
The Rewriting Logic Semantics Project:
A Progress Report

José Meseguera, Grigore Roşub

aDepartment of Computer Science,
University of Illinois at Urbana-Champaign, USA

meseguer@illinois.edu
bDepartment of Computer Science,

University of Illinois at Urbana-Champaign, USA, and
University Alexandru Ioan Cuza, Iaşi, Romania

grosu@illinois.edu

Abstract

Rewriting logic is an executable logical framework well suited for the semantic
definition of languages. Any such framework has to be judged by its effectiveness
to bridge the existing gap between language definitions on the one hand, and
language implementations and language analysis tools on the other. We give a
progress report on how researchers in the rewriting logic semantics project are
narrowing the gap between theory and practice in areas such as: modular seman-
tic definitions of languages; scalability to real languages; support for real time;
semantics of software and hardware modeling languages; and semantics-based
analysis tools such as static analyzers, model checkers, and program provers.

Keywords: Rewriting Logic, Programming Languages, Semantics, Maude, K

1. Introduction

The disconnect between theory and practice is one of the worse evils in
computer science. Theory disconnected from practice becomes irrelevant; and
practice without theory becomes brute-force, costly and ad-hoc engineering.
One of the current challenges in formal approaches to language semantics is
precisely how to effectively bridge the gap between theory and practice. There
are two distinct dimensions to this gap:

(1) Given a language L, there is often a substantial gap between: (i) a formal
semantics for L; (ii) an implementation of L; and (iii) analysis tools for
L, including static, dynamic, and deductive tools.

(2) Even if a formal semantics exists for a programming language L, there
may not be any formal semantics available at the higher level of software
designs and models, or at the lower level of hardware.

Regarding (1), a semantics of L may just be a “paper semantics,” such as
some SOS rules on a piece of paper; or it may be a “toy semantics,” not for L

Preprint submitted to Information and Computation May 8, 2013

itself, but for a greatly simplified sub-language. Furthermore, the way a compiler
for L is written may have no connection whatever with a formal semantics for L,
so that different compilers provide different language behaviors. To make things
worse, program analysis tools for L, including tools that supposedly provide
some formal analysis, may not be systematically based on a formal semantics
either, so that the confidence one can place of the answers from such tools is
greatly diminished. Regarding (2), one big problem is that software modeling
notations often lack a formal semantics. A related problem is that this lack of
semantics manifests itself as a lack of analytic power, that is, as an incapacity
to uncover expensive design errors which could have been caught by formal
analysis.

We, together with many other colleagues all over the world, have been work-
ing for years on the rewriting logic semantics project (see [1, 2, 3] for some
overview papers at different stages of the project). The goal of this project is
to substantially narrow the gap between theory and practice in language spec-
ifications, implementations and tools, in both of the above dimensions (1)–(2).
In this sense, rewriting logic semantics is a wide-spectrum framework, where:

1. The formal semantics of a language L is used as the basis on which both
language implementations and language analysis tools are built.

2. The same semantics-based approach is used not just for programming
languages, but also for software and hardware modeling languages.

Any attempt to bridge theory and practice cannot be judged by theoretical
considerations alone. One has to evaluate the practical effectiveness of the
approach in answering questions such as the following:

• Executability. Is the semantics executable? How efficiently so? Can se-
mantic definitions be tested to validate their agreement with an informal
semantics?

• Range of Applicability. Can it be applied to programming languages and
to software and hardware modeling languages? Can it naturally support
nontrivial features such as concurrency and real time?

• Scalability. Can it be used in practice to give full definitions of real lan-
guages like Java or C? And of real software and hardware modeling lan-
guages?

• Integrability. How well can the semantics be integrated with language
implementations and language analysis tools? Can it really be used as the
basis on which such implementations and analysis tools are built?

This paper is a progress report on the efforts by various researchers in the
rewriting logic semantics project to positively answer these questions. After
summarizing some related work below, we give an overview of rewriting logic
semantics in Section 2. Subsequent sections then describe in more detail: (i)

2

modularity of definitions and the support for highly modular definitions pro-
vided by the K framework (Section 3); (ii) semantics of programming languages
(Section 4); semantics of real-time language (Section 5); (iv) semantics of soft-
ware modeling languages (Section 6); (v) semantics of hardware description
languages (Section 7); (vi) abstract semantics and static analysis (Section 8);
(vii) model checking verification (Section 9); and (viii) deductive verification
(Section 10). We finish with some concluding remarks in Section 11.

This paper is a substantial extension of the conference paper [4], an ex-
tension in which we have treated several key topics in greater depth and have
incorporated some more recent results. Specifically, a new section has been
added discussing the K framework, its semantics and its implementation in more
depth, namely Section 3.3. Since in the meanwhile the semantics of C has been
completed, Section 4 now gives updated statistics as well as a detailed compar-
ison with related work. Similarly, since our MatchC verifier and its underlying
theory have been significantly advanced recently, Section 10 gives more detail
on matching logic verification and enumerates several non-trivial verification ef-
forts with MatchC. Likewise, our treatment of modeling language semantics and
verification has been substantially extended by adding the following new sec-
tions: (i) Section 6.2, where the semantics of the real-time modeling languages
Ptolemy II and Synchronous AADL is explained and illustrated with examples;
(ii) Section 9.2 on model checking verification of Ptolemy II models; and (iii)
Section 9.3 on model checking verification of Synchronous AADL models.

1.1. Related Work

There is much related work on frameworks for defining programming lan-
guages. Without trying to be exhaustive, we mention only some of them which
are most closely related to rewriting logic, and point out some relationships
to rewriting logic semantics (RLS). Frameworks like game semantics, monads,
and nominal logics, although interesting and capable of defining executable and
modular/compositional semantics of programming languages, are less related to
rewriting logic and thus not discussed here.
Structural Operational Semantics (SOS). Several variants of structural
operational semantics have been proposed. We refer to [3] for an in-depth com-
parison between SOS and RLS. A key point made in [3], and also made in
Section 2.5, is that RLS is a framework supporting many different definitional
styles. In particular, it can naturally and faithfully express many diffent SOS
styles such as: small-step SOS [5], big-step SOS [6], MSOS [7], reduction seman-
tics [8], continuation-based semantics [9], and the CHAM [10]. Compared to
SOS, rewrite logic has several advantages, including: (i) the distinction between
deterministic computation, expressed with equations, and concurrent computa-
tion, expressed with rules (see Section 2.4); and (ii) the seamless integration of
denotational and operational semantics (see Section 2.3).
Algebraic denotational semantics. This approach, (see [11, 12, 13, 14]
for early papers and [15, 16] for two more recent books), is the special case
of RLS where the rewrite theory RL defining a language L is an equational
theory. Its main limitation is that it is well suited for giving executable semantics

3

to deterministic languages, but not that well suited for nondeterministic or
concurrent language definitions. That’s because programs in non-deterministic
or concurrent languages can produce many different results, and an executable
equational semantics of the language would end up inconsistently equating those
different results, because the application of equations is reversible. Rewriting
logic allows to use (irreversible) rewrite rules to define the non-deterministic
features of a language, so the problem above is elegantly avoided.
Higher-order approaches. The most classic higher-order approach is deno-
tational semantics [17, 18, 19, 20]. Denotational semantics has some similari-
ties with its first-order algebraic cousin mentioned above, since both are based
on semantic equations and both are best suited for deterministic languages.
Higher-order functional languages or higher-order theorem provers can be used
to give an executable semantics to programming languages, including the use of
Scheme in [21], the use of ML in [22], and the use of Common LISP within the
ACL2 prover in [23]. There is also a body of work on using monads [24, 25, 26]
to implement language interpreters in higher-order functional languages; the
monadic approach has better modularity characteristics than standard SOS.
Some higher-order approaches are based on the use of higher-order abstract
syntax (HOAS) [27, 28] and higher-order logical frameworks, such as LF [28] or
λ-Prolog [29], to encode programming languages as formal logical systems; for a
good example of recent work in this direction see [30] and references there. As
in the case of algebraic denotational semantics, the main limitation of denota-
tional semantics is that, being essentially a functional framework, it is not well
suited for dealing with concurrency and non-determinism.
Logic-programming-based approaches. Going back to the Centaur project
[31, 32], logic programming has been used as a framework for SOS language
definitions. Note that λ-Prolog [29] belongs both in this category and in the
higher-order one. For a recent textbook giving logic-programming-based lan-
guage definitions, see [33]. In some ways, logic programming approaches have
the opposite limitations of those in denotational semantics: there is no problem
in dealing with non-determinism in logic programming; but functional compu-
tations are typically encoded in an awkward, relational way.
Abstract state machines. Abstract State Machine (ASM) [34] can encode any
computation and have a rigorous semantics, so any programming language can
be defined as an ASM and thus implicitly be given a semantics. Both big- and
small-step ASM semantics have been investigated. The semantics of various
programming languages, including Java [35], has been given using ASMs. In
terms of executability and scalability to real languages, the ASM approach has
clearly demonstrated that it can be applied effectively to large languages.
Other RLS work. RLS is a collective international project. There is by now
a substantial body of work demonstrating the usefulness of this approach, e.g.,
[36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 1, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63], and we describe some even more recent advances in
this paper. A first snapshot of the RLS project was given in [1], a second in [2],
and a third in [3], with this paper as the fourth snapshot.

4

2. Rewriting Logic Semantics in a Nutshell

Before describing in more detail the different advances in the rewriting logic
semantics project we give here an overview of it. Be begin with a short summary
of rewriting logic as a semantic framework for concurrent systems. Then we ex-
plain how it can be used to give both an operational and a denotational seman-
tics to a programming language. Thanks to the distinction between equations
and rules, this semantics can be given at various levels abstraction. Further-
more, a wide range of definitional styles can be naturally supported. We explain
how rewriting logic semantics has been extended to: (i) real-time languages; (ii)
software modeling languages; and (iii) hardware description languages. We fi-
nally explain how a rewriting logic semantics can be used for static analysis,
and for model checking and deductive verification of programs.

2.1. Rewriting Logic

The goal of rewriting logic [64] is to provide a flexible logical framework to
specify concurrent systems. A concurrent system is specified as a rewrite theory
R = (Σ, E,R), where (Σ, E) is an equational theory, and R is a set of (possibly
conditional) rewrite rules. The equational theory (Σ, E) specifies the concurrent
system’s set of states as an algebraic data type, namely, as the initial algebra
of the equational theory (Σ, E). Concretely, this means that a distributed state
is mathematically represented as an E-equivalence class [t]E of terms built up
with the operators declared in Σ, modulo provable equality using the equations
E, so that two state representations t and t′ describe the same state if and only
if one can prove the equality t = t′ using the equations E.

The rules R specify the system’s local concurrent transitions. Each rewrite
rule in R has the form t→ t′, where t and t′ are Σ-terms. The left-hand side t
describes a local firing pattern, and the right-hand side t′ describes a correspond-
ing replacement pattern. That is, any fragment of a distributed state which is
an instance of the firing pattern t can perform a local concurrent transition in
which it is replaced by the corresponding instance of the replacement pattern
t′. Both t and t′ are typically parametric patterns, describing not single states,
but parametric families of states. The parameters appearing in t and t′ are pre-
cisely the mathematical variables that t and t′ have, which can be instantiated
to different concrete expressions by a substitution, that is, a mapping θ sending
each variable x to a term θ(x). The instance of t by θ is then denoted θ(t).

The most basic logical deduction steps in a rewrite theory R = (Σ, E,R)
are precisely atomic concurrent transitions, corresponding to applying a rewrite
rule t→ t′ in R to a state fragment which is an instance of the firing pattern t
by some substitution θ. That is, up to E-equivalence, the state is of the form
C[θ(t)], where C, called the context, is the rest of the state not affected by this
atomic transition. Then, the resulting state is precisely C[θ(t′)], so that the
atomic transition has the form C[θ(t)] → C[θ(t′)]. Rewriting is intrinsically
concurrent, because many other atomic rewrites can potentially take place in
the context C (and in the substitution θ), at the same time that the local atomic
transition θ(t)→ θ(t′) happens. The rules of deduction of rewriting logic [64, 65]

5

(which in general allow rules in R to be conditional) precisely describe all the
possible, complex concurrent transitions that a system can perform, so that
concurrent computation and logical deduction coincide.

2.2. Defining Programming Languages

The flexibility of rewriting logic to naturally express many different models
of concurrency can be exploited to give formal definitions of concurrent pro-
gramming languages by specifying the concurrent model of a language L as a
rewrite theory (ΣL, EL, RL), where: (i) the signature ΣL specifies both the syn-
tax of L and the types and operators needed to specify semantic entities such
as the store, the environment, input-output, and so on; (ii) the equations EL
can be used to give semantic definitions for the deterministic features of L (a
sequential language typically has only deterministic features and can be spec-
ified just equationally as (ΣL, EL)); and (iii) the rewrite rules RL are used to
give semantic definitions for the concurrent features of L such as, for example,
the semantics of threads.

By specifying the rewrite theory (ΣL, EL, RL) in a rewriting logic language
like Maude1 [66], it becomes not just a mathematical definition but an executable
one, that is, an interpreter for L. Furthermore, one can leverage Maude’s generic
search and LTL model checking features to automatically endow L with powerful
program analysis capabilities. For example, Maude’s search command can be
used in the module (ΣL, EL, RL) to detect any violations of invariants, e.g.,
a deadlock or some other undesired state, of a program in L. Likewise, for
terminating concurrent programs in L one can model check any desired LTL
property. All this can be effectively done not just for toy languages, but for real
ones such as Java and the JVM, Scheme, and C (see Section 4 for a discussion of
such real-language applications), and with performance that compares favorably
with state-of-the-art model checking tools for real languages. As we show in
Section 8, a wide variety of static analysis formal tools can also be automatically
obtained from suitable abstract rewriting logic semantics of L. Finally, using a
deductive approach like matching logic (see Section 10), which is directly based
on the rewriting logic semantics (ΣL, EL, RL) of L, it is also possible to obtain
a highly effective deductive verification tool for programs in L.

2.3. Operational vs. Denotational Semantics

A rewrite theory R = (Σ, E,R) has both a deduction-based operational se-
mantics, and an initial model denotational semantics. Both semantics are de-
fined naturally out of the proof theory of rewriting logic [64, 65]. The deduction-
based operational semantics of R is defined as the collection of proof terms [64]
of the form α : t −→ t′. A proof term α is an algebraic description of a proof tree
proving R ` t −→ t′ by means of the inference rules of rewriting logic. What

1Other rewriting logic languages, such as ELAN or CafeOBJ, can likewise be used. Maude
has the advantage of efficiently supporting not only execution, but also linear temporal logic
(LTL) model checking verification.

6

such proof trees describe are the different finitary concurrent computations of
the concurrent system axiomatized by R.

A rewrite theory R = (Σ, E,R) has also a model-theoretic semantics, so
that the inference rules of rewriting logic are sound and complete with respect
to satisfaction in the class of models of R [64, 65]. Such models are categories
with a (Σ, E)-algebra structure [64]. These are “true concurrency” denotational
models of the concurrent system axiomatized by R. That is, this model theory
gives a precise mathematical answer to the question: when do two descriptions
of two concurrent computations denote the same concurrent computation? The
class of models of a rewrite theory R = (Σ, E,R) has an initial model TR [64].
The initial model semantics is obtained as a quotient of the just-mentioned
deduction-based operational semantics, precisely by axiomatizing algebraically
when two proof terms α : t −→ t′ and β : u −→ u′ denote the same concurrent
computation.

In particular, if a rewrite theory RL = (ΣL, EL, RL) specifies the semantics
of a concurrent programming language L, its denotational semantics is given by
the initial model TRL , and its operational semantics is given by the proof terms
built by the rewriting deduction. As we explain below, many different styles of
operational semantics, including various SOS styles, can be naturally obtained
as special instances of this general, logic-based operational semantics.

2.4. The Abstraction Dial

Unlike formalisms like SOS, where there is only one type of semantic rule,
rewriting logic semantics provides a key distinction between deterministic rules,
axiomatized by equations, and concurrent and typically non-deterministic rules,
axiomatized by non-equational rules. More precisely, for the rewriting logic se-
mantics RL of a language L to have good executabity properties, we require
RL to be of the form RL = (ΣL, EL ∪ BL, RL), where: (i) BL is a collection
of structural axioms, such as associativity and/or commutativity, and/or iden-
tity of certain operators in ΣL; (ii) the equations EL are confluent modulo the
structural axioms BL; and (iii) the rules RL are coherent with the equations EL
modulo the structural axioms BL [67]. Conditions (i)–(iii) make RL executable,
so that using a rewriting logic language like Maude we automatically get an
interpreter for L.

As already mentioned, what the equations EL axiomatize are the determin-
istic features of L. Instead, the truly concurrent features of L are axiomatized
by the non-equational rules RL. The assumption of determinism is precisely
captured by EL being a set of confluent equations (modulo BL), so that their
evaluation, if terminating, has a unique final result.

All this means that rewriting logic comes with a built-in “abstraction dial.”
The least abstract possible position for such a dial is to turn the equations EL
into rules, yielding the theory (ΣL, BL, EL ∪RL); this is typically the approach
taken by SOS definitions. The specification RL = (ΣL, EL ∪ BL, RL) can al-
ready achieve an enormous abstraction, which typically makes the difference
between tractable and intractable model checking analysis. The point is that
the equations EL now identify all intermediate execution states obtained by

7

deterministic steps, yielding a typically enormous state space reduction. Some-
times we may be able to turn the dial to an even more abstract position by
further decomposing RL as a disjoint union RL = R′L ∪GL, so that the rewrite
theory (ΣL, EL ∪ GL ∪ BL, R′L) still satisfies conditions (i)–(iii). That is, we
may be able to identify rules GL describing concurrent executions which, by
being confluent, can be turned into equations. For example, for L = Java, the
JavaFAN rewriting logic semantics of Java developed by the late Feng Chen
turns the abstraction dial as far as possible, obtaining a set EJava with hun-
dreds of equations, and a set RJava with just 5 rules. This enormous state space
reduction is a key reason why the JavaFAN model checker compares favorably
with other state-of-the-art Java model checkers [46].

But the abstraction story does not end here. After all, the semantics (ΣL, EL∪
GL ∪ BL, R′L) obtained by turning the abstraction dial as much as possible is
still a concrete semantics. We might call it “the most abstract concrete seman-
tics possible.” For many different static analysis purposes one wants to take
a further abstraction step, which further collapses the set of states by defining
a suitable abstract semantics for a language L. The point is that, instead of
a “concrete semantics” describing the actual execution of programs in L, one
can just as easily define an “abstract semantics” (ΣAL , E

A
L , R

A
L) describing any

desired abstraction A of L. A good example is type checking, where the values
manipulated by the abstract semantics are the types. All this means that many
different forms of program analysis, much more scalable than model checking
based on a language’s concrete semantics, become available essentially for free by
using a tool like Maude to execute and analyze one’s desired abstract semantics
(ΣAL , E

A
L , R

A
L). This is further discussed in Section 8.

2.5. An Ecumenical Movement

For purposes of formally defining the semantics of a programming language,
rewriting logic should be viewed not as a competitor to other approaches, but
as an “ecumenical movement” providing a framework where many different def-
initional styles can happily coexist. From its early stages rewriting logic has
been recognized as ideally suited for SOS definitions [68, 69], and has been
used to give SOS definitions of programming languages in quite different styles,
e.g., [41, 48, 70, 44, 46, 45]. What the paper [3] makes explicit is both the
wide range of SOS styles supported, and the possibility of defining new styles
that may have specific advantages over traditional ones. Indeed, the intrinsic
flexibility of rewriting logic means that it does not prescribe a fixed style for
giving semantic definitions. Instead, many different styles such as, for example,
small-step or big-step semantics, reduction semantics, CHAM-style semantics,
modular structural operational semantics, or continuation semantics, can all
be naturally supported [3]. But not all styles are equally efficient; for exam-
ple, small-step semantics makes heavy use of conditional rewrite rules, insists
on modeling every single computation step as a rule in RL, and is in practice
horribly inefficient. Instead, the continuation semantics style described in [3]
and used in, e.g., [46] is very efficient. Furthermore, as already mentioned,
the distinction between equations and rules provides an “abstraction dial” not

8

available in some definitional styles but enormously useful for state space re-
duction purposes. Of particular interest are modular definitional styles, which
are further discussed in Section 3.

