
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

An Overview of the MOP Runtime Verification Framework?

Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, Grigore Roşu

Department of Computer Science, University of Illinois at Urbana-Champaign
201 N Goodwin Ave
Urbana, IL, 61801, USA
e-mail: {pmeredit,djin3,dgriffi3,-,grosu}@cs.uiuc.edu

November 5, 2011

Abstract. This article gives an overview of the Monitoring
Oriented Programming framework (MOP). In MOP, runtime
monitoring is supported and encouraged as a fundamental prin-
ciple for building reliable systems. Monitors are automatically
synthesized from specified properties and are used in conjunc-
tion with the original system to check its dynamic behaviors.
When a specification is violated or validated at runtime, user-
defined actions will be triggered, which can be any code, such
as information logging or runtime recovery. Two instances
of MOP are presented: JavaMOP (for Java programs) and
BusMOP (for monitoring PCI bus traffic). The architecture
of MOP is discussed, and an explanation of parametric trace
monitoring and its implementation is given. A comprehensive
evaluation of JavaMOP attests to its efficiency, especially in
comparison with similar systems. The implementation of Bus-
MOP is discussed in detail. In general, BusMOP imposes no
runtime overhead on the system it is monitoring.

1 Introduction

Runtime monitoring of requirements can increase the relia-
bility of the resulting hardware or software systems. There is
an increasingly broad interest in uses of monitoring in soft-
ware development and analysis, as reflected, for example, by
abundant approaches proposed recently ([4, 12, 16, 19, 25, 26,
29, 31, 43, 46] among others), and also by the runtime veri-
fication (RV) and the formal aspects of testing (FATES) ini-
tiatives [10, 30, 31, 34, 35, 58] among many others. Hardware
approaches to monitoring have seen less active research. Most
attempts in hardware to perform monitor tasks have been for
the purposes of performance measures or temperature con-
trol. [45] is an approach that generates monitors from formal

? Supported in part by NSF grants CCF-0916893, CNS-0720512, and
CCF-0448501, by NASA contract NNL08AA23C, and by a Samsung SAIT
grant.

properties that are implemented in hardware, but these hard-
ware monitors are actually used to monitor software programs.

Monitoring oriented programming (MOP) [20–23, 47] is
a generic monitoring framework that integrates specification
and implementation by checking the former against the lat-
ter at runtime. In MOP, one specifies desired properties us-
ing logical formalisms with actions to handle violations or
validations of the specified property. MOP tools will then
automatically synthesize monitors from property specifica-
tions and integrate them within the application together with
user-provided handling code.

1.1 Related Work

We next discuss relationships between the MOP framework
and other related paradigms, including AOP, design by con-
tract, runtime verification, and other trace monitoring ap-
proaches. Broadly speaking, all the approaches discussed be-
low are instances of runtime monitoring. Interestingly, even
though most of the systems mentioned below target the same
programming languages, no two of them share the exact same
logical formalism for expressing properties. This observation
strengthens our belief that probably there is no silver bullet
logic (or super logic) for all purposes. A major objective in
the design of the MOP framework was to avoid hardwiring
particular logical formalisms into the system.

1.1.1 Aspect Oriented Programming (AOP) Languages

Since its proposal in [42], AOP has been increasingly adopted
and many tools have been developed to support AOP in dif-
ferent programming languages, e.g., AspectJ and JBoss [40]
for Java, and AspectC++ [6] for C++. Built on these general
AOP languages, numerous extensions have been proposed to
provide domain-specific features for AOP. Among these exten-
sions, Tracematches [4] and J-LO [16] support history(trace)-
based aspects for Java.

2 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

Tracematches enables the programmer to trigger the ex-
ecution of certain code by specifying a parametric regular
pattern of events in a computation trace, where the events are
defined over entry/exit of AspectJ pointcuts. When the pattern
is matched during the execution, the associated code will be
executed. In this sense, Tracematches supports trace-based
pointcuts for AspectJ. J-LO is a tool for runtime-checking
temporal assertions. These temporal assertions are specified
using parametric linear temporal logic (LTL) and the syntax
adopted in J-LO is similar to Tracematches’ except that the
properties are specified in a different formalism. J-LO also
uses the same parametricity semantics as Tracematches. J-LO
mainly focuses on checking at runtime properties rather than
providing programming support. In J-LO, the temporal asser-
tions are inserted into Java files as annotations that are then
compiled into runtime checks. Both Tracematches and J-LO
support parametric events, i.e., free variables can be used in
the specified properties and will be bound to specific values at
runtime for matching events.

The MOP framework has logic plugins, which encapsulate
different logical formalisms and allow it to capture the capabil-
ities of Tracematches and J-LO. JavaMOP is the instantiation
of the MOP framework for Java programs (see Section 3.2).

JavaMOP allows for two different modes of matching
traces, referred to as total trace matching and suffix trace
matching. Total is the default mode of JavaMOP, while suffix
mode is used by prefixing a JavaMOP property with the suffix
modifier (see Fig. 7 and the accompanying text).

With total matching, for example, with the pattern a∗b, a
sequence of events abb will trigger the validation handler of
the generated MOP monitor only at the first b event and then
the violation handler (if any) at the second b.

With suffix matching, however, the pattern will be matched
twice, once for each b event: the first matches either the whole
trace a b or the partial trace consisting of just the first b with
zero occurrences of a, while the second matches the subse-
quent partial trace b (the second b in the trace) with zero oc-
currences of a; thus, the related advice will be executed twice.

With suffix matching one can count matches of a pattern
open close without a need to reset the monitor after each
match, as would be required with total match monitoring.
On the other hand, total trace matching is more suitable for
runtime verification of formal properties, because it is the
only semantics that makes sense for some logical formalisms,
such as LTL, and thus many users expect this behavior for
pattern languages like regular expressions and context-free
grammars, as well.

J-LO can be captured by the JavaMOP with total matching
because LTL (see Section 6.3) is supported by the MOP frame-
work. MOP supports regular expressions as part of its extended
regular expression (ERE) logic plugin (see Section 6.2), and
Tracematches may be captured by JavaMOP by using these
ERE patterns with suffix matching.

1.1.2 Runtime Verification

In runtime verification, monitors are automatically synthesized
from formal specifications, and can be deployed offline for de-

bugging, or online for dynamically checking properties during
execution. MaC [43], PathExplorer (PaX) [32], Eagle [11], and
RuleR [12] are runtime verification frameworks for logic based
monitoring, within which specific tools for Java – Java-MaC,
Java PathExplorer, and Hawk [25], respectively – are imple-
mented. All these runtime verification systems work in outline
monitoring mode and have hardwired specification languages:
MaC uses a specialized language based on interval temporal
logic, JPaX supports just LTL, and Eagle adopts a fixed-point
logic. Java-MaC and Java PathExplorer integrate monitors
via Java bytecode instrumentation, making them difficult to
port to other languages. Our MOP approach supports inline,
outline, and offline monitoring; allows one to define new for-
malisms to extend the MOP framework; and is adaptable to
new languages (we discuss two such instances in this paper).

Temporal Rover [26] is a commercial runtime verifica-
tion tool based on future time metric temporal logic. It allows
programmers to insert formal specifications in programs via
annotations, from which monitors are generated. An Auto-
matic Test Generation (ATG) component is also provided to
generate test sequences from logic specifications. Temporal
Rover and its successor, DB Rover, support both inline and
offline monitoring. However, they also have their specification
formalisms hardwired and are tightly bound to Java. MOP
currently has no metric temporal logic plugin.

1.1.3 Design by Contract

Design by Contract (DBC) [49] is a technique allowing one
to add semantic specifications to a program in the form of as-
sertions and invariants, which are then compiled into runtime
checks. It was first introduced as a built-in feature of the Eiffel
language [28]. Some DBC extensions have also been proposed
for a number of other languages. Jass [13] and jContractor [2]
are two Java-based approaches.

Jass is a precompiler which turns the assertion comments
into Java code. Besides the standard DBC features such as
pre-/post- conditions and class invariants, it also provides
refinement checks. The design of trace assertions in Jass is
mainly influenced by CSP [38], and the syntax is more like a
programming language. jContractor is implemented as a Java
library which allows programmers to associate contracts with
any Java class or interface. Contract methods can be included
directly within the Java class or written as a separate contract
class. Before loading each class, jContractor detects the pres-
ence of contract code patterns in the Java class bytecode and
performs on-the-fly bytecode instrumentation to enable check-
ing of contracts during the program’s execution. jContractor
also provides a support library for writing expressions using
predicate logic quantifiers and operators such as Forall, Exists,
suchThat, and implies. Using jContractor, the contracts can
be directly inserted into the Java bytecode even without the
source code.

Java modeling language (JML) [44] is a behavioral in-
terface specification language for Java. It provides a more
comprehensive modeling language than DBC extensions. Not
all features of JML can be checked at runtime; its runtime

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 3

checker supports a DBC-like subset of JML. Spec# [9] is a
DBC-like extension of the object-oriented language C#. It
extends the type system to include non-null types and checked
exceptions and also provides method contracts in the form
of pre- and post-conditions as well as object invariants. Us-
ing the Spec# compiler, one can statically enforce non-null
types, emit run-time checks for method contracts and invari-
ants, and record the contracts as metadata for consumption by
downstream tools.

We believe that the logics of assertions/invariants used in
DBC approaches fall under the uniform format of our logic
engines, so that an MOP environment following our principles
would naturally support monitoring DBC specifications as a
special methodological case. In addition, the MOP framework
also supports outline monitoring, which we find important in
assuring software reliability (e.g., monitoring for and detecting
and fixing deadlocks) but which is not provided by any of the
current DBC approaches that we are aware of.

1.1.4 Other Related Approaches

Program Query Language (PQL) allows programmers to ex-
press design rules that deal with sequences of events associated
with a set of related objects [46]. Both static and dynamic tools
have been implemented to find solutions to PQL queries. The
static analysis conservatively looks for potential matches for
queries and is useful to reduce the number of dynamic checks.
The dynamic analyzer checks the runtime behavior and can
perform user-defined actions when matches are found. PQL
has a “hardwired” specification language based on context-
free grammars (CFG) and supports only inline monitoring.
CFGs can potentially express more complex languages than
regular expressions, so in principle PQL can express more
complex safety policies than Tracematches. The MOP CFG
plugin described in Section 6.5 allows the MOP framework to
specify most of the properties that may be specified in PQL.

Program Trace Query Language (PTQL) [29] is a language
based on SQL-like relational queries over program traces. The
current PTQL compiler, Partiqle, instruments Java programs
to execute the relational queries on the fly. PTQL events are
timestamped and the timestamps can be explicitly used in
queries. PTQL queries can be arbitrarily complex and, as
shown in [29], PTQL’s runtime overhead seems acceptable in
many cases but we were unable to obtain a working package
of PTQL and compare it in our experiments with JavaMOP
because of license issues. PTQL properties are globally scoped
and their running mode is inline. PTQL provides no support
for recovery, its main use being to detect errors.

