ′

1 ⇒ ϕ′
2 |= ϕ′

2 → ϕ2

A �C ϕ1 ⇒ ϕ2

Case Analysis :
A �C ϕ1 ⇒ ϕ A �C ϕ2 ⇒ ϕ

A �C ϕ1 ∨ ϕ2 ⇒ ϕ

Abstraction :

A �C ϕ ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅
A �C ∃X ϕ ⇒ ϕ′

Circularity :

A �C∪{ϕ⇒ϕ′} ϕ ⇒ ϕ′

A �C ϕ ⇒ ϕ′

Fig. 6. Reachability Logic proof
system. Sequent A  ϕ ⇒ ϕ′ is a
shorthand for A ∅ ϕ ⇒ ϕ′.

A mechanical proof of our soundness theorem
gives a more usable verification framework,
since reachability logic requires operational
semantics to be given as a set of rewrite rules,
while our approach does not. Further, reacha-
bility logic fixes a set of syntactic proof rules,
while in our approach the mathematical fix-
points and functions act as proof rules with-
out explicitly requiring any. In fact, the gen-
erality of our approach allows introductions
of other derived rules that do not compromise
the soundness result. Similarly, the generality
allows higher-order verification, which reach-
ability logic cannot handle.

Further, we saw in Sect. 3 that the general
proof of our theorem is entirely mathemati-
cal. We instantiate it with the stepR func-
tion to get a program verification framework.
However, if we instantiate it with other func-
tions, we could get frameworks for proving
different properties, such as all-path valid-
ity or the “until” notion of validity previ-
ously mentioned. Reachability logic does not
support any other notion of validity with-
out changes to its proof system, which then
require new proofs of soundness and relative
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completeness. For our framework, the proof of the main theorem does not need
to be modified at all, and one only needs to prove that all-path validity is a
greatest fixpoint (see Sect. 3). The same is true for any property. In this sense,
this coinduction framework is much more general than the reachability logic
proof system presented in [34].

5.2 Reachability Logic Proof System

The key construct in reachability logic is the notion of circularity. Circularities,
represented as C in Fig. 6, intuitively represent claims that are conjectured to
be true but have not yet been proved true. These claims are proved using the
Circularity rule, which is analogous in our coinductive framework to referring back
to claims previously seen. Most of the other rules in Fig. 6 are not as interesting.
Transitivity requires progress before the circularities are flushed as axioms. This
corresponds to the outer stepR in our coinductive framework.

Clearly, there are obvious parallels between the Reachability Logic proof
system and our coinductive framework. We have formalized and mechanically
verified a detailed proof that reachability logic is an instance of our coinductive
verification framework. One can refer to [16] for full details, but we briefly discuss
the nature of the proof below.

5.3 Reachability Logic is Coinduction

To formalize what it means for reachability logic to be an instance of coinduction,
we first need some definitions. First, we need a translation from a reachability
rule to a set of coinductive claims. In a reachability rule ϕ ⇒ ϕ′, both ϕ and
ϕ′ are patterns which respectively describe (symbolically) the starting and the
reached configurations. Both ϕ and ϕ′ can have free variables. Let Var be the
set of variables. Then, we define the set of claims

Sϕ⇒ϕ′ ≡ {(c, ρ(ϕ′)) | c ∈ ρ(ϕ), ∀ρ : Var → Cfg}
where Cfg is the model of configurations and ρ(·) is the extension of the valuation
ρ to patterns [15]. Also, let the claims derived from a set of reachability rules
X = {ϕ1 ⇒ ϕ′

1, . . . , ϕn ⇒ ϕ′
n} be:

X ≡
⋃

ϕi⇒ϕ′
i∈X

Sϕi⇒ϕ′
i

In reachability logic, programming language semantics are defined as theo-
ries, that is, as sets of (one-step) reachability rules A with patterns over a given
signature of symbols. Each theory A defines a transition relation over the con-
figurations in Cfg , say RA, which is then used to define the semantic validity
in reachability logic, A |= ϕ ⇒ ϕ′. It is possible and easier to prove our main
theorem more generally, for any transition relation R that satisfies R �+ A:

R �+ A if R �+ ϕ ⇒ ϕ′ for each ϕ ⇒ ϕ′ ∈ A
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where R �+ ϕ ⇒ ϕ′ if for each ρ : Var → Cfg and γ : Cfg such that (ρ, γ) � ϕ
[33], there is a γ′ such that γ →R γ′ and (γ′, ρ(ϕ′)) is a valid reachability claim.