2.6. Defining Real-Time Languages

In rewriting logic, real-time systems are specified with real-time rewrite the-
ories [71]. These are just ordinary rewrite theories R = (Σ, E∪B,R) such that:
(i) there is a sort Time in Σ such that (Σ, E) contains an algebraic axiomatiza-
tion of a time data type, where time can be either discrete or continuous; (ii)
there is also a sort GlobalState, where terms of sort GlobalState are pairs (t, r),
with t an “untimed” or “discrete” state (which may however contain continuous,
time-related quantities such as timers), and r is a term of sort Time (that is,
the global state is a discrete state plus a global clock); and (iii) the rules R are
either: (a) instantaneous rules, which do not change the time and only rewrite
the discrete part of the state, or (b) tick rules, of the form

(t, r)→ (t′, r′) if C

where t and t′ are term patterns describing discrete states, r and r′ are terms
of sort Time, and C is the rule’s condition. That is, tick rules advance the
global clock and also update the discrete state to reflect the passage of time
(for example, timers may be decreased, and so on). Real-Time rewrite theories
provide a very expressive semantic framework in which many models of real-
time systems can be naturally expressed [71]. The Real-Time Maude language
[72] is an extension of Maude that supports specification, simulation, and model
checking analysis of real-time systems specified as real-time rewrite theories.

How should the formal semantics of a real-time programming language be
defined? And how can programs in such a language be formally analyzed? The
obvious RLS answers are: (i) “with a real-time rewrite theory,” and (ii) “by
real-time model checking and/or deductive reasoning based on such a theory.”
Of course, the effectiveness of these answers has to be shown in actual languages.
This is done in Sections 5 and 6.

More generally, real-time systems can also be probabilistic, and can be mod-
eled by probabilistic rewrite theories [73, 74]. In the analysis of such systems,
which include, among others, distributed stochastic hybrid systems naturally
modeled as rewrite theories [75], analysis of quantitative properties, yielding as
result a numeric value and not just a “true” or “fasle” answer, is of great interest.
Such quantitative formal analysis can be performed in the QuaTex quantitative
temporal logic [73], and can be analyzed in parallel for Maude specifications
using the PVesta tool [76]. We refer the reader to [77, 78, 75, 79, 80] for ex-
amples of various real-time distributed and probabilistic software architectures
which have been specified and analyzed in rewrite logic in this way. In Sec-
tions 6.1 and 6.2 we focus on the rewrite logic semantics modeling languages for
embedded systems such as AADL (http:www.aadl.info) and Ptolemy [81]. Al-
though the semantics given in Section 6.2 focuses only on the real-time aspects,
it can be naturally extended to include probabilistic aspects due, for example,
to component failures, or to interactions with an unpredictable environment.

9

http:www.aadl.info

2.7. Defining Modeling Languages

It is well known that the most expensive errors in system development are not
coding errors but design errors. Since design errors affect the overall structure
of a system and are often discovered quite late in the development cycle, they
can be enormously expensive to fix. All this is uncontroversial: there is widely-
held agreement that, to develop systems, designs themselves should be made
machine-representable, and that tools are needed to keep such designs consistent
and to uncover design errors as early as possible. This has led to the development
of many software modeling languages.

There are however two main limitations at present. The first is that some
of these modeling notations lack a formal semantics: they can and do mean
different things to different people. The second is that this lack of semantics
manifests itself at the practical level as a lack of analytic power, that is, as an
incapacity to uncover expensive design errors which could have been caught by
better analysis. It is of course virtually impossible to solve the second problem
without solving the first: without a precise mathematical semantics any analytic
claims about satisfaction of formal requirements are meaningless.

The practical upshot of all this is that a semantic framework such as rewrit-
ing logic can play an important role in: (i) giving a precise semantics to modeling
languages; and in (ii) endowing such languages and notations with powerful for-
mal analysis capabilities. Essentially the approach is the same as for program-
ming languages. If, say, M is a modeling language, then its formal semantics
will be a rewrite theory of the form (ΣM, EM, RM). If the modeling language
M provides enough information about the dynamic behavior of models, the
equations EM and the rules RM will makeM executable, that is, it will be pos-
sible to simulate models in M before they are realized by concrete programs,
and of course such models thus become amenable to various forms of formal
analysis. All these ideas are further discussed in Section 6.

2.8. Defining Hardware Description Languages

What is hardware? What is software? It depends in part on the level of
abstraction chosen, and on specific implementation decisions: a given function-
ality may sometimes be realized as microcode, other times as code running on
an FPGA, and yet other times may be implemented in custom VLSI. All this
means that the difference between the semantics of digital hardware in some
Hardware Description Language (HDL), and that of a programming language is
not an essential one, just one about which level of abstraction is chosen. From
the point of view of rewriting logic, both the semantics of an HDL and that
of a programming language can be expressed by suitable rewrite theories. We
further discuss the rewriting logic semantics of HDLs in Section 7.

2.9. Formal Analysis Methods and Tools

The fact that, under simple conditions, rewriting logic specifications are ex-
ecutable, means that the rewriting logic semantics of a language, whether a
programming language, or a modeling language, or an HDL, is executable and

10

therefore yields an interpreter for the given language when run on a rewriting
logic system such as Maude. Since the language in question may not have any
other formal semantics, the issue of whether the semantic definitions correctly
capture the language’s informal semantics is a nontrivial matter; certainly not
trivial at all for real languages which may require hundreds of semantic rules.
The fact that the semantics is executable is very useful in this regard, since one
can test the correctness of the definitions by comparing the results from eval-
uating programs in the interpreter obtained from the rewriting logic semantics
and in an actual language implementation. The usefulness of this approach is
further discussed for the case of the semantics of C in Section 4.

Once the language specifier is sufficiently convinced that his/her semantic
definitions correctly capture the language’s informal semantics, various sophisti-
cated forms of program analysis become possible. If some abstract semantics for
the language in question has been defined, then the abstract semantic definition
can be directly used as static analysis tool. Since various abstract semantics
may be defined for diverse analysis purposes, a collection of such tools may be
developed. We further discuss this idea in Section 8.

Using a tool like Maude, the concrete rewriting logic semantics of a lan-
guage becomes not just an interpreter, but also a model checker for the lan-
guage in question. The point is that Maude can model check properties for any
user-specified rewrite theory. Specifically, it can perform reachability analysis
to detect violations of invariants using its breadth-first search feature; and it
can also model check temporal logic properties with its LTL model checker.
Such features can then be used to model check programs in the language whose
rewriting semantics one has defined, or in an abstraction of it, as explained in
Section 9.

Static analysis and model checking do not exhaust the formal analysis pos-
sibilities. A language’s rewriting logic semantics can also be used as the basis
for deductive reasoning about programs in such a language. The advantage of
directly basing deductive reasonign methods on the semantics is that there is no
gap between the operational semantics and the “program logic.” This approach
has been pioneered by matching logic [82, 83, 84, 85, 86], a program verification
logic, with substantial advantages over both Hoare logic and separation logic,
which uses a language’s rewriting logic semantics, including the possibility of
using patterns to symbolically characterize sets of states, to mechanize the for-
mal verification of programs, including programs that manipulate complex data
structures. More on matching logic and the MatchC tool in Section 10.

All the above are strong arguments in favor of an executable formal seman-
tics of a programming language, as opposed to an implementation. A hasty
reader may think that there is no fundamental difference between a formal exe-
cutable semantics and an implementation of a programming language, because
an implementation can also be framed as an executable semantics, possibly go-
ing through a given and fixed semantics of the implementation language, while
a formal executable semantics must provide all the implementation details in
order to be executable. There are, however, at least two important factors that
the above considerations ignore and that one should consider.

11

First, a formal rewrite logic semantics captures directly each language fea-
tures in a natural and modular way, which substantially eases reasoning about
programs in the defined language. For example, consider an “implementation”
of a programming language on a Turing machine. While Turing machines have
crystal clear semantics, which thus indirectly yield formal semantics to the im-
plemented language, the user of such a semantics would have to reason in terms
of Turing machine concepts, which may sometimes be quite far from the ac-
tual programming language concepts that one wants to reason about (in fact,
the language concepts are typically “compiled away” at the Turing machine
level). In contrast, our formal reasoning techniques for rewrite logic semantics
allow us to reason directly about the defined language, without any encoding
or translation.

Second, the “implementation details” of a formal executable semantics are
considerably more abstract and, what is crucial, are mathematical objects which
can be directly used for formal reasoning. In contrast, the implementation details
of a compiler or an interpreter are not in any sense mathematical objects: one
would first need a formal semantics of the language in which such a compiler
is written, and this would create a considerable gap when reasoning about a
high-level program. To give a simple example, a program environment may be
implemented as a hash table in a compiler or an interpreter for performance
reasons, while it typically is a formally defined finite-domain map algebraic
data-type in an executable semantics, a mathematical object with which we can
directly reason about environments.

3. Modular Definitions and the K Framework

One major impediment blocking the broader use of semantic frameworks
is the lack of scalability of semantic definitions. Lack of modularity is one of
the main causes for this lack of scalability. Indeed, in many frameworks one
often needs to redefine the semantics of the existing language features in order
to include new, unrelated features. For example, in conventional SOS [5] one
needs to more than double the number of rules in order to include an abrupt
termination construct to a language, because the termination “signal” needs
to be propagated through all the language constructs. Mosses’ Modular SOS
(MSOS) [7] addresses the non-modularity of SOS; it has been shown that MSOS
can be faithfully represented in rewriting logic, in a way that also preserves its
modularity [36, 49, 48, 87, 88]. We here report on the K framework, developed
in parallel with the MSOS approach.

K [89] is a modular executable semantic framework derived from rewriting
logic. It works with terms, but its concurrent semantics is best explained in
terms of graph rewriting intuitions [90, 91]. K was first introduced by the
second author in the lecture notes of a programming language design course at
the University of Illinois at Urbana-Champaign (UIUC) in Fall 2003 [92], as a
means to modularly define concurrent languages in rewriting logic using Maude.
Programming languages, calculi, as well as type systems or formal analyzers can
be defined in K by making use of special, potentially nested cell structures, and

12

Original lang. syntax K Strict. K Semantics
AExp ::= Int 〈x

i
···〉k 〈··· x 7→ i ···〉state

| Id
| AExp +AExp [strict] i1 + i2 → i1 +Int i2
| AExp /AExp [strict] i1 / i2 → i1 /Int i2 where i2 6= 0

BExp ::= Bool
| AExp <=AExp [seqstrict] i1 <= i2 → i1 ≤Int i2
| notBExp [strict] not t→ ¬Bool t
| BExp andBExp [strict(1)] true and b→ b

false and b→ false

Stmt ::= skip skip → ·
| Id :=AExp [strict(2)] 〈x := i

·
···〉k 〈··· x 7→

i
···〉state

| Stmt ;Stmt s1 ; s2 ⇀ s1 y s2

| if BExp [strict(1)] if true then s1 else s2 → s1

then Stmt else Stmt if false then s1 else s2 → s2

| while BExp do Stmt 〈 while b do s
if b then (s ; while b do s) else ·

···〉k

Pgm ::= var List{Id} ;
Stmt

〈 var xl ; s
s

〉k 〈 ·
xl 7→ 0

〉state

Figure 1: K definition of IMP: syntax (left), annotations (middle) and semantics (right);
x ∈ Id, xl ∈ List{Id}, i, i1, i2 ∈ Int, t ∈ Bool, b ∈ BExp, s, s1, s2 ∈ Stmt

rules. There are two types of K rules: computational rules, which count as
computational steps, and structural rules (or “half equations”), which do not
count as computational steps. The role of the structural rules is to rearrange
the term so that the computational rules can apply. K rules are unconditional
(they may have side conditions, though), and they are context-insensitive. K
rules are regarded as transactions, stating what is read-only, what is read-write,
and what is irrelevant. This allows for true concurrency even in the presence of
sharing.

We introduce K by means of a simple imperative language, called IMP. In
Section 3.2 we extend IMP with several features (including dynamic threads)
into IMP++, and in Section 3.3 we give some details about the K semantics
and its current implementation. Later, in Section 8.1, we show how one can use
K to define a type checker for IMP++. This language experiment is borrowed
from [89], where more details about K can be found. We refer the interested
reader to http://k-framework.org for papers, and implementation of a K tool,
as well as for many language definitions in K following different paradigms, in-
cluding object-oriented languages, functional languages, and logic programming
languages.

13

http://k-framework.org

3.1. K Semantics of IMP

Figure 1 shows the complete K definition of IMP, except for the configu-
ration (explained below). The left column gives the IMP syntax. The middle
column augments it with K strictness attributes, stating the evaluation strategy
of some language constructs. Finally, the right column gives the semantic rules.

Language syntax is typically defined in K using an “algebraic” context-free
notation, i.e., one which allows users to make use of list, set, multi-set and
map structures without defining them. Note, e.g., that we used List{Id} as
a non-terminal in the syntax of IMP in Figure 1. System configurations are
defined in the same style. Configurations in K are organized as potentially
nested structures of cells, which are typically labeled to distinguish them from
each other. We use angle brackets as cell wrappers. The K configuration of
IMP can be defined as:

ConfigurationIMP ≡ 〈〈K〉k 〈Map{Id 7→ Int}〉state〉>

Same like for List{...}, we use Map{S1 7→S2} as a non-terminal correspond-
ing to finite-domain maps from elements of sort S1 to elements of sort S2; such
maps are syntactically represented as (space- or comma- separated) sequences
of pairs t1 7→ t2, with t1 a term of sort S1 and t2 a term of sort S2. In words,
IMP configurations consist of a top cell 〈. . .〉> containing two other cells inside:
a cell 〈. . .〉k which holds a term of sort K (the computation) and a cell 〈. . .〉state
which holds a map from variables to integers. As examples of IMP configura-
tions, 〈〈x := 1; y := x+1〉k 〈·〉state〉> is a configuration holding program “x := 1;
y := x+1” and empty state, and 〈〈x := 1; y := x+1〉k 〈x 7→ 0 y 7→ 1〉state〉> is one
holding the same program and a state with bindings x 7→ 0 and y 7→ 1.

The sort K, for computational structures or simply computations, has a spe-
cial meaning in K. The intuition for terms of sort K is that they have com-
putational meaning, such as programs or program fragments have. Formally,
computations extend the syntax of the original language (i.e., all syntactic cat-
egories are sunk into K) with a list structure with “y” (read “followed by”) as
binary concatenation of computations and with “·” as the empty computation.
For example, the intuition for a computation of the form T1 y T2 y · · ·y Tn
is that the enlisted (computational) tasks should be processed sequentially.

Computations give a general and uniform means to define and handle evalua-
tion strategies of language constructs. For example, evaluation contexts and/or
(first-order) continuations can be regarded as computations: “v y c” can be
thought of as “c[v], that is, evaluation context c applied to v” or as “passing
v to continuation c”. In fact, K allows one to define evaluation strategies over
the language syntax both directly, by means of rules over computations, or in-
directly, by means of strictness attributes like in the middle column in Figure 1.
However, the strictness attributes are nothing but convenient notations, which
desugar into rules. For example, the evaluation strategies of sum, comparison
and conditional in IMP specified by the strictness attributes in Figure 1 can be
defined using the following structural rules (for diversity, we assume that the
sum + evaluates its arguments non-deterministically and the comparison <=

14

evaluates its arguments sequentially):

a1 + a2
 a1 y � + a2

a1 + a2
 a2 y a1 + �
a1 <= a2
 a1 y � <= a2

i1 <= a2
 a2 y i1 <= �
if b then s1 else s2
 b y if � then s1 else s2

The symbol
 stands for two structural rules, one left-to-right and another
right-to-left. Inspired from chemical abstract machine terminology [10], we
informally call the left-to-right rules above heating rules, with the expression
passed in front of the computation the hot one, and the right-to-left rules cool-
ing rules.

As discussed shortly, not all structural rules in a K definition are reversible,
although those corresponding to evaluation strategies like above typically are.
The right-hand sides of the structural rules above contain, besides the task
sequentialization operator y, freezer operators containing � in their names,
such as � + , +�, etc. The first rule above says that in any expression of the
form a1 + a2, a1 can be scheduled for processing while a2 is being held for future
processing. Since these rules are bi-directional, they can be used at will to
structurally re-arrange the computations. Thus, when iteratively applied from
left-to-right they fulfill the role of splitting syntax into an evaluation context
(the tail of the resulting sequence of computational tasks) and a redex (the head
of the resulting sequence), and when applied right-to-left they fulfill the role of
plugging syntax into context. Our current implementation of K automatically
generates rules like the above, plus heuristics to apply them in one direction
or the other, from strictness annotations to syntax like in Figure 1 (middle
column).

Structural rules like those above decompose and eventually push the tasks
that are ready for processing to the top (or the left) of the computation. Seman-
tic rules then tell how to process the atomic tasks. The right column in Figure 1
shows the K semantic rules of IMP. To explain them, let us first discuss the
important notion of a K rule, which is a strict generalization of the usual notion
of a rewrite rule. K rules explicitly mention the parts of the term that they
read, write, or don’t care about. The underlined parts are those which are writ-
ten by the rule; the term underneath the line is the new subterm replacing the
one above the line. All writes in a K rule are applied in one parallel step, and,
with some reasonable restrictions discussed in [93, 91] that avoid read/write and
write/write conflicts, writes in multiple K rule instances can also apply in par-
allel. The elipses “ ··· ” represent the volatile part of the term, that is, that part
that the current rule does not care about and, consequently, can be concurrently
modified by other rules. The operations which are not underlined represent the
read-only part of the term: they need to stay unchanged during the application
of the rule. For example, consider the assignment rule in Figure 1:

〈x := i
·
···〉k 〈··· x 7→

i
···〉state

15

Original language syntax K Strictness K Semantics
AExp ::= . . . | ++ Id 〈 ++x

i+Int 1
···〉k 〈··· x 7→ i

i+Int 1
···〉state

Stmt ::= . . .
| printAExp [strict] 〈 print i

·
···〉k 〈··· ·

i
〉output

| halt 〈 halt y
·

〉k

| spawnStmt 〈 spawn s
·

···〉k ·
〈sy die〉k

K ::= . . . | die 〈die〉k ⇁ ·

Figure 2: K definition of IMP++ (extends that in Figure 1, without changing anything)

It says that once the assignment x := i reaches the top of the computation, the
value of x in the store is replaced by i and the assignment dissolves; in K, “ ”
is a nameless variable of any sort and “·” is the unit (or empty) computation
(“·” is a polymorphic unit of all list, set and multi-set structures). The rule for
variable declarations in Figure 1 (last one) expects an empty state and allocates
and initializes with 0 all the declared variables; the dotted or dashed lines signify
that the rule is structural, which is discussed next.

K rules are split in two categories: computational and structural. Computa-
tional rules capture the intuition of computational steps in the execution of the
defined system or language, while structural rules capture the intuition of struc-
tural rearrangement, rather than computational evolution, of the system. We
use dashed or dotted lines in the structural rules. Ordinary rewrite rules are par-
ticular K rules, where the entire term pattern is replaced; for such rules we keep
the standard notation l→ r as syntactic sugar for computational rules, whereas
the notation l ⇁ r or l ⇀ r is used as syntactic sugar for structural rules.
Figure 1 shows three explicit structural rules (as already discussed, the strict-
ness attributes correspond to implicit ones): s1 ; s2 is rearranged as s1 y s2,
loops are unrolled when they reach the top of the computation (unconstrained
unrolling leads to non-termination), and declared variables are allocated in the
state. Note that, unlike the implicit structural rules corresponding to evaluation
strategies, these structural rules are not bi-directional.

