
The Rewriting Logic Semantics Project:
A Progress Report

José Meseguer and Grigore Roşu
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{meseguer,grosu}@illinois.edu

Abstract. Rewriting logic is an executable logical framework well suited
for the semantic definition of languages. Any such framework has to be
judged by its effectiveness to bridge the existing gap between language
definitions on the one hand, and language implementations and language
analysis tools on the other. We give a progress report on how researchers
in the rewriting logic semantics project are narrowing the gap between
theory and practice in areas such as: modular semantic definitions of lan-
guages; scalability to real languages; support for real time; semantics of
software and hardware modeling languages; and semantics-based analysis
tools such as static analyzers, model checkers, and program provers.

1 Introduction

The disconnect between theory and practice is one of the worse evils in com-
puter science. Theory disconnected from practice becomes irrelevant; and prac-
tice without theory becomes brute-force, costly and ad-hoc engineering. One of
the current challenges in formal approaches to language semantics is precisely
how to effectively bridge the gap between theory and practice. There are two
distinct dimensions to this gap:

(1) Given a language L, there is often a substantial gap between: (i) a formal
semantics for L; (ii) an implementation of L; and (iii) analysis tools for L,
including static, dynamic, and deductive tools.

(2) Even if a formal semantics exists for a programming language L, there may
not be any formal semantics available at the higher level of software designs
and models, or at the lower level of hardware.

Regarding (1), a semantics of L may just be a “paper semantics,” such as
some SOS rules on a piece of paper; or it may be a “toy semantics,” not for L
itself, but for a greatly simplified sublanguage. Furthermore, the way a compiler
for L is written may have no connection whatever with a formal semantics for L,
so that different compilers provide different language behaviors. To make things
worse, program analysis tools for L, including tools that supposedly provide some
formal analysis, may not be systematically based on a formal semantics either,
so that the confidence one can place of the answers from such tools is greatly

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

diminished. Regarding (2), one big problem is that software modeling notations
often lack a formal semantics. A related problem is that this lack of semantics
manifests itself as a lack of analytic power, that is, as an incapacity to uncover
expensive design errors which could have been caught by formal analysis.

We, together with many other colleagues all over the world, have been work-
ing for years on the rewriting logic semantics project (see [77, 76, 112] for some
overview papers at different stages of the project). The goal of this project is to
substantially narrow the gap between theory and practice in language specifi-
cations, implementations and tools, in both of the above dimensions (1)–(2). In
this sense, rewriting logic semantics is a wide-spectrum framework, where:

1. The formal semantics of a language L is used as the basis on which both
language implementations and language analysis tools are built.

2. The same semantics-based approach is used not just for programming lan-
guages, but also for software and hardware modeling languages.

Any attempt to bridge theory and practice cannot be judged by theoreti-
cal considerations alone. One has to evaluate the practical effectiveness of the
approach in answering questions such as the following:

– Executability. Is the semantics executable? How efficiently so? Can semantic
definitions be tested to validate their agreement with an informal semantics?

– Range of Applicability. Can it be applied to programming languages and
to software and hardware modeling languages? Can it naturally support
nontrivial features such as concurrency and real time?

– Scalability. Can it be used in practice to give full definitions of real languages
like Java or C? And of real software and hardware modeling languages?

– Integrability. How well can the semantics be integrated with language imple-
mentations and language analysis tools? Can it really be used as the basis
on which such implementations and analysis tools are built?

This paper is a progress report on the efforts by various researchers in the
rewriting logic semantics project to positively answer these questions. After sum-
marizing some related work below, we give an overview of rewriting logic seman-
tics in Section 2. Subsequent sections then describe in more detail: (i) modularity
of definitions and the support for highly modular definitions provided by the K
framework (Section 3); (ii) semantics of programming languages (Section 4); se-
mantics of real-time language (Section 5); (iv) semantics of software modeling
languages (Section 6); (v) semantics of hardware description languages (Section
7); (vi) abstract semantics and static analysis (Section 8); (vii) model checking
verification (Section 9); and (viii) deductive verification (Section 10). We finish
with some concluding remarks in Section 11.

1.1 Related Work

There is much related work on frameworks for defining programming languages.
Without trying to be exhaustive, we mention some of them and point out some
relationships to rewriting logic semantics (RLS).

2

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

Structural Operational Semantics (SOS). Several variants of structural
operational semantics have been proposed. We refer to [112] for an in-depth
comparison between SOS and RLS. A key point made in [112], and also made in
Section 2.5, is that RLS is a framework supporting many different definitional
styles. In particular, it can naturally and faithfully express many diffent SOS
styles such as: small-step SOS [99], big-step SOS [56], MSOS [87], reduction
semantics [129], continuation-based semantics [43], and the CHAM [12].

Algebraic denotational semantics. This approach, (see [125, 49, 26, 85] for
early papers and [47, 118] for two more recent books), is the special case of RLS
where the rewrite theory RL defining a language L is an equational theory. Its
main limitation is that it is well suited for giving semantics to deterministic
languages, but not well suited for concurrent language definitions.

Higher-order approaches. The most classic higher-order approach is denota-
tional semantics [109, 110, 108, 86]. Denotational semantics has some similarities
with its first-order algebraic cousin mentioned above, since both are based on
semantic equations and both are best suited for deterministic languages. Higher-
order functional languages or higher-order theorem provers can be used to give
an executable semantics to programming languages, including the use of Scheme
in [45], the use of ML in [98], and the use of Common LISP within the ACL2
prover in [61]. There is also a body of work on using monads [81, 124, 65] to im-
plement language interpreters in higher-order functional languages; the monadic
approach has better modularity characteristics than standard SOS. Some higher-
order approaches are based on the use of higher-order abstract syntax (HOAS)
[97, 52] and higher-order logical frameworks, such as LF [52] or λ-Prolog [88], to
encode programming languages as formal logical systems; for a good example of
recent work in this direction see [78] and references there.

Logic-programming-based approaches. Going back to the Centaur project
[22, 35], logic programming has been used as a framework for SOS language
definitions. Note that λ-Prolog [88] belongs both in this category and in the
higher-order one. For a recent textbook giving logic-programming-based lan-
guage definitions, see [113].

Abstract state machines. Abstract State Machine (ASM) [50] can encode
any computation and have a rigorous semantics, so any programming language
can be defined as an ASM and thus implicitly be given a semantics. Both big-
and small-step ASM semantics have been investigated. The semantics of various
programming languages, including Java [114], has been given using ASMs.

Other RLS work. RLS is a collective international project. There is by now a
substantial body of work demonstrating the usefulness of this approach, e.g., [23,
120, 117, 115, 72, 119, 31, 104, 122, 42, 40, 55, 25, 73, 77, 30, 28, 41, 34, 106, 1, 116, 36,
107, 58, 54, 46, 39, 5], and we describe some even more recent advances in this pa-
per. A first snapshot of the RLS project was given in [77], a second in [76], and
a third in [112], with this paper as the fourth snapshot.

3

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

2 Rewriting Logic Semantics in a Nutshell

Before describing in more detail the different advances in the rewriting logic se-
mantics project we give here an overview of it. Be begin with a short summary of
rewriting logic as a semantic framework for concurrent systems. Then we explain
how it can be used to give both an operational and a denotational semantics to a
programming language. Thanks to the distinction between equations and rules,
this semantics can be given at various levels abstraction. Furthermore, a wide
range of definitional styles can be naturally supported. We explain how rewrit-
ing logic semantics has been extended to: (i) real-time languages; (ii) software
modeling languages; and (iii) hardware description languages. We finally explain
how a rewriting logic semantics can be used for static analysis, and for model
checking and deductive verification of programs.

2.1 Rewriting Logic

The goal of rewriting logic [69] is to provide a flexible logical framework to
specify concurrent systems. A concurrent system is specified as a rewrite theory
R = (Σ,E,R), where (Σ,E) is an equational theory, and R is a set of (possibly
conditional) rewrite rules. The equational theory (Σ,E) specifies the concurrent
system’s set of states as an algebraic data type, namely, as the initial algebra
of the equational theory (Σ,E). Concretely, this means that a distributed state
is mathematically represented as an E-equivalence class [t]E of terms built up
with the operators declared in Σ, modulo provable equality using the equations
E, so that two state representations t and t′ describe the same state if and only
if one can prove the equality t = t′ using the equations E.

The rules R specify the system’s local concurrent transitions. Each rewrite
rule in R has the form t → t′, where t and t′ are Σ-terms. The lefthand side t
describes a local firing pattern, and the righthand side t′ describes a correspond-
ing replacement pattern. That is, any fragment of a distributed state which is
an instance of the firing pattern t can perform a local concurrent transition in
which it is replaced by the corresponding instance of the replacement pattern t′.
Both t and t′ are typically parametric patterns, describing not single states, but
parametric families of states. The parameters appearing in t and t′ are precisely
the mathematical variables that t and t′ have, which can be instantiated to dif-
ferent concrete expressions by a substitution, that is, a mapping θ sending each
variable x to a term θ(x). The instance of t by θ is then denoted θ(t).

The most basic logical deduction steps in a rewrite theory R = (Σ,E,R)
are precisely atomic concurrent transitions, corresponding to applying a rewrite
rule t → t′ in R to a state fragment which is an instance of the firing pattern
t by some substitution θ. That is, up to E-equivalence, the state is of the form
C[θ(t)], where C is the rest of the state no affected by this atomic transition.
Then, the resulting state is precisely C[θ(t′)], so that the atomic transition has
the form C[θ(t)]→ C[θ(t′)]. Rewriting is intrinsically concurrent, because many
other atomic rewrites can potentially take place in the rest of the state C (and in
the substitution θ), at the same time that the local atomic transition θ(t)→ θ(t′)

4

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

happens. The rules of deduction of rewriting logic [69, 27] (which in general allow
rules in R to be conditional) precisely describe all the possible, complex concur-
rent transitions that a system can perform, so that concurrent computation and
logical deduction coincide.

2.2 Defining Programming Languages

The flexibility of rewriting logic to naturally express many different models of
concurrency can be exploited to give formal definitions of concurrent program-
ming languages by specifying the concurrent model of a language L as a rewrite
theory (ΣL, EL, RL), where: (i) the signature ΣL specifies both the syntax of
L and the types and operators needed to specify semantic entities such as the
store, the environment, input-output, and so on; (ii) the equations EL can be
used to give semantic definitions for the deterministic features of L (a sequential
language typically has only deterministic features and can be specified just equa-
tionally as (ΣL, EL)); and (iii) the rewrite rules RL are used to give semantic
definitions for the concurrent features of L such as, for example, the semantics
of threads.

By specifying the rewrite theory (ΣL, EL, RL) in a rewriting logic language
like Maude1 [32], it becomes not just a mathematical definition but an executable
one, that is, an interpreter for L. Furthermore, one can leverage Maude’s generic
search and LTL model checking features to automatically endow L with powerful
program analysis capabilities. For example, Maude’s search command can be used
in the module (ΣL, EL, RL) to detect any violations of invariants, e.g., a deadlock
or some other undesired state, of a program in L. Likewise, for terminating
concurrent programs in L one can model check any desired LTL property. All
this can be effectively done not just for toy languages, but for real ones such
as Java and the JVM, Scheme, and C (see Section 4 for a discussion of such
“real language” applications), and with performance that compares favorably
with state-of-the-art model checking tools for real languages.

2.3 Operational vs. Denotational Semantics

A rewrite theory R = (Σ,E,R) has both a deduction-based operational seman-
tics, and an initial model denotational semantics. Both semantics are defined
naturally out of the proof theory of rewriting logic [69, 27]. The deduction-based
operational semantics of R is defined as the collection of proof terms [69] of the
form α : t −→ t′. A proof term α is an algebraic description of a proof tree
proving R ` t −→ t′ by means of the inference rules of rewriting logic. What
such proof trees describe are the different finitary concurrent computations of
the concurrent system axiomatized by R.

1 Other rewriting logic languages, such as ELAN or CafeOBJ, can likewise be used.
Maude has the advantage of efficiencly supporting not only execution, but also LTL
model checking verification.

