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Abstract. The RV system is the first system to merge the benefits of
Runtime Monitoring with Predictive Analysis. The Runtime Monitoring
portion of RV is based on the successful Monitoring Oriented Program-
ming system developed at the University of Illinois [6, 7, 9, 21, 5], while
the Predictive Analysis capability is a vastly expanded version of the
jPredictor System also developed at the University of Illinois [11, 14].
With the RV system, runtime monitoring is supported and encouraged
as a fundamental principle for building reliable software: monitors are
automatically synthesized from specified properties and integrated into the
original system to check its dynamic behaviors. When certain conditions
of interest occur, such as a violation of a specification, user-defined actions
will be triggered, which can be any code from information logging to
runtime recovery. The RV system supports the monitoring of parametric
properties that may specify a relationship between objects. Properties may
be defined using one of several logical formalisms, such as: extended regular
languages, context-free patterns, deterministic finite state machines, linear
temporal logic, and past time linear temporal logic. The system is designed
in such a way that adding new logical formalisms is a relatively simple
task
The predictive capabilities allow any of these monitoring specifications
to be extended to checking not just the actual runtime traces of program
execution, but any trace that may be inferred from a constructed casual
model. The Predictive Analysis also features built in algorithms for
race detection and atomicity violations, that are both highly useful in
concurrent system design and difficult to specify in terms of formal
specification languages.

1 Introduction
This paper presents an introduction to the RV System, the first system to combine
runtime monitoring and predictive analysis. Not only do these two components
work in isolation to ease the testing and debugging of software, but they also
work in conjunction: monitoring properties can be predicted against using the
predictive analysis capabilities of the system.

Runtime monitoring allows one to check safety properties against the execution
of a program during runtime. In the RV System, properties are parametric, which
means they take into account the given objects that are related to a given
property. For example, one may wish to state a property that an Enumeration
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from a given Vector in Java is not used after the Vector is updated. In this case
the parameters will be a Vector and an Enumeration, and the property will be
checked for every pair of Vector and Enumeration objects.

Predictive analysis allows one to check safety properties against all the viable
inferred executions of a program that can be generated by creating a causal
model from one run of the program. This is especially useful for checking safety
properties that rely on the behavior of concurrent code, such as finding races
and atomicity violations.

The remainder of this paper is as follows: Section 2 discusses a high level
overview of the RV system. Section 3 provides an explanation of runtime moni-
toring, including an explanation of parametric slicing and several examples of
how to use the monitoring portion of the RV system (referred to as RV-Monitor).
Additionally, some performance results are given. Section 4 discusses the concepts
necessary to understanding the predictive analysis of the RV system (RV-Predict),
as well as explaining, at a high level, several of the algorithms used in prediction.
As with monitoring, several examples and results are given.

2 System Overview

Fig. 1. System Overview

Fig. 1 shows the dependency diagram for the RV System. The RV System
consists of two components, RV-Monitor and RV-Predict, which are further
divided into sub-components. The arrows represent the direction of data flow.
In the case of components that generate code, the generated code is treated as
synonymous with the component that generates it in order to simplify the diagram.

1. RV-Monitor
(a) Runtime Monitoring performs actual monitoring on a program under

test. This is achieved by generating an AspectJ aspect that is weaved into
the program under test, which is then run to collect monitoring results.
This is discussed in detail in Section 3.

(b) Prediction Logging Aspect generates an aspect that is weaved into
the program under test that causes the program to generate logging
info for use in prediction of arbitrary properties. This is orthogonal to
the Instrumentation component of RV-Predict described below, and
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used in conjunction with it. The logging aspect is automatically inferred
from a specification designed for the Runtime Monitoring component.

(c) Prediction Monitor Library generates a library that communicates
with the Generic Property Detection component of RV-Predict.
The Generic Property Detection component sends events to the
Prediction Monitor Library which reports monitoring results back to
the Generic Property Detection component. The library is generated
from a specification designed for the Runtime Monitoring component.

(d) Parametric Slicing slices a trace based on parameter instances. This
component is used both by the Runtime Monitoring and Prediction
Monitor Library in order to properly find violations and validations
of parametric properties. This is explained in more detail in Section 3.1.