Lemma 3. RA �+ A and if Sϕ⇒ϕ′ ⊆ validRA then A � ϕ ⇒ ϕ′.

This lemma suggests what to do: take any reachability logic proof of A �
ϕ ⇒ ϕ′ and any transition relation R such that R �+ A, and produce a coin-
ductive proof of Sϕ⇒ϕ′ ⊆ validR. This gives us not only a procedure to associate
coinductive proofs to reachability logic proofs, but also an alternative method
to prove the soundness of reachability logic. This is what we do below:

Theorem 2. If there is a reachability logic proof derivation for A � ϕ ⇒ ϕ′ and
a transition relation R such that R �+ A, then Sϕ⇒ϕ′ ⊆ validR, and in particular
this holds by applying Theorem1 to an inclusion C ⊆ stepR(derived∗

R(C)). Here,
derivedR is a particular function satisfying the conditions for G in Theorem1
(see [16] for more details), and C is a set of reachability rules consisting of ϕ ⇒ ϕ′

along with those reachability rules which appear as conclusions of instances of
the Circularity proof rule in the proof tree of A � ϕ ⇒ ϕ′.

To prove Theorem 2, we apply the Set Circularity theorem of reachability
logic [35], which states that any reachability logic claim A � ϕ ⇒ ϕ′ is provable
iff there is some set of claims C such that ϕ ⇒ ϕ′ ∈ C and for each ϕi ⇒ ϕ′

i ∈ C
there is a proof of A �C ϕi ⇒ ϕ′

i which does not use the Circularity proof rule. In
the forward direction, we can take C as defined in the statement of Theorem 2.
The main idea is to convert proof trees into inclusions of sets of claims:

Lemma 4. Given a proof derivation of A �C ϕa ⇒ ϕb which does not use the
Circularity proof rule (last rule in Fig. 6), if R �+ A and C is nonempty then
Sϕa⇒ϕb

⊆ stepR(derived∗
R(C)).

This lemma is proven by strengthening the inclusion into one that can be proven
by structural induction over the Reachability Logic proof rules besides Circularity.

Combining this lemma with Set Circularity shows that C = ∪iSϕi⇒ϕ′
i

⊆
validR which implies that Sϕ⇒ϕ′ ⊆ validR exactly as desired. We have mecha-
nized the proofs of Lemmas 3 and 4 in Coq [16]. This is a major result, consti-
tuting an independent soundness proof for Reachability Logic, and helps demon-
strate the strength of our coinductive framework, despite its simplicity. More-
over, this allows proofs done using reachability logic as in [15] to be translated
to mechanically verified proofs in Coq, immediately allowing foundational veri-
fication of programs written in any language.

6 Other Related Work

Here we discuss work other than reachability logic that is related to our coinduc-
tive verification system. We discuss commonly used program verifiers, including
approaches based on operational semantics and Iris [36], an approach with some
language independence. We also discuss related coinduction schemata.
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6.1 Current Verification Tools

A number of prominent tools such as Why [37], Boogie [38,39], and Bedrock
[24,32] provide program verification for a fixed language, and support other
languages by translation if at all. For example, Frama-C and Krakatoa, respec-
tively, attempt to verify C and Java by translation through Why. Also, Spec#
and Havoc, respectively, verify C# and C by translation through Boogie. We are
not aware of soundness proofs for these translations. Such proofs would be highly
non-trivial, requiring formal semantics of both source and target languages.

All of these systems are based on a verification condition (VC) generator for
their programming language. Bedrock is closest in architecture and guarantees
to our system, as it is implemented in Coq and verification results in a Coq
proof certificate that the specification is sound with respect to a semantics of
the object language. Bedrock supports dynamically created code, and modular
verification of higher-order functions, for which our framework has preliminary
support. Bedrock also makes more aggressive attempts at complete automation,
which costs increased runtime. Most fundamentally, Bedrock is built around a
VC generator for a fixed target language.

In sharp contrast to the above approaches, we demonstrated that a small-
step operational semantics suffices for program verification, without a need to
define any other semantics, or verification condition generators, for the same
language. A language-independent, sound and (relatively) complete coinductive
proof method then allows us to verify properties of programs using directly
the operational semantics. As seen in Sect. 4.8 this language independence does
not compromise other desirable properties. The required human effort and the
performance of the verification task compare well with foundational program
verifiers such as Bedrock, and we provide the same high confidence in correctness:
the trust base consists of the operational semantics only.