5

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

A rewrite theory R = (Σ,E,R) has also a model-theoretic semantics, so
that the inference rules of rewriting logic are sound and complete with respect
to satisfaction in the class of models of R [69, 27]. Such models are categories
with a (Σ,E)-algebra structure [69]. These are “true concurrency” denotational
models of the concurrent system axiomatized by R. That is, this model theory
gives a precise mathematical answer to the question: when do two descriptions
of two concurrent computations denote the same concurrent computation? The
class of models of a rewrite theory R = (Σ,E,R) has an initial model TR
[69]. The initial model semantics is obtained as a quotient of the just-mentioned
deduction-based operational semantics, precisely by axiomatizing algebraically
when two proof terms α : t −→ t′ and β : u −→ u′ denote the same concurrent
computation.

In particular, if a rewrite theory RL = (ΣL, EL, RL) specifies the semantics
of a concurrent programming language L, its denotational semantics is given by
the initial model TRL , and its operational semantics is given by the proof terms
built by the rewriting deduction. As we explain below, many different styles of
operational semantics, including various SOS styles, can be naturally obtained
as special instances of this general, logic-based operational semantics.

2.4 The Abstraction Dial

Unlike formalisms like SOS, where there is only one type of semantic rule, rewrit-
ing logic semantics provides a key distinction between deterministic rules, ax-
iomatized by equations, and concurrent and typycally non-deterministic rules,
axiomatized by non-equational rules. More precisely, for the rewriting logic se-
mantics RL of a language L to have good executabity properties, we require
RL to be of the form RL = (ΣL, EL ∪ BL, RL), where: (i) BL is a collection
of structural axioms, such as associativity and/or commutativity, and/or iden-
tity of certain operators in ΣL; (ii) the equations EL are confluent modulo the
structural axioms BL; and (iii) the rules RL are coherent with the equations EL
modulo the structural axioms BL [123]. Conditions (i)–(iii) make RL executable,
so that using a rewriting logic language like Maude we automatically get an
interpreter for L.

As already mentioned, what the equations EL axiomatize are the determin-
istic features of L. Instead, the truly concurrent features of L are axiomatized
by the non-equational rules RL. The assumption of determinism is precisely
captured by EL being a set of confluent equations (modulo BL), so that their
evalution, if terminating, has a unique final result.

All this means that rewriting logic comes with a built-in “abstraction dial.”
The least abstrac possible position for such a dial is to turn the equations EL
into rules, yielding the theory (ΣL, BL, EL ∪RL); this is typically the approach
taken by SOS definitions. The specification RL = (ΣL, EL ∪ BL, RL) can al-
ready achieve an enormous abstraction, which typically makes the difference
between tractable and intractable model checking analysis. The point is that
the equations EL now identify all intermedite execution states obtained by de-
terministic steps, yielding a typically enormous state space reduction. Sometimes

6

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

we may be able to turn the dial to an even more abstract position by further
decomposing RL as a disjoint union RL = R′

L ∪GL, so that the rewrite theory
(ΣL, EL∪GL∪BL, R

′
L) still satisfies conditions (i)–(iii). That is, we may be able

to identify rules GL describing concurrent executions which, by being confluent,
can be turned into equations. For example, for L = Java, the JavaFAN rewriting
logic semantics of Java developed by the late Feng Chen turns the abstraction
dial as far as possible, obtaining a set EJava with hundreds of equations, and a
set RJava with just 5 rules. This enormous state space reduction is a key reason
why the JavaFAN model checker compares favorably with other state-of-the-art
Java model checkers [40].

But the abstraction story does not end here. After all, the semantics (ΣL, EL∪
GL ∪ BL, R

′
L) obtained by turning the abstraction dial as much as possible is

still a concrete semantics. We might call it “the most abstract concrete seman-
tics possible.” For many different static analysis purposes one wants to take a
further abstraction step, which further collapses the set of states by defining
a suitable abstract semantics for a language L. The point is that, instead of
a “concrete semantics” describing the actual execution of programs in L, one
can just as easily define an “abstract semantics” (ΣA

L , E
A
L , R

A
L) describing any

desired abstraction A of L. A good example is type checkig, where the values
manipulated by the abstract semantics are the types. All this means that many
different forms of program analysis, much more scalable than model checking
based on a language’s concrete semantics, become available essentially for free
by using a tool like Maude to execute and analyze one’s desired abstract seman-
tics (ΣA

L , E
A
L , R

A
L). This is further discussed in Section 8.

2.5 An Ecumenical Movement

For purposes of formally defining the semantics of a programming language,
rewriting logic should be viewed not as a competitor to other approaches, but as
an “ecumenical movement” providing a framework where many different defini-
tional styles can happily coexist. From its early stages rewriting logic has been
recognized as ideally suited for SOS definitions [74, 66], and has been used to
give SOS definitions of programming languages in quite different styles, e.g.,
[119, 25, 121, 122, 40, 42]. What the paper [112] makes explicit is both the wide
range of SOS styles supported, and the possibility of defining new styles that may
have specific advantages over traditional ones. Indeed, the intrinsic flexibility of
rewriting logic means that it does not prescribe a fixed style for giving semantic
definitions. Instead, many different styles such as, for example, small-step or big-
step semantics, reduction semantics, CHAM-style semantics, modular structural
operational semantics, or continuation semantics, can all be naturally supported
[112]. But not all styles are equally efficient; for example, small-step semantics
makes heavy use of conditional rewrite rules, insists on modeling every single
computation step as a rule in RL, and is in practice horribly inefficient. Instead,
the continuation semantics style described in [112] and used in, e.g., [40] is very
efficient. Furthermore, as already mentioned, the distinction between equations
and rules provides an “abstraction dial” not available in some definitional styles

7

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

but enormously useful for state space reduction purposes. Of particular interest
are modular definitional styles, which are further discussed in Section 3.

2.6 Defining Real-Time Languages

In rewriting logic, real-time systems are specified with real-time rewrite theories
[93]. These are just ordinary rewrite theories R = (Σ,E ∪ B,R) such that: (i)
there is a sort Time in Σ such that (Σ,E) contains an algebraic axiomatization
of a time data type, where time can be either discrete or continuous; (ii) there
is also a sort GlobalState, where terms of sort GlobalState are pairs (t, r), with
t an “untimed state” (which may however contain time-related quantities such
as timers), and r is a term of sort Time (that is, the global state is an untimed
state plus a global clock); and (iii) the rules R are either: (a) instantaneous rules,
which do not change the time and only rewrite the discrete part of the state, or
(b) tick rules, of the form

(t, r)→ (t′, r′) if C

where t and t′ are term patterns describing untimed states, r and r′ are terms
of sort Time, and C is the rule’s condition. That is, tick rules advance the
global clock and also update the untimed state to reflect the passage of time
(for example, timers may be decreased, and so on). Real-Time rewrite theories
provide a very expressive semantic framework in which many models of real-
time systems can be naturally expressed [93]. The Real-Time Maude language
[94] is an extension of Maude that supports specification, simulation, and model
checking analysis of real-time systems specified as real-time rewrite theories.

How should the formal semantics of a real-time programming language be
defined? And how can programs in such a language be formally analyzed? The
obvious RLS answers are: (i) “with a real-time rewrite theory,” and (ii) “by real-
time model checking and/or deductive reasoning based on such a theory.” Of
course, the effectiveness of these answers has to be shown in actual languages.
This is done in Section 5.

2.7 Defining Modeling Languages

It is well known that the most expensive errors in system development are not
coding errors but design errors. Since design errors affect the overal structure of
a system and are often discovered quite late in the development cycle, they can
be enormously expensive to fix. All this is uncontroversial: there is widely-held
agreement that, to develop systems, designs themselves should be made machine-
representable, and that tools are needed to keep such designs consistent and to
uncover design errors as early as possible. This has led to the development of
many software modeling languages.

There are however two main limitations at present. The first is that some
of these modeling notations lack a formal semantics: they can and do mean
different things to different people. The second is that this lack of semantics

8

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

manifests itself at the practical level as a lack of analytic power, that is, as an
incapacity to uncover expensive design errors which could have been caught by
better analysis. It is of course virtually impossible to solve the second problem
without solving the first: without a precise mathematical semantics any analytic
claims about satisfaction of formal requirements are meaningless.

The practical upshot of all this is that a semantic framework such as rewriting
logic can play an important role in: (i) giving a precise semantics to modeling lan-
guages; and in (ii) endowing such languages and notations with powerful formal
analysis capabilities. Essentially the approach is the same as for programming
languages. If, say, M is a modeling language, then its formal semantics will be
a rewrite theory of the form (ΣM, EM, RM). If the modeling language M pro-
vides enough information about the dynamic behavior of models, the equations
EM and the rules RM will make M executable, that is, it will be possible to
simulate models in M before they are realized by concrete programs, and of
course such models thus become amenable to various forms of formal analysis.
All these ideas are further discussed in Section 6

2.8 Defining Hardware Description Languages

What is hardware? What is software? It depends in part on the level of abstrac-
tion chosen, and on specific implementation decisions: a given functionality may
sometimes be realized as microcode, other times as code running on an FPGA,
and yet other times may be implemented in custom VLSI. All this means that the
difference between the semantics of digital hardware in some Hardware Descrip-
tion Language (HDL), and that of a programming language is not an essential
one, just one about which level of abstraction is chosen. From the point of view
of rewriting logic, both the semantics of an HDL and that of a programming
language can be expressed by suitable rewrite theories. We further discuss the
rewriting logic semantics of HDLs in Section 7.

2.9 Formal Analysis Methods and Tools

The fact that, under simple conditions, rewriting logic specifications are ex-
ecutable, means that the rewriting logic semantics of a language, whether a
programming language, or a modeling language, or an HDL, is executable and
therefore yields an interpreter for the given language when run on a rewriting
logic system such as Maude. Since the language in question may not have any
other formal semantics, the issue of whether the semantic definitions correctly
capture the language’s informal semantics is a nontrivial matter; certainly not
trivial at all for real languages which may require hundreds of semantic rules.
The fact that the semantics is executable is very useful in this regard, since one
can test the correctness of the definitions by comparing the results from eval-
uating programs in the interpreter obtained from the rewriting logic semantics
and in an actual language implementation. The usefulness of this approach is
further discussed for the case of the semantics of C in Section 4.

9

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

Once the language specifier is sufficiently convinced that his/her semantic
definitions correctly capture the language’s informal semantics, various sophisti-
cated forms of program analysis become possible. If some abstract semantics for
the language in question has been defined, then the abstract semantic definition
can be directly used as an static analysis tool. Since various abstract semantics
may be defined for diverse analysis purposes, a collection of such tools may be
developed. We further discuss this idea in Section 8.

Using a tool like Maude, the concrete rewriting logic semantics of a language
becomes not just an interpreter, but also a model checker for the language in
question. The point is that Maude can model check properties for any user-
specified rewrite theory. Specifically, it can perform reachabilty analysis to detect
violations of invariants using its breadth-first search feature; and it can also
model check temporal logic properties with its LTL model checker. Such features
can then be used to model check programs in the language whose rewriting
semantics one has defined, or in an abstraction of it, as explained in Section 9.

Static analysis and model checking do not exhaust the formal analysis pos-
sibilities. A language’s rewriting logic semantics can also be used as the basis
for deductive reasoning about programs in such a language. The advantage of
directly basing deductive reasonign methods on the semantics is that there is
no gap between the operational semantics and the “program logic.” This ap-
proach has been pioneered by matching logic [103, 102], a program verification
logic, with substantial advantages over both Hoare logic and separation logic,
which uses a language’s rewriting logic semantics, including the possibility of
using patterns to symbolically characterize sets of states, to mechanize the for-
mal verification of programs, including programs that manipulate complex data
structures. More on matching logic and the MatchC tool in Section 10.

3 Modular Definitions and the K Framework

One major impediment blocking the broader use of semantic frameworks is the
lack of scalability of semantic definitions. Lack of modularity is one of the main
causes for this lack of scalability. Indeed, in many frameworks one often needs to
redefine the semantics of the existing language features in order to include new,
unrelated features. For example, in conventional SOS [99] one needs to more than
double the number of rules in order to include an abrupt termination construct
to a language, because the termination “signal” needs to be propagated through
all the language constructs. Mosses’ Modular SOS (MSOS) [87] addresses the
non-modularity of SOS; it was shown that MSOS can be faithfully represented in
rewriting logic, in a way that also preserves its modularity [23, 73, 25, 24, 29]. We
here report on the K framework, developed in parallel with the MSOS approach.