2. RV-Predict
(a) Instrumentation adds logging code to a program under test. This will

cause important information about a run of the program under test, such
as the creation of threads or the entry and exit of methods, to be output
by the Logging component.

(b) Logging runs the program under test which has been instrumented with
logging code via the Instrumentation component. If generic property
detection is performed, the program under test will be weaved with
the Prediction Logging Aspect generated aspect before logging com-
mences.

(c) Causal Slicing performs casual slicing of the logged trace of the program
using the concept of sliced causality first introduced in [11]. Causal slicing
is able to reduce the amount of necessary information in a trace, which
allows the various prediction steps to find more viable linearizations of
the trace. It is described in detail in Section 4.1.

(d) Race Detection performs race detection. This is achieved by determin-
ing when to accesses to the same variable, at least one of which is a write,
may be reordered while still preserving the causal dependences of the
program. It is described in more detail in Section 4.2.

(e) Atomicity Violation Detection finds violations in the intended atom-
icity of a program. More detail on this can be found in [14].

(f) Generic Property Detection detects violations and validations of
given generic specifications by discovering possible linearizations that
are causally possible and feeding the events of these linearizations to a
library generated by the Prediction Monitor Library. These specifi-
cations are written using the same syntax as those used by the Runtime
Monitoring component. It is described in more detail in Section 4.2.

3 Runtime Monitoring
Monitoring executions of a system against expected properties plays an impor-
tant role not only in different stages of software development, e.g., testing and
debugging, but also in the deployed system as a mechanism to increase system
reliability. This is achieved by allowing the monitors to perform recovery actions in
the case that a specification is matched, or fails to match. Numerous approaches,
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UnsafeMapIterator(Map m, Collection c, Iterator i){
event create coll after(Map m) returning(Collection c)} :

(call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create iter after(Collection c) returning(Iterator i) :

call(* Collection+.iterator()) && target(c) {}
event use iter before(Iterator i) : call(* Iterator+.next()) && target(i) {}
event update map after(Map m) : call(* Map.remove*(..)) || call(* Map.put*(..))

|| call(* Map.putAll*(..)) || call(* Map.clear())) && target(m) {}
fsm: start [ create coll -> s1 ]

s1 [ update map -> s1, create iter -> s2 ]
s2 [ use iter -> s2, update map -> s3 ]
s3 [ update map -> s3, uset iter -> end ]
end []

@end { System.out.println("fsm: Accessed invalid Iterator!"); RESET; }
ere: create coll update map* create iter use iter* update map+ use iter

@match { System.out.println("ere: Accessed Invalid Iterator!"); RESET; }
cfg: S -> create coll Updates create iter Nexts update map Updates use iter,

Nexts -> Nexts use iter | epsilon
Updates -> Updates update map | epsilon

@match { System.out.println("cfg: Accessed Invalid Iterator!"); RESET; }
ftltl: <>(create coll and <> (create iter and <> (update map and <> use iter)))

@validation { System.out.println("ftltl: Accessed Invalid Iterator!"); RESET; }
ptltl: use iter ->

((<*> (create iter and (<*> create coll))) -> ((not update map) S create iter))
@violation { System.out.println("prltl: Accessed Invalid Iterator!"); RESET; }

}

start s1 s2 s3 end
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Fig. 2. FSM, ERE, CFG, FTLTL, and PTLTL UnsafeMapIterator. Inset: graphical
depiction of the property.

such as [18, 15, 8, 3, 1, 2, 20, 17, 10], have been proposed to build effective and
efficient monitoring solutions for different applications. More recently, monitoring
of parametric specifications, i.e., specifications with free variables, has received
increasing interest due to its effectiveness at capturing system behaviors, such as
the one presented in Fig. 2, which encapsulates the proper use of Map Iterators.

It is highly non-trivial to monitor such parametric specifications efficiently.
It is possible to see a tremendous number of parameter instances during the
execution of a monitored program. For example, it is not uncommon to see
hundreds of thousands of iterators in a program, which will generate hundreds of
thousands of parameter instances in the UnsafeMapIterator specification in Fig. 2.