3.2. Extending IMP

In this section we highlight the modularity of K by extending the IMP
language in Section 3.1 with variable increment and dynamic threads. Figure 2
shows how the K semantics of IMP is seamlessly extended into a semantics for
IMP++. To accommodate the output, a new cell needs to be added to the
configuration:

ConfigurationIMP++ ≡ 〈〈K〉k 〈Map{Id 7→ Int}〉state 〈List{Int}〉output 〉>

16

However, note that none of the existing IMP rules needs to change, because
each of them only matches what it needs from the configuration. The construct
print is strict and its rule adds the value of its argument to the end of the
output buffer (matches and replaces the unit “·” at the end of the buffer). The
rule for halt dissolves the entire computation, and the rule for spawn creates a
new 〈. . .〉k cell wrapping the spawned statement. The code in this new cell will
be processed concurrently with the other threads. The last rule “cools down”
a terminated thread by simply dissolving it; it is a structural rule since, again,
we do not want it to count as a computational step.

Note that it is not always the case that a language extension only requires
adding new cells to a configuration. Some extensions may need to restructure the
semantic information in the configuration. For example, to add blocks and local
variables and have the spawned threads share their parents’ environments, we
would need to split the state cell into a thread-local environment and a shared
store, and then have a cell associated to each thread holding a computation
cell and an environment. Many of the languages that come with the K tool
distribution are defined this way (we encourage the interested reader to check
them out at http://k-framework.org).

3.3. K Semantics and Implementation

In this section we give more details about the semantics and the implemen-
tation of K, making an effort to separate the (easy) notational conventions,
which can be mechanically desugared, from the actual semantic novelties of K.
The current implementation of the K framework, which we call the K tool, con-
sists of a translator to Maude, which is implemented using Perl scripting (about
6,000 lines), Haskell (about 1,500 lines), and Maude (about 9,000 lines), and
is available for download at the URL above. We will also explain theoretical
trade-offs that the current implementation makes in order to achieve simplicity
and higher performance.

Language syntax and configuration declarations like the ones illustrated
above, as well as additional syntax that may be needed for defining needed
semantic domains, are in the end nothing but programming-language-specific
notations. Indeed, we incrementally learned that the language designers us-
ing K find it much more convenient to define syntax using context-free gram-
mars (CFGs), since programming language manuals typically formalize syntax
using such a notation. Also, defining the configuration in one place as a nested
structure of cells specifying on the spot what each cell holds is more compact and
intuitive to them than giving an algebraic signature. Nevertheless, all these no-
tions and notations can be expressed as order-sorted algebraic specifications. In
fact, our current implementation of K translates them mechanically into Maude
algebraic specifications.

To translate language syntax defined using context-free grammars (CFGs),
the K tool follows the well-known [94, 66] correspondence between CFGs and
algebraic signatures written using the mixfix notation (i.e., operation names
include underscores “ ” as argument placeholders), which Maude supports. For

17

http://k-framework.org

example, giving the CFG production

Stmt ::= if BExp then Stmt else Stmt

is equivalent to defining the operation symbol

if then else : BExp× Stmt× Stmt→ Stmt

The algebraic notation has several advantages when defining extensions or rea-
soning about programs is desired. For example, algebraic signatures naturally
extend into algebraic specifications by adding structural identities, or equations,
to an algebraic signature. This way, one can smoothly define lists (associative
binary operations), sets (associative, commutative and idempotent binary op-
erations), bags (associative and commutative binary operations), maps (sets of
pairs key/value together with a few more constraints), etc., over any syntactic
categories. Such structures are useful for defining both the syntax of some pro-
gramming languages and especially for defining what we call in K the “syntax
of the semantics”, that is, the additional syntax needed to give semantics to the
target language (configurations, auxiliary operations, etc.).

A programming language semantics is typically driven by syntax, but it of-
ten needs additional semantic data in order to properly capture the desired
semantics of each language construct. Such data may include a program en-
vironment mapping program variables to memory locations, a store mapping
memory locations to values, one or more stacks for functions and exceptions, a
multi-set (or bag) of threads, a set of held locks associated to each thread, and
so on. As seen above, in K such data are stored in configurations. To distinguish
the various semantic components from each other, in K we “wrap” them within
suggestively named cells when we put them together in a configuration. These
cells are nothing but constructors taking the desired structure and yielding a
configuration item. For example, a state cell can be defined as an operation

state : Map→ CfgItem

where Map is the sort of maps from identifiers to integer numbers. Cells can be
nested. We do not insist on how one can/should define configurations, as dif-
ferent implementations/realizations/encodings of K may choose different repre-
sentations and notations. The important point is that configurations, no matter
how complex, can be defined as appropriate algebraic specifications.

Therefore, all the K syntax and configuration declarations can be mechan-
ically desugared into elements of rewriting logic without losing anything in
the translation process, and the current K tool implements such a translation.
The processing of the K rules is trickier and the current K tool implements a
concurrency-losing translation, allowing the user also to interfere with, or con-
figure, the translation process. Before we discuss these trade-offs of the current
translation of K into rewriting logic, let us first formally define the notion of a
K rule and the desired concurrent K semantics.

Given W = {�1, . . . ,�n}, named context variables, or holes, a W-context
over Σ(X) (assume that X ∩W = ∅) is a term k ∈ TΣ(X ∪W) in which each

18

variable in W occurs once. The instantiation of a W-context k with an n-tuple
t = (t1, . . . , tn), written k[t] or k[t1, . . . , tn], is the term k[t1/�1, . . . , tn/�n].
One can regard t as a substitution t : W → TΣ(X), defined by t(�i) = ti,
in which case k[t] = t(k). In what follows we fix a signature Σ and a set of
variables X.

Definition 1. [89, 93, 91] A K rule ρ : k[L → R] is a triple where: k is
a W-context over Σ(X), called the rule pattern, where W are the holes of k;
k can be thought of as the “read-only” part or the “local” context of ρ; and
L,R : W → TΣ(X) associate to each hole in W the original term and its
replacement term, resp.; L, R can be thought of as the “read/write” part of ρ.
When W = {�1, · · · ,�n} and L(�i) = li and R(�i) = ri, we may write

k[l1
r1

, . . . , ln
rn

]

instead of k[L→ R], since the holes are implicit and need not be mentioned.

The variables inW are only used to identify the positions in k where rewrit-
ing takes place; in practice we typically use the compact notation above, that
is, underline the to-be-rewritten subterms in place and write their replacement
underneath. Σ includes all the needed syntactic categories, that is, the language
syntax, the configuration syntax, auxiliary operations, etc.

We can associate to any K rule ρ : k[L → R] a regular rewrite rule
K2R(ρ) : L(k) → R(k). This translation is used, for example, in our current
implementation of K by translation to Maude. For example, the K rule for IMP
assignment in Section 3.1 gets translated into a rewrite rule of the form:

〈x := iy rest〉k 〈before x 7→ j after〉state → 〈rest〉k 〈before x 7→ i after〉state

Note that the ellipses “ ··· ” (representing the volatile part of the term) are
now interpreted as syntactic sugar for rule variables having the appropriate
collection sort (given by the type of the cell). Although the potential for con-
currency with sharing of resources is reduced by this translation (as concur-
rent applications of rules in rewriting logic are only allowed if the rules do
not overlap), it is acceptable in many cases. Conversely, given a conventional
rewrite rule τ : left → right , we can generate an obvious (zero-sharing) K rule
R2K (τ) : �[left → right]. For this reason, we take the liberty to write zero-
sharing K rules using the conventional rewrite rule notation, as we did with
several of the K rules in Sections 3.1 and 3.2. If τ is a rewriting logic rule, then
t
τ−→ t′ denotes the binary rewrite relation generated by τ , i.e: t rewrites to t′

via an instance of τ . As usual,
τ∗−→ is the reflexive and transitive closure of

τ−→.
The concurrent K rewriting relation is more complex to define than the con-

ventional concurrent term rewriting relation. That is because we want it to be
as concurrent as possible, so that concurrent languages or calculi defined in K
do not just have the standard concurrent semantics of rewriting logic, which

19

forbids overlaps between concurrent redexes, but instead have greater concur-
rency by allowing overlaps between redexes, provided the overlaps only happen
in their read-only portions. This means that two or more concurrent rewrites
can simultaneously share some common portion of the state. The key to achiev-
ing this is to take into account the specifics of the K rules, namely the fact that
they are explicit about which parts are shared and which parts are rewritten.
Non-conflicting K rules are expected to possibly be applied concurrently, like
transactions do, where by “non-conflicting” rules we mean that neither of them
rewrites portions of the term that are accessed (shared or written) by the other.
We currently define K’s concurrent rewrite relation in terms of graph rewriting
(the double pushout approach), making crucial use of the notion of parallel in-
dependence [95]. We refer the interested reader to [90, 91] for details. What is
relevant here is the fact that a K concurrent rewrite relation that captures the
desired rules-as-transactions informal semantics discussed above can be defined;
we denote it ≡� instead of →. While rewriting logic can theoretically capture
the intended concurrent semantics of graph rewriting [96], the representation
in [96] is impractical. For that reason, in our implementation of the K tool we
currently follow a different path, as explained below.

Let us exemplify ≡� on the K semantics of IMP and IMP++. Since in
K rule instances can share read-only data, various (actually all matching) in-
stances of the lookup rule can apply concurrently, in spite of the fact that they
overlap on the state subterm. Similarly, since the rules for variable assignment
and increment declare volatile everything else in the state except the mapping
corresponding to the variable, multiple assignments and increments of distinct
variables can happen concurrently. However, if two threads want to write the
same variable, or if one wants to write it while another wants to read it, then the
two corresponding rules need to be interleaved, because the two rule instances
are in a concurrency conflict. Note also that the rule for print matches and
changes the end of the output cell; that means, in particular, that multiple out-
puts by various threads need to be interleaved for the same reason as above. On
the other hand, the rule for spawn matches any empty top-level position and
replaces it by the new thread, so threads can spawn other threads concurrently.
Similarly, multiple threads can be dissolved concurrently when they are done.
These concurrency aspects of IMP++ can be defined formally thanks to the
specific nature of the K rules. If instead we had used standard rewrite rules
instead of K rules, many of the structure-sharing concurrent steps above would
need to be interleaved, because rewrite rule instances which overlap cannot be
applied concurrently.

K’s rewriting has the following properties, where t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′ means that t

can be rewritten in one concurrent step to t′ using rules ρ1, . . . , ρn:

Theorem 1. [93, 91] Let ρ, ρ1, . . . , ρn be not necessarily distinct K rules.

Completeness: If t
K2R(ρ)−−−−−→ t′ then t

ρ
≡� t′.

Soundness: If t
ρ
≡� t′ then t

K2R(ρ)−−−−−→ t′.

20

Serializability: If t
ρ1+···+ρn
≡≡≡≡≡≡≡≡� t′, then there exists a sequence of terms t0, · · · , tn,

such that t0 = t, tn = t′, and ti−1

ρi
≡� ti.

Completeness says that any steps made using rewriting logic can also be
made using K rewriting. Soundness states that any non-concurrent step made
using K rewriting corresponds to zero, one or more rewriting logic steps; this is
due to the fact that the term to be rewritten is represented as a graph in K, and
zero, one or more term-rewrite steps are needed to mimic a graph rewrite step
(zero when the rewritten part is unreachable). The serializability result says
that the concurrent rewrite relation ≡� does not reach any other terms than
the concurrent rewrite relation →: it just reaches them in a possibly smaller
number of steps.

From a practical viewpoint, the theorem above tells us that it may be ac-
ceptable, in many situations, to translate K rules into conventional rewrite rules
using the K2R map. The only thing lost in translation is the amount of true
concurrency available in the original K definition. Note, however, that most se-
mantic frameworks for programming languages follow an interleaving philosophy
by their nature, so “losing some true concurrency” cannot even be formulated in
those frameworks. Nevertheless, we believe that with the advance of massively
parallel architectures, maximizing the true concurrency capability of a semantic
framework will be increasingly desirable, so K makes no compromises in what
regards its theoretical support for concurrency. That being said, the reader who
thinks that K’s concurrent rewrite relation ≡� is hard to realize, or who does not
want to get into the technicalities of graph rewriting, or who simply does not
believe in true concurrency, is free to replace it in the rest of this section with
the (still truly concurrent but not structure-sharing) rewriting logic relation →
associated to it via K2R. The remainder of this section is parametric in the
relation ≡�.

Definition 2. A K (rewrite) system (or K theory or K definition) is a triple
K = (Σ,S, C), where Σ is its signature and S and C are sets of structural
and computational K rules, respectively. Let ≡�S and ≡�C be the corresponding
concurrent rewrite relations, and let ≡�K be the relation ≡�∗S ◦ ≡�C ◦ ≡�

∗
S .

In short, a concurrent rewrite step in a K definition can be thought of as
a (concurrent) computational step modulo structural rearrangements. From a
rewriting logic perspective, the structural rewrite rules in S can be thought of
as “half-equations”, in the sense that they have the same intuition as rewriting
logic’s equations (namely that of non-computational rearrangements of the term
to rewrite), but they are oriented left-to-right. Although operationally speaking
a structural rule fulfills only half the job of an equation, we can always obtain
the same effect of an equation by providing an additional inverse structural
rule, from right to left, as we do, for example, with the heating/cooling rules
corresponding to evaluation strategies (see Section 3.1). In fact, bi-directional
structural rules are heavily used to define K configurations, as configurations
typically contain lists, sets, multi-sets, maps, etc., and these data types are best

21

defined using equations (such as associativity, commutativity, etc.). Implemen-
tations of K, like implementations of rewriting logic, will likely provide special
builtin support for certain bi-directional structural rules such as associativity,
commutativity, etc.; for example, our current K tool translates those into Maude
operator attributes or equations and then relies on Maude’s builtin and efficient
support for those.

Therefore, ≡�S is not necessarily symmetric. Moreover, note that t ≡�∗S u
and t ≡�K t′ and u ≡�K u′ do not necessarily imply t′ ≡�∗S u′. To see why this
makes practical sense, consider a hypothetical programming language which
already provides a statement halt for abrupt termination whose semantics is
given with a computational rule (dissolving the entire contents of the k cell)
and suppose that we want to add a non-deterministic halting statement, say
ndhalt. One way to do it is to add a structural rule rewriting ndhalt to halt

and a computational rule dissolving the ndhalt statement (as if it was the
empty statement). Then take t to be some configuration cfg[ndhalt;rest], u
to be cfg[halt;rest], t′ to be cfg[rest], and u′ to be cfg[] (i.e., cfg with an
empty computation cell). Similarly, t ≡�∗S u and t ≡�K t′ and t′ ≡�∗S u′ do not
necessarily imply u ≡�K u′. For example, take the same t, u and t′ as above,
but u′ = t′.

The rewrite relation ≡�K associated to a K rewrite system K = (Σ,S, C)
gives us an obvious transition system on the set of ground Σ-terms TΣ, which
can be regarded as the semantics of K. Thus, the semantics of K is given in
terms of transition systems, based on a concurrent rewrite relation that takes
the specific nature (e.g., explicit sharing) of the K rules into account. If one
forgets the specific nature of the K rules then one still gets a valid concurrent
semantics, amenable for execution on existing rewrite engines like Maude, but
one which loses some of the true concurrency of the original K definition. K
tools can implement different techniques and algorithms that work with K def-
initions. For example, thanks to excellent support from the underlying Maude
system, our current implementation provides support for execution, for state-
space search, and for explicit-state LTL model-checking. While the current
implementation of the K tool heavily relies on Maude, term rewriting using K
rules can be theoretically implemented more efficiently than Maude, because K
requires less support than Maude offers; for example, K does not require condi-
tional rewrite rules in their full generality. This hypothesis will be tested soon,
since a prototype K rewrite engine is under development (check K’s website for
news and progress).

Since the K tool is being used to define real and complex programming lan-
guages, such as C (see Section 4), performance is a crucial aspect which has
been given a high priority in the design of the tool in general and in the trans-
lation from K to rewriting logic in particular. For example, to avoid the non-
termination given by the bi-directional structural rules corresponding to evalua-
tion strategies, the tool applies them by default from-left-to-right when the hot
expression (i.e., the expression on top of the computation structure) can still be
evaluated, and from-right-to-left when the hot expression is a result. Moreover,
all structural rules are by default translated into Maude equations, rather than

22

rewrite rules. These default choices lose some non-determinism and may even
be logically incorrect at the theoretical level, but avoid non-termination, signifi-
cantly increase performance, and are correct in practice when executed (because
Maude always applies the equations from-left-to-right). To give users freedom
in tuning up the tool for their needs, the current implementation actually al-
lows the users to interfere with the translation process by means of configurable
translation options. For example, the use of the K tool can explicitly state which
operations are desired to yield full non-deterministic evaluation strategies (but
then one needs to use search) and can say which K rules should be translated
into Maude equations rather than rules. Of course, the correctness of the trans-
lation is then the user’s responsibility. The K tool is available for download and
online experimentation at http://k-framework.org.

4. Programming Language Semantics

Having formal semantics for real programming languages, regardless of the
formalism that is being used, is undoubtedly a very important step, useful not
only to help us understand those languages better but also to serve as a solid
foundation for implementations and for program analysis and verification tech-
niques and tools. Using rewriting logic as a formalism for such semantics has the
additional benefit that such techniques and tools can be directly derived from
the language semantics with minimal effort, as shown throughout this paper.

The rewriting logic semantics technique described in Section 3 has been used
to define several programming languages or large fragments of them. Some of
these languages serve as models for teaching various language paradigms, which
we do not mention here but can be found on webpages for programming lan-
guage courses at UIUC and can be reached from http://k-framework.org,
while others are real programming languages, such as C [97], Scheme [98], or
Java 1.4 [46, 45]. In this section we only briefly discuss the rewrite logic se-
mantics of C [97], more precisely of the ISO/IEC 9899:1999 (C99) standard, as
formalized by Chucky Ellison using the K framework. This semantics is cur-
rently being used by several researchers and research groups, both directly in
their tools and indirectly as a basis for understanding (and sometimes criticiz-
ing) the C language. This has led to the “C Semantics” Google code project
repository at http://c-semantics.googlecode.com/.

The K semantics of C defines approximately 150 C syntactic operators and
many other intermediate or auxiliary semantic operators. The definitions of
these operators are given by 1,163 semantic rules spread over 5884 lines of K
code (LOC). However, it takes only 77 of those rules (536 LOC) to cover the
behavior of statements, and another 163 for expressions (748 LOC). There are
505 rules for dealing with types, 115 rules for memory, and 189 rules defining
other necessary mechanisms. Finally, there are 114 rules for the core of our
standard library.

This is the most comprehensive formal semantics of C to date. Figure 3
shows a summary, in terms of features defined and how completely they were

23

http://k-framework.org
http://k-framework.org
http://c-semantics.googlecode.com/

Feature GH CCR CR No Pa BL ER

Bitfields G# # # G# #
Enums G# # # #
Floats # # # #
String Literal # # #
Struct as Value # # # # #

Arithmetic G# #
Bitwise # # #
Casts G# G# # G# G#
Functions G#
Exp. Side Effects # #

Break/Continue G# G#
Goto G# # # # #
Switch G# # # G#

Longjmp # # # # # #
Malloc # # # # # #
Variadic Funcs. # # # # # #

 : Fully Described
G#: Partially Described
#: Not Described

GH represents Gurevich and Huggins [99], CCR is Cook et al. [100], CR is Cook

and Subramanian [101], No is Norrish [102], Pa is Papaspyrou [103], BL is Blazy and

Leroy [104], and ER is our work, Ellison and Roşu [97].

Figure 3: Comparison of the most comprehensive C semantics to date

24

defined, of some of the most comprehensive C semantics available. Our se-
mantics is executable and has been thoroughly tested. All aspects related to
the features mentioned below are given a direct semantics. Expressions: refer-
encing and dereferencing, casts, array indexing, structure members, arithmetic,
bitwise, and logical operators, sizeof, increment and decrement, assignments, se-
quencing, ternary conditional; Statements: for, do-while, while, if/else, switch,
goto, break, continue, return; Types and Declarations: enums, structs, unions,
bitfields, initializers, typedefs; Values: regular scalar values (signed/unsigned
arithmetic and pointer types), structs, unions; Standard Library: malloc/free,
set/longjmp, basic I/O; Environment: command line arguments; Conversions:
(implicit) argument and parameter promotions and arithmetic conversion, and
(explicit) casts.