K [105] is a modular executable semantic framework derived from rewriting
logic. It works with terms, but its concurrent semantics is best explained in terms
of graph rewriting intuitions [111]. K was first introduced by the second author
in the lecture notes of a programming language design course at the University
of Illinois at Urbana-Champaign (UIUC) in Fall 2003 [101], as a means to define

10

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

Original language syntax K Strictness K Semantics

AExp ::= Int
| Id 〈x

i

···〉k 〈··· x 7→ i ···〉state

| AExp +AExp [strict] i1 + i2 → i1 +Int i2
| AExp /AExp [strict] i1 / i2 → i1 /Int i2 where i2 6= 0

BExp ::= Bool
| AExp <=AExp [seqstrict] i1 <= i2 → i1 ≤Int i2
| notBExp [strict] not t→ ¬Bool t
| BExp andBExp [strict(1)] true and b→ b

false and b→ false

Stmt ::= skip skip → ·
| Id :=AExp [strict(2)] 〈x := i

·
···〉k 〈··· x 7→

i

···〉state

| Stmt ;Stmt s1 ; s2 ⇀ s1 y s2
| if BExp [strict(1)] if true then s1 else s2 → s1

then Stmt else Stmt if false then s1 else s2 → s2
| while BExp do Stmt 〈 while b do s

if b then (s ; while b do s) else ·
···〉k

Pgm ::= var List{Id} ;Stmt 〈 var xl ; s

s

〉k 〈 ·
xl 7→ 0

〉state

Fig. 1. K definition of IMP: syntax (left), annotations (middle) and semantics (right);
x ∈ Id, xl ∈ List{Id}, i, i1, i2 ∈ Int, t ∈ Bool, b ∈ BExp, s, s1, s2 ∈ Stmt

concurrent languages in rewriting logic using Maude. Programming languages,
calculi, as well as type systems or formal analyzers can be defined in K by making
use of special, potentially nested cell structures, and rules. There are two types of
K rules: computational rules, which count as computational steps, and structural
rules (or “half equations”), which do not count as computational steps. The role
of the structural rules is to rearrange the term so that the computational rules
can apply. K rules are unconditional (they may have side conditions, though),
and they are context-insensitive.

We introduce K by means of a simple imperative language, called IMP. In
Section 3.2 we extend IMP with dynamic threads into IMP++, and in Sec-
tion 8.1 we show how one can use K to define a type checker for IMP++. This
language experiment is borrowed from [105], where more details about K can
be found. We also refer the interested reader to http://k-framework.org for
papers, workshops and an implementation. Our implementation of K, the K-
Maude tool, consists of a translator to Maude, which is implemented using Perl
scripting (about 6,000 lines) and Maude (about 9,000 lines).

3.1 K Semantics of IMP

Figure 1 shows the complete K definition of IMP, except for the configuration
(explained below). The left column gives the IMP syntax. The middle column

11

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

augments it with K strictness attributes, stating the evaluation strategy of some
language constructs. Finally, the right column gives the semantic rules.

Language syntax is typically defined in K using an “algebraic” context-free
notation, i.e., one which allows users to make use of list, set, multiset and map
structures without defining them. Note, e.g., that we used List{Id} as a non-
terminal in the syntax of IMP in Figure 1. System configurations are defined in
the same style. Configurations in K are organized as potentially nested structures
of cells, which are typically labeled to distinguish them from each other. We use
angle brackets as cell wrappers. The K configuration of IMP can be defined as:

ConfigurationIMP ≡ 〈〈K〉k 〈Map{Id 7→ Int}〉state〉>

In words, IMP configurations consist of a top cell 〈. . .〉> containing two other
cells inside: a cell 〈. . .〉k which holds a term of sort K (the computation) and a cell
〈. . .〉state which holds a map from variables to integers. As examples of IMP K
configurations, 〈〈x := 1; y := x+1〉k 〈·〉state〉> is a configuration holding program
“x := 1; y := x+1” and empty state, 〈〈x := 1; y := x+1〉k 〈x 7→ 0 y 7→ 1〉state〉>
is a configuration holding the same program and a state x 7→ 0 and y 7→ 1.

The sort K, for computational structures or simply computations, has a spe-
cial meaning in K. The intuition for terms of sort K is that they have com-
putational contents, such as programs or program fragments have. Technically,
computations automatically extend the syntax of the original language (i.e.,
all syntactic categories are sunk into K) with a list structure with “y” (read
“followed by”) as binary concatenation of computations and with “·” as the
empty computation. For example, the intuition for a computation of the form
T1 y T2 y · · · y Tn is that the enlisted (computational) tasks should be
processed sequentially. Computations give a uniform means to define and han-
dle evaluation contexts and/or continuations as special cases: a computation
“v y c” can be thought of as “c[v], that is, evaluation context c applied to v”
or as “passing v to continuation c”. In fact, K allows one to define evaluation
contexts over the language syntax both directly, like in [105], or indirectly, by
means of strictness attributes like in the middle column in Figure 1. However,
one should be aware that these are nothing but convenient notations, which
desugar into rules. For example, the evaluation strategies of sum, comparison
and conditional in IMP specified by the strictness attributes in Figure 1 can
be defined using the following structural rules (for diversity, we assume that the
sum + evaluates its arguments non-deterministically and the comparison <=

evaluates its arguments sequentially):

a1 + a2
 a1 y � + a2

a1 + a2
 a2 y a1 + �
a1 <= a2
 a1 y � <= a2

i1 <= a2
 a2 y i1 <= �
if b then s1 else s2
 b y if � then s1 else s2

The symbol
 stands for two structural rules, one left-to-right and another
right-to-left. The right-hand sides of the structural rules above contain, besides

12

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

the task sequentialization operator y, freezer operators containing � in their
names, such as � + , +�, etc. The first rule above says that in any expression
of the form a1 + a2, a1 can be scheduled for processing while a2 is being held for
future processing. Since these rules are bi-directional, they can be used at will to
structurally re-arrange the computations. Thus, when iteratively applied from
left-to-right they fulfill the role of splitting syntax into an evaluation context (the
tail of the resulting sequence of computational tasks) and a redex (the head of the
resulting sequence), and when applied right-to-left they fulfill the role of plugging
syntax into context. Our current implementation of K automatically generates
rules like the above, plus heuristics to apply them in one direction or the other,
from strictness annotations to syntax like in Figure 1 (middle column).

Structural rules like those above decompose and eventually push the tasks
that are ready for processing to the top (or the left) of the computation. Semantic
rules then tell how to process the atomic tasks. The right column in Figure 1
shows the K semantic rules of IMP. To explain them, let us first discuss the
important notion of a K rule, which is a strict generalization of the usual notion
of a rewrite rule. K rules explicitly mention the parts of the term that they read,
write, or don’t care about. The underlined parts are those which are written by
the rule; the term underneath the line is the new subterm replacing the one above
the line. All writes in a K rule are applied in one parallel step, and, with some
reasonable restrictions discussed in [111] that avoid read/write and write/write
conflicts, writes in multiple K rule instances can also apply in parallel. The
elipses “ ··· ” represent the volatile part of the term, that is, that part that the
current rule does not care about and, consequently, can be concurrently modified
by other rules. The operations which are not underlined represent the read-only
part of the term: they need to stay unchanged during the application of the rule.
For example, consider the assignment rule in Figure 1:

〈x := i
·
···〉k 〈··· x 7→

i
···〉state

It says that once the assignment x := i reaches the top of the computation, the
value of x in the store is replaced by i and the assignment dissolves; in K, “ ”
is a nameless variable of any sort and “·” is the unit (or empty) computation
(“·” is a polymorphic unit of all list, set and multiset structures). The rule for
variable declarations in Figure 1 (last one) expects an empty state and allocates
and initializes with 0 all the declared variables; the dotted or dashed lines signify
that the rule is structural, which is discussed next.

K rules are split in two categories: computational and structural. Compu-
tational rules capture the intuition of computational steps in the execution of
the defined system or language, while structural rules capture the intuition of
structural rearrangement, rather than computational evolution, of the system.
We use dashed or dotted lines in the structural rules. Ordinary rewrite rules are
particular K rules, when the entire term is replaced; in this case, we prefer to use
the standard notation l → r as syntactic sugar for computational rules and the
notation l ⇁ r or l ⇀ r as syntactic sugar for structural rules. Figure 1 shows

13

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

Original language syntax K Strictness K Semantics

AExp ::= . . . | ++ Id 〈 ++x

i+Int 1

···〉k 〈··· x 7→ i

i+Int 1

···〉state

Stmt ::= . . .
| printAExp [strict] 〈 print i

·
···〉k 〈··· ·

i

〉output

| halt 〈 halt y
·

〉k

| spawnStmt 〈 spawn s
·

···〉k ·
〈sy die〉k

K ::= . . . | die 〈die〉k ⇁ ·

Fig. 2. K definition of IMP++ (extends that in Figure 1, without changing anything)

three explicit structural rules (as already discussed, the strictness attributes cor-
respond to implicit ones): s1 ; s2 is rearranged as s1 y s2, loops are unrolled
when they reach the top of the computation (unconstrained unrolling leads to
non-termination), and declared variables are allocated in the state.

K rewriting is a hybrid between term rewriting and graph rewriting, aimed
at keeping the syntactic simplicity of the former and achieving the concurrency
semantics benefits of the latter. While rewriting logic can theoretically capture
the intended concurrent semantics of graph rewriting [70], the representation in
[70] is impractical. The concurrent semantics of K is given in terms of graph
rewriting, taking into account the explicit sharing and variable volatility in K
rules, but avoiding the notational complexity of graph rewriting. However, our
current implementation straightforwardly translates K rules into rewrite rules
and then uses Maude for execution and formal analysis. For example, the rule
for assignment above gets translated into a rewrite rule of the form:

〈x := iy rest〉k 〈before x 7→ j after〉state → 〈rest〉k 〈before x 7→ i after〉state

Even though our current translation to Maude loses concurrency, a serializability
result in [111] connecting K rewriting and rewriting logic reasoning guarantees
the soundness of execution and formal analysis of K using Maude.

3.2 Extending IMP

In this section we highlight the modularity of K by extending the IMP language
in Section 3.1 with variable increment and dynamic threads. Figure 2 shows how
the K semantics of IMP is seamlessly extended into a semantics for IMP++.
To accommodate the output, a new cell needs to be added to the configuration:

ConfigurationIMP++ ≡ 〈〈K〉k 〈Map{Id 7→ Int}〉state 〈List{Int}〉output 〉>

However, note that none of the existing IMP rules needs to change, because
each of them only matches what it needs from the configuration. The construct

14

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

print is strict and its rule adds the value of its argument to the end of the
output buffer (matches and replaces the unit “·” at the end of the buffer). The
rule for halt dissolves the entire computation, and the rule for spawn creates a
new 〈. . .〉k cell wrapping the spawned statement. The code in this new cell will
be processed concurrently with the other threads. The last rule cools down a
terminated thread by simply dissolving it; it is a structural rule since, again, we
do not want it to count as a computational step.

4 Programming Language Semantics

Having formal semantics for real programming languages, regardless of the for-
malism that is being used, is undoubtedly a very important step, useful not only
to help us understand those languages better but also to serve as a solid foun-
dation for implementations and for program analysis and verification techniques
and tools. Using rewriting logic as a formalism for such semantics has the ad-
ditional benefit that such techniques and tools can be directly derived from the
language semantics with minimal effort, as shown throughout this paper.

The rewriting logic semantics technique described in Section 3 has been used
to define several programming languages or large fragments of them. Some of
these languages serve as models for teaching various language paradigms, which
we do not mention here but can be found on webpages for programming language
courses at UIUC and can be reached from http://k-framework.org, while oth-
ers are real programming languages, such as C [37], Scheme [67], or Java 1.4
[40, 42]. In this section we only briefly discuss the rewrite logic semantics of C
[37], more precisely of the ISO/IEC 9899:1999 (C99) standard, as formalized
by Chucky Ellison using the K framework. This semantics is currently being
used by several researchers and research groups, both directly in their tools and
indirectly as a basis for understanding (and sometimes criticizing) the C lan-
guage. This has led to the “C Semantics” Google code project repository at
http://c-semantics.googlecode.com/.