Several approaches have been introduced to support the monitoring of para-
metric specifications, including Eagle [3], Tracematches [1, 2], PQL [20], and
PTQL [17]. However, they are all limited in terms of supported specification
formalisms. Other techniques, e.g., Eagle, Tracematches, PQL and PTQL, follow
a formalism-dependent approach, that is, they have their parametric specification
formalisms hardwired, e.g., regular patterns (like Tracematches), context-free pat-
terns (like PQL) with parameters, etc., and then develop algorithms to generate
monitoring code for the particular formalisms. Although this approach provides a
feasible solution to monitoring parametric specifications, we argue that it not only
has limited expressiveness, but also causes unnecessary complexity in developing
optimal monitor generation algorithms, often leading to inefficient monitoring. In
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fact, the experiments summarized in Section 3.3 shows that RV-Monitor generates
more efficient monitoring code than other existing tools.

Fig. 2 shows a RV-Monitor specification of the UnsafeMapIterator property.
The idea of UnsafeMapIterator is to catch an intricate safety property of Java.
There are several methods to create Collection (essentially sets) from Java Maps.
One may then create Java Iterators to traverse these Collections. However, if
the Map is updated, the Iterators are invalidated.

The specification uses five different formalisms: finite state machines (FSM),
extended regular expressions (ERE), context-free grammars (CFG), future-time
linear temporal logic (FTLTL), and past-time linear temporal logic (PTLTL).
Because each of the properties in Fig. 2 is the same, five messages will be reported
whenever an Iterator is incorrectly used after an update to the underlying Map. We
show all five of them to emphasize the formalism-independence of our approach.
Under normal circumstances a user would chose just one formalism.

On the first line, we name the specified property and give the parameters used
in the specification. Then we define the involved events using the AspectJ syntax.
For example, create coll is defined as the return value of functions values and
keyset of Map. We adopt AspectJ syntax to define events in RV-Monitor because
it is an expressive language for defining observation points in a Java program. As
mentioned, every event may instantiate some parameters at runtime. This can
be seen in Fig. 2: create coll will instantiate parameters m and c using the target
and the return value of the method call. When one defines a pattern or formula
there are implicit events, which must begin traces; we call them monitor creation
events. For example, in a pattern language like ERE, the monitor creation events
are the first events that appear in the pattern. We assume a semantics where
events that occur before monitor creation events are ignored.

3.1 Parametric Slicing

# Event # Event

1 create coll〈m1, c1〉 7 update map〈m1〉
2 create coll〈m1, c2〉 8 use iter〈i2〉
3 create iter〈c1, i1〉 9 create coll〈m2, c3〉
4 create iter〈c1, i2〉 10 create iter〈c3, i4〉
5 use iter〈i1〉 11 use iter〈i4〉
6 create iter〈c2, i3〉

Fig. 3. Possible execution trace over the events specified in UnsafeMapIterator.

RV-Monitor automatically synthesizes AspectJ instrumentation code from
the specification, which is weaved into the program we wish to monitor by any
standard AspectJ compiler. In this way, executions of the monitored program
will produce traces made up of events defined in the specification, as those in Fig.
2. Consider the example eleven event trace in Fig. 3 over the events defined in
Fig. 2. The # column gives the numbering of the events for easy reference. Every
event in the trace starts with the name of the event, e.g., create coll, followed
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by the parameter binding information, e.g., 〈m1, c1〉 that binds parameters m
and c with a map object m1 and a collection c1, respectively. Such a trace is
called a parametric trace since it contains events with parameters.

Our approach to monitoring parametric traces against parametric properties
is based on the observation that each parametric trace actually contains multiple
non-parametric trace slices, each for a particular parameter binding instance.
Intuitively, a slice of a parametric trace for a particular parameter binding consists
of names of all the events that have identical or less informative parameter
bindings. Informally, a parameter binding b1 is identical or less informative than
a parameter binding b2 if and only if the parameters for which they have bindings
agree, and b2 binds either an equal number of parameters or more parameters:
parameter 〈m1, c2〉 is less informative than 〈m1, c2, i3〉 because the parameters
they both bind, m and c, agree on their values, m1 and c2, respectively, and
〈m1, c2, i3〉 binds one more parameter. From here on we will simply say less
informative to mean identical or less informative. Fig. 4 shows the trace slices
and their corresponding parameter bindings contained in the trace in Fig. 3.
The Status column denotes the monitor output category that the slice falls into
(for ERE). In this case everything but the slice for 〈m1, c1, i2〉, which matches
the property, is in the “?” (undecided) category. For example, the trace for the
binding 〈m1, c1〉 contains create coll update map (the first and seventh events
in the trace) and the trace for the binding 〈m1, c1, i2〉 is create coll create iter
update map use iter (the first, fourth, seventh, and eighth events in the trace).