The PSL to Verilog compiler, P2V [45], is the sole attempt
to perform runtime monitoring of formal properties in hard-
ware, other than our BusMOP instance (see Sections 3.3 and
5), of which we are aware. P2V is similar to BusMOP in that
monitors are implemented in hardware rather than software,
and that both approaches thus have no runtime overhead on
the CPU. P2V, however, is more like the above approaches
in that it is designed for monitoring actual programs rather
than peripheral devices. Also it requires a dynamically exten-

sible soft-core processor implemented on an FPGA, while our
approach can potentially be applied to any COTS communi-
cation architecture. Further, P2V uses hardwired logic (PSL)
while BusMOP allows different formalisms.

1.1.5 Discussion

All this research and associated tools show that runtime mon-
itoring is an increasingly accepted, powerful, and beneficial
approach for developing reliable software and hardware. Here
we summarize the systems discussed above, and show how
they may be classified in terms of the five orthogonal attributes
of the MOP framework: programming language, logic, scope,
running mode, and handlers. The programming language de-
termines what language the programs to be monitored must
be written in. The logic specifies which formalism is used to
specify the property. The scope determines where to check
the property; it can be class invariant, global, interface, etc.
The running mode denotes where the monitoring code runs; it
can be inline (weaved into the code), online (operating at the
same time as the program), outline (receiving events from the
program remotely, e.g., over a socket), or offline (checking
logged event traces)1. The handlers specify what actions to
perform under exceptional conditions; there can be violation
and validation handlers. It is worth noting that for many log-
ics, violation and validation are not complementary to each
other, i.e., the violation of a formula does not always imply
the validation of the negation of the formula.

Most runtime monitoring approaches can be framed in
terms of these attributes, while in the MOP framework they
may be configured. Fig. 1 lists the attributes for most of the
software monitoring systems discussed above. For example,
JPaX can be regarded as an approach that uses linear tem-
poral logic (LTL) to specify class-scoped properties, whose
monitors work in offline mode and only detect violation.

This observation essentially motivates the design disci-
pline of the MOP framework and specification language, namely
that one should be allowed to choose the most appropriate
logic and the most efficient monitoring algorithm for her/his
own applications: while programming languages are designed
and intended to be universal, logics and specifications tend to
work best when they are domain-specific.

1.2 Examples

Fig. 2 shows an example specification using JavaMOP; re-
call that this is the MOP instance for Java programs (see
Sections 3.2 and 4). Detailed explanation of the specification
syntax can be found in Sections 3.1 and 3.2.1. This specifica-
tion, called SafeEnum, describes the correct behavior of using
Enumerations in Java. Essentially, this specification requires
that an Enumeration created from a Vector not be used if the
Vector has been updated since the Enumeration was created.
This is important in legacy code that still uses Vectors and

1 Offline implies outline, and inline implies online.

4 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

Approach Language Logic Scope Mode Handler

Hawk [25] Java Eagle global inline violation
J-Lo [16] Java ParamLTL global inline violation
Jass [13] Java assertions global inline violation
JavaMaC [43] Java PastLTL class outline violation
jContractor [2] Java contracts global inline violation
JML [44] Java contracts global inline violation
JPaX [32] Java LTL class offline violation
P2V [45] C, C++ PSL global inline validation/

violation
PQL [46] Java PQL global inline validation
PTQL [29] Java SQL global outline validation
Spec# [9] C# contracts global inline/

offline
violation

RuleR [12] Java RuleR global inline violation
Temporal
Rover [26]

C, C++,
Java,
Verilog,
VHDL

MiTL class inline violation

Tracematches [8] Java Reg. Exp. global inline validation

Fig. 1. Runtime Monitoring Breakdown.

full−binding connected decentralized SafeEnum(Vector v, Enumeration e) {
Vector instanceV;
Enumeration instanceE;
event createE after(Vector v) returning(Enumeration e) :

call(∗ Vector.elements()) && target(v)
{instanceE = e; instanceV = v; }

event updateV after(Vector v) :
(call(∗ Vector.add ∗ (..)) || call(∗ Vector.remove(..))) && target(v)

{instanceV = v; }
event useE after(Enumeration e) :

call(∗ Enumeration.nextElement()) && target(e)
{instanceE = e; }

fsm :
start [
updateV −> start

createE −> enumCreated

]
enumCreated [
useE −> enumCreated

updateV −> invalidEnum

]
invalidEnum [
updateV −> invalidEnum

]
@fail {
System.out.println(“Enumeration ” + MONITOR.instanceE

+ “ created from Vector ” + MONITOR.instanceV
+ “ not used properly at ” + LOC);

}
}

Fig. 2. A JavaMOP Specification (SafeEnum)

Enumerations because Java does not warn of this practice, it
simply allows for non-deterministic results.

The specification is composed of five parts. The first line
is the header of the specification, starting with three modifiers,
full-binding, connected, and decentralized; the first states that
monitor instances for this property should only raise failures
when every parameter for the monitor instance has been bound
(Section 4.4), the second states that the objects bound to the
parameters must be connected by an event that actually occurs
(Section 4.4), and the last chooses the way to index monitors
for different parameter bindings (Section 4.3). An ID for the
specification is given after modifiers and followed by parame-

ters of the property; in this example, two parameters are used,
namely a Vector object v and an Enumeration object e.

The second part contains the declaration of two monitor
variables: instanceV and instanceE. Each monitor instance for
each instantiation of the specification parameters has distinct
monitor instance variables. Thus, they can be used for many
purposes: logging, extra states for monitoring, statistics, and
so on. Here, they are used for bug reporting, to keep track of
which Vector and Enumeration cause the failure.

The third part of the specification contains event declara-
tions. Three events are defined: createE for the creation of
an Enumeration, updateV for updates to a Vector, and useE
for uses of an Enumeration. JavaMOP borrows (and extends;
see Section 3.2) the syntax of AspectJ [41] for event decla-
rations. For example, the createE event is declared to occur
“after” a function call to the elements() method of class Vec-
tor. Note that the target clause is used to bind parameters in
the event. Each event also sets one or both of the monitor
variables, which will, again, be distinct for each binding of
the parameters, using an event action (the Java code within
the curly braces).

The fourth part of the specification is a formal description
of the desired property. As discussed in Section 2, MOP is
specification formalism independent, and one may choose
different logics to specify properties. In this example, the
property description begins with fsm, meaning that a finite
state machine (FSM) is used, and continues with a finite state
description of the monitor. Monitors for FSM properties are
initially in the first state listed in the specification, in this case
start. The monitor stays in the start state until an Enumeration
is created from a given Vector. Once the Enumeration has been
created, it is safe to use the Enumeration until such time as the
underlying Vector is modified, at which point the invalidEnum
state is entered. Using an Enumeration in the invalidEnum state
will result in a failure of the property.

The last part of the specification consists of handlers to
execute in different states of the corresponding monitor, such
as pattern match or failure. In Fig. 2, the handler starts with
@fail, defining the action, a simple warning in this case, to
execute when the trace fails to match the pattern. The handler
reports which Vector and Enumeration are used incorrectly,
and the line number where the failure occurs (given by the
MOP-reserved variable LOC). The MONITOR keyword is
resolved to the monitor object by JavaMOP. This is needed
because there is no way from the context to tell if a given
variable reference refers to a variable declared locally or a
monitor instance variable.

JavaMOP specifications are compiled into AspectJ [41]
aspects. Specifications as short as the one in Fig. 2 compile
into several hundred lines of AspectJ code. The generated as-
pect can then be weaved into a program one wishes to monitor,
using any AspectJ compiler. Once weaved, simply running the
program as normal results in a monitored run of the program.

Fig. 3 shows an example specification using BusMOP,
the MOP instance for PCI Bus monitoring (see Sections 3
and 5). The main use for this instance is ensuring the proper
use of peripherals connected to the PCI Bus. Improper use of

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 5

pci SafeCounterModify{
signal cntrlCurrent : STD LOGIC VECTOR(15 downto 0) := X“0000”;
signal cntrlOld : STD LOGIC VECTOR(15 downto 0) := X“0000”;
event countDisable : memory write address = base1 + X“220”

dbyte value(0) in ‘0’
event cntrlMod : memory write address in base1 + X“220”
{cntrlOld <= cntrlCurrent; cntrlCurrent <= value(15 downto 0); }

event countEnable : memory write address = base1 + X“220”
dbyte value(0) in ‘1’

ere : ((countEnable countDisable) | cntrlMod | countDisable)∗
@fail {
mem reg <= ‘1’;
address reg <= base1 + X“220”;
value reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable reg <= “0011”;
}
}

Fig. 3. A BusMOP Specification (SafeCounterModify)

peripherals may result from bugs in drivers or from misuse
of the drivers by application programs. This specification,
SafeCounterModify, states a desired property of the PCI703A
digital-to-analog and analog-to-digital converter PCI board
(ADC) [27]. The ADC has counters that are used to determine
when input data is fully converted and ready to be placed on
the PCI bus. The specification in Fig. 3 is concerned with
the ADC’s Counter 2. It requires that any modification to
cntr cntrl2, the control register on the ADC for Counter 2,
happens only while the Counter 2 is not enabled (running).
Counter 2 is enabled when the 0’th bit of cntr cntrl2 is set to ‘1’.

As in Fig. 2, the first line is the header of the specification.
The keyword pci specifies that this property should generate
bus listening code for the PCI bus. Again an ID naming the
specification is provided. This time, because BusMOP does
not have parameters, there is no parameter list.

The second part of the specification declares two signals,
cntrlCurrent and cntrlOld, much like the monitor variables of
Fig. 2, but BusMOP has no monitor instances, so there is
only one copy of the variables. These variables are used to
store the previous value of cntr cntrl2, which is the control
register for Counter 2 on the ADC board. This is necessary
because PCI bus properties cannot prevent incorrect behavior,
but only detect and correct it. The stored value is used to
restore the value of the register when the pattern fails to match
(see below).

The third part of the specification contains event declara-
tions, much like those in Fig. 2, but using an instrumentation
language specific to PCI Bus traffic, rather than AspectJ. Three
events are defined. The keyword dbyte used in each event tells
BusMOP that the quantity will be 16 bits wide (i.e., double
byte). Event countDisable occurs when cntr cntrl2, which is
address X“220” in the address space of the ADC (base1 con-
tains the address of the beginning of the ADC’s address space),
has its 0th bit (value(0)) set to ‘0’, which disables Counter 2.
The third event, countEnable, is analogous, but, as mentioned
earlier, the bit is set to ‘1’. The event cntrlMod occurs when
cntr cntrl2 is modified. The keyword in is used rather than =
to define the address for cntrlMod. This is because when no
value for the read or write is specified, it is possible to check a

whole range of addresses. Note that this event overlaps with
countDisable and countEnable. The order of the events in
Fig. 3 is significant because simultaneous events are handled
by reporting them in the declared order (see Section 5). Each
cntrlEnable saves the previous value of the register, so that it
may be restored if the property is violated. The special vari-
able value refers to the value of the data on the bus. A pipeline
is kept where the previous value is stored to cntrlOld before
cntrlCurrent receives the new bus value, so that the previous
value may be recovered if the pattern fails (the event action
occurs before the pattern is checked).