The C semantics defined by Chucky Ellison defines approximately 120 C
syntactic operators and 200 intermediate or auxiliary semantic operators. The
definitions of these operators are given by 400 semantic rules and 172 helper rules
spread over 2333 lines of code (LOC). However, it takes only 37 of those rules (201
LOC) to cover the behavior of statements, and another 119 for expressions (417
LOC). There are 353 rules for dealing with types, memory, and other necessary
mechanisms. Finally, there are about 63 rules for the core of the standard library.

This is the most comprehensive formal semantics of C to date. It is executable
and thoroughly tested. All aspects related to the features mentioned below are
given a direct semantics. Expressions: referencing and dereferencing, casts, array
indexing, structure members, arithmetic, bitwise, and logical operators, sizeof,
increment and decrement, assignments, sequencing, ternary conditional; State-
ments: for, do-while, while, if, if/else, switch, goto, break, continue, return; Types
and Declarations: enums, structs, unions, bitfields, initializers, static storage,
typedefs; Values: regular scalar values (signed/unsigned arithmetic and pointer

15

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

types), structs, unions; Standard Library: malloc/free, set/longjmp, basic I/O;
Environment: command line arguments; Conversions: (implicit) argument and
parameter promotions and arithmetic conversion, and (explicit) casts.

No matter what the intended use is for a formal semantics, such a use is
limited if one cannot achieve confidence in its correctness. To achieve this aim,
executable semantics has an immense practical advantage over non-executable
semantics, because one can simply test it. The C semantics in [37] has been
encapsulated inside a drop-in replacement for Gnu’s C Compiler (GCC), called
“KCC”. This allows one to test the semantics as one would test a compiler.
Indeed, the C semantics has been successfully run against all the examples in the
Kernigham and Ritchie manual that supposedly cover all the features of ANSI
C. Moreover, a series of challenging C programs collected from the Internet,
such as programs from the Obfuscated C programming competition, totaling
more than 10,000 LOC are included in the regression tests of the C semantics,
so these are all executed each time the semantics is changed. In addition to the
above, the GCC C-torture-test (which contains 715 C programs conforming to
the standard semantics of C99) has been executed in the C semantics and its
behavior compared to that of GCC itself, as well as to Intel’s C Compiler (ICC).

C is so complex that even dedicated and broadly used compilers like GCC
or ICC cannot compile and execute all the programs in the GCC torture-test.
All in all, considering all the tests that the C semantics has been tested on, the
GCC and ICC compilers successfully passed 99% of them, while the C semantics
(compiled into Maude using the K framework tool) passed 96% of them. The
C semantics ran over 90% of these programs in under 5 seconds (each). An
additional 6% completed in 10 minutes, 1% in 40 minutes, and 2% further in
under 2 days. The remaining programs either did not finish because they were
computationally very intensive (such as FFTs), or they made use of features
which were not yet defined (such as, e.g., unicode characters in strings). While
this is not terribly fast performance, especially when compared to compiled C,
the reader should keep in mind that this is an interpreter obtained for free from
a formal semantics and that other existing semantics of C are either “paper”
definitions (e.g., [51]), or not executable (e.g., [91]), or very slow (e.g., we were
not able to execute factorial of 6 or the 4th Fibonacci’s number using the Haskell-
based definition in [95, 96]), or covering only a C fragment (e.g., [14]). Moreover,
our semantics of C can be used directly and unchanged for other purposes, such
as for model checking (Section 9) and for deductive verification (Section 10).

5 Real-Time Language Semantics

Three real-time programming languages have been given formal semantics as
real-time rewrite theories [93] in Real-Time Maude [94]. Using the model check-
ing features of Real-Time Maude it then becomes possible to formally analyze
programs in such languages.

In [4], AlTurki et al. present a language for real-time concurrent programming
for industrial use in DOCOMO Labs called L. The goal of L is to serve as

16

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

a programming model for higher-level software specifications in SDL or UML.
A related goal is to support formal analysis of L programs by both real-time
model checking and static analysis, so that software design errors can be caught
at design time. The way all this is accomplished is by giving a formal semantics
to L in Real-Time Maude, which automatically provides an interpreter and a
real-time model checker for L. Static analysis capabilities are added to L by
using Maude to define an abstract semantics for L in rewriting logic, which is
then used as the static analyzer.

The Orc model of real-time concurrent computation [79, 80, 126] has been
given semantics in rewriting logic using real-time rewrite theories [5, 6]. Although
Orc is a very simple and elegant language, its real-time semantics is quite subtle
for two reasons. First, in the evaluation of any Orc expression, internal com-
putation always has higher priority than the handling of external events; this
means that, even without modeling time, a vanilla-flavored SOS semantics is
not expressive enough to capture these different priorities: two SOS relations
are needed [80]. Second, Orc is by design a real-time language, where time is a
crucial feature. Using real-time rewrite theories, this double subtlety of the Orc
semantics was faithfully captured in [5]; furthermore, this semantics yielded of
course an Orc interpreter and a real-time model checker. But Orc is not just
a model of computation: it is also a concurrent programming language. This
suggested the following challenge question: can a correct-by-construction dis-
tributed Orc implementation be derived from its rewriting logic semantics? This
question was answered in two stages. Since, as discussed in Section 2.5, a small-
step SOS semantics is typically horribly inefficient and it was certainly so in the
case of Orc, a much more efficient reduction semantics was first defined in [6],
and was proved to be bisimilar to the small-step SOS semantics. This semantics
provided a much more efficient interpreter and model checker. Furthermore, to
explicitly model different Orc clients and various web sites, and their message
passing communication, the Orc semantics was seamlessly extended in [6] to a
distributed object-based Orc semantics, which modeled what a distributed im-
plementation should look like. The only remaining step was to pass from this
model of a distributed implementation to an actual Maude-based distributed
real-time implementation. This was accomplished in [7] using three main ideas:
(i) the use of sockets in Maude to actually deploy a distributed implementa-
tion; (ii) the systematic replacement of logical time by physical time, supported
by Ticker objects external to Maude, while retaining the rewriting semantics
throughout; and (iii) the experimental estimation of the physical time required
for “zero-time” Maude subcomputations, to ensure that the granularity of time
ticks is such that all “instantaneos transitions” have already happened before
the next tick.

Creol is an object-oriented language supporting concurrent objects which
communicate through asynchronous method calls. Its rewriting-logic-based op-
erational semantics was defined in [55] without real-time features. However, to
support applications such as sensor systems with wireless communication, where
messages expire and may collide with each other, Creol’s design and operational

17

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

semantics have been extended in [13] to Timed Creol using rewriting logic. The
notion of time used by Timed Creol is described as a “lightweight” one in [13].
Time is discrete and is represented by a time object. This approach does not
require a full use of the features in Real-Time Maude (Maude itself is sufficient
to define the real-time semantics). The effectiveness of Timed Creol in the mod-
eling and analysis of applications such as sensor networks is illustrasted in [13]
through a case study.

6 Modeling Language Semantics

Modeling languages are quite useful, but they can be made even more useful by
substantially increasing their analytic power through formal analysis, since this
can make it possible to catch expensive design errors very early. Formal analysis
is impossible or fraudulent without a formal semantics. Early work in developing
rewriting-logic-based formal semantics focused on object-oriented design nota-
tions and languages [127, 90, 89], and stimulated subsequent work on UML and
UML-like notations, e.g., [44, 62, 63, 128, 8, 33, 83, 82, 84].

A more ambitious question is: can we give semantics not just to a single mod-
eling language, but to an entire modeling framework where different modeling
languages can be defined? This question has been answered positively in [16,
15, 17, 19, 20]. This line of research has led to MOMENT2, an algebraic model
management framework and tool written in Maude and developed by Artur
Boronat [15]. It permits manipulating software models in the Eclipse Model-
ing Framework (EMF). It uses OMG standards, such as Meta-Object Facility
(MOF), Object Constraint Language (OCL) and Query/View/Transformation
(QVT), as a clean interface between rewriting-logic-based formal methods and
model-based industrial tools. Specifically, it supports formal analyses based on
rewriting logic and graph transformations to endow model-driven software en-
gineering with strong analytic capabilties. MOMENT2 supports not just one
fixed modeling language, but any modeling language whose meta-model is spec-
ified in MOF. In more detail, a modeling language is specified as a pair (M, C),
where M is its MOF-based metamodel, and C are the OCL constraints that
M should satisfy. Using rewriting-logic-based reflection and its efficient sup-
port in Maude, MOMENT2 provides an executable algebraic semantics for such
metamodel specifications (M, C) in the form of a theory A(M, C) in membership
equational logic (MEL) [71], so that a model M conformant with the metamodel
(M, C) is exactly a term of sort Model in A(M, C), and so that satisfaction of
OCL constraints is also decidable using the algebraic semantics [18, 20].

Due to the executability of MEL specifications in Maude, the realization of
MOF metamodels as MEL theories enhances the formalization and prototyp-
ing of model-driven development processes, such as: (i) model transformations;
(ii) model-driven roundtrip engineering; (iii) model traceability; and (iv) model
management. These processes permit, for example, merging models, generating
mappings between models, and computing differences between models; they can
be used to solve complex scenarios such as the roundtrip problem. In MOMENT2

18

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

the formal semantics of model transformations is given by rewrite theories spec-
ified in a user-friendly QVT-based syntax [17]. Such model transformations can
describe the dynamic evolution of systems at the level of their models. Using the
search and LTL model checking features of Maude, properties about the dynamic
evolution of a model M conformant with a metamodel specification (M, C) can
then be formally analyzed by model checking [17]. Real-time modeling languages
can likewise be supported and analyzed [21]; this is further discussed below.

6.1 Semantics of Real-Time Modeling Languages

There is strong interest in modeling languages for real-time and embedded sys-
tems. The rewriting logic semantics for such modeling languages can be naturally
based on real-time rewrite theories. Using a tool like Real-Time Maude, what
this means in practice is that such models can then be simulated; and that their
formal properties, in particular their safety requirements, can be model checked.
Furthermore, the simulations and formal analysis capabilities added to the given
modeling language can be offered as “plugins” to already existing modeling tools,
so that much of the formal analysis happens “under the hood,” and somebody
already familiar with the given modeling notation can perform such formal anal-
ysis without having an in-depth understanding of the underlying formalism.

The Ptolemy II modeling language (http://ptolemy.eecs.berkeley.edu) sup-
ports design and simulation of concurrent, real-time, embedded systems ex-
pressed in several models of computation (MoCs), such as state machines, data
flow, and discrete-event models, that govern the interaction between concurrent
components. A user can visually design and simulate hierarchical models, which
may combine different MoCs. Furthermore, Ptolemy II has code generation ca-
pabilities to translate models into other modeling or programming languages
such as C or Java. Discrete-Event (DE) Models are among the most central in
Ptolemy II. Their semantics is defined by the tagged signal model [64]. The work
by Bae et al. in [11] endows DE models in Ptolemy II with formal analysis ca-
pabilities by: (i) defining a semantics for them as real-time rewrite theories; (ii)
automating such a formal semantics as a model transformation using Ptolemy
II’s code generation features; (iii) providing a Real-Time Maude plugin, so that
Ptolemy II users can use an extended GUI to define temporal logic properties of
their models in an intutitive syntax and can invoke Real-Time Maude from the
GUI to model check their models. This work has been further advanced in [9]
to support not just flat DE models, but hierarchical ones. That is, above tasks
(i)–(iii) have been extended to hierarchical DE models; this extension is non-
trivial, because it requires combining synchronous fixpoint computations with
hierarchical structure.