Instance Slice Status

〈m1〉 update map ?
〈m1, c1〉 create coll update map ?
〈m1, c2〉 create coll update map ?
〈m2, c3〉 create coll ?
〈m1, c1, i1〉 create coll create iter use iter update map ?
〈m1, c1, i2〉 create coll create iter update map use iter match
〈m1, c2, i3〉 create coll create iter update map ?
〈m2, c3, i4〉 create coll create iter use iter ?

Fig. 4. Slices for the trace in Fig. 3.

Based on this observation, our approach creates a set of monitor instances
during the monitoring process, each handling a trace slice for a parameter binding.
Fig. 5 shows the set of monitor instances created for the trace in Fig. 3, each
monitor labeled by the corresponding parameter binding. This way, the monitor
does not need to handle the parameter information and can employ any existing
technique for ordinary, non-parametric traces, including state machines and push-
down automata, providing a formalism-independent way to check parametric
properties. When an event comes, our algorithm will dispatch it to related
monitors, which will update their states accordingly. For example, the seventh
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〈m1, c1〉

〈m1, c1, i1〉

〈m2, c3〉

〈m1, c1, i2〉

〈m1, c2〉

〈m1, c2, i3〉〈m2, c3, i4〉

Fig. 5. A parametric monitor with corresponding parameter instance monitors.

event in Fig. 3, update map〈m1〉, will be dispatched to monitors for 〈m1, c1〉,
〈m1, c2〉, 〈m1, c1, i1〉, 〈m1, c1, i2〉, and 〈m1, c2, i3〉. New monitor instances will be
created if the event contains new parameter instances. For example, when the
third event in Fig. 3, create iter〈c1, i1〉, is received, a new monitor will be created
for 〈m1, c1, i1〉 by combining 〈m1, c1〉 in the first event with 〈c1, i1〉.

An algorithm to build parameter instances from observed events, like the
one introduced in [12], may create many useless monitor instances leading to
prohibitive runtime overheads. For example, Fig. 4 does not need to contain the
binding 〈m1, c3, i4〉 even though it can be created by combining the parameter
instances of update map〈m1〉 (the seventh event) and create iter〈c3, i4〉 (the tenth
event). It is safe to ignore this binding here because m1 is not the underlying
map for c3, i4. It is critical to minimize the number of monitor instances created
during monitoring. The advantage is twofold: (1) that it reduces the needed
memory space, and (2), more importantly, monitoring efficiency is improved since
fewer monitors are triggered for each received event. RV-Monitor uses several
algorithms in order to prevent the creation of instances that are known to be
unneeded, as well as to remove those that become unneeded during execution.

3.2 Monitoring Example
Here we give a simple example of monitoring using RV-Monitor, consider the
following Java program:

bash-3.2$ cat SafeEnum_1.java
import java.util.*;
public class SafeEnum_1 {

public static void main(String[] args){
Vector<Integer> v = new Vector<Integer>();
v.add(1); v.add(2); v.add(4); v.add(8);
Enumeration e = v.elements();
int sum = 0;
if(e.hasMoreElements()){

sum += (Integer)e.nextElement();
v.add(11);

}
while(e.hasMoreElements()){

sum += (Integer)e.nextElement();
}
v.clear();
System.out.println("sum: " + sum);
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}
}

This program violates a basic multi-object protocol, namely that a vector
should not be modified during enumeration. For performance reasons, the JVM
does not perform this runtime check, so one can end up with a subtle, non-
deterministic and hard to check error in one’s program. Suppose now that one
wants to monitor the program above using rv-monitor. All one needs to do is to
create a subdirectory called mop and to place in this directory all the property
specifications against which one wants to monitor the program. In our case,

bash-3.2$ cat mop/SafeEnum.mop
package mop;
import java.io.*;
import java.util.*;