As in Fig. 2, the fourth part is a formal description of the
desired property, this time using an extended regular expres-
sion (ERE). This pattern specifies the desired behavior where
all modifications must happen after disabling the counter (note
again the order of event declarations, which ensures that the
cntrlMod encountered from a countDisable is reported after
the cntrlMod). The pair (countEnable countDisable) enforces
that no changes can be made to cntrl cntrl2 while Counter 2 is
enabled, other than disabling it.

The last part of the specification is the handler for a pattern
failure, similar to SafeEnum. An assignment of ‘1’ to the spe-
cial variable mem reg alerts the system that a memory write
is eminent. The address of the write is placed in address reg
(note that it is the control register for Counter 2). The special
variable value reg is the value to be written out by the monitor,
and it is given the value of cntrlOld, which stores the previous
value of cntr cntrl2. Lastly, the enable reg is specific to the
PCI Bus interface (see Section 5).

BusMOP specifications are compiled into hardware de-
scription language (HDL). As in JavaMOP, the size of the
generated code is far greater than that of the original specifica-
tion. The HDL code is compiled into an FPGA bitstream and
programmed onto an FPGA that is inserted into an empty slot
on the PCI bus of the system one wishes to monitor.

The examples given in Figs. 2 and 3 may monitor com-
pletely different properties in completely different problem
domains, but they follow the same pattern and philosophy.
By a clear separation of monitor generation and monitor inte-
gration, MOP provides fundamental and generic support for
effective and efficient application of runtime monitoring in
different problem domains, and can be understood from at
least three perspectives:

1. As a discipline allowing one to improve safety, reliability
and dependability of a system by monitoring its require-
ments against its implementation at runtime;

2. As an extension of programming languages with log-
ics. One can add logical statements anywhere in the pro-
gram, referring to past or future states of the program.
These statements are like any other programming language
boolean expressions, so they give the user a maximum of
flexibility on how to use them: to terminate the program,
guide its execution, recover from a bad state, add new
functionality, etc.;

3. As a lightweight formal method. While firmly based on
logical formalisms and mathematical techniques, MOP’s

6 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

purpose is not program verification. Instead, the idea is to
avoid verifying an implementation against its specification
before operation, by not letting it go wrong at runtime.

Section 2 introduces the generic MOP framework. Sec-
tion 3 discusses the two current language instances of MOP,
giving a brief overview and describing their syntax. Section 4
presents topics specific to the efficient implementation of Java-
MOP, as well as a thorough evaluation of JavaMOP, while
Section 5 focuses on BusMOP. A performance evaluation of
BusMOP (the MOP instance for monitoring PCI bus traffic) is
unnecessary, as it has zero runtime overhead.2

2 MOP framework

All monitoring systems share some features, such as program
instrumentation and monitor integration, even when they aim
at different domains or goals. MOP separates monitor genera-
tion and integration and provides a generic, extensible frame-
work for runtime monitoring, allowing one to instantiate MOP
with specific programming languages and specification for-
malisms to support different domains. In this section, we focus
on the overall architecture of MOP.

2.1 Architecture

Fig. 4 shows the architecture of MOP. There are two kinds
of high level components in MOP, namely the logic reposi-
tory and language clients. The logic repository, shown in the
bottom of Fig. 4, contains various logic plugins and a logic
plugin manager component. The logic plugin is the core com-
ponent to generate monitoring code from formulae written
in a specific logic; for example, the Linear Temporal Logic
(LTL) plugin synthesizes state machines from LTL formulae.
The output of logic plugins is usually pseudocode and not
bound to any specific programming language. This way, the
essential monitoring generation can be shared by different in-
stances of MOP using different programming languages. The
logic plugin manager bridges the communication between the
language clients and the logic plugin. More specifically, it re-
ceives the monitor generation request from the language client
and distributes the request to an appropriate plugin. After the
plugin synthesizes the monitor for the request, the logic plugin
manager collects the result and sends it back to the language
client. This way, one can easily add new logic plugins into the
repository to support new specification formalisms in MOP
without changing the language client.

2.2 Language Client

The language client hides the programming language-indepen-
dent logic repository and provides language specific support
for the different MOP instances. Because the language client

2 Overhead is exactly 0% if no recovery actions are performed. Recovery
actions take up a tiny portion of the bus bandwidth, and could theoretically
add non-zero runtime overhead. This was negligible in practice, even with
continuously recovering properties.

//Declaration of monitor state
int state = 0;
static final int transition createE[] = {2, 3, 3, 3};
static final int transition updateV[] = {0, 1, 1, 3};
static final int transition useE[] = {3, 3, 2, 3};
//Code for state update
state = transition createE[state];
state = transition updateV[state];
state = transition useE[state];
//Code for category checks
Category fail = state == 3;

Fig. 5. Java code for the FSM in Fig. 2

is the language specific portion of an MOP instance, we occa-
sionally refer to the language client by the name of the MOP
instance to which it belongs. Language clients are responsible
for all language-specific aspects of monitoring, such as instru-
mentation, parametricity, online/inline/outline, modifiers, etc.
They are usually composed of three layers: the bottom layer
contains language translators that translate the abstract output
of logic plugins into concrete code in a specific program-
ming language; the middle layer is the specification processor,
which extracts formulae from the given property specification
and then instruments the generated monitoring code into the
target program; finally, the top layer provides usage interfaces
to the user.

We next explain in some detail the Java language client for
the JavaMOP instance (which by abuse of terminology we will
simply call JavaMOP). JavaMOP generates AspectJ [41] as-
pects from a specification. At the bottom layer, it has language
translators for context-free grammars (CFGs), the pseudocode
output generated by the past time linear temporal logic with
calls and returns plugin, and finite state machine descriptions.
All plugins not mentioned use finite state machine descrip-
tions as an output language. At the mid level, as mentioned,
the Java client instruments the program with the generated
monitor code by creating a stand-alone aspect that can be
weaved into the program using any AspectJ compiler, such as
ajc [7]. At the top level there is a command line interface and
a web-based interface. The two current MOP instances are
discussed in Section 3, and, respectively, Section 4 (JavaMOP)
and Section 5 (BusMOP), and the discussions essentially apply
to the language clients associated with each instance.

2.3 Logic Plugins

Every logic plugin implements and encapsulates a monitor syn-
thesis algorithm for a particular specification formalism, such
as the past-time linear temporal logic (PTLTL) and the CFG
plugins supported in the current MOP framework (see Sec-
tion 6 for a complete list of available plugins). The logic plugin
accepts, as input, a set of events and a formula or pattern writ-
ten in the underlying formalism and outputs an abstract mon-
itor. This abstract monitor is usually a piece of pseudocode,
which checks a trace of events against the given formula.

We next explain in some detail one particular plugin, the
plugin for FSM specifications. Fig. 5 shows the monitoring
code generated by the MOP FSM plugin from the FSM speci-
fication in Fig. 2.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 7

Fig. 4. Architecture of MOP

FSM monitors are simple, as one might expect. Static ar-
rays keep the next state. There is one array for each event
in the specification, as can be seen in Fig. 5. When an event
arrives, the proper array is queried with the current state, and
the next state is returned. After the state is updated, the cat-
egory checks are preformed to see which handlers must run.
Because the specification only checked @fail, we only have
one check, which is for fail. As can be seen, fail is reached if
the machine is in state 3. This code must be combined with
generic code to handle the other properties of the specification,
such as connectedness or full-binding, as well as the indexing
system used for parametric trace slicing. The FSM plugin, as
well as the others, is described in Section 6.

3 MOP Instances

As one may expect, when putting together various languages
and specification formalisms, each with its own syntax and
semantics, consistency and syntactic separation may become
a non-trivial problem. In this section we discuss the four di-
mensions that need to be instantiated in order to develop a
new MOP instance (like JavaMOP or BusMOP), how they
are instantiated, and where the boundary between the various
components of an instance is. Since the semantics of the var-
ious pieces is typically implicit and not formally defined, in
what follows we place emphasis on syntax.

3.1 MOP Syntax

Every MOP instance needs to instantiate the MOP framework
in four dimensions: 1) a specification language based on the
problem domain, which is mainly related to how one defines
events in the domain; 2) a target language for generated moni-
tors; 3) supported logic plugin specification formalisms; and
4) the handlers allowed in the specification. Two MOP in-
stances have been implemented and experimented with at this
point: JavaMOP and BusMOP. We expect to see more MOP
instances in the future because many problem domains can
benefit from monitoring.

Each instance of MOP uses an instance of the generic
MOP syntax. The syntax of any instance of MOP can be gen-
erated by defining certain syntactic categories (non-terminals)
of the MOP grammar, which can be seen in Fig. 6. All of
the grammars used to define MOP syntax in this article use
Extended Backus-Naur Form (EBNF) [1]. Non-terminals in
the grammars are surrounded by “〈” and “〉”. Braces (“{” and
“}”) enclose portions of the grammar that may appear zero
or more times. Brackets (“[” and “]”) enclose portions of the
grammar that are optional (i.e., it may or may not appear).
Concrete examples of the syntax defined below can be seen in
Figs. 2 and 3.

3.1.1 Shared syntax

The following syntax constructs are shared by different MOP
instances:

8 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

Shared syntax

〈Specification〉 ::= {〈Instance Modifier〉} 〈Id〉 〈Instance Parameters〉 “{”
{〈Instance Declaration〉}
{〈Event〉}
{〈Property〉
{〈Property Handler〉}
}

“}”
〈Event〉 ::= [“creation”]“event” 〈Id〉 〈Instance Event Definition〉 “{” 〈Instance Action〉 “}”

〈Property〉 ::= 〈Logic Name〉 “ : ” 〈Logic Syntax〉
〈Property Handler〉 ::= “@” 〈Logic State〉 〈Instance Handler〉

Instance-specific syntax

〈Instance Modifier〉 ::= 〈Id〉
〈Instance Parameters〉 ::= 〈JavaMOP Parameters〉 | 〈BusMOP Parameters〉 | ...
〈Instance Declaration〉 ::= 〈JavaMOP Declaration〉 | 〈BusMOP Declaration〉 | ...

〈Instance Event Definition〉 ::= 〈JavaMOP Event Definition〉 | 〈BusMOP Event Definition〉 | ...
〈Instance Action〉 ::= 〈JavaMOP Event Action〉 | 〈BusMOP Event Action〉 | ...
〈Instance Handler〉 ::= 〈JavaMOP Event Handler〉 | 〈BusMOP Event Handler〉 | ...