No matter what the intended use is for a formal semantics, such a use is
limited if one cannot achieve confidence in its correctness. To achieve this aim,
executable semantics has an immense practical advantage over non-executable
semantics, because one can simply test it. The C semantics in [97] has been
encapsulated inside a drop-in replacement for Gnu’s C Compiler (GCC), called
“KCC”. This allows one to test the semantics as one would test a compiler:

$ kcc helloworld.c

$./a.out

Hello world

Indeed, the C semantics has been successfully run against all the examples in the
Kernigham and Ritchie manual that supposedly cover all the features of ANSI
C. Moreover, a series of challenging C programs collected from the Internet,
such as programs from the Obfuscated C programming competition, totaling
more than 10,000 LOC are included in the regression tests of the C semantics,
so these are all executed each time the semantics is changed. In addition to the
above, the GCC C-torture-test (which contains 776 C programs conforming to
the standard semantics of C99) has been executed in the C semantics and its
behavior compared to that of GCC itself, as well as to Intel’s C Compiler (ICC)
and to the LLVM C compiler, Clang.

C is so complex that even dedicated and broadly used compilers like GCC or
ICC cannot compile and execute all the programs in the GCC torture-test. All
in all, considering all the tests that the C semantics has been tested on, the GCC
compiler successfully passed 99% of them (768 tests), ICC passed 99.4% (761
tests), Clang passed 98.3% (763 tests), while our C semantics (compiled into
Maude using the K tool) passed 99.2% of them (770 tests). The C semantics
ran over 90% of these programs in under 5 seconds (each). An additional 6%
completed in 10 minutes, 1% in 40 minutes, and 2% further in under 2 days.
The remaining programs either did not finish because they were computationally
very intensive, or they made use of combinations of features whose semantics
is not clear in the ISO/IEC 9899:1999 (C99). While this is not terribly fast
performance, especially when compared to compiled C, the reader should keep
in mind that this is an interpreter obtained for free from a formal semantics
and that other existing semantics of C are either “paper” definitions (e.g., [99]),

25

or not executable (e.g., [102]), or very slow (e.g., we were not able to execute
factorial of 6 or the 4th Fibonacci’s number using the Haskell-based definition in
[105, 103]), or covering only a C fragment (e.g., [104]). Moreover, our semantics
of C can be used directly and unchanged for other purposes, such as for model
checking (see Section 9) and for deductive verification (see Section 10).

As the comparison above of our C semantics with existing compilers sug-
gests, the user of our C executable semantics in fact cannot distinguish it from
an actual implementation of C, except for the execution speed, and this was
intentional. Indeed, there is no reason why an executable specification should
behave any different in terms of executability from an implementation. While
lower execution performance can be seen as the price to pay for language specifi-
cations being mathematically grounded and thus amenable for formal reasoning,
we strongly believe that even the execution speeds of language specifications can
be significantly improved with the implementation of specialized K rewrite en-
gines (which is ongoing work).

5. Real-Time Language Semantics

Three real-time programming languages have been given formal semantics
as real-time rewrite theories [71] in Real-Time Maude [72]. Using the model
checking features of Real-Time Maude it then becomes possible to formally
analyze programs in such languages.

In [106], AlTurki et al. present a language for real-time concurrent program-
ming for industrial use in DOCOMO Labs called L. The goal of L is to serve as
a programming model for higher-level software specifications in SDL or UML.
A related goal is to support formal analysis of L programs by both real-time
model checking and static analysis, so that software design errors can be caught
at design time. The way all this is accomplished is by giving a formal semantics
to L in Real-Time Maude, which automatically provides an interpreter and a
real-time model checker for L. Static analysis capabilities are added to L by
using Maude to define an abstract semantics for L in rewriting logic, which is
then used as the static analyzer.

The Orc model of real-time concurrent computation [107, 108, 109] has been
given semantics in rewriting logic using real-time rewrite theories [63, 110]. Al-
though Orc is a very simple and elegant language, its real-time semantics is
quite subtle for two reasons. First, in the evaluation of any Orc expression,
internal computation always has higher priority than the handling of external
events; this means that, even without modeling time, a vanilla-flavored SOS se-
mantics is not expressive enough to capture these different priorities: two SOS
relations are needed [108]. Second, Orc is by design a real-time language, where
time is a crucial feature. Using real-time rewrite theories, this double subtlety
of the Orc semantics was faithfully captured in [63]; furthermore, this seman-
tics yielded of course an Orc interpreter and a real-time model checker. But
Orc is not just a model of computation: it is also a concurrent programming
language. This suggested the following challenge question: can a correct-by-
construction distributed Orc implementation be derived from its rewriting logic

26

semantics? This question was answered in two stages. Since, as discussed in
Section 2.5, a small-step SOS semantics is typically horribly inefficient and it
was certainly so in the case of Orc, a much more efficient reduction seman-
tics was first defined in [110], and was proved to be bisimilar to the small-step
SOS semantics. This semantics provided a much more efficient interpreter and
model checker. Furthermore, to explicitly model different Orc clients and var-
ious web sites, and their message passing communication, the Orc semantics
was seamlessly extended in [110] to a distributed object-based Orc semantics,
which modeled what a distributed implementation should look like. The only
remaining step was to pass from this model of a distributed implementation
to an actual Maude-based distributed real-time implementation. This was ac-
complished in [111] using three main ideas: (i) the use of sockets in Maude to
actually deploy a distributed implementation; (ii) the systematic replacement of
logical time by physical time, supported by Ticker objects external to Maude,
while retaining the rewriting semantics throughout; and (iii) the experimental
estimation of the physical time required for “zero-time” Maude subcomputa-
tions, to ensure that the granularity of time ticks is such that all “instantaneous
transitions” have already happened before the next tick.

Creol is an object-oriented language supporting concurrent objects which
communicate through asynchronous method calls. Its rewriting-logic-based op-
erational semantics was defined in [47] without real-time features. However,
to support applications such as sensor systems with wireless communication,
where messages expire and may collide with each other, Creol’s design and op-
erational semantics have been extended in [112] to Timed Creol using rewriting
logic. The notion of time used by Timed Creol is described as a “lightweight”
one in [112]. Time is discrete and is represented by a time object. This approach
does not require a full use of the features in Real-Time Maude (Maude itself is
sufficient to define the real-time semantics). The effectiveness of Timed Creol in
the modeling and analysis of applications such as sensor networks is illustrated
in [112] through a case study. The timed semantics of Creol in [112] has been
extended with deadlines and user-defined schedules in the ABS language [113].

6. Semantics of Modeling Language

Modeling languages are quite useful, but they can be made even more useful
by substantially increasing their analytic power through formal analysis, since
this can make it possible to catch expensive design errors very early. Formal
analysis is impossible or fraudulent without a formal semantics. Early work
in developing rewriting-logic-based formal semantics focused on object-oriented
design notations and languages [114, 115, 116], and stimulated subsequent work
on UML and UML-like notations, e.g., [117, 118, 119, 120, 121, 122, 123, 124,
125].

A more ambitious question is: can we give semantics not just to a single mod-
eling language, but to an entire modeling framework where different modeling
languages can be defined? This question has been answered positively in [126,
127, 128, 129, 130]. This line of research has led to MOMENT2, an algebraic

27

model management framework and tool written in Maude and developed by Ar-
tur Boronat [127]. It permits manipulating software models in the Eclipse Mod-
eling Framework (EMF). It uses OMG standards, such as Meta-Object Facility
(MOF), Object Constraint Language (OCL) and Query/View/Transformation
(QVT), as a clean interface between rewriting-logic-based formal methods and
model-based industrial tools. Specifically, it supports formal analyses based
on rewriting logic and graph transformations to endow model-driven software
engineering with strong analytic capabilities. MOMENT2 supports not just
one fixed modeling language, but any modeling language whose meta-model is
specified in MOF. In more detail, a modeling language is specified as a pair
(M, C), whereM is its MOF-based metamodel, and C are the OCL constraints
that M should satisfy. Using rewriting-logic-based reflection and its efficient
support in Maude, MOMENT2 provides an executable algebraic semantics for
such metamodel specifications (M, C) in the form of a theory A(M, C) in mem-
bership equational logic (MEL) [131], so that a model M conformant with the
metamodel (M, C) is exactly a term of sort Model in A(M, C), and so that
satisfaction of OCL constraints is also decidable using the algebraic semantics
[132, 130].

Due to the executability of MEL specifications in Maude, the realization of
MOF metamodels as MEL theories enhances the formalization and prototyp-
ing of model-driven development processes, such as: (i) model transformations;
(ii) model-driven roundtrip engineering; (iii) model traceability; and (iv) model
management. These processes permit, for example, merging models, gener-
ating mappings between models, and computing differences between models;
they can be used to solve complex scenarios such as the roundtrip problem. In
MOMENT2 the formal semantics of model transformations is given by rewrite
theories specified in a user-friendly QVT-based syntax [128]. Such model trans-
formations can describe the dynamic evolution of systems at the level of their
models. Using the search and LTL model checking features of Maude, proper-
ties about the dynamic evolution of a model M conformant with a metamodel
specification (M, C) can then be formally analyzed by model checking [128].
Real-time modeling languages can likewise be supported and analyzed [133];
this is further discussed below.

6.1. Semantics of Real-Time Modeling Languages

There is strong interest in modeling languages for real-time and embedded
systems. The rewriting logic semantics for such modeling languages can be nat-
urally based on real-time rewrite theories. Using a tool like Real-Time Maude,
what this means in practice is that such models can then be simulated; and that
their formal properties, in particular their safety requirements, can be model
checked. Furthermore, the simulations and formal analysis capabilities added
to the given modeling language can be offered as “plugins” to already exist-
ing modeling tools, so that much of the formal analysis happens “under the
hood,” and somebody already familiar with the given modeling notation can
perform such formal analysis without having an in-depth understanding of the
underlying formalism.

28

The Ptolemy II modeling language [81] supports design and simulation of
concurrent, real-time, embedded systems expressed in several models of com-
putation (MoCs), such as state machines, data flow, and discrete-event models,
that govern the interaction between concurrent components. A user can visually
design and simulate hierarchical models, which may combine different MoCs.
Furthermore, Ptolemy II has code generation capabilities to translate models
into other modeling or programming languages such as C or Java. Discrete-
Event (DE) Models are among the most central in Ptolemy II. Their semantics
is defined by the tagged signal model [134]. The work by Bae et al. in [135]
endows DE models in Ptolemy II with formal analysis capabilities by: (i) defin-
ing a semantics for them as real-time rewrite theories; (ii) automating such a
formal semantics as a model transformation using Ptolemy II’s code generation
features; (iii) providing a Real-Time Maude plugin, so that Ptolemy II users
can use an extended GUI to define temporal logic properties of their models in
an intutitive syntax and can invoke Real-Time Maude from the GUI to model
check their models. This work has been further advanced in [136] to support
not just flat DE models, but hierarchical ones. That is, above tasks (i)–(iii)
have been extended to hierarchical DE models; this extension is nontrivial, be-
cause it requires combining synchronous fixpoint computations with hierarchical
structure.

AADL (http://www.aadl.info/) is a standard for modeling embedded sys-
tems that is widely used in avionics and other safety-critical applications. How-
ever, AADL lacks a formal semantics, which severely limits both unambigu-
ous communication among model developers and the formal analysis of AADL
models. In [137] Ölveczky et al. define a formal object-based real-time con-
current semantics for a behavioral subset of AADL in rewriting logic, which
includes the essential aspects of AADL’s behavior annex. Such a semantics is
directly executable in Real-Time Maude and provides an AADL simulator and
LTL model checking tool called AADL2Maude. AADL2Maude is integrated
with OSATE, so that OSATE’s code generation facility is used to automatically
transform AADL models into their corresponding Real-Time Maude specifica-
tions. Such transformed models can then be executed and model checked by
Real-Time Maude. One difficulty with AADL models is that, by being made
up of various hierarchical components that communicate asynchronously with
each other, their model checking formal analysis can easily experience a combi-
natorial explosion. However, many such models express designs of distributed
embedded systems which, while being asynchronous, should behave in a virtu-
ally synchronous way. This suggest the possibility of using the PALS pattern
[138], which reduces distributed real-time systems with virtual synchrony to
synchronous ones, to pass from simple synchronous systems, which have much
smaller state spaces and are much easier to model check, to semantically equiv-
alent asynchronous systems, which often cannot be directly model checked but
can be verified indirectly through their synchronous counterparts. This has led
to the design of the Synchronous AADL sublanguage in [139], where the user
can specify synchronous AADL models by using a sublanguage of AADL with
some special keywords. A synchronous rewriting semantics for such models has

29

also been defined in [139]. Using OSATE’s code generation facility, synchronous
AADL models can be transformed into their corresponding Real-Time Maude
specifications in the SynchAADL2Maude tool, which is provided as a plugin to
OSATE. Likewise, the user can define temporal logic properties of synchronous
AADL models based on their features, without requiring knowledge of the un-
derlying formalism, and can model check such models in Real-Time Maude.

A more ambitious goal is to provide a framework, where a wide range of
real-time Domain-Specific Visual Languages (DSVLs), as well as their dynamic
real-time behavior, can be specified with a rigorous semantics. This is precisely
the goal of two frameworks and associated tools: (i) the e-Motions framework
[140]; and (ii) MOMENT2 ’s support for real-time DSVLs [133].

• In e-Motions, DSVLs are specified by their corresponding metamodels,
and dynamic behavior is specified by rules that define in-place model
transformations. But the goals of e-Motions do not remain at the syn-
tax/visual level: they also include giving a precise rewriting logic seman-
tics in Real-Time Maude to the different real-time DSVLs that can be
defined in e-Motions, and to automatically support simulation and formal
analysis of models by using the underlying Real-Time Maude engine. The
formal semantics translates the metamodel of a DSVL as an object class,
the corresponding models as object configurations of that class, and the
e-Motions rules as rewrite rules. Since all these translations are automatic
and define a DSVL’s formal semantics, a modeling language designer using
e-Motions does not have to explicitly define the DSVL’s formal seman-
tics: it comes for free, together with the simulation and model checking
features, once the DSVL’s metamodel and the dynamic behavior rules are
specified.

• In [133], the MOMENT2 framework has been extended to support the
formal specification and analysis of real-time model-based systems. This
is achieved by means of a collection of built-in timed constructs for defin-
ing the timed behavior of such systems. Timed behavior is specified using
in-place model transformations. Furthermore, the formal semantics of a
timed behavioral specification in MOMENT2 is given by a corresponding
real-time rewrite theory. In this way, models can be simulated and model
checked using MOMENT2’s Maude-based analysis tools. In addition, by
using in-place multi-domain model transformations in MOMENT2, an ex-
isting model-based system can be extended with timed features in a non-
intrusive way, in the sense that no modification is needed for the class
diagram.

6.2. Semantics of Ptolemy and AADL through Examples

To give a feeling for what the rewriting logic semantics of real-time modeling
languages looks like, we illustrate with examples two such modeling languages,
namely, Ptolemy II and (Synchronous) AADL, and give a high-level summary of
their respective rewriting logic semantics. Due to space limitations, many details

30

are omitted. We refer to the longer studies [141], [142], and [143], from which
the examples and semantic definitions below are adapted, for more details. In
particular, the recent [143] gives a very good overview of the uses of Real-Time
Maude in giving formal semantics to, and providing formal analysis for, various
real-time modeling languages.

6.2.1. A Ptolemy II Example and its Semantics.

As already mentioned, Ptolemy II [81] is a widely used graphical modeling
and simulation tool for real-time and embedded systems. In Ptolemy II, real-
time systems are modeled as discrete-event (DE) models, which consist of a set
of components called actors, having input ports and output ports, and linked
by communication channels that pass events from one port to another. Such
a model can be encapsulated as a composite actor, which may also have input
and output ports. Each event has two components: a tag and a value. A tag
t is a pair (τ, n), with τ a positive real called the timestamp, and n a natural
number called the microstep index.

In each iteration of the system, all components with input execute syn-
chronously. That is, since connections are instantaneous and the components
execute in lock-step, we must compute the fixpoint of the input for each com-
ponent in the round before its execution; this input comes from the output of
another component’s execution in the same synchronous round.

Figure 4 shows a hierarchical Ptolemy II model of a fault-tolerant traffic light
system at a pedestrian crossing, consisting of one car light and one pedestrian
light. Each light is represented by a set of set variable actors (Pred and Pgrn

represent the pedestrian light, and Cred, Cyel, and Cgrn represent the car light).
A light is on iff the corresponding variable has the value 1. The Finite State
Machine (FSM) actor Decision “generates” failures and repairs by alternating
between staying in location Normal for 15 time units and staying in location for
Abnormal for 5 time units, and by sending events to the TrafficLight through
its Error and Ok ports accordingly. During normal operations, the lights are
controlled by the FSM actors CarLight and PedestrianLight (their FSM’s
are not shown in the figure) that send values to set the variables; in addition,
CarLight sends signals to the PedestrianLight actor through its Pgo and
Pstop output ports.

We now summarize the rewriting logic semantics of Ptolemy II DE models
in Real-Time Maude. Some details are omitted, for which we refer the reader
to [141]. The semantics is defined in an object-oriented style, where the global
state has the form of a multi-set of the form:

{actors connections < global : EventQueue | queue : event queue >}

where actors are objects modeling the actor instances in the Ptolemy model,
connections are its connections, and event queue denotes the global event queue.

Each Ptolemy II actor is modeled as an object instance of a subclass of the
class Actor, that contains the ports and the parameters of the actor. Composite
actors add an attribute, innerActors, denoting its inner actor objects and
connections:

31

TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight

Figure 4: A hierarchical fault-tolerant traffic light system in Ptolemy II.

class Actor | ports : Configuration, parameters : Configuration .

class CompositeActor | innerActors : Configuration .

class AtomicActor .

subclass CompositeActor AtomicActor < Actor .

A port is represented as an object with a name (the identifier of the port ob-
ject), a status (unknown, present, or absent, denoting the “current” knowledge
about whether there is input/output in the current iteration), and a value:

class Port | status : PortStatus, value : Value .

class InPort . class OutPort . subclass InPort OutPort < Port .

sort PortStatus .

ops unknown present absent : -> PortStatus [ctor] .

The semantics has three rewrite rules and several equations used to compute
fixpoints. The first rule is a ‘tick’ rule that advances time until the first events
in the event queue are scheduled (and reduces the remaining time of the other
events according to the elapsed time).

32

vars SYSTEM : ObjectConfiguration . var EVTS : Events .

var QUEUE : EventQueue . var NZT : NzTime . var N : Nat .

rl [tick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; NZT ; N) :: QUEUE >}

=>

{delta(SYSTEM, NZT)

< global : EventQueue | queue : (EVTS ; 0 ; N) :: delta(QUEUE, NZT) >}

in time NZT .

The second rule (not shown) is a “microstep tick rule” that advances “time”
with some microsteps if needed to enable the first event in the event queue. The
third rewrite rule below performs a synchronous step of the system when the
remaining timer and microstep of the first events in the event queue are zero:

rl [executeStep] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=>

{< global : EventQueue | queue : QUEUE >

postfire(portFixPoints(releaseEvt(EVTS) clearPorts(SYSTEM)))} .

The function clearPorts sets the status of each port to unknown. The function
releaseEvt takes all the ripe events and puts them into the corresponding
output ports. The function portFixPoints (whose equations are not shown)
computes all the port values in this round.

Since the rewriting logic semantics of Ptolemy II is executable, it defines
an interpreter for Ptolemy II DE models, which has been integrated with the
Ptolemy II tool. Although Ptolemy II models are already executable, this can
be used to test the Ptolemy II implementation against the formal semantics, and
also for certain forms of symbolic execution. However, the main value added
to Ptolemy II is that, as shown in Section 9.2 for the traffic system example,
one can invoke from Ptolemy II the Real-Time Maude model checker to verify
temporal logic properties of DE models.

6.2.2. A Synchronous AADL Example and its Semantics.

As already mentioned, the Synchronous AADL modeling language [142] ex-
tends a subset of AADL to support the specification of real-time models that are
assumed to be synchronous, at least at a high level of abstraction. This greatly
increases the chances of formally analyzing such systems, while leaving open the
possibility of refining such models into distributed, asynchronous ones using the
PALS formal pattern [144, 138]. We can exemplify Synchronous AADL with
fragments of a model of an avionics system based on a specification by Steve
Miller and Darren Cofer at Rockwell-Collins [144]. A full description of this
model is given in [145]; here we just give an impressionistic description of it and
refer to [145] for additional details. The details, as such, are not the point of
the example: the key point is to illustrate the idea that a synchronous AADL
model can be viewed as a synchronous composition of state machines (one such

33

machine per AADL component), which are formalized in the Real-Time Maude
semantics as separate objects that change their state synchronously.