SafeEnum(Vector v, Enumeration e) {
event create after(Vector v) returning(Enumeration e) :

call(Enumeration Vector+.elements())
&& target(v) {}

event updatesource after(Vector v) :
(call(* Vector+.remove*(..))

|| call(* Vector+.add*(..))
|| call(* Vector+.clear(..))
|| call(* Vector+.insertElementAt(..))
|| call(* Vector+.set*(..))
|| call(* Vector+.retainAll(..)))
&& target(v){}

event next before(Enumeration e) :
call(* Enumeration+.nextElement())

&& target(e){}

ere : create next* updatesource updatesource* next
@match {

System.out.println("improper enumeration usage at " + __LOC);
__RESET;

}
}

Now one can call the rv-monitor program, which does a series of operations
under the hood (compiles the program, compiles the specification, weaves the
generated monitor with the program binary, then runs the resulting monitored
program) and only shows the user the relevant information:

bash-3.2$ rv-monitor SafeEnum_1
-Processing ./mop/SafeEnum.mop
SafeEnumMonitorAspect.aj is generated

SafeEnum_1.java
Executing your program:
improper enumeration usage at SafeEnum_1.java:23
sum: 26
Done

The message above makes it clear to the user that the program violates
the specification.

3.3 Monitoring Results
Our previous work on monitoring, in particular [21, 5] shows that, in general the
overhead of monitoring is around 10%. However, some exceptionally intensive
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properties, such as iterator based properties in the bloat and pmd benchmarks
from DaCapo [4] showed exceptionally large overheads. Recent advances have
lowered these overheads considerably, as can be seen in Fig. 6 where JavaMOP
is our earlier system and RV-Monitor is our current system.

UnsafeMapIterator
JavaMOP RV-Monitor

bloat 935% 194%
pmd 196% 74%

Fig. 6. JavaMOP Vs. RV-Monitor

4 Predictive Analysis
Concurrent systems in general and multithreaded systems in particular may
exhibit different behaviors when executed at different times. This inherent non-
determinism makes multithreaded programs difficult to analyze, test and debug.
Predictive analysis is able to detect, correctly, concurrency errors from observing
execution traces of multithreaded programs. By “correct” or “sound” prediction
of errors we mean that there are no false alarms. The program is automatically
instrumented to emit runtime events for use in the Causal Slicing component,
and the various detection components on the right side of Fig. 1. The particular
execution that is observed need not hit the error; yet, errors in other executions
can be correctly predicted together with counter-examples leading to them.

There are several other approaches also aiming at detecting potential concur-
rency errors by examining particular execution traces. Some of these approaches
aim at verifying general purpose properties [25, 26], including temporal ones, and
are inspired from debugging distributed systems based on Lamport’s happens-
before causality [19]. Other approaches work with particular properties, such as
data-races and/or atomicity. [24] introduces a first lock-set based algorithm to
detect data-races dynamically, followed by many variants aiming at improving
its accuracy. For example, an ownership model was used in [23] to achieve a
more precise race detection at the object level. [22] combines the lock-set and the
happen-before techniques. The lock-set technique has also been used to detect
atomicity violations at runtime, e.g., the reduction based algorithms in [16] and
[27]. [27] also proposes a block-based algorithm for dynamic checking of atomicity
built on a simplified happen-before relation, as well as a graph-based algorithm
to improve the efficiency and precision of runtime atomicity analysis.

Previous efforts tend to focus on either soundness or coverage: those based on
happens-before try to be sound, but have limited coverage over interleavings, thus
missing errors; lock-set based approaches have better coverage but suffer from
false alarms. RV-Predict aims at improving coverage without giving up soundness
or genericity of properties. It combines sliced causality [11], a happen-before
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causality drastically but soundly sliced by removing irrelevant causalities using
semantic information about the program obtained with an apriori static analysis,
with lock-atomicity. Our predictive runtime analysis technique can be understood
as a hybrid of testing and model checking. Testing because one runs the system
and observes its runtime behavior in order to detect errors, and model checking
because the special causality with lock-atomicity extracted from the running
program can be regarded as an abstract model of the program, which can further
be investigated exhaustively by the observer in order to detect potential errors.