Logic-plugin-specific syntax

〈Logic Name〉 ::= 〈Id〉
〈Logic Syntax〉 ::= 〈FSM Syntax〉 | 〈ERE Syntax〉 | 〈LTL Syntax〉 | 〈PTLTL Syntax〉 | 〈CFG Syntax〉 | 〈PTCaRet Syntax〉 | ...
〈Logic State〉 ::= 〈FSM State〉 | 〈ERE State〉 | 〈LTL State〉 | 〈PTLTL State〉 | 〈CFG State〉 | 〈PTCaRet State〉 | ...

Fig. 6. MOP Syntax

– 〈Specification〉 — 〈Specification〉 describes the generic
MOP specification syntax which can be instantiated for
MOP language instances and MOP logic plugins.

– 〈Event〉 — The 〈Event〉 declaration code allows for the
definition of events, which may then be referred to in the
property (see 〈Property〉 below). Event declarations can
also have arbitrary code associated with them (〈Instance
Action〉), which is run when the event is observed (〈Instance
Event Definition〉), e.g. code to modify the program or the
monitor state. For manual indication of events that can
start a trace, the keyword creation is used at the beginning
of each declaration.3

– 〈Property〉— Every MOP specification may contain zero
or more properties. A 〈Property〉 consists of a named for-
malism (〈Logic Name〉), followed by a colon, followed
by a property specification using the named formalism
(see 〈Logic Syntax〉 below) and usually referring to the
declared events. If the property is missing, then the MOP
specification is called raw. Raw specifications are use-
ful when no existing logic plugin is powerful or efficient
enough to specify the desired property; in that case, one
embeds the custom monitoring code manually within the
〈Instance Action〉 code.

– 〈Property Handler〉 — Handlers contain arbitrary code
from the instance source language, and are invoked when
a certain logic state (see 〈Logic State〉 below) or category
is reached, e.g., match, fail, or a particular state in a finite
state machine description.

3 The creation keyword has no effect in BusMOP specifications.

3.1.2 Instance-specific syntax

The following constructs are based on the particular instance
of MOP used for a particular specification. More information
on the instances of MOP can be found in the remainder of this
section, and Sections 4 (JavaMOP) and 5 (BusMOP).

– 〈Instance Modifier〉 — 〈Instance Modifier〉s are specific
to each language instance of MOP. Syntactically, they can
be any valid identifier restricted by the given language.
They change the behavior of the monitoring code.

– 〈Instance Parameters〉— allow one to define the parame-
ters of a parametric specification using the language corre-
sponding to the MOP instance. Not all MOP instances are
parametric (e.g., BusMOP), however, so this non-terminal
may be empty.

– 〈Instance Declaration〉— 〈Instance Declaration〉s are spe-
cific to each language instance of MOP. They allow for
the declaration of monitor local variables.

– 〈Instance Event Definition〉— 〈Instance Event Definition〉s
are specific to each language instance of MOP. They define
the conditions under which an event is triggered.

– 〈Instance Action〉— An event can have arbitrary code as-
sociated with it, called an action. The action is run when
the event is observed. An action can modify the program
or the monitor state, and the syntax of the allowed state-
ments are dependent upon the MOP instance in question.
Typically the statements used in actions have different vari-
ables and functions that may be referred to than handlers.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 9

This is why different non-terminals are used for actions
and handlers.

– 〈Instance Handler〉— 〈Instance Handler〉s are arbitrary
code that is executed when a property handler is triggered.

3.1.3 Logic-plugin-specific syntax

The following constructs are based on the logic plugin(s) used
in a particular specification. More information on logic plugins
can be found in Section 6.

– 〈Logic Name〉— An identifier to indicate in which logic
a property is defined.

– 〈Logic Syntax〉— This refers to the syntax of the actual
property definition, and is defined in the syntax section for
each plugin.

– 〈Logic State〉— 〈Logic State〉s are constants defined for
each plugin, stating for which monitor states or categories
(match, fail, etc.) a handler may be written.

3.2 The JavaMOP Instance

JavaMOP is an MOP development tool for Java, supporting
several logical formalisms and a general specification lan-
guage using them to describe Java program behaviors [22]. It
compiles property specifications into optimized monitoring
code. The generated code uses AspectJ [41], and is currently4

program-independent. For example, a user can write a Java-
MOP specification for a library. Then, JavaMOP generates
monitoring code for this specification. This code can be ap-
plied to any program that uses the library.

In JavaMOP, an event corresponds to a pointcut, which an
AspectJ compiler (such as ajc [7]) can use to weave monitoring
code into the original program. Pointcuts include function call,
function return, function begin, function end, field assignment,
object creation, and more complex ones with pointcut oper-
ators, which combine multiple simpler pointcuts. JavaMOP
generates monitoring code for each pointcut—corresponding
to an event in a JavaMOP specification—to maintain monitor-
ing state, to check if the program conforms to the specification,
and to trigger a handler if appropriate.

A system behavior can be described using one of several
logical formalisms supported by JavaMOP, including all those
described in Section 6. A specification will be interpreted by
the logic repository, a generic server used by all instances of
MOP, and transformed into generic monitor code as mentioned
in Section 2. JavaMOP translates the monitor pseudocode to
AspectJ code. Any logic which can be translated to finite state
machines (ERE, LTL, PTLTL) are reported to JavaMOP using
the MOP finite state machine plugin syntax to reduce the
number of translation algorithms necessary in JavaMOP (see
Section 6.1).

A user can write a handler in Java for each monitoring
state. There can be more monitoring states than simple match
and fail, depending on logical formalism. A handler can be

4 We intend to incorporate program static analysis to further reduce runtime
overhead soon [17].

used for logging, recovering, blocking, or any other purpose.
Since handlers are specified as arbitrary Java code, a user has
quite a bit of latitude to achieve his or her purposes.

3.2.1 JavaMOP Syntax

The syntax of JavaMOP is discussed below, as an instance of
the generic MOP syntax defining the relevant modifiers and
language-specific syntax (Java for declarations and event/hand-
ler actions, enriched with AspectJ for event definitions). The
formal syntax can be seen in Fig. 7. Anything not explicitly de-
scribed below can be considered to be identical to the generic
MOP syntax. Note that some non-terminals such as 〈Event〉
refer to language instance specific non-terminals, which are
defined below for JavaMOP.

– 〈JavaMOP Modifier〉— The three binding modifiers refer
to the different binding modes described in Section 4.4,
the default is any-binding. The modifier “unsynchronized”
tells JavaMOP that the monitor state needs not be protected
against concurrent accesses; the default is synchronized.
The unsynchronized monitor is faster, but may suffer from
races on its state updates if the monitored program has
multiple threads. The “decentralized” modifier refers to
decentralized monitor indexing. The default indexing is
centralized, meaning that the indexing trees needed to
quickly access and garbage-collect monitor instances are
stored in a common place; decentralized indexing means
that the indexing trees are scattered all over the code as
additional fields of objects of interest. Decentralized in-
dexing typically yields lower runtime overhead, though it
may not always work for all settings. More information
on indexing can be found in Section 4.3. The “perthread”
modifier causes JavaMOP to consider events from each
thread as though from separate runs of the program, (i.e.,
one parametric monitor for each thread monitors only
events from its own thread). The “suffix” modifier causes
JavaMOP to consider a trace as matching if any suffix of
that trace would match.

– 〈JavaMOP Parameters〉 and 〈JavaMOP Declaration〉 —
These are ordinary Java parameters (as used in methods)
and Java declarations. The former are the parameters of
the JavaMOP specification and the latter are additional
local monitor variables that one can access and modify in
both event actions and property handlers. Each parameter
from 〈JavaMOP Parameters〉 should be used in at least
one event of the specification.

– 〈JavaMOP Action〉, 〈JavaMOP Handler〉, and 〈JavaMOP
Event Definition〉— 〈JavaMOP Action〉 are normal Java
statements that may also refer to monitor local variables.
〈JavaMOP Handler〉, however, slightly extends Java with
three special variables:
– RESET — a special expression (evaluates to void)

that resets the monitor to its initial state, but does not
affect any user defined varibles of the monitor;

– LOC — a string variable that evaluates to the line
number generating the current event;

10 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

〈JavaMOP Modifier〉 ::= “full−binding”|“maximal−binding”|“any−binding”|“connected”|“unsynchronized”
| “decentralized”|“perthread”|“suffix”

〈JavaMOP Parameters〉 ::= “(”[{〈JavaMOP Type〉 〈Id〉 “, ”} 〈JavaMOP Type〉 〈Id〉}]“)”
〈JavaMOP Declaration〉 ::= syntax of declarations in Java

〈JavaMOP Event Definition〉 ::= 〈AspectJ AdviceSpec〉 “ : ”
〈AspectJ Pointcut〉 [“&&” 〈JavaMOP Pointcut〉]

〈JavaMOP Pointcut〉 ::= “thread”“(” 〈Id〉 “)”
| “condition”“(” 〈BooleanExpression〉 “)”
| 〈AspectJ Pointcut〉
| 〈JavaMOP Pointcut〉 “&&” 〈JavaMOP Pointcut〉

〈AspectJ Pointcut〉 ::= syntax of Pointcut in AspectJ
〈AspectJ AdviceSpec〉 ::= syntax of AdviceSpec in AspectJ

〈TypeList〉 ::= list of Exception types in Java
〈Boolean Expression〉 ::= 〈Id〉 | “!” 〈Boolean Expression〉

| 〈Boolean Expression〉 〈Boolean Operator〉 〈Boolean Expression〉 | “(” 〈Boolean Expression〉 “)”
〈Boolean Operator〉 ::= “ || ” | “&&” | “ | ” | “&” | “ == ” | “! = ”
〈JavaMOP TypeList〉 ::= “(”[{〈JavaMOP Type〉 “, ”} 〈JavaMOP Type〉]“)”
〈JavaMOP Action〉 := Java statements, which may refer to monitor local variables
〈JavaMOP Handler〉 := Java statements with additional keywords
〈JavaMOP Type〉 := Any valid Java type

Fig. 7. JavaMOP Syntax

– MONITOR — a special variable that evaluates to
the current monitor object, so that one can read/write
monitor variables.

Similarly, the advice used to define JavaMOP events slightly
extends the AspectJ advice syntax. The 〈JavaMOP Event
Definition〉 follows the AspectJ syntax except for its exten-
sion with 〈JavaMOP Pointcut〉, which can only be added
in a top-level conjunct context. 〈AspectJ Pointcut〉 and
〈AspectJ AdviceSpec〉 are both standard AspectJ syntax [7].
The additional pointcuts have the following meaning:

– “thread” — The thread pointcut captures the current
thread and takes an identifier as a parameter. The iden-
tifier can be a class name or a variable name. For the
former, the type of the captured thread should be a
sub-class of the given class to trigger the event. For
the latter, the captured thread is bound to the variable.
The thread pointcut allows for the easy specification
of properties which are parameterized by the current
thread of execution.