In integrated modular avionics (IMA), a cabinet is a chassis with a power
supply, internal bus, and general purpose computing, I/O, and memory cards.
Aircraft applications are implemented using the resources in the cabinets. There
are always two or more physically separated cabinets on the aircraft so that
physical damage does not take out the computer system. The active standby
system considers the case of two cabinets and focuses on the logic for deciding
which side is active. Each side can fail, and a failed side can recover after failure.
In case one side fails, the non-failed side should be the active side. In addition,
the pilot can toggle the active status of the sides. The full functionality of each
side depends on the two sides’ perception of the availability of other system
components. An AADL-like graphical description of the system is shown in

ActiveStandbySystem.impl

sideOne:
Side1.impl

env: Environment.impl

sideTwo:
Side2.impl

side1ActiveSide

side2ActiveSide

manualSelection

side1Failed side2Failedside2FullyAvailside1FullyAvail

SynchAADL::Synchronous => true
SynchAADL::SynchPerod => 2ms

Figure 5: The architecture of the active standby system.

Figure 5, and the following is a fragment of its top-level textual representation,
which declares the architecture of the system, with the three subcomponents
sideOne, sideTwo, and env, and with immediate data connections (denoted
by the arrow ‘->’) from the environment to the two sides, and with delayed
data connections (‘->>’) between the two sides. Each subcomponent contains a
thread specification (not shown) in AADL’s behavior annex.

system implementation ActiveStandbySystem.impl

properties

SynchAADL::Synchronous => true; SynchAADL::SynchPeriod => 2 ms;

subcomponents

sideOne: system Side1.impl; sideTwo: system Side2.impl; env: system Environment.impl;

connections

data port sideOne.side1ActiveSide ->> sideTwo.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> sideOne.side2ActiveSide;

data port env.side1FullyAvail -> sideOne.side1FullyAvail;

data port env.side1FullyAvail -> sideTwo.side1FullyAvail;

...

end ActiveStandbySystem.impl;

34

We now summarize the semantics of Synchronous AADL in rewriting logic.
The semantics of a component-based language can naturally be defined in an
object-oriented style, where each component instance is modeled as an object.
The hierarchical structure of Synchronous AADL components is reflected in
the nested structure of objects, in which an attribute of an object contains its
subcomponents as a multiset of objects. Any Synchronous AADL component
instance is represented as an object instance of a subclass of the following class
Component, which contains the attributes common to all kinds of components:

class Component | features : Configuration, subcomponents : Configuration,

properties : Properties, connections : ConnectionSet .

The attribute features denotes the ports of a component, represented as a
multi-set of Port objects; subcomponents denotes the subcomponents of the
object; properties denotes its properties; and connections denotes its con-
nections.

The Thread class is declared as follows:

class Thread | behaviorRef : ComponentRef, variables : Valuation,

currState : Location, completeStates : LocationSet .

subclass Thread < Component .

Given a Synchronous AADL system, a synchronous transition step of the
system is then formalized by the following ‘tick’ rewrite rule:

var SYSTEM : Object . var VAL : Valuation . var VALS : ValuationSet .

crl [syncStepWithTime] :

{SYSTEM}

=> {applyTransitions(transferData(applyEnvTransitions(VAL, SYSTEM)))}

in time period(SYSTEM)

if containsEnvironment(SYSTEM) /\ VAL ;; VALS := allEnvAssignments(SYSTEM).

where the function applyTransitions distributes to the thread objects in the
state and is defined as follows for deterministic threads (whose transitions are
defined using AADL’s behavior annex):

ceq applyTransitions(

< O : Thread | properties : Deterministic(true) ; PROPS,

features : PORTS, currState : L1, completeStates : LS,

variables : VAL, behaviorRef : CR >)

= if L2 in LS then < O : Thread | features : NEW-PORTS, currState : L2,

variables : NEW-VALUATION >

else applyTransitions(< O : Thread | features: NEW-PORTS, currState : L2,

variables : NEW-VALUATION >) fi

if ((L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS) := transitions(CR)

/\ evalGuard(GUARD, PORTS, VAL)

/\ transResult(NEW-PORTS, NEW-VALUATION) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .

35

Since the rewriting logic semantics of Synchronous AADL is executable, it de-
fines an interpreter in Real-Time Maude for Synchronous AADL models, which
has been integrated with the OSATE AADL tool as a plugin. We can use this
plugin to perform both simulation and model checking verification of such mod-
els, as shown in Section 9.3 for the active standby system we have presented.

7. Hardware Description Language Semantics

The rewriting logic semantics project has been naturally extended from
the level of programming languages to that of hardware description languages
(HDLs). In this way, hardware designs written in an HDL can be both simu-
lated and analyzed using the executable rewriting semantics of the HDL and
tools like ELAN, CafeOBJ, or Maude. The first HDL to be given a rewriting
logic semantics in Maude was ABEL [59]; this semantics was used not only for
hardware designs, but also for hardware/software co-designs. An important new
development has been the use of the rewriting logic semantics of an HDL for gen-
erating sophisticated test inputs for hardware designs. The point is that random
testing can catch a good number of design errors, but uncovering deeper errors
after random testing is hard and costly and requires a good understanding of
the design to exercise complex computation sequences. The key insight, due to
Michael Katelman, is that the rewriting semantics can be used symbolically to
generate desired test inputs, not on a device’s concrete states, but on states that
are partly symbolic (contain logical variables) and partly concrete. This sym-
bolic approach, first outlined in [146] and more fully developed in [147], has a
number of unique features including: (i) the use of SAT solvers to symbolically
solve Boolean constraints; (ii) support for user-guided random generation of
partial instantiations; and (iii) a flexible strategy language, in which a hardware
designer can specify in a declarative, high-level way the kind of test that needs
to be generated. The effectiveness of this approach for generating sophisticated
tests on real hardware designs, and for finding unknown bugs in such designs,
has already been demonstrated for medium-sized Verilog designs, including the
I2C-Bus Master Controller, and a microprocessor design [147, 148].

But the value of the rewriting semantics of an HDL is not restricted to test-
ing. For example, the recent Maude-based rewriting logic semantics of Verilog
in [149] is arguably the most complete formal semantics to date, both in the
sense of covering the largest subset of the language and in its faithful modeling
of non-deteministic features. Besides being executable and supporting formal
analysis, this semantics has uncovered several nontrivial bugs in various mature
Verilog tools, and can serve as a practical and rigorous standard to ascertain
what the correct behavior of such tools should be in complex cases.

A more exotic application of rewriting logic semantics, for which it is ide-
ally suited due to its intrinsically concurrent nature, is that of asynchronous
hardware designs. These are digital designs which do not have a global clock,
so that different gates in a device can fire at different times. Such devices can
behave correctly in much harsher environments (e.g., a satellite in outer space)

36

and with much wider ranges of physical operating conditions than clocked de-
vices. Asynchronous designs can be specified with the notation of production
rules, which roughly speaking describe how each gate behaves when inputs to its
wires are available. In [150] a rewriting logic semantics of asynchronous digital
devices specified as sets of production rules is given and is realized in Maude.
This is the first executable formal semantics of such devices we are aware of. It
can be used both for simulation purposes and for model checking verification
of small-sized devices (about 100 gates). An interesting challenge is how to
scale up model checking for larger devices; this is nontrivial due to the large
combinatorial explosion caused by their asynchronous behavior.

8. Abstract vs. Concrete Semantics and Static Analysis

In addition to helping with understanding and experimenting with language
designs, a rewriting logic semantics can have several direct uses without having
to change the semantics at all. Two such uses of unchanged semantics in the
context of program verification are discussed in Sections 9 and 10. Nevertheless,
there are program analysis needs where the desired information is not necessar-
ily available in the code itself, or where the desired domain of analysis is not
included in, and cannot be obtained from, the concrete domain in which the lan-
guage semantics operates. In such cases, one can modify the concrete language
semantics to operate within a target abstract domain. We next first show an
overly simplified example, where the concrete semantics of IMP and IMP++ in
Sections 3.1 and 3.2 are abstracted into type systems for the defined languages,
which yield type checkers when executed. Then we discuss uses of similar but
larger scale and more practical abstractions of rewrite logic semantics.

8.1. K Definition of a Type System for IMP++
The K semantics of IMP/IMP++ in Sections 3.1 and 3.2 can be used

to execute even ill-typed IMP/IMP++ programs, which may be considered
undesirable by some language designers. In this section we show how to define
a type system for IMP/IMP++ using the very same K framework. The type
system is defined like an (executable) semantics of the language, but one in the
more abstract domain of types rather than in the concrete domain of integer
and Boolean values.

The typing policy that we want to enforce on IMP/IMP++ programs is
easy: all variables in a program have by default integer type and must be
declared, arithmetic/Boolean operations are applied only on expressions of cor-
responding types, etc. Since programs and program fragments are now going
to be rewritten into their types, we need to add to computations some basic
types. Also, in addition to the computation to be typed, configurations must
also hold the declared variables. Thus, we define the following (the “. . . ” in
the definition of K includes all the default syntax of computations, such as the
original language syntax, y, freezers, etc.):

K ::= . . . | int | bool | stmt | pgm

ConfigurationType
IMP++ ≡ 〈〈K〉k 〈List{Id}〉vars〉>

37

Original language syntax K Strict. K Semantics
AExp ::= Int i→ int

| Id 〈 x
int
···〉k 〈··· x ···〉var

| AExp +AExp [strict] int + int→ int
| AExp /AExp [strict] int / int→ int
| ++ Id 〈 ++x

int
···〉k 〈··· x ···〉var

BExp ::= AExp <=AExp [strict] int <= int→ bool
| notBExp [strict] not bool→ bool
| BExp andBExp [strict] bool and bool→ bool

Stmt ::= skip skip → stmt
| Id :=AExp [strict(2)] 〈x := int

stmt
···〉k 〈··· x ···〉var

| Stmt ;Stmt [strict] stmt ; stmt→ stmt
| if BExp

then Stmt if bool then stmt else stmt
else Stmt [strict] → stmt

| while BExp do Stmt [strict] while bool do stmt → stmt
| printAExp [strict] print int→ stmt
| halt halt → stmt
| spawnStmt [strict] spawn stmt→ stmt

Pgm ::= var List{Id} ;Stmt 〈 var xl ; s
sy pgm

〉k 〈 ·
xl
〉vars

stmt y pgm→ pgm

Figure 6: K type system for IMP++ (and IMP)

Figure 6 shows the IMP/IMP++ type system as a K system over such
configurations. Constants reduce to their types, and types are straightforwardly
propagated through each language construct. Note that almost each language
construct is strict now, because we want to type all its arguments in almost
all cases in order to apply the typing policy of the construct. Two constructs
are exceptional, namely, increment and assignment. The typing policy of these
constructs is that they take precisely a variable and not something that types to
an integer. If we defined, e.g., the assignment strict and with rule int := int →
stmt, then our type system would allow ill-formed programs like x+y := 0 . Note
how we defined the typing policy of programs var xl ; s: the declared variables
xl are stored into the 〈. . .〉vars cell (which is expected to initially be empty)
and the statement is scheduled for typing (using a structural rule), placing
a “reminder” in the computation that the pgm type is expected; once/if the
statement is correctly typed, the type pgm is generated.

8.2. Examples of Abstract Rewriting Logic Semantics

We briefly discuss three practical uses of abstract rewriting logic semantics.

38

8.2.1. C Pluggable Policies.

Many programs make implicit assumptions about data. Common exam-
ples include assumptions about whether variables have been initialized or can
only contain non-null references. Domain-specific examples are also common;
a compelling example is units of measurement, used in many scientific com-
puting applications, where different variables and values are assumed to have
specific units at specific times/along specific execution paths. These implicit
assumptions give rise to implicit domain policies, such as requiring assignments
to non-null pointers to also be non-null, or requiring two operands in an addition
operation to have compatible units of measurement.

Mark Hills et al. [151] propose a framework for pluggable policies for C
which allows these implicit policies to be made explicit and checked. The core
of the framework is a shared annotation engine and parser, allowing annotations
in multiple policies to be inserted by developers as comments in C programs,
and a shared abstract rewriting logic semantics of C designed as a number of
reusable modules that allow for new policies to be quickly developed and plugged
in. For instance, a case study for checking non-null references was developed in
under two days; another case study for checking units of measurement reuses
the shared abstract semantics and only adds domain knowledge [151].

8.2.2. Polymorphic Type Inference.

The technique in Section 8.1 for defining type systems using K is very general
and has been used to define more complex type systems, such as higher-order
polymorphic ones by Ellison et al. [152]. The K definition of the type system
in [152] is more declarative and thus cleaner and easier to understand than
alternative algorithmic definitions. Moreover, the K definition is formal, so it
is amenable for formal reasoning. Interestingly, as shown in [152], the resulting
K definition, when compiled to and executed using Maude, was faster than
algorithmic implementations of the same type system found on the Internet as
teaching material. In fact, experiments in [152] show that it was comparable to
state of the art implementations of type inferencers in conventional functional
languages! For example, it was only about twice as slow on average than that of
OCaml, and had average times comparable, or even better than those of Haskell
ghci and SML/NJ.

8.2.3. Security Policy Checking.

An elegant application of a programming language’s abstract rewriting logic
semantics to Java code security is presented by Alba-Castro et al. in [153,
154] as part of their rewriting-logic-semantics-based approach to proof carrying
code. The key idea is to use an abstract rewriting logic semantics of Java
that correctly approximates security properties such as noninterference (that
is, the specification of what objects should not have any effects on other objects
according to a stated security policy [155]), and erasure (a security policy that
mandates that secret data should be removed after its intended use). Since the
abstract rewriting semantics is finite-state, it supports the automatic creation

39

of certificates for noninterference and erasure properties of Java programs that
are independently checkable and small enough to be practical.

9. Model Checking Verification

Once a programming language or system is defined as a rewrite theory,
one can use any general-purpose tools and techniques for rewriting logic to
obtain tools and techniques specialized for the defined programming language
or system. We have reported in the past on the use of Maude’s general purpose
LTL model checking capabilities to obtain model checkers specialized for various
concurrent programming languages, including Java and the JVM (see, e.g., [2,
46, 45]). In this paper we report on recent results on using a rewriting logic
semantics of a language in Maude, or of a real-time language in Real-Time
Maude, directly to model check programs in the given language. Specifically,
Section 9.1 discusses such model checking for C programs, Section 9.2 does so for
Ptolemy II models, and Section 9.3 covers the model checking of Synchronous
AADL models.

9.1. Model Checking Verification of C Programs

We present some new model checking experiments performed in the context
of the C definition discussed in Section 4. We thank Chucky Ellison for ex-
tending his C semantics with concurrency primitives and for conducting these
experiments. A more detailed presentation of these can be found in [97].

The C semantics in Section 4 can be extended to include semantics for con-
currency primitives like “spawn”, “sync”, “lock”, and “unlock”. The former is
used to dynamically spawn a new execution thread, “sync” waits for all of the
other threads to die before continuing, and “lock” and “unlock” synchronize
threads on memory locations (similar to Java locking on references). When
formalizing the semantics of C, we did not plan to introduce concurrency. De-
spite that, as hoped for, the existing rules were left unchanged upon adding
configuration support and the semantics of threads.

Dekker’s Algorithm. We now take a look at the classical Dekker’s algorithm, in
order to explore thread interleavings.

void dekker1(void) {
flag1 = 1; turn = 2;
while((flag2 == 1) && (turn == 2)) ;
critical1();
flag1 = 0;

}

void dekker2(void) {
flag2 = 1; turn = 1;
while((flag1 == 1) && (turn == 1)) ;
critical2();
flag2 = 0;

}

These two functions get called by the two threads respectively to ensure mutual
exclusion of the calls to criticaln(). In the program we used for testing, these
threads each contain infinite loops while the function main() waits on a sync().
Thus, the program never terminates.

To test the mutual exclusion property, we model check the following LTL
formula: 2¬(enabled(critical1)∧ enabled(critical2)), stating that the two criti-
cal sections can never be called at the same time. Applying this formula to our

40

program yields “result Bool: true”, in 400ms. If we break the algorithm by
changing a while to an if, the tool instead returns a list of rules, together with
the resulting states, that represent a counterexample.

Dining Philosophers. Another classic example is the dining philosophers prob-
lem.

void philosopher(int n) {
while(1) {

// Hungry: obtain chopsticks
if (n % 2 == 0) { // Even number: Left, then right

lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
lock(&chopstick[n]);

} else { // Odd number: Right, then left
lock(&chopstick[n]);
lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);

}
// Eating
// Finished Eating: release chopsticks
unlock(&chopstick[n]);
unlock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
// Thinking

}
}

The above code shows a solution to the dining philosophers that has even-
numbered philosophers picking up their left chopstick first, while odd-numbered
philosophers pick up their right chopstick first. This strategy ensures that there
is no deadlock. We can use Maude’s search command to verify that there is no
deadlock simply by searching for final states. Here are the results:

No Deadlock With Deadlock
n number of states time (s) number of states time (s)
1 19 0.1 – –
2 92 0.8 63 0.6
3 987 14.0 490 7.2
4 14610 293.5 5690 119.8
5 288511 8360.3 84369 2376.5

In the “No Deadlock” column we see the results for the code above. We were
able to verify that with this algorithm, there were no deadlocks for up to five
philosophers. In the “With Deadlock” column, we altered the code so that all
philosophers would try to pick up their left chopstick first. For this algorithm,
we were able to find counterexamples showing that the program has deadlocks.

While the classic programs above are toy examples, which are far from the
complexity of real-life software, we believe that they are sufficient to show that
a programming language semantics can be more than a “useless academic in-
tellectual exercise”. The well-known state-space explosion of model checking
cannot be avoided, no matter whether one uses a formal semantics of the lan-
guage or not, but one should note that this is a problem of model checking and
not of using a formal semantics for model checking. Also, there are well-known
techniques to address the state explosion problem, like partial-order reduction,
which can and have also been applied in the context of rewriting logic semantics

41

[52]. And one can use an abstract semantics (Section 8) as the basis of the
model checker to make it more scalable. The next section shows another use
of rewriting logic semantics of programming languages, for deductive program
verification.

9.2. Model Checking Verification of Ptolemy II Models

We show here how the rewriting logic semantics of Ptolemy II DE models
presented in Section 6.2 can, thanks to the integration of that semantics in Real-
Time Maude within Ptolemy II, be used from within Ptolemy II to model check
temporal logic properties of DE models. In particular, using the Real-Time
Maude plugin, a Ptolemy II user only needs knowledge of temporal logic to
specify such properties and does not need any knowledge of Real-Time Maude.
This is because the plugin provides a simple property specification language in
which state predicates can be defined in terms of the values of state variables
of the different actors in the given Ptolemy II model. Let us illustrate all this
on the traffic system example presented in Section 6.2.

The following timed CTL property states that the car light will turn yellow,
and only yellow, within 1 time unit of a failure:

AG ((’HierarchicalTrafficLight . ’Decision | port ’Error is present)

=> AF[<= 1] (’HierarchicalTrafficLight | ’Cyel = 1, ’Cgrn = 0, ’Cred = 0))

Note how the property language allows using state predicates that refer to state
variables in various actors of the Ptolemy II model, so that no knowledge of the
underlying Real-Time Maude is required to specify this property.

As shown in Figure 7, model checking this property from within Ptolemy II
returns a previously unknown counter-example which shows that, after a failure,
the car light may show red or green in addition to blinking yellow.

9.3. Model Checking Verification of Synchronous AADL Models

We illustrate here how the formal executable semantics of Synchronous
AADL summarized in Section 6.2 can be used, taking advantage of Real-Time
Maude model checking capabilities, to verify formal properties of a model. For
the Active Standby System described in Section 6.2, the key properties that
should be verified according to [144] are:

R1: Both sides should agree on which side is active (provided neither side has
failed, the availability of a side has not changed, and the pilot has not
made a manual selection).