4.1 Causal Slicing

We briefly describe our technique for extracting from an execution trace of a
multithreaded system the sliced causality relation corresponding to some property
of interest ϕ. Our technique is offline, in the sense that it takes as input an
already generated execution trace (see Fig. 1); that is because causal slicing must
traverse the trace backwards. Our technique consists of two steps: (1) all the
irrelevant events (those which are neither property events nor events on which
property events are dependant) are removed from the original trace, obtaining
the (ϕ)-sliced trace; and (2) a vector clock (VC) based algorithm is applied on
the sliced trace to capture the sliced causality partial order.

Extracting Slices Our goal here is to take a trace ξ and a property ϕ, and to
generate a trace ξϕ obtained from ξ filtering out all its events which are irrelevant
for ϕ. When slicing the execution trace, one must nevertheless keep all the property
events. Moreover, one must also keep any event e with e (@ctrl ∪ @data)+ e′ for
some property event e′. This can be easily achieved by traversing the original
trace backwards, starting with ξϕ empty and accumulating in ξϕ events that
either are property events or have events depending on them already in ξϕ. One
can employ any off-the-shelf analysis tool for data- and control- dependence; e.g.,
RV-Predict uses termination-sensitive control dependence [13].

Thread t1: 

x = 0 

x = 1 

y = 0 

Thread t2: 

y = 1; 

if (x == 0) { 

x = y 

} 

e 3 : read x e 2 : write x 

T 1 
T 2 

e 6 : write y 

e 4 : write x 

e 1 write y 

e 5 : read y 

A. Example program B. Example Trace 

Fig. 7. Example for relevance dependence
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To understand the process, consider the example in Fig. 7, threads T1 and
T2 are executed as shown by the solid arrows (A), yielding the event sequence
“e1, e2, e3, e4, e5, e6” (B). Suppose the property to check refers only to y; the
property events are then e1, e5, and e6. Events e2 and e3 are immediately marked
as relevant, since e2 @data e3 @ctrl e5. If only closure under control- and data-
dependence were used to compute the relevant events, then e4 would appear to be
irrelevant, so one may conclude that “e2, e6, e1, e3, e5” is a sound permutation;
there is, obviously, no execution that can produce that trace, so one reported
a false alarm if that trace violated the original property on y. Consequently,
e4 is also a relevant event and e3 @rlvn e4.

Unfortunately, one backwards traversal of the trace does not suffice to correctly
calculate all the relevant events. Reconsider Fig. 7. When the backward traversal
first reaches e4, it is unclear whether e4 is relevant or not, because we have not
seen e3 and e2 yet. Thus a second scan of the trace is needed to include e4. Once
e4 is included in ξϕ, it may induce other relevance dependencies, requiring more
traversals of the trace to include them. This process would cease only when no
new relevant events are detected and thus resulting sliced trace stabilizes. If
one misses relevant events like e4 then one may “slice the trace too much” and,
consequently, one may produce false alarms. Because at each trace traversal
some event is added to ξϕ, the worse-case complexity of the sound trace slicing
procedure is square in the number of events. Since execution traces can be huge,
in the order of billions of events4, any trace slicing algorithms that is worse than
linear may easily become prohibitive. For that reason, RV-Predict traverses the
trace only once during slicing, thus achieving an approximation of the complete
slice that can, in theory, lead to false alarms. However, our experiments show
that this approximation is actually very precise in practice: we have yet to find
a false alarm in any of our experiments.

Vector Clocking Vector clocks [19] are routinely used to capture causal par-
tial orders in distributed and concurrent systems. A VC -based algorithm was
presented in [26] to encode a conventional multithreaded-system “happen-before”
causal partial order on the unsliced trace. We next adapt that algorithm to work
on our sliced trace and thus to capture the sliced causality. Recall that a vector
clock (VC ) is a function from threads to integers, VC : T → Int. We say that
VC ≤ VC ′ iff ∀t ∈ T,VC(t) ≤ VC ′(t). The max function on VCs is defined as:
max(VC1, ...,VCn)(t) = max(VC1(t), ...,VCn(t)) ([26]).