– “condition” — The condition pointcut takes a boolean
expression as a parameter. An event containing a condi-
tion pointcut is not triggered if the boolean expression
evaluates to false. This differs only from the if pointcut
in standard AspectJ in that monitor instance variables
may be used in the conditional expression.

3.3 The BusMOP Instance

BusMOP [52] was designed to address the safety problem of
third party consumer off-the-shelf (COTS) components. The
complexity of safety critical systems has grown to the point
where the ability to use COTS in a safe manner is almost
mandatory. Additionally, the vast majority of OS crashes in
PCs are caused by faulty peripherals or their drivers. BusMOP

answers both of these problems by allowing the specification
and monitoring of properties with respect to PCI Bus traffic
(soon to be expanded to other bus architectures).

In BusMOP, the events correspond to reads and writes
of specified values to specified memory locations on the bus.
PCI Bus interrupts are also allowed as events. The monitors,
and the logic to extract events from bus traffic, are synthe-
sized from hardware design language (HDL) code and pro-
grammed onto a field programmable gate array (FPGA), which
is plugged into the PCI Bus.

BusMOP supports the FSM, ERE, LTL, and PTLTL plug-
ins of MOP (see Section 6). PTCaRet and CFG have the prob-
lem of unbounded logic response time, which would cause the
monitor to not meet timing constraints in some cases, and are
thus not suitable for inclusion in BusMOP. It is also not clear
exactly where the structured capabilities of these logics are
useful when considering flat bus traffic traces.

Handlers in BusMOP can be specified using arbitrary
VHDL code. Several resources are provided for the user for
use in handler code, such as serial output for logging, and
the actual ability to write to the PCI Bus to perform recovery.
Recovery actions in BusMOP require bus arbitration to undo
deleterious actions of faulty peripherals or their drivers. This
bus arbitration is the only possible overhead incurred by Bus-
MOP, in cases of heavy Bus traffic. In the majority of systems,
BusMOP can be used with no runtime overhead.

3.3.1 BusMOP Syntax

Below we discuss the BusMOP syntax. Anything not explic-
itly described below can be considered to be identical to
the generic MOP syntax. Note that some non-terminals such
as 〈Event〉 refer to language instance specific non-terminals,
which are defined below for BusMOP. The grammar for the
syntax can be seen in Fig. 8.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 11

〈BusMOP Modifier〉 ::= “pci”
〈BusMOP Parameters〉 ::= ε (i.e., none)
〈BusMOP Declaration〉 ::= syntax of declarations in VHDL

〈BusMOP Event Definition〉 ::= “ : ” 〈Memory or IO〉 〈Read or Write〉 “address”“ = ” 〈Arithmetic Op〉
“value”[“(” 〈Index〉 “)”][“not”]“in” 〈Range〉 “{”[〈BusMOP Action〉]“}”

| “ : ” 〈Memory or IO〉 〈Read or Write〉 “address”“in” 〈Range〉
| “interrupt”“{”[〈BusMOP Action〉]“}”

〈Memory or IO〉 ::= “memory”|“io”
〈Read or Write〉 ::= “read”|“write”

〈Range〉 ::= 〈Arithmetic Op〉 [“, ” 〈Arithmetic Op〉]
〈Arithmetic Op〉 ::= 〈Number〉 | 〈ID〉

| 〈Arithmetic Op〉 “ + ” 〈Arithmetic Op〉
| 〈Arithmetic Op〉 “&” 〈Arithmetic Op〉
| 〈Arithmetic Op〉 “− ” 〈Arithmetic Op〉
| “(” 〈Arithmetic Op〉 “)”

〈Number〉 ::= 〈VHDL number or bitstring〉
〈ID〉 ::= 〈VHDL identifier〉

〈BusMOP Action〉 := Bus statements, which may refer to monitor local variables
〈BusMOP Handler〉 := Bus statements, which may refer to monitor local variables, with additional output variables

Fig. 8. BusMOP Syntax

– 〈BusMOP Modifier〉— Modifiers in BusMOP are used to
distinguish the bus architecture to be monitored. Currently,
only standard parallel PCI is supported. PCI-E will be
supported by using a bridge adapter that will sit between
the PCI Express bus slot and the peripheral to monitor.

– 〈BusMOP Parameters〉 and 〈BusMOP Declaration〉—
BusMOP is not parametric because there is no clear unit
of parametrization. 〈BusMOP Declaration〉’s are standard
VHDL signal declarations. These are used to define ad-
ditional local monitor variables that one can access and
modify in both event actions and property handlers.

– 〈BusMOP Event Definition〉— BusMOP event definitions
use an original syntax to define interesting potential bus
traffic. At the basic level there are three types of events:
memory, IO, and interrupt. The last event is triggered when
there is an interrupt on the bus. The first two are further
subdivided into reads and writes. The difference between
memory and IO is the address space of the read or write
in question. This is important for correctly specifying the
necessary bus enable signals in the generated code. Reads
and writes can be concerned with the read or write of a
specific location with a select range of values, or a read
or write to a range of locations where the value is of no
concern. Specifying a range of read or write addresses is
valuable for enforcing memory safety policies (such as,
if the value 0xdeadbeef is written to address 0xffff0000
then allow no writes to some buffer until 0x000000 is writ-
ten to 0xffff0000). 〈Arithmetic Op〉 allows for arithmetic
operations combining variables and literal numbers. This
is useful both for specifying monitor local variables and
monitor input variables. Placing a numerical index on the
keyword “value” indicates that one bit, specified by the
index, should be checked rather than the whole value read
or written. The monitor input variables hold the values of
inputs to the monitor, and are as follows:

– The value register holds the value of the read or write
in question.

– The address register holds the address of the read or
write in question.

– The baseN registers allow a user to specify a mem-
ory value relative to a given peripheral. Without this
support monitoring would be very difficult due to the
plug-and-play PCI bus interface that assigns memory
spaces to peripherals at boot time.

– 〈BusMOP Action〉— Actions are arbitrary VHDL state-
ments that may refer to monitor local variables as well as
the input variables described above in 〈BusMOP Event
Definition〉. As mentioned in 〈Instance Action〉, these state-
ments are executed when the event for which they are de-
fined is observed.

– 〈BusMOP Handler〉— Handlers are arbitrary VHDL state-
ments that may refer to monitor local variables as well
as the input variables described above in 〈BusMOP Event
Definition〉. Additionally, there are variables the may be set
in order to perform recovery actions. They are as follows:

– The io reg is used to specify a read or write to I/O
space. It is asserted as ‘1’ to select the I/O space.

– The mem reg is used to specify a read or write to
memory space by asserting it as ‘1’.

– The address reg is used to specify the 32 bit address
of a read or write.

– The value reg is used to specify the value of a 32 bit
read or write.

– The enable reg is used to specify the byte enables for
a read or write (specific to PCI, see Section 5).

– The serial reg allows output of an ASCII value to a
serial port for debugging.

– The stop reg register that stops the peripheral in ques-
tion from reading from or writing to the PCI bus when
it is asserted as ‘1’.

12 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

As mentioned in 〈Instance Handler〉 these statements are exe-
cuted when a property handler is triggered.

4 JavaMOP

Each instance of MOP has issues specific to its domain. Java-
MOP must deal with the complexities of parametric monitor-
ing, in order to make itself useful in highly object-oriented sys-
tems. We first provide an introduction to parametric trace slic-
ing (Section 4.1). We next cover improving the efficiency of
parametric monitoring4.2 Lastly, we discuss different modes
of parameter binding, which define which parameter instance
monitors trigger handlers (Section 4.4).

4.1 Parametric Trace Slicing and Naive Monitoring

Parametric specifications are widely used in practice, particu-
larly in object oriented languages, like Java, where we need
to describe properties over a group of objects. For example,
consider again the property in Fig. 2 from Section 1. Here the
events are parametrized by the Vector v and the Enumeration e.
This is because we do not want uses of an Enumeration e1 to
be flagged as an error because of an intervening modification
to Vector v2, when it has Vector v1 as its underlying Vector.

When monitoring a parametric specification, the observed
execution trace is parametric, i.e., the events in the trace come
with parameter information. For example, a possible paramet-
ric trace for the specification in Fig. 2 is:
updateV〈v 7→ v1〉 createE〈v 7→ v1, e 7→ e1〉 createE〈v 7→ v1,
e 7→ e2〉 createE〈v 7→ v2, e 7→ e3〉 useE〈e 7→ e3〉 useE〈e 7→ e1〉
updateV〈v 7→ v1〉 useE〈e 7→ e1〉 useE〈e 7→ e2〉.

Every event in this trace is associated with a concrete pa-
rameter binding, such as 〈v 7→ v1, e 7→ e2〉 that indicates that
the parameters v and e in Fig. 2 are bound to concrete objects
v1 and e2, respectively. Such a parametric trace represents a
set of non-parametric traces each of which corresponds to a
particular parameter binding. For example, the above trace
contains eleven non-parametric traces for eleven parameter
bindings (one for each of five singleton objects, and one for
each element in the cross product of the singleton objects).
The non-parametric trace for four of these bindings are sum-
marized in the table below.

Parameter binding Non-parametric trace slice

〈v 7→ v1〉 updateV updateV
〈v 7→ v1, e 7→ e1〉 updateV createE useE updateV useE
〈v 7→ v1, e 7→ e2〉 updateV createE updateV useE
〈v 7→ v2, e 7→ e3〉 createE useE

The second and third of these fail to match the pattern in
Fig. 2, thus two failures are produced. It is highly non-trivial
to monitor parametric specifications efficiently since there
can be a tremendous number of parameter bindings during a
single execution. For example, in a few experiments that we
carried out, millions of parameter bindings were created [23].
Most other approaches for monitoring parametric specifica-
tions handle parameters in a logic-specific way [4,16,46], that

is, they extended the underlying specification formalisms with
parameters and devised algorithms for the extended formalism.
Such a solution results in very complicated monitor synthe-
sis algorithms and makes it difficult to support new problem
domains. In MOP, parameters are handled in a completely
logical formalism independent manner and separated from the
monitor synthesis process, vastly simplifying the implementa-
tion of new logic plugins. Surprisingly, this logic independent
consideration of parameters turns out to be more efficient than
those closely coupled systems (see Section 4.5) thanks to the
clean separation of concerns. In the following sections we will
explain parametric monitoring in more detail.

4.1.1 Events, Traces, Properties, and Parameters

First, we introduce the notions of event, trace and property,
first non-parametric and then parametric. Trace slicing is then
defined as a reduct operation that forgets the events that are un-
related to the given parameter instance. Most of this discussion
is derived from [24].

Definition 1. Let E be a set of (non-parametric) events, called
base events or simply events. An E-trace, or simply a (non-
parametric) trace when E is understood or not important, is
any finite sequence of events in E , that is, an element in E∗. If
event e ∈ E appears in trace w ∈ E∗ then we write e ∈ w.