AADL (http://www.aadl.info/) is a standard for modeling embedded sys-
tems that is widely used in avionics and other safety-critical applications. How-
ever, AADL lacks a formal semantics, which severely limits both unambiguous
communication among model developers and the formal analysis of AADL mod-
els. In [92] Ölveczky et al. define a formal object-based real-time concurrent
semantics for a behavioral subset of AADL in rewriting logic, which includes the

19

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

essential aspects of AADL’s behavior annex. Such a semantics is directly exe-
cutable in Real-Time Maude and provides an AADL simulator and LTL model
checking tool called AADL2Maude. AADL2Maude is integrated with OSATE, so
that OSATE’s code generation facility is used to automatically transform AADL
models into their corresponding Real-Time Maude specifications. Such trans-
formed models can then be executed and model checked by Real-Time Maude.
One difficulty with AADL models is that, by being made up of various hier-
archical components that communicate asynchronously with each other, their
model checking formal analysis can easily experience a combinatorial explosion.
However, many such models express designs of distributed embedded systems
which, while being asynchronous, should behave in a virtually synchronous way.
This suggest the possibility of using the PALS pattern [75], which reduces dis-
tributed real-time systems with virtual synchrony to synchronous ones, to pass
from simple synchronous systems, which have much smaller state spaces and are
much easier to model check, to semantically equivalent asynchronous systems,
which often cannot be directly model checked but can be verified indirectly
through their synchronous counterparts. This has led to the design of the Syn-
chronous AADL sublanguage in [10], where the user can specify synchronous
AADL models by using a sublanguage of AADL with some special keywords.
A synchronous rewriting semantics for such models has also been defined in
[10]. Using OSATE’s code generation facility, synchronous AADL models can
be transformed into their corresponding Real-Time Maude specifications in the
SynchAADL2Maude tool, which is provided as a plugin to OSATE. Likewise, the
user can define temporal logic properties of synchronous AADL models based
on their features, without requiring knowledge of the underlying formalism, and
can model check such models in Real-Time Maude.

A more ambitious goal is to provide a framework, where a wide range of
real-time Domain-Specific Visual Languages (DSVLs), as well as their dynamic
real-time behavior, can be specified with a rigorous semantics. This is precisely
the goal of two frameworks and associated tools: (i) the e-Motions framework
[100]; and (ii) MOMENT2 ’s support for real-time DSVLs [21].

– In e-Motions, DSVLs are specified by their corresponding metamodels, and
dynamic behavior is specified by rules that define in-place model transforma-
tions. But the goals of e-Motions do not remain at the syntax/visual level:
they also include giving a precise rewriting logic semantics in Real-Time
Maude to the different real-time DSVLs that can be defined in e-Motions,
and to automatically support simulation and formal analysis of models by
using the underlying Real-Time Maude engine. The formal semantics trans-
lates the metamodel of a DSVL as an object class, the corresponding models
as object configurations of that class, and the e-Motions rules as rewrite
rules. Since all these translations are automatic and define a DSVL’s formal
semantics, a modeling language designer using e-Motions does not have to
explicitly define the DSVL’s formal semantics: it comes for free, together
with the simulation and model checking features, once the DSVL’s meta-
model and the dynamic behavior rules are specified.

20

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

– In [21], the MOMENT2 framework has been extended to support the formal
specification and analysis of real-time model-based systems. This is achieved
by means of a collection of built-in timed constructs for defining the timed
behavior of such systems. Timed behavior is specified using in-place model
transformations. Furthermore, the formal semantics of a timed behavioral
specification in MOMENT2 is given by a corresponding real-time rewrite
theory. In this way, models can be simulated and model checked using MO-
MENT2’s Maude-based analysis tools. In addition, by using in-place multi-
domain model transformations in MOMENT2, an existing model-based sys-
tem can be extended with timed features in a non-intrusive way, in the sense
that no modification is needed for the class diagram.

7 Hardware Description Language Semantics

The rewriting logic semantics project has been naturally extended from the level
of programming languages to that of hardware description languages (HDLs). In
this way, hardware designs written in an HDL can be both simulated and ana-
lyzed using the executable rewriting semantics of the HDL and tools like ELAN,
CafeOBJ, or Maude. The first HDL to be given a rewriting logic semantics in
Maude was ABEL [58]; this semantics was used not only for hardware designs,
but also for hardware/software co-designs. An important new development has
been the use of the rewriting logic semantics of an HDL for generating sophis-
ticated test inputs for hardware designs. The point is that random testing can
catch a good number of design errors, but uncovering deeper errors after ran-
dom testing is hard and costly and requires a good understanding of the design
to exercise complex computation sequences. The key insight, due to Michael
Katelman, is that the rewriting semantics can be used symbolically to generate
desired test inputs, not on a device’s concrete states, but on states that are
partly symbolic (contain logical variables) and partly concrete. This symbolic
approach, first outlined in [60] and more fully developed in [59], has a number
of unique features including: (i) the use of SAT solvers to symbolically solve
Boolean constraints; (ii) support for user-guided random generation of partial
instantiations; and (iii) a flexible strategy language, in which a hardware designer
can specify in a declarative, high-level way the kind of test that needs to be gen-
erated. The effectiveness of this approach for generating sophisticated tests on
real hardware designs has already been demonstrated for medium-sized Verilog
designs [59]. The vlogsl tool is currently undergoing further enhancements to
efficiently handle large designs.

But the value of the rewriting semantics of an HDL is not restricted to test-
ing. For example, the recent Maude-based rewriting logic semantics of Verilog in
[68] is arguably the most complete formal semantics to date, both in the sense of
covering the largest subset of the language and in its faithful modeling of non-
deteministic features. Besides being executable and supporting formal analysis,
this semantics has uncovered several nontrivial bugs in various mature Verilog

21

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

tools, and can serve as a practical and rigorous standard to ascertain what the
correct behavior of such tools should be in complex cases.

A more exotic application of rewriting logic semantics, for which it is ideally
suited due to its intrinsically concurrent nature, is that of asynchronous hardware
designs. These are digital designs which do not have a global clock, so that
different gates in a device can fire at different times. Such devices can behave
correctly in much harsher environments (e.g., a satellite in outer space) and
with much wider ranges of physical operating conditions than clocked devices.
Asynchronous designs can be specified with the notation of production rules,
which roughly speaking describe how each gate behaves when inputs to its wires
are available. In [57] a rewriting logic semantics of asynchronous digital devices
specified as sets of production rules is given and is realized in Maude. This is
the first executable formal semantics of such devices we are aware of. It can be
used both for simulation purposes and for model checking verification of small-
sized devices (about 100 gates). An interesting challenge is how to scale up
model checking for larger devices; this is nontrivial due to the large combinatorial
explosion caused by their asynchronous behavior.

8 Abstract vs. Concrete Semantics and Static Analysis

In addition to helping with understanding and experimenting with language de-
signs, a rewriting logic semantics can have several direct uses without having to
change the semantics at all. Two such uses of unchanged semantics in the context
of program verification are discussed in Sections 9 and 10. Nevertheless, there are
program analysis needs where the desired information is not necessarily available
in the code itself, or where the desired domain of analysis is not included in, and
cannot be obtained from, the concrete domain in which the language semantics
operates. In such cases, one can modify the concrete language semantics to op-
erate within a target abstract domain. We next first show an overly simplified
example, where the concrete semantics of IMP and IMP++ in Sections 3.1 and
3.2 are abstracted into type systems for the defined languages, which yield type
checkers when executed. Then we discuss uses of similar but larger scale and
more practical abstractions of rewrite logic semantics.

8.1 K Definition of a Type System for IMP++

The K semantics of IMP/IMP++ in Sections 3.1 and 3.2 can be used to execute
even ill-typed IMP/IMP++ programs, which may be considered undesirable by
some language designers. In this section we show how to define a type system for
IMP/IMP++ using the very same K framework. The type system is defined like
an (executable) semantics of the language, but one in the more abstract domain
of types rather than in the concrete domain of integer and Boolean values.

The typing policy that we want to enforce on IMP/IMP++ programs is
easy: all variables in a program have by default integer type and must be de-
clared, arithmetic/Boolean operations are applied only on expressions of corre-
sponding types, etc. Since programs and program fragments are now going to

22

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

Original language syntax K Strictness K Semantics

AExp ::= Int i→ int
| Id 〈 x

int

···〉k 〈··· x ···〉var

| AExp +AExp [strict] int + int→ int
| AExp /AExp [strict] int / int→ int
| ++ Id 〈 ++x

int

···〉k 〈··· x ···〉var

BExp ::= AExp <=AExp [strict] int <= int→ bool
| notBExp [strict] not bool→ bool
| BExp andBExp [strict] bool and bool→ bool

Stmt ::= skip skip → stmt
| Id :=AExp [strict(2)] 〈x := int

stmt

···〉k 〈··· x ···〉var

| Stmt ;Stmt [strict] stmt ; stmt→ stmt
| if BExp

then Stmt else Stmt [strict] if bool then stmt else stmt → stmt
| while BExp do Stmt [strict] while bool do stmt → stmt
| printAExp [strict] print int→ stmt
| halt halt → stmt
| spawnStmt [strict] spawn stmt→ stmt

Pgm ::= var List{Id} ;Stmt 〈 var xl ; s

sy pgm

〉k 〈 ·
xl

〉vars

stmt y pgm→ pgm

Fig. 3. K type system for IMP++ (and IMP)

be rewritten into their types, we need to add to computations some basic types.
Also, in addition to the computation to be typed, configurations must also hold
the declared variables. Thus, we define the following (the “. . . ” in the defini-
tion of K includes all the default syntax of computations, such as the original
language syntax, y, freezers, etc.):

K ::= . . . | int | bool | stmt | pgm

ConfigurationType
IMP++ ≡ 〈〈K〉k 〈List{Id}〉vars〉>

Figure 3 shows the IMP/IMP++ type system as a K system over such
configurations. Constants reduce to their types, and types are straightforwardly
propagated through each language construct. Note that almost each language
construct is strict now, because we want to type all its arguments in almost
all cases in order to apply the typing policy of the construct. Two constructs
are exceptional, namely, increment and assignment. The typing policy of these
constructs is that they take precisely a variable and not something that types to
an integer. If we defined, e.g., the assignment strict and with rule int := int →
stmt, then our type system would allow ill-formed programs like x+y := 0 . Note
how we defined the typing policy of programs var xl ; s: the declared variables xl
are stored into the 〈. . .〉vars cell (which is expected to initially be empty) and the
statement is scheduled for typing (using a structural rule), placing a “reminder”

23

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

in the computation that the pgm type is expected; once/if the statement is
correctly typed, the type pgm is generated.

8.2 Examples of Abstract Rewriting Logic Semantics

We briefly discuss three practical uses of abstract rewriting logic semantics.

C Pluggable Policies. Many programs make implicit assumptions about data.
Common examples include assumptions about whether variables have been ini-
tialized or can only contain non-null references. Domain-specific examples are
also common; a compelling example is units of measurement, used in many sci-
entific computing applications, where different variables and values are assumed
to have specific units at specific times/along specific execution paths. These
implicit assumptions give rise to implicit domain policies, such as requiring as-
signments to non-null pointers to also be non-null, or requiring two operands in
an addition operation to have compatible units of measurement.

Mark Hills et al. [53] propose a framework for pluggable policies for C which
allows these implicit policies to be made explicit and checked. The core of the
framework is a shared annotation engine and parser, allowing annotations in
multiple policies to be inserted by developers as comments in C programs, and a
shared abstract rewriting logic semantics of C designed as a number of reusable
modules that allow for new policies to be quickly developed and plugged in. For
instance, a case study for checking non-null references was developed in under
two days; another case study for checking units of measurement reuses the shared
abstract semantics and only adds domain knowledge [53].

Polymorphic Type Inference. The technique in Section 8.1 for defining type
systems using K is very general and has been used to define more complex
type systems, such as higher-order polymorphic ones by Ellison et al. [38]. The
K definition of the type system in [38] is more declarative and thus cleaner
and easier to understand than alternative algorithmic definitions. Moreover, the
K definition is formal, so it is amenable for formal reasoning. Interestingly, as
shown in [38], the resulting K definition, when compiled to and executed using
Maude, was faster than algorithmic implementations of the same type system
found on the internet as teaching material. In fact, experiments in [38] show
that it was comparable to state of the art implementations of type inferencers
in conventional functional languages! For example, it was only about twice as
slow on average than that of OCaml, and had average times comparable, or even
better than those of Haskell ghci and SML/NJ.