Before we explain our VC algorithm, let us introduce our event and trace
notation. An event is a mapping of attributes into corresponding values. One event
can be, e.g., e1 : (counter = 8, thread = t1, stmt = L11, type = write, target =
a, state = 1), which is a write on location a with value 1, produced at statement
L11 by thread t1. One can include more information into an event by adding new
attribute-value pairs. We use key(e) to refer to the value of attribute key of event

4 RV-Predict compresses traces to keep sizes manageable. Reversing the trace is done
at logging time by outputting a buffer of events backwards into separate archives.
The archives are then read by the trace slicer in reverse order.
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e. To distinguish different occurrences of events with the same attribute values,
we add a designated attribute to every event, counter, collecting the number of
previous events with the same attribute-value pairs (other than the counter). The
trace for the vector clocking step is the ϕ-sliced trace ξϕ obtained in Section 4.1.

Intuitively, vector clocks are used to track and transmit the causal partial
ordering information in a concurrent computation, and are typically associated
with elements participating in such computations, such as threads, processes,
shared variables, messages, signals, etc. If VC and VC′ are vector clocks such
that VC(t) ≤ VC’(t) for some thread t, then we can say that VC’ has newer
information about t than VC. In our VC technique, every thread t keeps a
vector clock, VCt, maintaining information about all the threads obtained both
locally and from thread communications (reads/writes of shared variables). Every
shared variable is associated with two vector clocks, one for writes (VCw

x ) used
to enforce the order among writes of x, and one for all accesses (VCa

x) used to
accumulate information about all accesses of x. They are then used together
to keep the order between writes and reads of x. Every property event e found
in the analysis is associated a VC attribute, which represents the computed
causal partial order. We next show how to update these VCs when an event
e is encountered during the analysis (the third case can overlap the first two;
if so, the third case will be handled first):

1. type(e) = write, target(e) = x, thread(e) = t (the variable x is written in
thread t) and x is a shared variable. In this case, the write vector clock
VCw

x is updated to reflect the newly obtained information; since a write is
also an access, the access VC of x is also updated; we also want to capture
that t committed a causally irreversible action, by updating its VC as well:
VCt ← VCa

x ← VCw
x ← max(VCa

x,VCt).
2. type(e) = read, target(e) = x, thread(e) = t (the variable x is read in t), and
x is a shared variable. Then the thread updates its information with the
write information of x (we do not want to causally order reads of shared
variables!), and x updates its access information with that of the thread:
VCt ← max(VCw

x ,VCt) and then VCa
x ← max(VCx

a,VCt).
3. e is a property event and thread(e) = t. In this case, let VC(e) := VCt. Then

VCt(t) is increased to capture the intra-thread total ordering: VCt(t) ←
VCt(t) + 1.

4.2 Race and Generic Property Detection
The basic idea of race detection is simple: check for accesses to the same variable
with incomparable VCs. However, it is easy to note that this has quadratic worst
case complexity, because each access must be compared against every other access.
Clearly, when billions of accesses may occur in a trace, this is unacceptable. Not
only would this be unbearable slow, but it would be impossible to even fit the
accesses in memory to perform the comparisons.

To alleviate this, as well as to make it more easy to deal with streaming
to and from the disk when memory is overfull, we use the idea of a window of
comparisons, ignoring pairs of events that trivially cannot have incomparable
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vector clocks. If at some point we note the second access, aT1
2 in thread T1 must

occur after the fifth access, aT2
5 , in thread T2 we know that we do not need to

check the aT1
2 against any further accesses in thread T2 because all accesses in a

given thread must be totally ordered (and the traces are backwards).
To implement this we use a set5 of search states. Each search state abstracts the

notion of checking accesses in two threads. Each search state keeps an iterator to
the list of accesses representing one of its two given threads. The algorithm begins
by keeping search states for each pair of threads in a set (actually not all threads
are known immediately, but we will elide this detail for ease of understanding).
Each state is advanced by considering the accesses pointed to by each of its
iterators. If the iterators are incomparable, three new search states are added to
the set. One state where one iterator is advanced, one where the other iterator
is advanced, and one where both iterators are advanced. If the two accesses are
incomparable and are not protected by a shared lock, a race is reported. If, one
the other hand, the vector clocks of the two accesses in question are ordered,
only one of the iterators is advanced, for example, if the access in thread t of the
search state must take place before the access in thread t′, the iterator pointing
to the access from thread t is advanced, and no other states are generated.