R2: A side that is not fully available should not be the active side if the
other side is fully available (again, provided neither side has failed, the
availability of a side has not changed, and the pilot has not made a manual
selection).

R3: The pilot can always change the active side (except if a side is failed or
the availability of a side has changed).

42

Figure 7: Dialog window for the Real Time Maude code generation and analysis.

R4: If a side is failed the other side should become active.

R5: The active side should not change unless the availability of a side changes,
the failed status of a side changes, or manual selection is selected by the
pilot.

To verify such properties, a Synchronous AADL user should be reasonably fa-
miliar with temporal logic. However, since in a way similar to the Ptolemy II plu-
gin discussed in Section 9.2: (i) the formal executable semantics of Synchronous
AADL in Real-Time Maude has been integrated as the SynchAADL2Maude
plugin within the OSATE AADL tool, and (ii) a simple language to define state
predicates of a Synchronous AADL system in terms of variables in the model
itself is also offered to the user for defining properties, such a user does not
need to be familiar with the underlying Real-Time Maude and can specify and
verify temporal logic properties in terms of the Synchronous AADL model alone
(see [142] for details). For example, for the Active Standby model we can spec-
ify the relevant state predicates this way and then verify (a refined version of)
properties R1–R5 from within the OSATE plugin, as shown in Figure 8.

43

Figure 8: SynchAADL2Maude verification window in OSATE.

10. Deductive Verification and Matching Logic

As discussed above, one of the major advantages of giving a rewriting logic
semantics to a language is that one can use it not only to obtain a reference
implementation of the language, but also to formally analyze programs in the
defined language using general-purpose tools developed for rewriting logic, such
as Maude’s model checker. Moreover, the original rewriting logic semantics of
the language is used unchanged for model checking or other similar analyses,
which is not only immensely convenient but also offers a high confidence in
the results of the analysis (because it excludes the problem of implementing a
wrong language semantics in the analyzer). One question, however, still remains
unanswered: can we use the language semantics, also unchanged, in a program
logic fashion, that is, for deductive verification of programs?

Early work in this direction includes two Hoare logic provers that use directly
the rewriting logic semantics of a Pascal like-language and of a fragment of Java
and the Maude ITP [53, 58]. Furthermore, the rewriting logic semantics of
Java was used in [55] to automatically validate the inference rules of a Java
verification tool. All these early efforts were still based on an additional Hoare
logic semantics of the target languages, but used the rewriting logic semantics
of the language to validate or automate the application of the Hoare logic proof
rules. In the remainder of this section we report on an alternative approach,
which needs no other semantics of the language for verification purposes. It uses
precisely the rewriting semantics of the language and nothing else for deductive
verification.

44

Matching logic [86, 85, 84, 83, 82] is a new program verification logic, which
builds upon rewriting logic semantics. Matching logic specifications are con-
strained symbolic program configurations, called patterns, which can be matched
by concrete configurations. By building upon an executable semantics of the
language and allowing specifications to directly refer to the structure of the
configuration, matching logic has at least three benefits: (1) one’s familiarity
with the formalism reduces to one’s familiarity with the formal semantics of
the language, that is, with the language itself; (2) the verification process pro-
ceeds the same way as the program execution, making debugging failed proof
attempts manageable because one can always see the “current configuration”
and “what went wrong”, almost like in a debugger; and (3) nothing is lost or
distorted in translation, that is, there is no gap between the language definition
and its verifier. Moreover, direct access to the structure of the configuration fa-
cilitates defining sub-patterns that one may reason about, such as disjoint lists
or trees in the heap, as well as supporting framing in various components of the
configuration at no additional cost.

To use matching logic for program verification, one must know the struc-
ture of the configurations that are used in the executable language semantics.
For example, the configuration of some language may contain, besides the code
itself, an environment, a heap, stacks, synchronization resources, etc. The con-
figuration of C (Section 4 and [97]), e.g., consists of more than 70 cells, each
containing either other cells or some piece of semantic information. Of course,
thanks to the modular structure of configurations, only the relevant cells (typi-
cally just a few) and only the relevant cell contents (typically very small) need
to be mentioned in a given matching logic specification. Matching logic spec-
ifications, or patterns, allow one to refer directly to the configuration of the
program. Moreover, we can use logical variables and thus combine the desired
configuration structure with first-order constraints. For example, the pattern

〈 〈β, I〉in 〈x 7→ x, i 7→ i, n 7→ n, E〉env 〈list(x, α), H〉heap C 〉config

∧ i ≤ n ∧ |β| = n− i ∧ A = rev(α)@β

specifies the set of configurations where program variables x, i and n are bound
in the environment to some respective values x, i, and n, such that i ≤ n, the
input buffer contains a sequence β of size n− i, and the heap contains a linked
list starting with pointer x comprising the sequence of elements α such that the
sequence A is the reverse of the sequence α concatenated with β. Here A is a
free variable of type sequence of elements. The other variables play the role of
cell frames: I is a variable matching the rest of the input cell, E matches the rest
of the environment, H the rest of the heap, and C the rest of the configuration.
Note that nothing special needs to be done for framing in matching logic (that
is, framing is a special case of the more general principle of matching).

A major benefit of matching logic is that it can be used to turn an executable
semantics into a program logic without any change to the original semantics.
The idea is that the executable semantics can be regarded as a set of rewrite
rules between matching logic patterns, and one can use first-order reasoning over
patterns to turn the pattern resulting from the application of some rule into a

45

pattern that the next rule expects to match. This way, one can derive rewrite
rules from other rewrite rules, using matching logic reasoning as a mechanism
to rearrange configurations so that rewrite rules can match and apply.

All this can be formalized as a language-independent and sound proof system
for deriving reachability rules between matching logic patterns [86, 84]. We
stress the language independence of the matching logic proof system, because
this clearly distinguishes it from Hoare logic. As we know, one has to define
a specific Hoare logic for each given language in order to do formal deductive
program verification. This is a very tedious and error prone process, because
defining a Hoare logic is not as intuitive and straightforward as defining an
operational semantics. Consequently, the current state of the art in mechanical
deductive verification is to have both an operational (trusted) semantics and a
Hoare logic for a language, and then prove the soundness of the latter based
on the former. In matching logic one needs no additional semantics, axiomatic
or of any other nature, and no tedious soundness proofs need to be done for
each language separately. This is because matching logic deduction uses the
same rewriting semantic rules of the language as axioms, and the proof system
allowing to derive rewrites between patterns is completely agnostic about the
rewrite rules giving the language semantics. The matching logic proof system
includes both rules borrowed from rewriting logic and rules inspired from the
language-independent rules of Hoare logic, plus one very specific rule, called
Circularity. The Circularity rule is coinductive in nature and captures in a
language-independent way the invariant-like nature of language constructs that
have circular behaviors (loops, recursion, jumps, etc.). As shown in [85], the
Circularity rule is powerful enough to allow any Hoare logic proof derivation to
be mechanically translated into a proof derivation based on the matching logic
proof system.

With the help of Andrei Ştefănescu, we implemented a proof-of-concept
matching logic verifier for a fragment of C, called MatchC, which can be down-
loaded and executed online at http://fsl.cs.uiuc.edu/ml. MatchC builds
upon an executable rewrite-based semantics of this fragment of C, extending it
(unchanged) with semantics for pattern specifications. Both the executable se-
mantics and the verifier are implemented using the K framework (see Section 3).

Figure 9 shows a C program verified using MathC. The main() function
reads n from the standard input and then calls readWriteBuffer(n). Then
readWriteBuffer(n) reads from the standard input n elements and allocates a
linked list putting each element at the top of the list, followed by traversing the
linked list and printing each element while deallocating the list nodes. This way,
we end up with the reversed sequence of elements printed to the the standard
output and with the heap unchanged. There are four types of annotations in
this program: (1) assumptions, which allow one to assume a certain pattern
for the remaining program; (2) assertions, which generate matching logic proof
obligations, namely, that the current pattern implies the asserted pattern; (3)
rules, which give the claimed K semantics of the subsequent piece of code; and
(4) invariants, which are patterns that should hold at each loop iteration.

Some explanations regarding MatchC’s notation are necessary. MatchC an-

46

#include <stdlib.h>
#include <stdio.h>

struct listNode { int val; struct listNode *next; };

void readWriteBuffer(int n)
/*@ rule <k> $ => return;...</k> <in> A => epsilon...</in> <out>...epsilon => rev(A) </out>

if n = len(A) */
{

int i; struct listNode *x;
i = 0; x = 0;
/*@ inv <in> ?B...</in> <heap>...list(x)(?A)...</heap>

/\ i <= n /\ len(?B) = n - i /\ A = rev(?A) @ ?B */
while (i < n) {

struct listNode *y;
y = x;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = y;
i += 1;

}

//@ inv <out>...?A </out> <heap>...list(x)(?B)...</heap> /\ A = rev(?A @ ?B)
while (x) {

struct listNode *y;
y = x->next;
printf("%d ",x->val);
free(x);
x = y;

}
}

void main() {
int n;
//@ assume <in> [5, 1, 2, 3, 4, 5] </in> <out> epsilon </out>
scanf("%d", &n);
readWriteBuffer(n);
//@ assert <in> epsilon </in> <out> [5, 4, 3, 2, 1] </out>

}

Figure 9: C program making use of the I/O and the heap, verified using MatchC.

notations are introduced like C comments starting with @, so they are ignored
by C compilers. We use an XML-like notation to specify when cells start and
when they end. We use the usual rewriting relation “=>” for the in-place rewrit-
ing within K rules. The “$” symbol that appears in the computation cell of a
rule stands for the subsequent statement (the function body, in our case here).
Fourth, to avoid writing quantifiers, variables starting with a question mark
are existentially quantified over the pattern. Fifth, we use ellipses to state that
the corresponding cell is open in that direction, which can be regarded as an
abbreviation for using a fresh variable; for example, “<in> ?B ...</in>” in
the invariant of the first loop abbreviates “<in> ?B, ?E </in>”. Finally, to
avoid writing the environment cell all the time, MatchC allows users to refer
directly to program variables in patterns; this avoids having to add a binding
of the program variable to a logical variable in the environment cell and then
using the logical variable throughout the pattern.

The rule giving the semantics of readWriteBuffer(n) states that this func-
tion returns nothing (“$ => return;”, that is, its body behaves as if it returns)
and takes a sequence A of length n (see the condition “n = len(A)”) from the

47

beginning of the input cell (“<in> A => epsilon...<in>”) and places it re-
versed at the end of the output cell (“<out>...epsilon => A </out>”). Since
we have a rewrite-based semantics, the fact that no other cells are mentioned
implicitly means that nothing else is modified by this function, including the
heap. The invariant of the first loop is exactly the pattern that we discussed at
the beginning of this section. The invariant of the second loop is similar, but
dual. We do not show the axiom (matching logic formula) governing the list
pattern in the heap cell; the interested reader can check [86, 83, 82]. Neverthe-
less, since x is null at the end of the second loop, it follows that the list it points
to is empty, so the heap changes by the first loop will be cleaned by the end of
the second.

MatchC verifies the program in Figure 9 in about 100 milliseconds:

Compiling program ... DONE! [0.311s]
Loading Maude DONE! [0.209s]
Verifying program ... DONE! [0.099s]
Verification succeeded! [82348 rewrites, 4 feasible and 2 infeasible paths]
Output: 5 4 3 2 1

Dozens of C programs have been verified using MatchC, most known to be
problematic to verify using existing approaches based on Hoare logic or exten-
sions of it. The list of verified programs includes:

• undefined programs according to the semantics of C, which should not
be provably correct (unfortunately, such programs are “proved” correct
by some existing program verifiers which, obviously, are not based on an
executable and thus testable semantics of the programming language);

• conventional Hoare logic programs which make no use of the heap or other
cells in the configuration except for the environment; programs using the
input/output;

• list-manipulating programs taken over from separation logic tools, making
intensive use of the heap;

• tree-manipulating programs, including search trees such as binary-search
trees and AVL trees;

• graph-manipulating programs, including the famous Schorr-Waite graph
marking algorithm.

Two factors guided us in choosing these programs and in our MatchC ver-
ification effort: (1) proving functional correctness (as opposed to just memory
safety), and (2) doing so automatically (the user only provides the specifica-
tions). The Schorr-Waite graph marking algorithm [156] computes all the nodes
in a graph that are reachable from a set of starting nodes. To achieve that, it
visits the graph nodes in depth-first search order, by reversing pointers on the
way down, and then restoring them on the way up. Its main application is in
garbage collection. The Schorr-Waite algorithm presents considerable verifica-
tion challenges [157, 158]. We analyzed the algorithm itself as originally given for

48

graphs, and a simplified version in which the graph is a tree. For both cases we
proved that a node is marked if and only if it is reachable from the set of initial
nodes, and that the graph does not change. Most of these examples are proved
in milliseconds and do not require SMT support. The source code of MatchC,
as well as an online interface allowing one to verify and experiment with all C
programs discussed here, or to introduce new ones, is publicly available from
the matching logic web page at http://fsl.cs.uiuc.edu/ml.

11. Conclusions and Future Work

We have given a progress report on the rewriting logic semantics project.
Our main goal has been to show how research in this area is closing the gap
between theory and practice by supporting executable semantic definitions that
scale up to real languages at the three levels of software modeling languages,
programming languages, and HDLs, and with features such as concurrency and
real-time semantics. We have also shown how such semantic definitions can be
directly used as a basis for interpreters and for sophisticated program analysis
tools, including static analyzers, model checkers, and program proving tools.

Although reasonably efficient interpreters can be currently generated from
rewriting logic specifications, one important future challenge is the automatic
generation from language definitions of high-performance language implemen-
tations that are correct by construction. Another area that should be further
developed is that of meta-reasoning methods, to prove formal properties not
about programs, but about entire language definitions. A third promising fu-
ture research direction is exploring the systematic interplay between abstract se-
mantics and model checking, as well as the systematic application of state space
reduction techniques in the model checking of programs from their rewriting
logic language definitions; the overall goal is achieving a high degree of scal-
ability in model checking analyses, with a wide spectrum of analysis choices
ranging from model checking of programs according to their concrete semantics
to various forms of static analysis based on different kinds of abstract semantics.

Yet another exciting research direction is the development of generic theorem
prover generators, which, like in the case of the generic model checker facility
provided by Maude, take an entire language definition as input, and produce
an efficient, full-fledged theorem prover for the given language. For example, a
prover like the MatchC tool could in this way be derived from the C semantic
definition, and so could also provers for many other languages.

Acknowledgments.. We thank the organizers of FCT 2011 for giving us the
opportunity of presenting these ideas in preliminary form at the FCT 2011
conference, and both them and the FCT 2011 participants for their comments,
which have helped us develop the expanded and improved version presented
here. We also thank all the researchers involved in the rewriting logic semantics
project for their many contributions, which we have tried to summarize in this
paper without any claims of completeness. This research has been partially
supported by NSF Grants CNS 0834709, CCF 0905584, CCF 0916893, and

49

http://fsl.cs.uiuc.edu/ml

CCF 1218605, by AFOSR Grant FA8750-11-2-0084, by NSA contract H98230-
10-C-0294, by (Romanian) SMIS-CSNR 602-12516 contract no. 161/15.06.2010,
and by the Boeing Grant C8088.

References

[1] J. Meseguer, G. Roşu, Rewriting logic semantics: From language specifi-
cations to formal analysis tools, in: Proc. IJCAR’04, Vol. 3097 of LNAI,
Springer, 2004, pp. 1–44.
URL http://dx.doi.org/10.1007/978-3-540-25984-8_1

[2] J. Meseguer, G. Roşu, The rewriting logic semantics project, Theoretical
Computer Science 373 (2007) 213–237.

[3] T. F. Şerbănuţă, G. Roşu, J. Meseguer, A rewriting logic approach to
operational semantics, Information and Computation 207 (2) (2009) 305–
340.
URL http://dx.doi.org/10.1016/j.ic.2008.03.026

[4] J. Meseguer, G. Rosu, The rewriting logic semantics project: A progress
report, in: O. Owe, M. Steffen, J. A. Telle (Eds.), FCT, Vol. 6914 of
Lecture Notes in Computer Science, Springer, 2011, pp. 1–37.

[5] G. D. Plotkin, A structural approach to operational semantics, Journal of
Logic and Algebraic Programming 60-61 (2004) 17–139, Previously pub-
lished as technical report DAIMI FN-19, Computer Science Department,
Aarhus University, 1981.

[6] G. Kahn, Natural semantics, in: Proc. STACS’87, Vol. 247 of LNCS,
Springer, 1987, pp. 22–39.

[7] P. D. Mosses, Modular structural operational semantics, J. Log. Algebr.
Program. 60–61 (2004) 195–228.

[8] A. K. Wright, M. Felleisen, A syntactic approach to type soundness, In-
formation and Computation 115 (1) (1994) 38–94.

[9] M. Felleisen, D. P. Friedman, Control operators, the SECD-machine, and
the λ-calculus, in: 3rd Working Conference on the Formal Description of
Programming Concepts, Denmark, 1986, pp. 193–219.

[10] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Com-
puter Science 96 (1) (1992) 217–248.

[11] M. Wand, First-order identities as a defining language, Acta Informatica
14 (1980) 337–357.

[12] J. A. Goguen, K. Parsaye-Ghomi, Algebraic denotational semantics using
parameterized abstract modules, in: J. Diaz, I. Ramos (Eds.), Formal-
izing Programming Concepts, Springer-Verlag, 1981, pp. 292–309, lNCS,
Volume 107.

50

http://dx.doi.org/10.1007/978-3-540-25984-8_1
http://dx.doi.org/10.1007/978-3-540-25984-8_1
http://dx.doi.org/10.1007/978-3-540-25984-8_1
http://dx.doi.org/10.1016/j.ic.2008.03.026
http://dx.doi.org/10.1016/j.ic.2008.03.026
http://dx.doi.org/10.1016/j.ic.2008.03.026

[13] M. Broy, M. Wirsing, P. Pepper, On the algebraic definition of program-
ming languages, ACM TOPLAS 9 (1) (1987) 54–99.

[14] P. D. Mosses, Unified algebras and action semantics, in: Proc. Symp. on
Theoretical Aspects of Computer Science, STACS’89, Springer LNCS 349,
1989, pp. 17–35.

[15] J. Goguen, G. Malcolm, Algebraic Semantics of Imperative Programs,
MIT Press, 1996.

[16] A. van Deursen, J. Heering, P. Klint, Language Prototyping: An Algebraic
Specification Approach, World Scientific, 1996.

[17] D. Scott, Outline of a mathematical theory of computation, in: Pro-
ceedings, Fourth Annual Princeton Conference on Information Sciences
and Systems, Princeton University, 1970, pp. 169–176, also appeared as
Technical Monograph PRG 2, Oxford University, Programming Research
Group.

[18] D. Scott, C. Strachey, Toward a mathematical semantics for computer lan-
guages, in: Microwave Research Institute Symposia Series, Vol. 21: Proc.
Symp. on Computers and Automata, Polytechnical Institute of Brooklyn,
1971.

[19] D. A. Schmidt, Denotational Semantics – A Methodology for Language
Development, Allyn and Bacon, Boston, MA, 1986.

[20] P. D. Mosses, Denotational semantics, in: J. van Leeuwen (Ed.), Hand-
book of Theoretical Computer Science, Vol. B, Chapter 11, North-Holland,
1990.

[21] D. P. Friedman, M. Wand, C. T. Haynes, Essentials of Programming
Languages, 2nd Edition, MIT Press, Cambridge, MA, 2001.
URL http://www.cs.indiana.edu/eopl/

[22] B. Pierce, Types and Programming Languages, MIT Press, 2002.

[23] M. Kaufmann, P. Manolios, J. S. Moore, Computer-Aided Reasoning:
ACL2 Case Studies, Kluwer Academic Press, 2000.

[24] E. Moggi, An abstract view of programming languages, Tech. Rep. ECS-
LFCS-90-113, Edinburgh University, Dept. of Computer Science (June
1989).