Security Policy Checking. An elegant application of a programming lan-
guage’s abstract rewriting logic semantics to Java code security is presented by
Alba-Castro et al. in [2, 3] as part of their rewriting-logic-semantics-based ap-
proach to proof carrying code. The key idea is to use an abstract rewriting logic

24

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

semantics of Java that correctly approximates security properties such as nonin-
terference (that is, the specification of what objects should not have any effects
on other objects according to a stated security policy [48]), and erasure (a secu-
rity policy that mandates that secret data should be removed after its intended
use). Since the abstract rewriting semantics is finite-state, it supports the auto-
matic creation of certificates for noninterference and erasure properties of Java
programs that are independently checkable and small enough to be practical.

9 Model Checking Verification

Once a programming language or system is defined as a rewrite theory, one can
use any general-purpose tools and techniques for rewriting logic to obtain tools
and techniques specialized for the defined programming language or system. We
have reported in the past on the use of Maude’s general purpose LTL model
checking capabilities to obtain model checkers specialized for various concurrent
programming languages, including Java and the JVM (see, e.g., [76, 40, 42]). In
this paper we report on some new model checking experiments performed in the
context of the C definition discussed in Section 4. We thank Chucky Ellison for
extending his C semantics with concurrency primitives and for conducting these
experiments. A more detailed presentation of these can be found in [37].

The C semantics in Section 4 can be extended to include semantics for concur-
rency primitives like “spawn”, “sync”, “lock”, and “unlock”. The former is used
to dynamically spawn a new execution thread, “sync” waits for all of the other
threads to die before continuing, and “lock” and “unlock” synchronize threads
on memory locations (similar to Java locking on references). When formalizing
the semantics of C, we did not plan to introduce concurrency. Despite that,
as hoped for, the existing rules were left unchanged upon adding configuration
support and the semantics of threads.

Dekker’s Algorithm We now take a look at the classical Dekker’s algorithm, in
order to explore thread interleavings.

void dekker1(void) {
flag1 = 1; turn = 2;
while((flag2 == 1) && (turn == 2)) ;
critical1();
flag1 = 0;

}

void dekker2(void) {
flag2 = 1; turn = 1;
while((flag1 == 1) && (turn == 1)) ;
critical2();
flag2 = 0;

}

These two functions get called by the two threads respectively to ensure mutual
exclusion of the calls to criticaln(). In the program we used for testing, these
threads each contain infinite loops while the function main() waits on a sync().
Thus, the program never terminates.

To test the mutual exclusion property, we model check the following LTL
formula: �¬(enabled(critical1)∧enabled(critical2)), stating that the two critical
sections can never be called at the same time. Applying this formula to our
program yields “result Bool: true”, in 400ms. If we break the algorithm by
changing a while to an if, the tool instead returns a list of rules, together with
the resulting states, that represent a counterexample.

25

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

Dining Philosophers Another classic example is the dining philosophers problem.

void philosopher(int n) {
while(1) {

// Hungry: obtain chopsticks
if (n % 2 == 0) { // Even number: Left, then right

lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
lock(&chopstick[n]);

} else { // Odd number: Right, then left
lock(&chopstick[n]);
lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);

}
// Eating
// Finished Eating: release chopsticks
unlock(&chopstick[n]);
unlock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
// Thinking

}
}

The above code shows a solution to the dining philosophers that has even-
numbered philosophers picking up their left chopstick first, while odd-numbered
philosophers pick up their right chopstick first. This strategy ensures that there
is no deadlock. We can use Maude’s search command to verify that there is no
deadlock simply by searching for final states. Here are the results:

No Deadlock With Deadlock
n number of states time (s) number of states time (s)
1 19 0.1 – –
2 92 0.8 63 0.6
3 987 14.0 490 7.2
4 14610 293.5 5690 119.8
5 288511 8360.3 84369 2376.5

In the “No Deadlock” column we see the results for the code above. We were
able to verify that with this algorithm, there were no deadlocks for up to five
philosophers. In the “With Deadlock” column, we altered the code so that all
philosophers would try to pick up their left chopstick first. For this algorithm,
we were able to find counterexamples showing that the program has deadlocks.

While the classic programs above are toy examples, which are far from the
complexity of real-life software, we believe that they are sufficient to show that a
programming language semantics can be more than a “useless academic intellec-
tual exercise”. The well-known state-space explosion of model checking cannot
be avoided, no matter whether one uses a formal semantics of the language or
not, but one should note that this is a problem of model checking and not of us-
ing a formal semantics for model checking. Also, there are well-known techniques
to address the state explosion problem, like partial-order reduction, which can
and have also been applied in the context of rewriting logic semantics [41]. And
one can use an abstract semantics (Section 8) as the basis of the model checker
to make it more scalable. The next section shows another use of rewriting logic
semantics of programming languages, for deductive program verification.

26

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

10 Deductive Verification and Matching Logic

As discussed above, one of the major advantages of giving a rewriting logic
semantics to a language is that one can use it not only to obtain a reference
implementation of the language, but also to formally analyze programs in the
defined language using general-purpose tools developed for rewriting logic, such
as Maude’s model checker. Moreover, the original rewriting logic semantics of
the language is used unchanged for model checking or other similar analyses,
which is not only immensely convenient but also offers a high confidence in
the results of the analysis (because it excludes the problem of implementing a
wrong language semantics in the analyzer). One question, however, still remains
unanswered: can we use the language semantics, also unchanged, in a program
logic fashion, that is, for deductive verification of programs?

Early work in this direction includes two Hoare logic provers that use directly
the rewriting logic semantics of a Pascal like-language and of a fragment of Java
and the Maude ITP [34, 107]. Furthermore, the rewriting logic semantics of Java
was used in [1] to automatically validate the inference rules of a Java verification
tool. In the remainder of this section we report on an alternative approach.

Matching logic [102, 103] is a new program verification logic, which builds
upon rewriting logic semantics. Matching logic specifications are constrained
symbolic program configurations, called patterns, which can be matched by con-
crete configurations. By building upon an executable semantics of the language
and allowing specifications to directly refer to the structure of the configuration,
matching logic has at least three benefits: (1) one’s familiarity with the formal-
ism reduces to one’s familiarity with the formal semantics of the language, that
is, with the language itself; (2) the verification process proceeds the same way
as the program execution, making debugging failed proof attempts manageable
because one can always see the “current configuration” and “what went wrong”,
almost like in a debugger; and (3) nothing is lost in translation, that is, there is
no gap between the language definition and its verifier. Moreover, direct access
to the structure of the configuration facilitates defining sub-patterns that one
may reason about, such as disjoint lists or trees in the heap, as well as supporting
framing in various components of the configuration at no additional cost.

To use matching logic for program verification, one must know the structure
of the configurations that are used in the executable language semantics. For ex-
ample, the configuration of some language may contain, besides the code itself,
an environment, a heap, stacks, synchronization resources, etc. The configuration
of C (see Section 4 and [37]), for example, consists of 75 cells, each containing
either other cells or some piece of semantic information. Matching logic spec-
ifications, or patterns, allow one to refer directly to the configuration of the
program. Moreover, we can use logical variables and thus combine the desired
configuration structure with first-order constraints. For example, the pattern

〈 〈β, I〉in 〈x 7→ x, i 7→ i, n 7→ n, E〉env 〈list(x, α), H〉heap C 〉config

∧ i ≤ n ∧ |β| = n− i ∧ A = rev(α)@β

27

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

specifies the set of configurations where program variables x, i and n are bound
in the environment to some values x, i, and respectively n, such that i ≤ n, the
input buffer contains a sequence β of size n− i, and the heap contains a linked
list starting with pointer x comprising the sequence of elements α such that the
sequence A is the reverse of the sequence α concatenated with β. Here A is a
free variable of type sequence of elements. The other variables play the role of
cell frames: I is a variable matching the rest of the input cell, E matches the rest
of the environment, H the rest of the heap, and C the rest of the configuration.
Note that nothing special needs to be done for framing in matching logic (that
is, framing is a special case of the more general principle of matching).

A major benefit of matching logic is that is can be used to turn an executable
semantics into a program logic without any change to the original semantics.
The idea is that the executable semantics can be regarded as a set of rewrite
rules between matching logic patterns, and one can use first-order reasoning over
patterns to turn the pattern resulting from the application of some rule into a
pattern that the next rule expects to match. This way, one can derive rewrite
rules from other rewrite rules, using matching logic reasoning as a mechanism
to rearrange configurations so that rewrite rules can match and apply.

With the help of Andrei Ştefănescu, we implemented a proof-of-concept
matching logic verifier for a fragment of C, called MatchC, which can be down-
loaded and executed online at http://fsl.cs.uiuc.edu/ml. MatchC builds
upon an executable rewrite-based semantics of this fragment of C, extending it
(unchanged) with semantics for pattern specifications. Both the executable se-
mantics and the verifier are implemented using the K framework (see Section 3).

Figure 4 shows a C program verified using MathC. The main() function
reads n from the standard input and then calls readWriteBuffer(n). Then
readWriteBuffer(n) reads from the standard input n elements and allocates a
linked list putting each element at the top of the list, followed by traversing the
linked list and printing each element while deallocating the list nodes. This way,
we end up with the reversed sequence of elements printed to the the standard
output and with the heap unchanged. There are four types of annotations in
this program: (1) assumptions, which allow one to assume a certain pattern
for the remaining program; (2) assertions, which generate matching logic proof
obligations, namely, that the current pattern implies the asserted pattern; (3)
rules, which give the claimed K semantics of the subsequent piece of code; and
(4) invariants, which are patterns that should hold at each loop iteration.

Some explanations regarding MatchC’s notation are necessary. MatchC an-
notations are introduced like C comments starting with @, so they are ignored
by C compilers. We use an XML-like notation to specify when cells start and
when they end. We use the usual rewriting relation “=>” for the in-place rewrit-
ing within K rules. The “$” symbol that appears in the computation cell of a
rule stands for the subsequent statement (the function body, in our case here).
Fourth, to avoid writing quantifiers, variables starting with a question mark are
existentially quantified over the pattern. Fifth, we use an underscore in the XML
tag to state that the corresponding cell is open in that direction, which can be

28

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

#include <stdlib.h>
#include <stdio.h>

struct listNode { int val; struct listNode *next; };

void readWriteBuffer(int n)
/*@ rule <k> $ => return; </k> <in> A => epsilon <_/in> <out_> epsilon => rev(A) </out>

if n = len(A) */
{

int i; struct listNode *x;
i = 0; x = 0;
/*@ inv <in> ?B <_/in> <heap_> list(x)(?A) <_/heap>

/\ i <= n /\ len(?B) = n - i /\ A = rev(?A) @ ?B */
while (i < n) {

struct listNode *y;
y = x;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = y;
i += 1;

}

//@ inv <out_> ?A </out> <heap_> list(x)(?B) <_/heap> /\ A = rev(?A @ ?B)
while (x) {

struct listNode *y;
y = x->next;
printf("%d ",x->val);
free(x);
x = y;

}
}

void main() {
int n;
//@ assume <in> [5, 1, 2, 3, 4, 5] </in> <out> epsilon </out>
scanf("%d", &n);
readWriteBuffer(n);
//@ assert <in> epsilon </in> <out> [5, 4, 3, 2, 1] </out>

}

Fig. 4. C program making use of the I/O and the heap, verified using MatchC.

regarded as an abbreviation for using a fresh variable; for example, “<in> ?B

< /in>” in the invariant of the first loop abbreviates “<in> ?B, ?E </in>”. Fi-
nally, to avoid writing the environment cell all the time, MatchC allows users
to refer directly to program variables in patterns; this avoids having to add a
binding of the program variable to a logical variable in the environment cell and
then using the logical variable throughout the pattern.