Example. Consider again the SafeEnum policy from Fig. 2.
E = {createE, updateV, useE} and execution traces corre-
sponding to this are sequences of the form createE useE up-
dateV createE useE, etc. For now we ignore the distinction
between “good” and “bad” execution traces. �

Definition 2. An E-property P , or simply a (base or non-
parametric) property, is a function P : E∗ → C partitioning
the set of traces into categories C. It is common, but not en-
forced, that C includes “match”, “fail”, and “don’t know” (or

“?”) categories. In general, C, may be any set and is referred to
as the set of verdict categories when it eases readability.

Example. Consider again Fig. 2. The FSM has no match
category as we did not define it. The fail category is reached
by “falling off the machine”, that is, receiving an event in a
state for which there is no transition. For example, the trace
createE updateV useE would result in the fail category. �

We next extend the above definitions to the parametric
case, i.e., traces containing events that carry concrete data
instantiating abstract parameters.
Example. Event useE is parametric in the Enumeration; if e
is the name of the generic Enumeration parameter and e1 and
e2 are concrete Enumerations, then parametric useE events
have the form useE〈e 7→ e1〉, useE〈e 7→ e2〉, etc. �

In what follows, let [A→B] be the set of total functions
and [A⇁B] be the set of partial functions, both from A to B.

Definition 3. (Parametric events and traces). LetX be a set
of parameters and let V be a set of corresponding parameter
values. If E is a set of base events like in Def. 1, then let E〈X〉

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 13

be the set of corresponding parametric events e〈θ〉, where e
is a base event in E and θ is a partial function in [X⇁V].
A parametric trace is a trace with events in E〈X〉, that is, a
word in E〈X〉∗.

To simplify writing, we occasionally assume the parameter
values set V implicit.
Example. A parametric trace for our property in Fig. 2 can be:

updateV〈v 7→ v1〉 createE〈v 7→ v1, e 7→ e1〉 createE〈v 7→ v1,
e 7→ e2〉 createE〈v 7→ v2, e 7→ e3〉 useE〈e 7→ e3〉 useE〈e 7→ e1〉
updateV〈v 7→ v1〉 useE〈e 7→ e1〉 useE〈e 7→ e2〉.

We take the freedom to only list the parameter values when
writing parameter instances, that is, 〈v1〉 instead of 〈v 7→ v1〉.
With this notation, the above trace is:

updateV〈v1〉 createE〈v1, e1〉 createE〈v1, e2〉 createE〈v2, e3〉
useE〈e3〉 useE〈e1〉 updateV〈v1〉 useE〈e1〉 useE〈e2〉.

As mentioned earlier, this trace induces eleven trace slices.
The slice corresponding to 〈v1, e1〉 is

updateV createE useE updateV useE �

Definition 4. Partial functions θ in [X⇁V] are called pa-
rameter instances. θ, θ′ ∈ [A⇁B] are compatible if for any
x ∈ Dom(θ) ∩ Dom(θ′), θ(x) = θ′(x). We can combine
compatible instances θ and θ′, written θ t θ′, as follows:

(θ t θ′)(x) =

 θ(x) when θ(x) is defined
θ′(x) when θ′(x) is defined
undefined otherwise

θ t θ′ is also called the least upper bound (lub) of θ and
θ′. θ is less informative than θ′, or θ′ is more informative
than θ, written θ v θ′, if for any x ∈ X , if θ(x) is defined
then θ′(x) is also defined and θ(x) = θ′(x).

Definition 5. (Trace slicing) Given parametric trace τ ∈
E〈X〉∗ and θ in [X⇁V], let the θ-trace slice τ�θ ∈ E∗ be the
non-parametric trace defined as:

– ε�θ = ε, where ε is the empty trace/word, and

– (τ e〈θ′〉)�θ =

{
(τ�θ) e when θ′ v θ
τ�θ when θ′ 6v θ

The trace slice τ�θ first filters out all the parametric events that
are not relevant for the instance θ, i.e., which contain instances
of parameters that θ does not care about, and then, for the re-
maining events relevant to θ, it forgets the parameters so that
the trace can be checked against base, non-parametric proper-
ties. It is crucial to discard events for parameter instances that
are not relevant to θ during the slicing, including those more
informative than θ, in order to achieve a “proper” slice for θ:
in our running example, the trace slice for 〈v1〉 should contain
only updateV events and no createE or useE events.

Definition 6. Let X be a set of parameters together with
their corresponding parameter values V , like in Def. 3, and
let P : E∗ → C be a non-parametric property like in Def. 2.
Then we define the parametric propertyΛX.P as the property
(over traces E〈X〉∗ and categories [[X⇁V]→ C])

ΛX.P : E〈X〉∗ → [[X⇁V]→ C]

defined as (ΛX.P)(τ)(θ) = P (τ�θ) for any τ ∈ E〈X〉∗
and any θ ∈ [X⇁V]. If X = {x1, ..., xn} we may write
Λx1, ..., xn.P instead of (Λ{x1, ..., xn}.)P . Also, if Pϕ is de-
fined using a pattern or formula ϕ in some particular trace
specification formalism, we take the liberty to write ΛX.ϕ
instead of ΛX.Pϕ.

A parametric property is therefore similar to a normal
property, except that the domain is parametric traces, and
the output, rather than being one category, is a mapping of
parameter instances to categories. This allows the parametric
property to associate an output category for each parameter
instance from [X⇁V].

4.1.2 Monitors and Parametric Monitors

Here we define monitors M and parametric monitors ΛX.M .
Like for parametric properties, which are just properties over
parametric traces, parametric monitors are also just monitors,
but for parametric events and with instance-indexed states
and output categories: a parametric monitor ΛX.M is a mon-
itor for the parametric property ΛX.P , with P the property
monitored by M [24].

Monitors are defined as a variant of Moore machines:

Definition 7. A monitorM is a tuple (S, E , C, ı, σ : S×E →
S, γ : S → C), where S is the set of states, E is the set of input
events, C is the set of output categories, ı ∈ S is the initial
state, σ is the transition function, and γ is the output function.
The transition function is extended to handle traces of events
(i.e., σ : S × E∗ → S) the standard way.

The notion of a monitor above is often impractical. Actual
implementations of monitors need not generate all the state
space a priori, but rather on an “as needed” basis. Allowing
monitors with infinitely many states is a necessity in our con-
text. Even though only a finite number of states is reached
during any given (finite) execution trace, there is, in general,
no bound on how many may be reached. For example, mon-
itors for context-free grammars have potentially unbounded
stacks as part of their state. Also, as shown shortly, parametric
monitors have domains of functions as state spaces, which are
infinite as well.

Definition 8. M = (S, E , C, ı, σ, γ) is a monitor for prop-
erty P : E∗ → C if γ(σ(ı, w)) = P (w) for each w ∈ E∗.
Every monitor M defines the property PM : E∗ → C with
PM (w) = γ(σ(ı, w)); We write PM to denote the property
defined by M . Monitors M and M ′ are equivalent, written
M ≡M ′ if PM = PM ′ .

We next define parametric monitors in the same style as
the other parametric entities defined in this paper: starting
with a base monitor and a set of parameters, the corresponding
parametric monitor can be thought of as a set of base monitors
running in parallel, one for each parameter instance.

Definition 9. Given parameters X with corresponding val-
ues V and monitor M = (S, E , C, ı, σ : S × E → S, γ : S →

14 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

C), the parametric monitorΛX.M is the monitor ([[X⇁V]→
S], E〈X〉, [[X⇁V] → C], λθ.ı, ΛX.σ, ΛX.γ), with ΛX.σ :
[[X⇁V] → S] × E〈X〉 → [[X⇁V] → S] and ΛX.γ :
[[X⇁V]→S]→ [[X⇁V]→C] defined as

(ΛX.σ)(δ, e〈θ′〉)(θ) =

{
σ(δ(θ), e) if θ′ v θ
δ(θ) if θ′ 6v θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for any δ ∈ [[X⇁V]→S] and any θ, θ′ ∈ [X⇁V].

Therefore, a state δ of parametric monitor ΛX.M main-
tains a state δ(θ) of M for each parameter instance θ, takes
parametric events as input, and outputs categories indexed by
parameter instances (one category of M per instance). Intu-
itively, one can think of a parametric monitor as a collection
of “monitor instances”. Each monitor instance, which is in-
dexed by a parameter instance, keeps track of the state of one
trace slice. The rule for ΛX.σ can be read as stating that when
an event with parameter instance θ′ is evaluated, it updates
the state for all monitor instances more informative than the
instance for θ′, and the instance for θ′ itself, leaving all other
monitor instances untouched. The rule for ΛX.γ simply states
that γ is applied to a state, as normal, but the state is found by
looking up the state of the monitor instance for θ.

4.1.3 Naive Parametric Monitoring

Intuitively, the necessary steps for online monitoring of para-
metric properties are as follows:

1. Begin with a monitor instance for the empty parameter
instance ⊥ initialized to the start state of the monitor, ı.

2. As each event, e〈θ〉, arrives there are two possibilities:
– There is already a monitor instance for θ, in this case

the instance is simply updated with e.
– There is not already a monitor instance for θ, in this

case an instance is created for θ. It is initialized to the
state of the most informative θ′ less informative than
θ. Such a θ’ is guaranteed to exist because we begin
with a monitor instance for ⊥, which is less informa-
tive than all other possible θ’s. We also create monitor
instances for every parameter instance that may be cre-
ated by combining θ with previously seen parameter
instances. Each of these created instances is initialized
similarly to the instance for θ, using the most infor-
mative instance less than itself. All created monitor
instances are updated with e after initialization.

3. e is then used to update the monitor instances for all θ′

that are strictly more informative than θ.

We next present a more concrete monitoring algorithm
for parametric properties first introduced in [24]. It is derived
from the algorithm A〈X〉, which is omitted here, that was
also first presented in [24]. A first challenge here is how to
represent the states of the parametric monitor. We encode
the functions [[X⇁V]⇁S] as tables with entries indexed by
parameter instances in [X⇁V] and with contents states in S.
Such tables will have finite entries since each event binds only

Algorithm B〈X〉(M = (S, E , C, ı, σ, γ))

Globals : mapping ∆ : [[X⇁V]⇁S]

function main(τ)
1 ∆(⊥)← ı; Θ ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ} tΘ do
4 : : ∆(θ′)← σ(∆(max (θ′]Θ), e)
5 : : Γ (θ′)← γ(∆(θ′))
6 : endfor
7 : Θ ← {⊥, θ} tΘ
8 endfor

Fig. 9. Naive Monitoring Algorithm B〈X〉

a finite number of parameters. Fig. 9 shows our monitoring
algorithm for parametric properties. Given parametric property
ΛX.P and M a monitor for P , B〈X〉(M) yields a monitor
that is equivalent to ΛX.M , that is, a monitor for ΛX.P .