[25] P. Wadler, The essence of functional programming, in: Proc. POPL ’92,
ACM Press, New York, NY, USA, 1992, pp. 1–14. doi:http://doi.acm.
org/10.1145/143165.143169.

[26] S. Liang, P. Hudak, M. Jones, Monad transformers and modular inter-
preters, in: Proc. POPL’95, ACM Press, 1995, pp. 333–343. doi:http:

//doi.acm.org/10.1145/199448.199528.

51

http://www.cs.indiana.edu/eopl/
http://www.cs.indiana.edu/eopl/
http://www.cs.indiana.edu/eopl/
http://dx.doi.org/http://doi.acm.org/10.1145/143165.143169
http://dx.doi.org/http://doi.acm.org/10.1145/143165.143169
http://dx.doi.org/http://doi.acm.org/10.1145/199448.199528
http://dx.doi.org/http://doi.acm.org/10.1145/199448.199528

[27] F. Pfenning, C. Elliott, Higher-order abstract syntax, in: Proc. PLDI’88,
ACM Press, 1988, pp. 199–208.

[28] R. Harper, F. Honsell, G. D. Plotkin, A framework for defining logics,
Journal of the ACM 40 (1) (1993) 143–184.

[29] G. Nadathur, D. Miller, An overview of λProlog, in: K. Bowen, R. Kowal-
ski (Eds.), Fifth Int. Joint Conf. and Symp. on Logic Programming, The
MIT Press, 1988, pp. 810–827.

[30] D. Miller, Representing and reasoning with operational semantics, in:
Proc. IJCAR’06, Vol. 4130 of LNCS, 2006, pp. 4–20.

[31] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
V. Pascual, CENTAUR: The system, in: Software Development Environ-
ments (SDE), 1988, pp. 14–24.

[32] D. Clément, J. Despeyroux, L. Hascoet, G. Kahn, Natural semantics on
the computer, in: K. Fuchi, M. Nivat (Eds.), Proceedings, France-Japan
AI and CS Symposium, ICOT, 1986, pp. 49–89, also, Information Pro-
cessing Society of Japan, Technical Memorandum PL-86-6.

[33] K. Slonneger, B. L. Kurtz, Formal Syntax and Semantics of Programming
Languages, Addison-Wesley, 1995.

[34] Y. Gurevich, Evolving algebras 1993: Lipari Guide, in: E. Börger (Ed.),
Specification and Validation Methods, Oxford University Press, 1994, pp.
9–37.

[35] R. F. Stärk, J. Schmid, E. Börger, Java and the Java Virtual Machine:
Definition, Verification, Validation, Springer, 2001.

[36] C. Braga, Rewriting logic as a semantic framework for modular struc-
tural operational semantics, Ph.D. thesis, Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil (2001).

[37] A. Verdejo, N. Mart́ı-Oliet, Implementing CCS in Maude 2, in: F. Gad-
ducci, U. Montanari (Eds.), Proc. 4th. Intl. Workshop on Rewriting Logic
and its Applications, ENTCS, Elsevier, 2002.

[38] P. Thati, K. Sen, N. Mart́ı-Oliet, An executable specification of asyn-
chronous Pi-Calculus semantics and may testing in Maude 2.0, in: F. Gad-
ducci, U. Montanari (Eds.), Proc. 4th. Intl. Workshop on Rewriting Logic
and its Applications, ENTCS, Elsevier, 2002.

[39] M.-O. Stehr, C. Talcott, PLAN in Maude: Specifying an active network
programming language, in: F. Gadducci, U. Montanari (Eds.), Proc. 4th.
Intl. Workshop on Rewriting Logic and its Applications, Vol. 117, ENTCS,
Elsevier, 2002.

52

[40] J. Meseguer, Software specification and verification in rewriting logic, in:
M. Broy, M. Pizka (Eds.), Models, Algebras, and Logic of Engineering
Software, NATO Advanced Study Institute, Marktoberdorf, Germany,
July 30 – August 11, 2002, IOS Press, 2003, pp. 133–193.

[41] A. Verdejo, Maude como marco semántico ejecutable, Ph.D. thesis, Fac-
ultad de Informática, Universidad Complutense, Madrid, Spain (2003).

[42] F. Chen, G. Roşu, R. P. Venkatesan, Rule-based analysis of dimensional
safety, in: Proc. RTA’03, Vol. 2706 of LNCS, 2003, pp. 197–207.

[43] G. Roşu, R. P. Venkatesan, J. Whittle, L. Leustean, Certifying optimality
of state estimation programs, in: Computer Aided Verification (CAV’03),
Springer, 2003, pp. 301–314, lNCS 2725.

[44] A. Verdejo, N. Mart́ı-Oliet, Executable structural operational semantics
in Maude, Journal of Logic and Algebraic Programming 67 (1-2) (2006)
226–293.

[45] A. Farzan, J. Meseguer, G. Roşu, Formal JVM code analysis in JavaFAN,
in Proc. AMAST’04, Springer LNCS 3116, 132–147, 2004.

[46] A. Farzan, F. Cheng, J. Meseguer, G. Roşu, Formal analysis of Java pro-
grams in JavaFAN, in: Proc. CAV’04, Vol. 3114 of LNCS, 2004.

[47] E. B. Johnsen, O. Owe, E. W. Axelsen, A runtime environment for con-
current objects with asynchronous method calls, in: N. Mart́ı-Oliet (Ed.),
Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications, Vol.
117, ENTCS, Elsevier, 2004.

[48] C. Braga, J. Meseguer, Modular rewriting semantics in practice, in: Proc.
WRLA’04, Vol. 117, ENTCS, Elsevier, 2004, pp. 393–416.

[49] J. Meseguer, C. Braga, Modular rewriting semantics of programming lan-
guages, in Proc. AMAST’04, Springer LNCS 3116, 364–378, 2004.

[50] F. Chalub, C. Braga, A Modular Rewriting Semantics for CML, Journal
of Universal Computer Science 10 (7) (2004) 789–807.

[51] F. Chalub, An implementation of Modular SOS in Maude, Master’s thesis,
Universidade Federal Fluminense, Niterói, RJ, Brazil (May 2005).

[52] A. Farzan, J. Meseguer, Partial order reduction for rewriting semantics
of programming languages, in: G. Denker, C. Talcott (Eds.), Proc. 6th.
Intl. Workshop on Rewriting Logic and its Applications, ENTCS 176(4),
Elsevier, 2007, pp. 61–78.

[53] M. Clavel, J. Santa-Cruz, ASIP + ITP: A verification tool based on alge-
braic semantics, in: F. J. López-Fraguas (Ed.), Actas de las V Jornadas
sobre Programación y Lenguajes, PROLE 2005, Granada, España, Sep-
tiembre 14-16, 2005, Thomson, 2005, pp. 149–158.

53

[54] R. Sasse, Taclets vs. rewriting logic – relating semantics of Java, Master’s
thesis, Fakultät für Informatik, Universität Karlsruhe, Germany, technical
Report in Computing Science No. 2005-16. (May 2005).
URL http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?

document=ira/2005/16

[55] W. Ahrendt, A. Roth, R. Sasse, Automatic validation of transformation
rules for java verification against a rewriting semantics., in: Proc. LPAR
2006, Vol. 3835 of LNCS, Springer-Verlag, 2005, pp. 412–426.

[56] M.-O. Stehr, C. L. Talcott, Practical techniques for language design and
prototyping, in: J. L. Fiadeiro, U. Montanari, M. Wirsing (Eds.), Ab-
stracts Collection of the Dagstuhl Seminar 05081 on Foundations of Global
Computing. February 20 – 25, 2005. Schloss Dagstuhl, Wadern, Germany.,
2005.

[57] M. d’Amorim, G. Roşu, An Equational Specification for the Scheme Lan-
guage, Journal of Universal Computer Science 11 (7) (2005) 1327–1348,
selected papers from the 9th Brazilian Symposium on Programming Lan-
guages (SBLP’05). Also Technical Report No. UIUCDCS-R-2005-2567,
April 2005.

[58] R. Sasse, J. Meseguer, Java+itp: A verification tool based on hoare logic
and algebraic semantics, in: G. Denker, C. Talcott (Eds.), Proc. 6th.
Intl. Workshop on Rewriting Logic and its Applications, ENTCS 176(4),
Elsevier, 2007, pp. 29–46.

[59] M. Katelman, J. Meseguer, A rewriting semantics for abel with applica-
tions to hardware/software co-design and analysis, in: G. Denker, C. Tal-
cott (Eds.), Proc. 6th. Intl. Workshop on Rewriting Logic and its Appli-
cations, ENTCS 176(4), Elsevier, 2007, pp. 47–60.

[60] M. Hills, T. F. Şerbănuţă, G. Roşu, A rewrite framework for language def-
initions and for generation of efficient interpreters, in: Proc. of WRLA’06,
Vol. 176(4) of ENTCS, Elsevier, 2007, pp. 215–231.

[61] A. Garrido, J. Meseguer, R. Johnson, Algebraic semantics of the C prepro-
cessor and correctness of its refactorings, Tech. Rep. UIUCDCS-R-2006-
2688, Department of Computer Science, University of Illinois at Urbana-
Champaign (February 2006).
URL http://hdl.handle.net/2142/11162

[62] A. Farzan, Static and dynamic formal analysis of concurrent systems and
languages: a semantics-based approach, Ph.D. thesis, University of Illinois
at Urbana-Champaign (2007).

[63] M. AlTurki, J. Meseguer, Real-time rewriting semantics of Orc, in:
M. Leuschel, A. Podelski (Eds.), Proceedings of the 9th International
ACM SIGPLAN Conference on Principles and Practice of Declarative

54

http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://hdl.handle.net/2142/11162
http://hdl.handle.net/2142/11162
http://hdl.handle.net/2142/11162
http://doi.acm.org/10.1145/1273920.1273938

Programming, PPDP 2007, Wroclaw, Poland, July 14-16, 2007, ACM,
2007, pp. 131–142.
URL http://doi.acm.org/10.1145/1273920.1273938

[64] J. Meseguer, Conditional rewriting logic as a unified model of concurrency,
Theoretical Computer Science 96 (1) (1992) 73–155.

[65] R. Bruni, J. Meseguer, Semantic foundations for generalized rewrite the-
ories., Theor. Comput. Sci. 360 (1-3) (2006) 386–414.

[66] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet,
C. Talcott, All About Maude – A High-Performance Logical Framework,
Springer LNCS Vol. 4350, 2007.

[67] P. Viry, Equational rules for rewriting logic, Theoretical Computer Science
285 (2002) 487–517.

[68] J. Meseguer, K. Futatsugi, T. Winkler, Using rewriting logic to specify,
program, integrate, and reuse open concurrent systems of cooperating
agents, in: Proceedings of the 1992 International Symposium on New
Models for Software Architecture, Tokyo, Japan, November 1992, Re-
search Institute of Software Engineering, 1992, pp. 61–106.

[69] N. Mart́ı-Oliet, J. Meseguer, Rewriting logic as a logical and semantic
framework, in: D. M. Gabbay, F. Guenthner (Eds.), Handbook of Philo-
sophical Logic, Second Edition, Volume 9, Kluwer Academic Publishers,
2002, pp. 1–87.

[70] A. Verdejo, N. Mart́ı-Oliet, Two case studies of semantics execution in
Maude: CCS and LOTOS, Formal Methods in System Design 27 (1-2)
(2005) 113–172.
URL http://dx.doi.org/10.1007/s10703-005-2254-x

[71] P. C. Ölveczky, J. Meseguer, Specification of real-time and hybrid systems
in rewriting logic, Theoretical Computer Science 285 (2) (2002) 359–405.
URL http://dx.doi.org/10.1016/S0304-3975(01)00363-2

[72] P. C. Ölveczky, J. Meseguer, Semantics and pragmatics of Real-Time
Maude, Higher-Order and Symbolic Computation 20 (1-2) (2007) 161–
196.
URL http://dx.doi.org/10.1007/s10990-007-9001-5

[73] G. Agha, J. Meseguer, K. Sen, PMaude: Rewrite-based specification lan-
guage for probabilistic object systems, Electr. Notes Theor. Comput. Sci.
153 (2) (2006) 213–239.

[74] J. Meseguer, A rewriting logic sampler, in: Proc. International Colloquium
on Theoretical Aspects of Computing ICTAC05 (Hanoi, Vietnam, October
2005), Vol. 3722 of LNCS, Springer, 2005, pp. 1–28.

55

http://doi.acm.org/10.1145/1273920.1273938
http://dx.doi.org/10.1007/s10703-005-2254-x
http://dx.doi.org/10.1007/s10703-005-2254-x
http://dx.doi.org/10.1007/s10703-005-2254-x
http://dx.doi.org/10.1016/S0304-3975(01)00363-2
http://dx.doi.org/10.1016/S0304-3975(01)00363-2
http://dx.doi.org/10.1016/S0304-3975(01)00363-2
http://dx.doi.org/10.1007/s10990-007-9001-5
http://dx.doi.org/10.1007/s10990-007-9001-5
http://dx.doi.org/10.1007/s10990-007-9001-5

[75] J. Meseguer, R. Sharykin, Specification and analysis of distributed object-
based stochastic hybrid systems, Tech. Rep. UIUCCDCS-R-2005-2649,
University of Illinois at Urbana-Champaign, CS Department, to appear
in Proc. Hybrid Systems 2006, Springer LNCS (October 2005).

[76] M. AlTurki, J. Meseguer, PVeStA: A parallel statistical model-checking
and quantitative analysis tool, in Proc. CALCO 2011, Springer LNCS
6859, 386–392 (2011).

[77] M. Kim, M.-O. Stehr, C. L. Talcott, N. D. Dutt, N. Venkatasubramanian,
A probabilistic formal analysis approach to cross layer optimization in
distributed embedded systems, in: FMOODS 2007, Vol. 4468 of Lecture
Notes in Computer Science, Springer, 2007, pp. 285–300.

[78] M. Katelman, J. Meseguer, J. C. Hou, Redesign of the lmst wireless sensor
protocol through formal modeling and statistical model checking, in: Proc.
FMOODS 2008, Vol. 5051 of LNCS, Springer, 2008, pp. 150–169.

[79] M. AlTurki, J. Meseguer, C. Gunter, Probabilistic modeling and analysis
of DoS protection for the ASV protocol, Electr. Notes Theor. Comput.
Sci. 234 (2009) 3–18.

[80] J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer, M. Wirsing, Sta-
ble availability under denial of service attacks through formal patterns,
in: J. de Lara, A. Zisman (Eds.), FASE, Vol. 7212 of Lecture Notes in
Computer Science, Springer, 2012, pp. 78–93.

[81] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, Y. Xiong, Taming heterogeneity—the Ptolemy approach,
Proceedings of the IEEE 91 (2) (2003) 127–144.

[82] G. Roşu, C. Ellison, W. Schulte, Matching logic: An alternative to
Hoare/Floyd logic, in: Proc. AMAST’10, LNCS 6486, 2010, pp. 142–162.

[83] G. Roşu, A. Ştefănescu, Matching logic: A new program verification ap-
proach (nier track), in: Proc. ICSE’11, ACM, 2011.

[84] G. Rosu, A. Stefanescu, Towards a unified theory of operational and ax-
iomatic semantics, in: Proc. ICALP’12, Vol. 7392 of LNCS, Springer,
2012, pp. 351–363.

[85] G. Rosu, A. Stefanescu, From hoare logic to matching logic reachability,
in: Proc. FM’12, LNCS, Springer, 2012, to appear.

[86] G. Rosu, A. Stefanescu, Checking reachability using matching logic, in:
Proc. OOPSLA’12, ACM, 2012, to appear.

[87] C. Braga, E. H. Haeusler, J. Meseguer, P. D. Mosses, Mapping modular
SOS to rewriting logic, in: Proc. LOPSTR’02, LNCS 2664, 2002, pp.
262–277.

56

[88] F. Chalub, C. Braga, Maude MSOS tool, universidade Federal Flumi-
nense, www.ic.uff.br/~frosario/2o-workshop-vas-novembro-2004.

pdf.

[89] G. Roşu, T. F. Şerbănuţă, An overview of the K semantic framework,
Journal of Logic and Algebraic Programming 79 (6) (2010) 397–434. doi:
10.1016/j.jlap.2010.03.012.

[90] T. F. Serbanuta, G. Rosu, A trully concurrent semantics for the K frame-
work based on graph transformations, in: Proc. ICGT’12, LNCS, 2012,
to appear.

[91] T. F. Şerbănuţă, A rewriting approach to concurrent programming lan-
guage design and semantics, Ph.D. thesis, University of Illinois at Urbana-
Champaign, https://www.ideals.illinois.edu/handle/2142/18252

(December 2010).

[92] G. Roşu, CS322, Fall 2003 - Programming Language Design: Lec-
ture Notes, Tech. Rep. UIUCDCS-R-2003-2897, University of Illinois at
Urbana-Champaign, Dept. of Computer Science, notes of a course taught
at UIUC (2003).

[93] T. F. Şerbănuţă, G. Roşu, KRAM—extended report, Tech. Rep.
http://hdl.handle.net/2142/17337, UIUC (September 2010).

[94] J. A. Goguen, G. Malcolm, Algebraic Semantics of Imperative Programs,
Foundations of Computing, The MIT Press, 1996.
URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/026207172X

[95] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe,
Algebraic approaches to graph transformation: Basic concepts and double
pushout approach, in: Handbook of graph grammars, Vol. 1, World Sci.,
1997, pp. 163–246.

[96] J. Meseguer, Rewriting logic as a semantic framework for concurrency:
a progress report, in: Proc. CONCUR’96, Pisa, August 1996, Springer
LNCS 1119, 1996, pp. 331–372.

[97] C. Ellison, G. Roşu, An executable formal semantics of C with applica-
tions, in: Proceedings of the 39th Symposium on Principles of Program-
ming Languages (POPL’12), ACM, 2012, pp. 533–544. doi:10.1145/

2103656.2103719.

[98] P. Meredith, M. Hills, G. Roşu, A K Definition of Scheme, Tech. Rep.
Department of Computer Science UIUCDCS-R-2007-2907, University of
Illinois at Urbana-Champaign (2007).

[99] Y. Gurevich, J. K. Huggins, The semantics of the C programming lan-
guage, in: Computer Science Logic, Vol. 702 of LNCS, 1993, pp. 274–308.

57

www.ic.uff.br/~frosario/2o-workshop-vas-novembro-2004.pdf
www.ic.uff.br/~frosario/2o-workshop-vas-novembro-2004.pdf
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1016/j.jlap.2010.03.012
https://www.ideals.illinois.edu/handle/2142/18252
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/026207172X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/026207172X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/026207172X
http://dx.doi.org/10.1145/2103656.2103719
http://dx.doi.org/10.1145/2103656.2103719

[100] J. V. Cook, E. L. Cohen, T. S. Redmond, A formal denotational semantics
for C, Tech. Rep. 409D, Trusted Information Systems (September 1994).

[101] J. V. Cook, S. Subramanian, A formal semantics for C in Nqthm, Tech.
Rep. 517D, Trusted Information Systems (Nov. 1994).

[102] M. Norrish, C formalised in HOL, Tech. Rep. UCAM-CL-TR-453, Uni-
versity of Cambridge (December 1998).

[103] N. S. Papaspyrou, Denotational semantics of ANSI C, Computer Stan-
dards and Interfaces 23 (3) (2001) 169–185.

[104] S. Blazy, X. Leroy, Mechanized semantics for the Clight subset of the C
language, Journal of Automated Reasoning 43 (3) (2009) 263–288.

[105] N. S. Papaspyrou, A formal semantics for the C programming language,
Ph.D. thesis, National Technical University of Athens (February 1998).

[106] M. AlTurki, D. Dhurjati, D. Yu, A. Chander, H. Inamura, Formal spec-
ification and analysis of timing properties in software systems, in: Proc.
FASE, Vol. 5503 of LNCS, Springer, 2009, pp. 262–277.

[107] J. Misra, Computation orchestration: A basis for wide-area computing, in:
M. Broy (Ed.), Proc. of the NATO Advanced Study Institute, Engineering
Theories of Software Intensive Systems Marktoberdorf, Germany, 2004,
NATO ASI Series, 2004.

[108] J. Misra, W. R. Cook, Computation orchestration, Software and System
Modeling 6 (1) (2007) 83–110.