6.2 Operational Semantics Based Approaches

Verifiable C [40] is a program verification tool for the C programming language
based on an operational semantics for C defined in Coq. Hoare triples are then
proved as lemmas about the operational semantics. However, in this approach
and other similar approaches, it is necessary to prove such lemmas. Without
them, verification of any nontrivial C program would be nearly impossible. In
our approach, while we can also define and prove Hoare triples as lemmas, doing
so is not needed to make program verification feasible, as demonstrated in the
previous sections. We only need some additional domain reasoning in Coq, which
logics like Verifiable C require in addition to Hoare logic reasoning. Thus, our
approach automatically yields a program verification tool for any language with
minimal additional reasoning, while approaches such as Verifiable C need over
40,000 lines of Coq to define the program logic. We believe this is completely
unnecessary, and hope our coinductive framework will be the first step in elimi-
nating such superfluous logics.
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The work by the FLINT group [41–43] is another approach to program ver-
ification based on operational semantics. Languages developed use shallowly
embedded state predicates in Coq, and inference rules are derived directly from
the operational semantics. However, their work is not generic over operational
semantics. For example, [43] is developed in the context of a particular machine
model, with a fixed memory representation and register file. Even simple changes
such as adding registers require updating soundness proofs. Our approach has a
single soundness theorem that can be instantiated for any language.

Iris [36] is a concurrent separation logic that has language independence,
with operational semantics formalized in Coq. Iris adds monoids and invariants
to the program logic in order to facilitate verification. It also derives some Hoare-
style rules for verification from the semantics of a language. However, there are
still structural Hoare rules that depend on the language that must be added
manually. Additionally, once proof rules are generated, they are specialized to
that particular language. Further, the verification in the paper relies on Hoare
style reasoning, while in our approach, we do not assume any such verification
style, as we work directly with the mathematical specifications. Finally, the
monoids used are not generated and are specific to the program language used.

6.3 Other Coinduction Schemata

A categorical generalization of our key theorem was presented as a recursion
scheme in [12,13]. The titular result of the former is the dual of the λ-coiteration
scheme of the latter, which specializes to preorder categories to give our The-
orem 1. A more recent and more general result is [14], which also generalized
other recent work on coinductive proofs such as [44]. Unlike these approaches,
which were presented for showing bisimilarity, the novelty of our approach stems
in the use of these techniques directly to show Hoare-style functional correct-
ness claims, and in the development of the afferent machinery and automa-
tion that makes it work with a variety of languages, and not in advancing the
already solid mathematical foundations of coinduction. Various weaker coin-
duction schemes are folklore, such as Isabelle/HOL’s standard library’s lemma
coinduct3: mono(f) ∧ A⊆f(μx. f(x) ∪ A ∪ νf) =⇒ A⊆ν(f).

7 Conclusion and Future Work

We presented a language-independent program verification framework. Proofs
can be as simple as with a custom Hoare logic, but only an operational semantics
of the target language is required. We have mechanized a proof of the correctness
of our approach in Coq. Combining this with a coinductive proof thus produces a
Coq proof certificate concluding that the program meets the specification accord-
ing to the provided semantics. Our approach is amenable to proof automation.
Further automation may improve convenience and cannot compromise sound-
ness of the proof system. A language designer need only give an authoritative
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semantics to enable program verification for a new language, rather than needing
to have the experience and invest the effort to design and prove the soundness
of a custom program logic.

One opportunity for future work is using our approach to provide proof cer-
tificates for reachability logic program verifiers such as K [9]. The K prover was
used to verify programs in several real programming languages [15]. While the
proof system is sound, trusting the results of these tools requires trusting the
implementation of the K system. Our translation in Sect. 5 will allow us to pro-
duce proof objects in Coq for proofs done in K’s backend, which will make it
sufficient to trust only Coq’s proof checker to rely on the results from K’s prover.

Another area for future work is verifying programs with higher-order specifi-
cations, where a specification can make reachability claims about values quanti-
fied over in the specification. This allows higher-order functions to have specifica-
tions that require functional arguments to themselves satisfy some specification.
We have begun preliminary work on proving validity of such specifications using
the notions of compatibility up-to presented in [14]. Combining this with more
general forms of claims may allow modular verification of concurrent programs,
as in RGsep [45]. See [16] for initial work in these areas.

Other areas for future work are evaluating the reusability of proof automa-
tion between languages, and using the ability to easily verify programs under a
modified semantics, e.g. adding time costs to allow proving real-time properties.
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