B〈X〉 first assigns ı, the initial state, to ∆(⊥) (∆ is a
mapping from parameter instance to monitor state). Θ, which
contains all known parameter instances is initialized to con-
tain {⊥}, as ⊥ is always known. For each event e〈θ〉 that
arrives during program execution (line 2), B〈X〉 generates
every compatible parameter instance by combining {θ} with
all the previously known parameter instances. It then updates
the state of every one of these compatible parameter instances
(θ′) on line 4 with the state, transitioned by event e, of the
“monitor instance” corresponding to the “largest” parameter
instance less than or equal to θ′. At the same time we also
calculate the output corresponding to that monitor instance
and store it in table Γ . Rather than storing a whole slice as in
Def. 5, the knowledge of the slice is encoded in the state of
the monitor instance for θ′. After the algorithm completes Γ
contains the category for each possible trace slice. An actual
implementation is free to report a category (e.g., match) as
soon as it is discovered. In fact, in JavaMOP, it is necessary to
report a category as soon as it occurs so that recovery actions
can be performed, and also because the category of a trace
may change several times throughout its lifetime, while B〈X〉
only gives the final result.

4.2 Efficient Parametric Monitoring

Algorithm B〈X〉 is correct, and easy to understand, but it is
not very efficient. It creates many more monitor instances than
are actually required to correctly monitor a given property.
An algorithm designed for runtime monitoring should receive
a trace one event at a time, rather than all at once as B〈X〉.
Next we show an algorithm that receives a trace one event as
a time. We also discuss optimizations to the algorithm that
vastly improve efficiency [21].

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 15

Algorithm C〈X〉(M = (S, E , C, ı, σ, γ))

Globals : mapping ∆ : [[X⇁V]⇁S]
mapping U : [X⇁V]→ Pf ([X⇁V])

Initialization : ∆← 〈〉,U← 〈〉
U(θ) ← ∅ for any θ ∈ [X⇁V]

function main(e〈θ〉)
1 if ∆(θ) undefined then
2 : foreach θm @ θ (in reversed topological order) do
3 : : if ∆(θm) defined then goto 5 endif
4 : endfor
5 : if ∆(θm) defined then defineTo(θ, θm)
6 : elseif e is a creation event then defineNew(θ)
7 : endif
8 : foreach θm @ θ (in reversed topological order) do
9 : : foreach θcomp ∈ U(θm) compatible with θ do

10 : : : if ∆(θcomp t θ) undefined then
11 : : : : defineTo(θcomp t θ, θcomp)
12 : : : endif
13 : : endfor
14 : endfor
15 endif
16 foreach θ′ ∈ {θ} ∪ U(θ) do ∆(θ′)← σ(∆(θ′), e) endfor

function defineNew(θ)
1 ∆(θ)← ı
2 foreach θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ} endfor

function defineTo(θ, θ′)
1 ∆(θ)← ∆(θ′)
2 foreach θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ} endfor

Fig. 10. Monitoring Algorithm C〈X〉.

4.2.1 Algorithm C〈X〉

Fig. 10 shows the algorithm C〈X〉5 for online monitoring
of parametric property ΛX.P , given that M is a monitor for
P . Note that we assume the notation of 〈〉 for empty maps
throughout the remainder. The algorithm shows which actions
to perform, e.g., creating a new monitor state and/or updating
the state of related monitors, when an event is received. Al-
gorithm C〈X〉 refines Algorithm B〈X〉 in Fig. 9 for efficient
online monitoring. C〈X〉 essentially expands the body of the
outer loop in B〈X〉 (lines 3 to 7 in Fig. 9). The direct use of
B〈X〉 would yield prohibitive runtime overhead when moni-
toring large traces, because its inner loop requires searching
for all parameter instances inΘ that are compatible with θ; this
search can be very expensive. C〈X〉 introduces an auxiliary
data structure and illustrates a mechanical way to accomplish
the search, which also facilitates further optimizations.

Algorithm C〈X〉 also extends algorithm B〈X〉 to sup-
port creation events. Recall from Section 3.1 that users may
specifically choose creation events using the keyword creation.
Supporting creation events in algorithm C〈X〉 is justified and

5 This algorithm was referred to as C+〈X〉 in [21]. The distinctions be-
tween C〈X〉 and C+〈X〉 are small, and elided for conciseness.

Λm, c, i . createC〈m, c〉 updateM〈m〉∗createI〈c, i〉
useI〈i〉∗ updateM〈m〉+ useI〈i〉

Fig. 11. Parametric Property (UnsafeMapIterator)

motivated by experience with implementing and evaluating
B〈X〉 in [24], mainly by the following observation: one often
chooses to start monitoring at the witness of a specific set of
events (versus the beginning of the program).

Two mappings are used in C〈X〉: ∆ and U. ∆ stores the
monitor states for parameter instances, and U maps a param-
eter instance θ to all the parameter instances that have been
defined and are properly more informative than θ. In what
follows, “to create a parameter instance θ” and “to create a
monitor state for parameter instance θ” have the same mean-
ing: to define ∆(θ).

We next use an example about the interaction between the
classes Map, Collection and Iterator in Java (Fig. 11), as this
provides a better demonstration of the power of C〈X〉 than
does the pattern in Fig. 2. This also provides us an opportunity
to show how parametric trace slicing is truly generic with
respect to the logical formalism by using extended regular
expressions (ERE) in place of finite state machines (FSM).
Map and Collection implement data structures for mappings
and collections, respectively. Iterator is an interface used to
enumerate elements in a collection-typed object. One can also
enumerate elements in a Map object using Iterator. But, since a
Map object contains key-value pairs, one needs to first obtain
a collection object that represents the contents of the map,
e.g., the set of keys or the set of values stored in the map,
and then create an iterator from the obtained collection. An
intricate safety property in this usage, according to the Java
API specification, is that when the iterator is used to enumerate
elements in the map, the contents of the map should not be
changed, or unexpected behaviors may occur. The parametric
LTL formula in Fig. 11 specifies the incorrect behavior of the
system.

In Fig. 11, createC is an event corresponding to creating
a collection from a map, createI corresponds to creating an
iterator from a collection, updateM corresponds to updating
the map, and useI corresponds to using the iterator. The pattern
says that a Collection is created from a Map, an Iterator is
created from the Collection, the Map is updated at least once (+

means one or more times), and then the Iterator is used after the
update. The extra updateM〈m〉∗ and useI〈c, i〉∗ define places
where these events are still valid. When an observed execution
matches this pattern, the UnsafeMapIterator property is broken.

In Fig. 12, we show the contents of ∆ and U after ev-
ery event (given in the first row of the table) is processed.
The observed trace is updateM〈m1〉 createC〈m1, c1〉 createC
〈m2, c2〉 createI〈c1, i1〉. We assume that createC is the only
creation event. The first event, updateM 〈m1〉, is not a cre-
ation event and nothing is added to∆ and U. The second event,
createC〈m1, c1〉, is a creation event. So a new monitor state is
defined in ∆ for 〈m1, c1〉, which is also added to the lists in U
for ⊥, 〈m1〉 and 〈c1〉. Note that ⊥ is less informative than any

16 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

updateM〈m1〉 createC〈m1, c1〉 createC〈m2, c2〉 createI〈c1, i1〉

∆ ∅ 〈m1, c1〉 : σ(ı, createC) 〈m1, c1〉 : σ(ı, createC)
〈m2, c2〉 : σ(ı, createC)

〈m1, c1〉 : σ(ı, createC)
〈m2, c2〉 : σ(ı, createC)
〈m1, c1, i1〉 : σ(σ(ı, createC), createI)

U ∅ 〈〉 : 〈m1, c1〉
〈m1〉 : 〈m1, c1〉
〈c1〉 : 〈m1, c1〉

〈〉 : 〈m1, c1〉, 〈m2, c2〉
〈m1〉 : 〈m1, c1〉
〈c1〉 : 〈m1, c1〉
〈m2〉 : 〈m2, c2〉
〈c2〉 : 〈m2, c2〉

〈〉 : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉 : 〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉 : 〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉 : 〈m2, c2〉
〈c2〉 : 〈m2, c2〉
〈i1〉 : 〈m1, c1, i1〉, 〈m2, c2, i1〉
〈m1, c1〉 : 〈m1, c1, i1〉
〈m1, i1〉 : 〈m1, c1, i1〉
〈c1, i1〉 : 〈m1, c1, i1〉

Fig. 12. Sample run of C〈X〉. The first row gives the received events; the second and the third rows give the content of ∆ and U, respectively, after every event
is processed. Monitor states are represented symbolically in the table, e.g., σ(ı, createC) represents the state after the event createC.

other parameter instances. The third event createC〈m2, c2〉 is
another creation event, incompatible with the second event.
Hence, only one new monitor state is added to ∆. U is up-
dated similarly. The last event createI〈c1, i1〉 is not a creation
event. So no monitor instance is created for 〈c1, i1〉. It is com-
patible with the existing parameter instance 〈m1, c1〉 (found
from the list for 〈c1〉 in U) introduced by the second event but
not compatible with 〈m2, c2〉 due to the conflict binding on c.
Therefore, a new monitor instance is created for the combined
parameter instance 〈m1, c1, i1〉 using the state for 〈m1, c1〉
in ∆. U is also updated to add the new instance into lists of
parameter instances that are less informative.

4.2.2 Enable Set Optimization

While C〈X〉 is an improvement over B〈X〉, it is possible to
improve C〈X〉 by making assumptions on the given monitor
M . In other words, one may monitor properties written in any
specification formalism, e.g., ERE, CFG, PTLTL etc., as long
as one also provides a monitor generation algorithm for said
formalism. However, this generality leads to extra monitoring
overhead in some cases. It is possible to optimize monitor
creation using the concept of enable sets [21]. Algorithms for
computing enable sets can be found in Section 6.1 and 6.5.

To motivate the optimization, let us continue the run in
Fig. 12 to process one more event, useI〈i1〉. The result is
shown in Fig. 13. useI〈i1〉 is not a creation event and no moni-
tor instance is created for 〈i1〉. Since 〈i1〉 is compatible with
〈m2, c2〉, a new monitor instance is defined for 〈m2, c2, i1〉.
The monitor instance for 〈m1, c1, i1〉 is then updated accord-
ing to useI because 〈i1〉 is less informative than 〈m1, c1, i1〉.
U is also updated to add 〈m2, c2, i1〉 to the lists for all the
parameter instances less informative than 〈m2, c2, i1〉. New
entries are added into U during the update since some of the
less informative parameter instances, e.g., 〈m2, i1〉, have not
been used before this event.