[109] I. Wehrman, D. Kitchin, W. R. Cook, J. Misra, A timed semantics of Orc,
Theor. Comput. Sci. 402 (2-3) (2008) 234–248.

[110] M. AlTurki, J. Meseguer, Reduction semantics and formal analysis of Orc
programs, in: Proc. Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV’07), Vol. 200(3) of ENTCS, Elsevier, 2008,
pp. 25–41.
URL http://dx.doi.org/10.1016/j.entcs.2008.04.091

[111] M. AlTurki, J. Meseguer, Dist-Orc: A rewriting-based distributed im-
plementation of Orc with formal analysis, in: Proc. RTRTS’10, Vol. 36
of Electronic Proceedings in Theoretical Computer Science, CoRR, 2010,
pp. 26–45.

[112] J. Bjørk, E. B. Johnsen, O. Owe, R. Schlatte, Lightweight time modeling
in timed Creol, in: Proc. RTRTS’10, Vol. 36 of Electronic Proceedings in
Theoretical Computer Science, CoRR, 2010, pp. 67–81.
URL http://dx.doi.org/10.4204/EPTCS.36.4

58

http://dx.doi.org/10.1016/j.entcs.2008.04.091
http://dx.doi.org/10.1016/j.entcs.2008.04.091
http://dx.doi.org/10.1016/j.entcs.2008.04.091
http://dx.doi.org/10.4204/EPTCS.36.4
http://dx.doi.org/10.4204/EPTCS.36.4
http://dx.doi.org/10.4204/EPTCS.36.4

[113] J. Bjørk, F. de Boer, E. Johnsen, R. Schlatte, S. Tapia Tarifa, User-defined
schedulers for real-time concurrent objects, Innovations in Systems and
Software Engineering (To appear) 1–1510.1007/s11334-012-0184-5.
URL http://dx.doi.org/10.1007/s11334-012-0184-5

[114] M. Wirsing, A. Knapp, A formal approach to object-oriented software
engineering, in: Proc. WRLA’96, Vol. 4 of ENTCS, 1996, pp. 322–360.
URL http://dx.doi.org/10.1016/S1571-0661(04)00046-5

[115] S. Nakajima, K. Futatsugi, An object-oriented modeling method for al-
gebraic specifications in CafeOBJ, in: Proceedings of the 19th Interna-
tional Conference on Software Engineering, ICSE’97, Boston, Massachus-
sets, May 17-23, 1997, ACM Press, 1997.
URL http://dx.doi.org/10.1145/253228.253238

[116] S. Nakajima, Using algebraic specification techniques in development
of object-oriented frameworks, in: Proc. FM’99, Vol. 1709 of LNCS,
Springer, 1999, pp. 1664–1683.
URL http://dx.doi.org/10.1007/3-540-48118-4_38

[117] J. L. Fernández Alemán, J. A. Toval Álvarez, Can intuition become rigor-
ous? Foundations for UML model verification tools, in: Proc. ISSRE’00,
IEEE, 2000, pp. 344–355.
URL http://dx.doi.org/10.1109/ISSRE.2000.885885

[118] A. Knapp, Generating rewrite theories from UML collaborations, in:
K. Futatsugi, A. T. Nakagawa, T. Tamai (Eds.), Cafe: An Industrial-
Strength Algebraic Formal Method, Elsevier, 2000, pp. 97–120.

[119] A. Knapp, A Formal Approach to Object-Oriented Software Engineering,
Shaker Verlag, Aachen, Germany, 2001, phD thesis, Institut für Infor-
matik, Universität München, 2000.

[120] M. Wirsing, A. Knapp, A formal approach to object-oriented software
engineering, Theoretical Computer Science 285 (2) (2002) 519–560.
URL http://dx.doi.org/10.1016/S0304-3975(01)00367-X

[121] N. Aoumeur, G. Saake, Integrating and rapid-prototyping UML structural
and behavioural diagrams using rewriting logic, in: Proc. CAiSE’02, Vol.
2348 of LNCS, Springer, 2002, pp. 296–310.
URL http://dx.doi.org/10.1007/3-540-47961-9_22

[122] M. Clavel, M. Egea, ITP/OCL: A rewriting-based validation tool for
UML+OCL static class diagrams, in: Proc. AMAST’06, Vol. 4019 of
LNCS, Springer, 2006, pp. 368–373.
URL http://dx.doi.org/10.1007/11784180_28

[123] F. Mokhati, P. Gagnon, M. Badri, Verifying UML diagrams with model
checking: A rewriting logic based approach, in: Proc. QSIC’07, IEEE,

59

http://dx.doi.org/10.1007/s11334-012-0184-5
http://dx.doi.org/10.1007/s11334-012-0184-5
http://dx.doi.org/10.1007/s11334-012-0184-5
http://dx.doi.org/10.1016/S1571-0661(04)00046-5
http://dx.doi.org/10.1016/S1571-0661(04)00046-5
http://dx.doi.org/10.1016/S1571-0661(04)00046-5
http://dx.doi.org/10.1145/253228.253238
http://dx.doi.org/10.1145/253228.253238
http://dx.doi.org/10.1145/253228.253238
http://dx.doi.org/10.1007/3-540-48118-4_38
http://dx.doi.org/10.1007/3-540-48118-4_38
http://dx.doi.org/10.1007/3-540-48118-4_38
http://dx.doi.org/10.1109/ISSRE.2000.885885
http://dx.doi.org/10.1109/ISSRE.2000.885885
http://dx.doi.org/10.1109/ISSRE.2000.885885
http://dx.doi.org/10.1016/S0304-3975(01)00367-X
http://dx.doi.org/10.1016/S0304-3975(01)00367-X
http://dx.doi.org/10.1016/S0304-3975(01)00367-X
http://dx.doi.org/10.1007/3-540-47961-9_22
http://dx.doi.org/10.1007/3-540-47961-9_22
http://dx.doi.org/10.1007/3-540-47961-9_22
http://dx.doi.org/10.1007/11784180_28
http://dx.doi.org/10.1007/11784180_28
http://dx.doi.org/10.1007/11784180_28
http://dx.doi.org/10.1109/QSIC.2007.69
http://dx.doi.org/10.1109/QSIC.2007.69

2007, pp. 356–362.
URL http://dx.doi.org/10.1109/QSIC.2007.69

[124] F. Mokhati, M. Badri, Generating Maude specifications from UML use
case diagrams, Journal of Object Technology 8 (2) (2009) 319–136.
URL http://www.jot.fm/issues/issue_2009_03/article2.pdf

[125] F. Mokhati, B. Sahraoui, S. Bouzaher, M. T. Kimour, A tool for specifying
and validating agents’ interaction protocols: From Agent UML to Maude,
Journal of Object Technology 9 (3) (2010) 59–77.
URL http://www.jot.fm/contents/issue_2010_05/article2.html

[126] A. Boronat, J. A. Carśı, I. Ramos, Automatic reengineering in MDA using
rewriting logic as transformation engine, in: Proc. CSMR’05, IEEE, 2005,
pp. 228–231.
URL http://dx.doi.org/10.1109/CSMR.2005.14

[127] A. Boronat, MOMENT: A formal framework for MOdel ManageMENT,
Ph.D. thesis, Universitat Politècnica de València, Spain (2007).

[128] A. Boronat, R. Heckel, J. Meseguer, Rewriting logic semantics and ver-
ification of model transformations, in: M. Chechik, M. Wirsing (Eds.),
Proc. FASE’09, Vol. 5503 of LNCS, Springer, 2009, pp. 18–33.
URL http://dx.doi.org/10.1007/978-3-642-00593-0_2

[129] A. Boronat, J. Meseguer, MOMENT2: EMF model transformations in
Maude, in: A. Vallecillo, G. Sagardui (Eds.), Actas de las XIV Jornadas
de Ingenieŕıa del Software y Bases de Datos, JISBD 2009, San Sebastián,
España, Septiembre 8-11, 2009, 2009, pp. 178–179.

[130] A. Boronat, J. Meseguer, An algebraic semantics for MOF, Formal As-
pects of Computing 22 (3-4) (2010) 269–296.

[131] J. Meseguer, Membership algebra as a logical framework for equational
specification, in: F. Parisi-Presicce (Ed.), Proc. WADT’97, Springer
LNCS 1376, 1998, pp. 18–61.

[132] A. Boronat, J. Meseguer, Algebraic semantics of OCL-constrained meta-
model specifications, in: Proc. TOOLS EUROPE’09, Vol. 33 of Lecture
Notes in Business Information, Springer, 2009, pp. 96–115.
URL http://dx.doi.org/10.1007/978-3-642-02571-6_7

[133] A. Boronat, P. C. Ölveczky, Formal real-time model transformations in
MOMENT2, in: Proc. FASE’10, Vol. 6013 of LNCS, Springer, 2010, pp.
29–43.
URL http://dx.doi.org/10.1007/978-3-642-12029-9_3

[134] E. A. Lee, Modeling concurrent real-time processes using discrete events,
Ann. Software Eng. 7 (1999) 25–45.

60

http://dx.doi.org/10.1109/QSIC.2007.69
http://www.jot.fm/issues/issue_2009_03/article2.pdf
http://www.jot.fm/issues/issue_2009_03/article2.pdf
http://www.jot.fm/issues/issue_2009_03/article2.pdf
http://www.jot.fm/contents/issue_2010_05/article2.html
http://www.jot.fm/contents/issue_2010_05/article2.html
http://www.jot.fm/contents/issue_2010_05/article2.html
http://dx.doi.org/10.1109/CSMR.2005.14
http://dx.doi.org/10.1109/CSMR.2005.14
http://dx.doi.org/10.1109/CSMR.2005.14
http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/978-3-642-02571-6_7
http://dx.doi.org/10.1007/978-3-642-02571-6_7
http://dx.doi.org/10.1007/978-3-642-02571-6_7
http://dx.doi.org/10.1007/978-3-642-12029-9_3
http://dx.doi.org/10.1007/978-3-642-12029-9_3
http://dx.doi.org/10.1007/978-3-642-12029-9_3

[135] K. Bae, P. C. Ölveczky, T. H. Feng, S. Tripakis, Verifying Ptolemy II
discrete-event models using Real-Time Maude, in: Proc. of ICFEM’09,
Vol. 5885 of LNCS, Springer, 2009, pp. 717–736.
URL http://dx.doi.org/10.1007/978-3-642-10373-5_37

[136] K. Bae, P. C. Ölveczky, Extending the Real-Time Maude semantics of
Ptolemy to hierarchical DE models, in: Proc. RTRTS’10, Vol. 36 of Elec-
tronic Proceedings in Theoretical Computer Science, CoRR, 2010, pp.
46–66.
URL http://dx.doi.org/10.4204/EPTCS.36.3

[137] P. C. Ölveczky, A. Boronat, J. Meseguer, Formal semantics and analysis
of behavioral AADL models in Real-Time Maude, in: Proc. FMOODS’10,
Vol. 6117 of LNCS, Springer, 2010, pp. 47–62.
URL http://dx.doi.org/10.1007/978-3-642-13464-7_5

[138] J. Meseguer, P. C. Ölveczky, Formalization and correctness of the PALS
architectural pattern for real-time systems, in: 12th International Confer-
ence on Formal Engineering Methods (ICFEM 2010), Vol. 6447, Springer
LNCS, 2010, pp. 303–320.

[139] K. Bae, P. C. Ölveczky, A. Al-Nayeem, J. Meseguer, Synchronous AADL
and its formal analysis in Real-Time Maude, Tech. rep., University
of Illinois at Urbana-Champaign, http://hdl.handle.net/2142/25091
(2005).

[140] J. E. Rivera, F. Durán, A. Vallecillo, On the behavioral semantics of real-
time domain specific visual languages, in: Proc. WRLA’10, Vol. 6381 of
LNCS, Springer, 2010, pp. 174–190.
URL http://dx.doi.org/10.1007/978-3-642-16310-4_12

[141] K. Bae, P. C. Ölveczky, T. H. Feng, E. A. Lee, S. Tri-
pakis, Verifying hierarchical Ptolemy II discrete-event models us-
ing Real-Time Maude, Science of Computer ProgrammingTo appear,
doi:10.1016/j.scico.2010.10.002.

[142] K. Bae, P. C. Ölveczky, A. Al-Nayeem, J. Meseguer, Synchronous AADL
and its formal analysis in Real-Time Maude, in: S. Qin, Z. Qiu (Eds.),
Formal Methods and Software Engineering - 13th International Conference
on Formal Engineering Methods, ICFEM 2011, Durham, UK, October 26-
28, 2011. Proceedings, Vol. 6991 of Lecture Notes in Computer Science,
Springer, 2011, pp. 651–667.
URL http://dx.doi.org/10.1007/978-3-642-24559-6_43

[143] P. C. Ölveczky, Semantics, simulation, and formal analysis of model-
ing languages for embedded systems in Real-Time Maude, in: G. Agha,
O. Danvy, J. Meseguer (Eds.), Formal Modeling: Actors, Open Systems,
Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion
of Her 70th Birthday, Vol. 7000 of Lecture Notes in Computer Science,

61

http://dx.doi.org/10.1007/978-3-642-10373-5_37
http://dx.doi.org/10.1007/978-3-642-10373-5_37
http://dx.doi.org/10.1007/978-3-642-10373-5_37
http://dx.doi.org/10.4204/EPTCS.36.3
http://dx.doi.org/10.4204/EPTCS.36.3
http://dx.doi.org/10.4204/EPTCS.36.3
http://dx.doi.org/10.1007/978-3-642-13464-7_5
http://dx.doi.org/10.1007/978-3-642-13464-7_5
http://dx.doi.org/10.1007/978-3-642-13464-7_5
http://dx.doi.org/10.1007/978-3-642-16310-4_12
http://dx.doi.org/10.1007/978-3-642-16310-4_12
http://dx.doi.org/10.1007/978-3-642-16310-4_12
http://dx.doi.org/10.1007/978-3-642-24559-6_43
http://dx.doi.org/10.1007/978-3-642-24559-6_43
http://dx.doi.org/10.1007/978-3-642-24559-6_43
http://dx.doi.org/10.1007/978-3-642-24933-4_19
http://dx.doi.org/10.1007/978-3-642-24933-4_19

Springer, 2011, pp. 368–402.
URL http://dx.doi.org/10.1007/978-3-642-24933-4_19

[144] S. Miller, D. Cofer, L. Sha, J. Meseguer, A. Al-Nayeem, Implementing
logical synchrony in integrated modular avionics, in: Proc. 28th Digital
Avionics Systems Conference, IEEE, 2009.

[145] K. Bae, P. C. Ölveczky, A. Al-Nayeem, J. Meseguer, Synchronous AADL
and its formal analysis in Real-Time Maude, Tech. rep., Department of
Computer Science, University of Illinois at Urbana-Champaign, http:

//hdl.handle.net/2142/25091 (2011).

[146] M. Katelman, J. Meseguer, S. Escobar, Directed-logical testing for func-
tional verification of microprocessors, in: MEMOCODE’08, IEEE, 2008,
pp. 89–100.
URL http://dx.doi.org/10.1109/MEMCOD.2008.4547694

[147] M. Katelman, J. Meseguer, vlogsl: A Strategy Language for Simulation-
Based Verification of Hardware, in: S. Barner, I. Harris, D. Kroening,
O. Raz (Eds.), Hardware and Software: Verification and Testing - 6th
International Haifa Verification Conference (HVC 2010), Vol. 6504 of Lec-
ture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, pp.
129 – 145.

[148] M. K. Katelman, A meta-language for functional verification, Ph.D. the-
sis, Department of Computer Science, University of Illinois at Urbana-
Champaign (2011).

[149] P. Meredith, M. Katelman, J. Meseguer, G. Roşu, A formal executable
semantics of Verilog, in: Proc. MEMOCODE’10, IEEE, 2010, pp. 179–
188.
URL http://dx.doi.org/10.1109/MEMCOD.2010.5558634

[150] M. Katelman, S. Keller, J. Meseguer, Concurrent rewriting semantics and
analysis of asynchronous digital circuits, in: Proc. WRLA’10, Vol. 6381
of LNCS, Springer, 2010, pp. 140–156.
URL http://dx.doi.org/10.1007/978-3-642-16310-4_10

[151] M. Hills, F. Chen, G. Roşu, Pluggable Policies for C, Tech. Rep.
UIUCDCS-R-2008-2931, University of Illinois at Urbana-Champaign
(2008).

[152] C. Ellison, T. F. Şerbănuţă, G. Roşu, A rewriting logic approach to type
inference, in: Recent Trends in Algebraic Development Techniques, Vol.
5486 of LNCS, Springer, 2009, pp. 135–151.

[153] M. Alba-Castro, M. Alpuente, S. Escobar, Abstract certification of global
non-interference in rewriting logic, in: Proc. FMCO, Vol. 6286 of LNCS,
Springer, 2010, pp. 105–124.

62

http://dx.doi.org/10.1007/978-3-642-24933-4_19
http://hdl.handle.net/2142/25091
http://hdl.handle.net/2142/25091
http://dx.doi.org/10.1109/MEMCOD.2008.4547694
http://dx.doi.org/10.1109/MEMCOD.2008.4547694
http://dx.doi.org/10.1109/MEMCOD.2008.4547694
http://dx.doi.org/10.1109/MEMCOD.2010.5558634
http://dx.doi.org/10.1109/MEMCOD.2010.5558634
http://dx.doi.org/10.1109/MEMCOD.2010.5558634
http://dx.doi.org/10.1007/978-3-642-16310-4_10
http://dx.doi.org/10.1007/978-3-642-16310-4_10
http://dx.doi.org/10.1007/978-3-642-16310-4_10

[154] M. Alba-Castro, M. Alpuente, S. Escobar, Approximating non-
interference and erasure in rewriting logic, in: Proc. SYNASC, IEEE,
2010, pp. 124–132.
URL http://doi.ieeecomputersociety.org/10.1109/SYNASC.2010.

25

[155] J. Goguen, J. Meseguer, Security policies and security models, in: Pro-
ceedings of the 1982 Symposium on Security and Privacy, IEEE, 1982, pp.
11–20.

[156] H. Schorr, W. M. Waite, An efficient machine-independent procedure for
garbage collection in various list structures, Commun. ACM 10 (8) (1967)
501–506.

[157] T. Hubert, C. Marché, A case study of C source code verification: the
Schorr-Waite algorithm, in: SEFM, 2005, pp. 190–199.

[158] A. Loginov, T. W. Reps, M. Sagiv, Automated verification of the Deutsch-
Schorr-Waite tree-traversal algorithm, in: SAS, 2006.

63

http://doi.ieeecomputersociety.org/10.1109/SYNASC.2010.25
http://doi.ieeecomputersociety.org/10.1109/SYNASC.2010.25
http://doi.ieeecomputersociety.org/10.1109/SYNASC.2010.25
http://doi.ieeecomputersociety.org/10.1109/SYNASC.2010.25

	Introduction
	Related Work

	Rewriting Logic Semantics in a Nutshell
	Rewriting Logic
	Defining Programming Languages
	Operational vs. Denotational Semantics
	The Abstraction Dial
	An Ecumenical Movement
	Defining Real-Time Languages
	Defining Modeling Languages
	Defining Hardware Description Languages
	Formal Analysis Methods and Tools

	Modular Definitions and the K Framework
	K Semantics of IMP
	Extending IMP
	K Semantics and Implementation

	Programming Language Semantics
	Real-Time Language Semantics
	Semantics of Modeling Language
	Semantics of Real-Time Modeling Languages
	Semantics of Ptolemy and AADL through Examples
	A Ptolemy II Example and its Semantics.
	A Synchronous AADL Example and its Semantics.

	Hardware Description Language Semantics
	Abstract vs. Concrete Semantics and Static Analysis
	K Definition of a Type System for IMP++
	Examples of Abstract Rewriting Logic Semantics
	C Pluggable Policies.
	Polymorphic Type Inference.
	Security Policy Checking.

	Model Checking Verification
	Model Checking Verification of C Programs
	Model Checking Verification of Ptolemy II Models
	Model Checking Verification of Synchronous AADL Models

	Deductive Verification and Matching Logic
	Conclusions and Future Work