The rule giving the semantics of readWriteBuffer(n) states that this func-
tion returns nothing (“$ => return;”, that is, its body behaves as if it returns)
and takes a sequence A of length n (see the condition “n = len(A)”) from the
beginning of the input cell (“<in> A => epsilon < /in>”) and places it re-
versed at the end of the output cell (“<out > epsilon => A </out>”). Since
we have a rewrite-based semantics, the fact that no other cells are mentioned im-
plicitly means that nothing else is modified by this function, including the heap.
The invariant of the first loop is exactly the pattern that we discussed at the
beginning of this section. The invariant of the second loop is similar, but dual.
We do not show the axiom (matching logic formula) governing the list pattern

29

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

in the heap cell; the interested reader can check [102, 103]. Nevertheless, since x

is null at the end of the second loop, it follows that the list it points to is empty,
so the heap changes by the first loop will be cleaned by the end of the second.

MatchC verifies the program in Figure 4 in about 100 milliseconds:

Compiling program ... DONE! [0.311s]
Loading Maude DONE! [0.209s]
Verifying program ... DONE! [0.099s]
Verification succeeded! [82348 rewrites, 4 feasible and 2 infeasible paths]
Output: 5 4 3 2 1

We encourage the reader to run MatchC online at http://fsl.cs.uiuc.edu/ml.

11 Conclusions and Future Work

We have given a progress report on the rewriting logic semantics project. Our
main goal has been to show how research in this area is closing the gap between
theory and practice by supporting executable semantic definitions that scale
up to real languages at the three levels of software modeling languages, pro-
gramming languages, and HDLs, and with features such as concurrencyy and
real-time semantics. We have also shown how such semantic definitions can be
directly used as a basis for interpreters and for sophisticated program analysis
tools, including static analyzers, model checkers, and program proving tools.

Although reasonably efficient interpreters can be currently generated from
rewriting logic specifications, one important future challenge is the automatic
generation from language definitions of high-performance language implemen-
tations that are correct by construction. Another area that should be further
developed is that of meta-reasoning methods, to prove formal properties not
about programs, but about entire language definitions. A third promising future
research direction is exploring the systematic interplay between abstract seman-
tics and model checking, as well as the systematic application of state space
reduction techniques in the model checking of programs from their rewriting
logic language definitions; the overall goal is achieving a high degree of scal-
ability in model checking analyses, with a wide spectrum of analysis choices
ranging from model checking of programs according to their concrete semantics
to various forms of static analysis based on different kinds of abstract semantics.

Acknowledgments. We thank the organizers of FCT 2011 for giving us the
opportunity of presenting these ideas, and for their helpful suggestions for im-
proving the exposition. We also thank all the researchers involved in the rewrit-
ing logic semantics project for their many contributions, which we have tried
to summarize in this paper without any claims of completeness. This research
has been partially supported by NSF Grants CNS 08-34709, CCF 09-05584, and
CCF-0916893, by NSA contract H98230-10-C-0294, by (Romanian) SMIS-CSNR
602-12516 contract no. 161/15.06.2010, by the Boeing Grant C8088, and by the
Samsung SAIT grant 2010-02664.

30

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

References

1. W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation rules
for Java verification against a rewriting semantics. In Proc. LPAR 2006, volume
3835 of LNCS, pages 412–426. Springer-Verlag, 2005.

2. M. Alba-Castro, M. Alpuente, and S. Escobar. Abstract certification of global
non-interference in rewriting logic. In Proc. FMCO, volume 6286 of LNCS, pages
105–124. Springer, 2010.

3. M. Alba-Castro, M. Alpuente, and S. Escobar. Approximating non-interference
and erasure in rewriting logic. In Proc. SYNASC, pages 124–132. IEEE, 2010.

4. M. AlTurki, D. Dhurjati, D. Yu, A. Chander, and H. Inamura. Formal specifica-
tion and analysis of timing properties in software systems. In Proc. FASE, volume
5503 of LNCS, pages 262–277. Springer, 2009.

5. M. AlTurki and J. Meseguer. Real-time rewriting semantics of Orc. In Proc.
PPDP, Poland, pages 131–142. ACM Press, 2007.

6. M. AlTurki and J. Meseguer. Reduction semantics and formal analysis of Orc
programs. In Proc. Workshop on Automated Specification and Verification of
Web Systems (WWV’07), volume 200(3) of ENTCS, pages 25–41. Elsevier, 2008.

7. M. AlTurki and J. Meseguer. Dist-Orc: A rewriting-based distributed implemen-
tation of Orc with formal analysis. In Proc. RTRTS’10, volume 36 of Electronic
Proceedings in Theoretical Computer Science, pages 26–45. CoRR, 2010.

8. N. Aoumeur and G. Saake. Integrating and rapid-prototyping UML structural
and behavioural diagrams using rewriting logic. In Proc. CAiSE’02, volume 2348
of LNCS, pages 296–310. Springer, 2002.

9. K. Bae and P. C. Ölveczky. Extending the Real-Time Maude semantics of Ptolemy
to hierarchical DE models. In Proc. RTRTS’10, volume 36 of Electronic Proceed-
ings in Theoretical Computer Science, pages 46–66. CoRR, 2010.

10. K. Bae, P. C. Ölveczky, A. Al-Nayeem, and J. Meseguer. Synchronous AADL and
its formal analysis in Real-Time Maude. Technical report, University of Illinois
at Urbana-Champaign, 2005. http://hdl.handle.net/2142/25091.

11. K. Bae, P. C. Ölveczky, T. H. Feng, and S. Tripakis. Verifying Ptolemy II discrete-
event models using Real-Time Maude. In Proc. of ICFEM’09, volume 5885 of
LNCS, pages 717–736. Springer, 2009.

12. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, 1992.

13. J. Bjørk, E. B. Johnsen, O. Owe, and R. Schlatte. Lightweight time modeling in
timed Creol. In Proc. RTRTS’10, volume 36 of Electronic Proceedings in Theo-
retical Computer Science, pages 67–81. CoRR, 2010.

14. S. Blazy and X. Leroy. Mechanized semantics for the Clight subset of the C
language. Journal of Automated Reasoning, 43(3):263–288, 2009.

15. A. Boronat. MOMENT: A Formal Framework for MOdel ManageMENT. PhD
thesis, Universitat Politècnica de València, Spain, 2007.

16. A. Boronat, J. A. Carśı, and I. Ramos. Automatic reengineering in MDA us-
ing rewriting logic as transformation engine. In Proc. CSMR’05, pages 228–231.
IEEE, 2005.

17. A. Boronat, R. Heckel, and J. Meseguer. Rewriting logic semantics and verification
of model transformations. In Proc. FASE’09, volume 5503 of LNCS, pages 18–33.
Springer, 2009.

18. A. Boronat and J. Meseguer. Algebraic semantics of OCL-constrained metamodel
specifications. In Proc. TOOLS EUROPE’09, volume 33 of Lecture Notes in
Business Information, pages 96–115. Springer, 2009.

31

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

19. A. Boronat and J. Meseguer. MOMENT2: EMF model transformations in Maude.
In A. Vallecillo and G. Sagardui, editors, Actas de las XIV Jornadas de Ingenieŕıa
del Software y Bases de Datos, JISBD 2009, San Sebastián, España, Septiembre
8-11, 2009, pages 178–179, 2009.

20. A. Boronat and J. Meseguer. An algebraic semantics for MOF. Formal Aspects
of Computing, 22(3-4):269–296, 2010.

21. A. Boronat and P. C. Ölveczky. Formal real-time model transformations in MO-
MENT2. In Proc. FASE’10, volume 6013 of LNCS, pages 29–43. Springer, 2010.

22. P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR: The system. In Software Development Environments (SDE),
pages 14–24, 1988.

23. C. Braga. Rewriting Logic as a Semantic Framework for Modular Structural Op-
erational Semantics. PhD thesis, Departamento de Informática, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro, Brazil, 2001.

24. C. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Mapping modular SOS
to rewriting logic. In Proc. LOPSTR’02, LNCS 2664, pages 262–277, 2002.

25. C. Braga and J. Meseguer. Modular rewriting semantics in practice. In Proc.
WRLA’04, volume 117, pages 393–416. ENTCS, Elsevier, 2004.

26. M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of programming
languages. ACM TOPLAS, 9(1):54–99, Jan. 1987.

27. R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci., 360(1-3):386–414, 2006.

28. F. Chalub. An implementation of Modular SOS in Maude. Master’s thesis,
Universidade Federal Fluminense, Niterói, RJ, Brazil, May 2005.

29. F. Chalub and C. Braga. Maude MSOS tool. Universidade Federal Fluminense,
www.ic.uff.br/ frosario/2o-workshop-vas-novembro-2004.pdf.

30. F. Chalub and C. Braga. A Modular Rewriting Semantics for CML. Journal of
Universal Computer Science, 10(7):789–807, 2004.

31. F. Chen, G. Roşu, and R. P. Venkatesan. Rule-based analysis of dimensional
safety. In Proc. RTA’03, volume 2706 of LNCS, pages 197–207, 2003.

32. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and C. Tal-
cott. All About Maude – A High-Performance Logical Framework. Springer LNCS
Vol. 4350, 2007.

33. M. Clavel and M. Egea. ITP/OCL: A rewriting-based validation tool for
UML+OCL static class diagrams. In Proc. AMAST’06, volume 4019 of LNCS,
pages 368–373. Springer, 2006.

34. M. Clavel and J. Santa-Cruz. ASIP + ITP: A verification tool based on algebraic
semantics. In F. J. López-Fraguas, editor, Actas de las V Jornadas sobre Progra-
mación y Lenguajes, PROLE 2005, Granada, España, Septiembre 14-16, 2005,
pages 149–158. Thomson, 2005.

35. D. Clément, J. Despeyroux, L. Hascoet, and G. Kahn. Natural semantics on the
computer. In K. Fuchi and M. Nivat, editors, Proceedings, France-Japan AI and
CS Symposium, pages 49–89. ICOT, 1986. Also, Information Processing Society
of Japan, Technical Memorandum PL-86-6.

36. M. d’Amorim and G. Roşu. An Equational Specification for the Scheme Language.
Journal of Universal Computer Science, 11(7):1327–1348, 2005. Also Technical
Report No. UIUCDCS-R-2005-2567, April 2005.

37. C. Ellison and G. Roşu. A formal semantics of C with applications. Technical
Report http://hdl.handle.net/2142/17414, University of Illinois, November 2010.

32

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

38. C. Ellison, T. F. Şerbănuţă, and G. Roşu. A rewriting logic approach to type
inference. In Recent Trends in Algebraic Development Techniques, volume 5486
of LNCS, pages 135–151. Springer, 2009.

39. A. Farzan. Static and dynamic formal analysis of concurrent systems and lan-
guages: a semantics-based approach. PhD thesis, University of Illinois at Urbana-
Champaign, 2007.

40. A. Farzan, F. Cheng, J. Meseguer, and G. Roşu. Formal analysis of Java programs
in JavaFAN. In Proc. CAV’04, volume 3114 of LNCS, 2004.

41. A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics of
programming languages. In Proc. WRLA’06, pages 61–78. ENTCS 176(4), 2007.

42. A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN. in
Proc. AMAST’04, Springer LNCS 3116, 132–147, 2004.

43. M. Felleisen and D. P. Friedman. Control operators, the SECD-machine, and the
λ-calculus. In 3rd Working Conference on the Formal Description of Programming
Concepts, pages 193–219, Denmark, Aug. 1986.

44. J. L. Fernández Alemán and J. A. Toval Álvarez. Can intuition become rigorous?
Foundations for UML model verification tools. In Proc. ISSRE’00, pages 344–355.
IEEE, 2000.

45. D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming Lan-
guages. MIT Press, Cambridge, MA, 2nd edition, 2001.

46. A. Garrido, J. Meseguer, and R. Johnson. Algebraic semantics of the C preproces-
sor and correctness of its refactorings. Technical Report UIUCDCS-R-2006-2688,
CS Dept., University of Illinois at Urbana-Champaign, February 2006.

47. J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT
Press, 1996.

48. J. Goguen and J. Meseguer. Security policies and security models. In Proceedings
of the 1982 Symposium on Security and Privacy, pages 11–20. IEEE, 1982.

49. J. A. Goguen and K. Parsaye-Ghomi. Algebraic denotational semantics using
parameterized abstract modules. In Formalizing Programming Concepts, pages
292–309. Springer-Verlag, 1981. LNCS, Volume 107.

50. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–37. Oxford University Press, 1994.

51. Y. Gurevich and J. K. Huggins. The semantics of the C programming language.
In Computer Science Logic, volume 702 of LNCS, pages 274–308, 1993.

52. R. Harper, F. Honsell, and G. D. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, 1993.

53. M. Hills, F. Chen, and G. Roşu. Pluggable Policies for C. Technical Report
UIUCDCS-R-2008-2931, University of Illinois at Urbana-Champaign, 2008.

54. M. Hills, T. F. Şerbănuţă, and G. Roşu. A rewrite framework for language defi-
nitions and for generation of efficient interpreters. In Proc. of WRLA’06, volume
176(4) of ENTCS, pages 215–231. Elsevier, 2007.

55. E. B. Johnsen, O. Owe, and E. W. Axelsen. A runtime environment for concurrent
objects with asynchronous method calls. In Proc. WRLA’04, volume 117. ENTCS,
Elsevier, 2004.

56. G. Kahn. Natural semantics. In Proc. STACS’87, volume 247 of LNCS, pages
22–39. Springer, 1987.

57. M. Katelman, S. Keller, and J. Meseguer. Concurrent rewriting semantics and
analysis of asynchronous digital circuits. In Proc. WRLA’10, volume 6381 of
LNCS, pages 140–156. Springer, 2010.

33

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

58. M. Katelman and J. Meseguer. A rewriting semantics for ABEL with applications
to hardware/software co-design and analysis. In Proc. WRLA’06, pages 47–60.
ENTCS 176(4), Elsevier, 2007.

59. M. Katelman and J. Meseguer. vlogsl: A Strategy Language for Simulation-
Based Verification of Hardware. In Proc. HVC’10, volume 6504 of LNCS, pages
129 – 145. Springer Berlin / Heidelberg, 2011.

60. M. Katelman, J. Meseguer, and S. Escobar. Directed-logical testing for functional
verification of microprocessors. In MEMOCODE’08, pages 89–100. IEEE, 2008.

61. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Press, 2000.

62. A. Knapp. Generating rewrite theories from UML collaborations. In K. Futatsugi,
A. T. Nakagawa, and T. Tamai, editors, Cafe: An Industrial-Strength Algebraic
Formal Method, pages 97–120. Elsevier, 2000.

63. A. Knapp. A Formal Approach to Object-Oriented Software Engineering. Shaker
Verlag, Aachen, Germany, 2001. PhD thesis, Institut für Informatik, Universität
München, 2000.

64. E. A. Lee. Modeling concurrent real-time processes using discrete events. Ann.
Software Eng., 7:25–45, 1999.

65. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proc. POPL’95, pages 333–343. ACM Press, 1995.

66. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, Second Edition, Volume 9, pages 1–87. Kluwer, 2002.

67. P. Meredith, M. Hills, and G. Roşu. A K definition of Scheme. Technical Report
UIUCDCS-R-2007-2907, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2007.

68. P. Meredith, M. Katelman, J. Meseguer, and G. Roşu. A formal executable
semantics of Verilog. In Proc. MEMOCODE’10, pages 179–188. IEEE, 2010.

69. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

70. J. Meseguer. Rewriting logic as a semantic framework for concurrency: a progress
report. In Proc. CONCUR’96, pages 331–372. Springer LNCS 1119, 1996.

71. J. Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In Proc. WADT’97, pages 18–61. LNCS 1376, 1998.

72. J. Meseguer. Software specification and verification in rewriting logic. In M. Broy
and M. Pizka, editors, Models, Algebras, and Logic of Engineering Software,
NATO Advanced Study Institute, Marktoberdorf, Germany, July 30 – August 11,
2002, pages 133–193. IOS Press, 2003.

73. J. Meseguer and C. Braga. Modular rewriting semantics of programming lan-
guages. in Proc. AMAST’04, Springer LNCS 3116, 364–378, 2004.

74. J. Meseguer, K. Futatsugi, and T. Winkler. Using rewriting logic to specify,
program, integrate, and reuse open concurrent systems of cooperating agents. In
Proceedings of the 1992 International Symposium on New Models for Software
Architecture, Tokyo, Japan, November 1992, pages 61–106. Research Institute of
Software Engineering, 1992.

75. J. Meseguer and P. C. Ölveczky. Formalization and correctness of the PALS ar-
chitectural pattern for distributed real-time systems. In Proc. ICFEM’10, volume
6447 of LNCS, pages 303–320, 2010.

76. J. Meseguer and G. Roşu. The rewriting logic semantics project. Theoretical
Computer Science, 373:213–237, 2007.

34

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

77. J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifications
to formal analysis tools. In Proc. IJCAR’04, volume 3097 of LNAI, pages 1–44.
Springer, 2004.

78. D. Miller. Representing and reasoning with operational semantics. In Proc.
IJCAR’06, volume 4130 of LNCS, pages 4–20, 2006.

79. J. Misra. Computation orchestration: A basis for wide-area computing. In
M. Broy, editor, Proc. of the NATO Advanced Study Institute, Engineering The-
ories of Software Intensive Systems Marktoberdorf, Germany, 2004. NATO ASI
Series, 2004.

80. J. Misra and W. R. Cook. Computation orchestration. Software and System
Modeling, 6(1):83–110, 2007.

81. E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Edinburgh University, Dept. of Computer Science, June 1989.

82. F. Mokhati and M. Badri. Generating Maude specifications from UML use case
diagrams. Journal of Object Technology, 8(2):319–136, 2009.

83. F. Mokhati, P. Gagnon, and M. Badri. Verifying UML diagrams with model
checking: A rewriting logic based approach. In Proc. QSIC’07, pages 356–362.
IEEE, 2007.

84. F. Mokhati, B. Sahraoui, S. Bouzaher, and M. T. Kimour. A tool for specifying
and validating agents’ interaction protocols: From Agent UML to Maude. Journal
of Object Technology, 9(3):59–77, 2010.

85. P. D. Mosses. Unified algebras and action semantics. In Proc. STACS’89, pages
17–35. Springer LNCS 349, 1989.

86. P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, Chapter 11. North-Holland, 1990.

87. P. D. Mosses. Modular structural operational semantics. J. Log. Algebr. Program.,
60–61:195–228, 2004.

88. G. Nadathur and D. Miller. An overview of λProlog. In K. Bowen and R. Kowal-
ski, editors, Fifth Int. Joint Conf. and Symp. on Logic Programming, pages 810–
827. The MIT Press, 1988.

89. S. Nakajima. Using algebraic specification techniques in development of object-
oriented frameworks. In Proc. FM’99, volume 1709 of LNCS, pages 1664–1683.
Springer, 1999.

90. S. Nakajima and K. Futatsugi. An object-oriented modeling method for algebraic
specifications in CafeOBJ. In Proc. ICSE’97. ACM, 1997.

91. M. Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-453, Univer-
sity of Cambridge, December 1998.

92. P. C. Ölveczky, A. Boronat, and J. Meseguer. Formal semantics and analysis of
behavioral AADL models in Real-Time Maude. In Proc. FMOODS’10, volume
6117 of LNCS, pages 47–62. Springer, 2010.

93. P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285(2):359–405, 2002.

94. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

95. N. S. Papaspyrou. A Formal Semantics for the C Programming Language. PhD
thesis, National Technical University of Athens, February 1998.

96. N. S. Papaspyrou. Denotational semantics of ANSI C. Computer Standards and
Interfaces, 23(3):169–185, 2001.

97. F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc. PLDI’88,
pages 199–208. ACM Press, 1988.

35

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

98. B. Pierce. Types and Programming Languages. MIT Press, 2002.
99. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic

and Algebraic Programming, 60-61:17–139, 2004. Previously published as techni-
cal report DAIMI FN-19, Aarhus University, 1981.

100. J. E. Rivera, F. Durán, and A. Vallecillo. On the behavioral semantics of real-
time domain specific visual languages. In Proc. WRLA’10, volume 6381 of LNCS,
pages 174–190. Springer, 2010.

101. G. Roşu. CS322, Fall 2003 - Programming Language Design: Lecture Notes.
Technical Report UIUCDCS-R-2003-2897, University of Illinois at Urbana-
Champaign, Dept. of Computer Science, Dec. 2003. Notes of a course taught
at UIUC.

102. G. Roşu and A. Ştefănescu. Matching logic: A new program verification approach
(nier track). In Proc. ICSE’11, 2011.

103. G. Roşu, C. Ellison, and W. Schulte. Matching logic: An alternative to
Hoare/Floyd logic. In Proc. AMAST’10, pages 142–162. LNCS 6486, 2010.

104. G. Roşu, R. P. Venkatesan, J. Whittle, and L. Leustean. Certifying optimality
of state estimation programs. In Proc. CAV’03, pages 301–314. Springer, 2003.
LNCS 2725.

105. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

106. R. Sasse. Taclets vs. rewriting logic – relating semantics of Java. Master’s thesis,
Fakultät für Informatik, Universität Karlsruhe, Germany, May 2005. Technical
Report in Computing Science No. 2005-16.

107. R. Sasse and J. Meseguer. Java+ITP: A verification tool based on hoare logic
and algebraic semantics. In Proc. WRLA’06, pages 29–46. ENTCS 176(4), 2007.

108. D. A. Schmidt. Denotational Semantics – A Methodology for Language Develop-
ment. Allyn and Bacon, Boston, MA, 1986.

109. D. Scott. Outline of a mathematical theory of computation. In Proceedings, Fourth
Annual Princeton Conference on Information Sciences and Systems, pages 169–
176. Princeton University, 1970. Also appeared as Technical Monograph PRG 2,
Oxford University, Programming Research Group.

110. D. Scott and C. Strachey. Toward a mathematical semantics for computer lan-
guages. In Microwave Research Institute Symposia Series, Vol. 21: Proc. Symp.
on Computers and Automata. Polytechnical Institute of Brooklyn, 1971.

111. T. F. Şerbănuţă. A Rewriting Approach to Concurrent Programming Language
Design and Semantics. PhD thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign, 2010.

112. T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A rewriting logic approach to oper-
ational semantics. Information and Computation, 207(2):305–340, 2009.

113. K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming
Languages. Addison-Wesley, 1995.

114. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer, 2001.

115. M.-O. Stehr and C. Talcott. PLAN in Maude: Specifying an active network
programming language. In Proc. WRLA’02, volume 117. ENTCS, Elsevier, 2002.

116. M.-O. Stehr and C. L. Talcott. Practical techniques for language design and
prototyping. In Dagstuhl Seminar 05081 on Foundations of Global Computing.
February 20 – 25, 2005. Schloss Dagstuhl, Wadern, Germany., 2005.

117. P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous
Pi-Calculus semantics and may testing in Maude 2.0. In Proc. WRLA’02. ENTCS,
Elsevier, 2002.

36

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

118. A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic
Specification Approach. World Scientific, 1996.

119. A. Verdejo. Maude como marco semántico ejecutable. PhD thesis, Facultad de
Informática, Universidad Complutense, Madrid, Spain, 2003.

120. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In Proc.
WRLA’02. ENTCS, Elsevier, 2002.

121. A. Verdejo and N. Mart́ı-Oliet. Two case studies of semantics execution in Maude:
CCS and LOTOS. Formal Methods in System Design, 27(1-2):113–172, 2005.

122. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 67(1-2):226–293, 2006.

123. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

124. P. Wadler. The essence of functional programming. In Proc. POPL ’92, pages
1–14, New York, NY, USA, 1992. ACM Press.

125. M. Wand. First-order identities as a defining language. Acta Informatica, 14:337–
357, 1980.

126. I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. A timed semantics of Orc.
Theor. Comput. Sci., 402(2-3):234–248, 2008.

127. M. Wirsing and A. Knapp. A formal approach to object-oriented software engi-
neering. In Proc. WRLA’96, volume 4 of ENTCS, pages 322–360, 1996.

128. M. Wirsing and A. Knapp. A formal approach to object-oriented software engi-
neering. Theoretical Computer Science, 285(2):519–560, 2002.

129. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38–94, 1994.

37

FCT'11, LNCS 6914, pp 1-37. Invited talk. 2011