This idea is easily extrapolated to generic property detection. One caveat,
however, is that the iterators of the search states point to streams of monitoring
events like those describes in Section 3 rather than accesses to shared variables.
Also, rather than keeping iterators to only two threads in a search state, each
search state keeps an iterator to every thread in the program. Each search
state, additionally, keeps a reference to a monitor provided by the Prediction
Monitor Library component of Fig. 1. When a search state is advanced, a new
set of states is created and added to the overall set of states the same as for
race detection, save that the advanced iterators are the subset of iterators with
incomparable VCs, and that states that end up with the same monitor state
are collapsed immediately into one chosen representative search state. For each
search state thus generated, the event uncovered by advancing one of the iterators
is given to its monitor to check for property violation or validation. While this
is exponential in the worst case, in practice most search states are collapsed
because they have identical monitor states and positions in the event stream.

4.3 Prediction Example
Here we give a simple example of race prediction using RV-Predict:

bash-3.2$ cat simple/Simple.java
package simple;
public class Simple extends Thread {

static public int i = 1;
public static void main(String[] args) {

(new Simple()).start();
(new Simple()).start();

}
public void run() {

i++;

5 We must use a set to avoid duplicate search states, or the algorithm can quickly
explode.
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System.out.println(i);
}

}

This program creates two threads, each incrementing the shared variable
i and then printing it. This program has two dataraces, one on the variable i
and one on the output. All one has to do is to compile this program with javac
and then pass the binary to RV-Predict:

bash-3.2$ javac simple/Simple.java
bash-3.2$ RV-Predict simple.Simple
Instrumenting...
...Done
Executing the instrumented code...

2
3

...Done
Running Race Detection...

Determining race candidates
The following are our race candidates:
| java.io.PrintStream (instance #657291792) | simple.Simple.i

Predicting for race candidate: java.io.PrintStream (instance #657291792)

/--- Race found on java.io.PrintStream (instance #657291792) ---\
| Write at simple.Simple:10 |
| Write at simple.Simple:10 |
\---------------------------------------------------------------/

Predicting for race candidate: simple.Simple.i

/--- Race found on simple.Simple.i ---\
| Read at simple.Simple:10 |
| Write at simple.Simple:9 |
\-------------------------------------/

...Done
bash-3.2$

Both races were detected from one run of the program, even though the
observed run behaved normally (the output was 2,3). The different components
of RV-Predict from Fig. 1 can be seen in the above output. “Execution the
instrumented code” corresponds to the Logging component. “Instrumenting”
and “Race Detection” are self-evident.

4.4 Prediction Results

Fig. 8 summarizes the differences in real time and disk usage between the original
jPredictor system first presented in [14] and RV-Predict for race prediction as
measured on a system with two quad core Xeon E5430 processors running at
2.66GHz and 16 GB of 667 MHz DDR2 memory running Redhat Linux. On
very small examples jPredictor occasionally outperforms RV-Predict, but on
anything substantial RV-Predict is a vast improvement. Account, elevator, and
tsp are actual programs used to benchmark parallel systems. Huge, medium,
small, and the mixed locks examples are microbenchmarks that we designed to
test particularly difficult aspects of race detection, such as millions of accesses
to the same shared variable in huge.
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jPredictor RV-Predict

Name Input Real Time Disk Usage Real Time Disk Usage

account - 0:02.07 236K 0:04.31 360K
elevator - 5:55.29 63M 1:20.31 864K
tsp map4 2 5:30.87 16M 1:33.44 744K
tsp map5 2 10:10.19 17M 2:20.95 868K
tsp map10 2 8:25:04.00 442M 29:27.13 2.8M
huge - crash crash 0:42.22 13M
medium - crash crash 0:06.12 840K
small - crash crash 0:05.99 292K
mixedlockshuge - 8:13:40.00 250M 0:13.95 2.9M
mixedlocksbig - 5:44.89 25M 0:07.03 496K
mixedlocksmedium - 0:08.92 2.7M 0:07.25 308K
mixedlockssmall - 0:05.46 1.5M 0:05.67 296K

Fig. 8. jPredictor Vs. RV-Predict
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von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’06). pp. 169–190. ACM (2006)
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11. Chen, F., Roşu, G.: Parametric and Sliced Causality. In: Computer Aided Verifica-
tion (CAV’07). LNCS, vol. 4590, pp. 240–253. Springer (2007)
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