Creating the monitor instance for 〈m2, c2, i1〉 is needed
for the correctness of C〈X〉, but it can be avoided when more
information about the program or the specification is available.

useI〈i1〉

∆
〈m1, c1〉 : σ(ı, createC)
〈m2, c2〉 : σ(ı, createC)
〈m1, c1, i1〉 : σ(σ(σ(ı, createC), createI), useI)
〈m2, c2, i1〉 : σ(σ(ı, createC), useI)

U 〈〉 : 〈m1, c1〉, 〈m2, c2〉, 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m1〉 : 〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉 : 〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉 : 〈m2, c2〉, 〈m2, c2, i1〉
〈c2〉 : 〈m2, c2〉, 〈m2, c2, i1〉
〈i1〉 : 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m2, c2〉 : 〈m2, c2, i1〉
〈m2, i1〉 : 〈m2, c2, i1〉
〈c2, i1〉 : 〈m2, c2, i1〉
〈m1, c1〉 : 〈m1, c1, i1〉
〈m1, i1〉 : 〈m1, c1, i1〉
〈c1, i1〉 : 〈m1, c1, i1〉

Fig. 13. Following the run of Fig. 12.

For example, according to the semantics of Iterator, no event
createI〈c2, i1〉 will occur in the subsequent execution since an
iterator can be associated to only one collection. Hence, the
monitor for 〈m2, c2, i1〉 will never reach the validation state
and we do not need to create it from the beginning. However,
such semantic information about the program is very difficult
to infer automatically. Below, we show a simpler yet effective
solution to avoid unnecessary monitor creations by analyzing
the specification to monitor.

When monitoring a program against a specific property,
usually only a certain subset of property categories, (C in
Def. 2), is checked. For example, in the UnsafeMapIterator
property in Fig. 11, the regular expression specifies a defective
interaction among related Map, Collection and Iterator objects.
To find an error in the program using monitoring is thus to
detect matches of the specified pattern during the execution. In
other words, we are only interested in the validation category
of the specified pattern. Obviously, to match the pattern, for

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 17

a parameter instance of parameter set {m, c, i}, createC and
createI should be observed before useI is encountered for the
first time in monitoring. Otherwise, the trace slice for {m, c,
i} will never match the pattern. Based on this information, we
next show that creating the monitor state for 〈m2, c2, i1〉 in
Fig. 13 is not needed. When event useI〈i1〉 is encountered,
if the monitor state for a parameter instance 〈m2, c2〉 exists
without the monitor state for 〈m2, c2, i1〉, like in Fig. 13, it
can be inferred that in the trace slice for 〈m2, c2, i1〉, only
events createC and/or updateM occur before useI because,
otherwise, if createI also occurred before useI, the monitor
state for 〈m2, c2, i1〉 should have been created. Therefore,
we can infer, when event useI〈i1〉 is observed and before the
execution continues, that no match of the specified pattern can
be reached by the trace slice for 〈m2, c2, i1〉, that is to say, the
monitor for 〈m2, c2, i1〉 will never reach the validation state.

This observation shows that the knowledge about the spec-
ified property can be applied to avoid unnecessary creation
of monitor instances. This way, the sizes of ∆ and U can be
reduced, reducing the monitoring overhead. We next formalize
the information needed for the optimization and argue that it
is not specific to the underlying specification formalism. How
this information is used is discussed in Section 4.2.3.

Definition 10. Given w,w1, w2, w3 ∈ E∗ and e, e′ ∈ E , for
a trace w = w1 e

′ w2 e w3, i.e., a trace w where e′ occurs
before an occurrence of e, we denote the relationship between
e and e′ with respect to w as e′ w e. Let the trace enable
set of e ∈ E be the function enablew : E → Pf (E), defined
as: enablew(e) = {e′ | e′ w e}.

Note that if e 6∈ w then enablew(e) = ∅. The trace enable
set can be used to examine whether the execution under ob-
servation may generate a particular trace of interest, or not:
if event e is encountered during monitoring but some event
e′ ∈ enablew(e) has not been observed, then the (incomplete)
execution being monitored will not produce the trace w when
it finishes. This observation can be extended to check, before
an execution finishes, whether the execution can generate a
trace belonging to some designated property categories. The
designated categories are called the goal of the monitoring.

Definition 11. Given P : E∗ → C and a set of categories
G ⊆ C as the goal, the property enable set is defined as
a function enableEG : E → Pf (Pf (E)) with enableEG(e) =
{enablew(e) | P (w) ∈ G}.

Intuitively, if event e is encountered during monitoring but
none of event sets enableEG(e) has been completely observed,
the (incomplete) execution being monitoring will not produce
a trace w s.t. P (w) ∈ G. For example, given the regular ex-
pression specifying the UnsafeMapIterator property in Fig. 11,
where G = {match}, the second column in Fig. 14 shows the
property enable sets of events in UnsafeMapIterator.

The property enable set provides a sound and fast way to
decide whether an incomplete trace slice has the possibility of
reaching the desired categories by looking at the events that
have already occurred. In the above example, if a trace slice

Event enableEG enableXG

createC {∅} {∅}

createI {{createC},
{createC, updateM}} {{m, c}}

useI {{createC, createI},
{createC, createI, updateM}} {{m, c, i}}

updateM
{{createC},
{createC, createI},
{createC, createI, useI}}

{{m, c},
{m, c, i}}

Fig. 14. Property and Parameter Enable Sets for UnsafeMapIterator.

starts with createC useI, it will never reach the match category,
because {createC} 6∈ enableEG(useI). In such case, no monitor
state need be created even when the newly observed event may
lead to new parameter instances. For example, suppose that
the observed (incomplete) trace is createC useI from before.
At the second event, useI, a new parameter instance can be
constructed, namely, 〈m1, c1, i1〉, and a monitor state s will
be created for 〈m1, c1, i1〉 if algorithm C〈X〉 is applied. How-
ever, since the trace slice for s is createC useI, we immediately
know that s cannot reach state match. So there is no need to
create and maintain s during monitoring if match is the goal.

A direct application of the above idea to optimize C〈X〉
requires maintaining observed events for every created moni-
tor and comparing event sets when a new parameter instance
is found, reducing the performance. Therefore, we adapt the
notion of the enable set to be based on parameter sets instead
of event sets.

Definition 12. Given a property P : E∗ → C, a set of cat-
egories G ⊆ C as the goal, a set of parameters X and a
function DE : E → Pf (X) mapping an event to its param-
eters, the property parameter enable set of event e ∈ E is
defined as a function enableXG : E → Pf (Pf (X)) as follows:
enableXG (e) = {∪{DE(e′) | e′ ∈ enablew(e)} | P (w) ∈ G}.

From now on, we use “enable set” to refer to “property pa-
rameter enable set” for simplicity. For example, given the
regular pattern for the UnsafeMapIterator property in Fig. 11
and G = {match}; the third column in Fig. 14 shows the
parameter enable sets of events in UnsafeMapIterator. Then,
given again the trace createC〈m1, c1〉 useI〈i1〉, no monitor
state need be created at the second event for 〈m1, c1, i1〉 since
the parameter instance used to initialize the new monitor state,
namely, 〈m1, c1〉, is not in enableXG (useI). In other words, one
may simply compare the parameter instance used to initialize
the new parameter instance with the enable set of the observed
event to decide whether a new monitor state is needed or not.
Note that in JavaMOP, the property parameter enable sets
are generated from the property enable sets provided by the
formalism plugin. This allows the plugins to remain totally
parameter agnostic.

4.2.3 Algorithm D〈X〉

We next integrate the concept of enable sets with algorithm
C〈X〉, to improve performance and memory usage [21].

18 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

e1〈p1〉 e2〈q1〉 e3〈p1, q1〉

∆
〈p1〉 : σ(ı, e1) 〈p1〉 : σ(ı, e1) 〈p1〉 : σ(ı, e1)

〈p1, q1〉 : σ(σ(ı, e1), e3)

Fig. 15. Unsound Usage of the Enable Set.

e1〈p1〉 e2〈q1〉 e3〈p1, q1〉

∆
〈p1〉 : σ(ı, e1) 〈p1〉 : σ(ı, e1) 〈p1〉 : σ(ı, e1)

〈p1, q1〉 : σ(σ(ı, e1), e3)

T 〈p1〉 : 1 〈p1〉 : 1 〈p1〉 : 1

disable
〈p1〉 : 2 〈p1〉 : 2

〈q1〉 : 3
〈p1〉 : 2
〈q1〉 : 3
〈p1, q1〉 : 4

Fig. 16. Sound Monitoring Using Timestamps.

Given a set of desired verdict categories G, we are guaran-
teed that we can optimize the monitoring process by omitting
creating monitor states for certain parameter instances when an
event is received using the enable set without missing any trace
belonging to G. However, skipping the creation of monitor
states may result in false alarms, i.e., a trace that is not in G can
be reported to belong to G. Let us consider the following ex-
ample. We monitor to find matching of a regular pattern e1e3.
Relevant events and their parameters are e1(p), e2(q), e3(p, q).
The observed trace is e1〈p1〉e2〈q1〉e3〈p1, q1〉. Also, suppose
e1 is the only creation event. Obviously, the trace does not
match the pattern. Fig. 15 shows the run using the enable set
optimization (i.e., not creating monitor states for parameter
instances disallowed by the enable sets). Only the content of
∆ is given for simplicity. At e1, a monitor state is created for
〈p1〉 since it is the creation event. At e2, no action is taken
since enableXG (e2) = ∅. At e3, a monitor state will be cre-
ated for 〈p1, q1〉 using the monitor state for 〈p 7→ p1〉 since
enableXG (e3) = {{p}}. This way, e2 is forgotten and a match
of the pattern is reported incorrectly.

To avoid unsoundness, we introduce the notion of disable
stamps of events. disable : [[X⇁V]⇁integer] maps a param-
eter instance to an integer timestamp. disable(θ) gives the time
when the last event with θ was received. We maintain times-
tamps for monitors using a mapping T : [[X⇁V]⇁integer].
T maps a parameter instance for which a monitor state is
defined to the time when the original monitor state is created
from a creation event. Specifically, if a monitor state for θ is
created using the initial state when a creation event is received
(i.e., using the defineNew function in algorithm C〈X〉), T (θ)
is set to the time of creation; if a monitor state for θ is created
from the monitor state for θ′, T (θ′) is passed to T (θ). Fig. 16
shows the evolution of disable and T while processing the
trace in Fig. 15.

disable and T can be used together to track “skipped
events”: when a monitor state for θ is created using the mon-
itor state for θ′, if there exists some θ′′ @ θ s.t. θ′′ 6@ θ′

Algorithm D〈X〉(M = (S, E , C, ı, σ, γ))

Input : mapping enableXG : [E⇁Pf (Pf (X))]

Globals : mapping ∆ : [[X⇁V]⇁S]
mapping T : [[X⇁V]⇁integer]
mapping U : [X⇁V]→ Pf ([X⇁V])
mapping disable : [[X⇁V]⇁integer]
integer timestamp

Initialization : T ← 〈〉,U← 〈〉, disable← 〈〉
disable(θ)← 0 for any θ
U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if ∆(θ) undefined then
2 : createNewMonitorState(e〈θ〉)
3 : if ∆(θ) undefined and e is a creation event then
4 : : defineNew(θ)
5 : endif
6 : disable(θ)← timestamp; timestamp← timestamp + 1
7 endif
8 foreach θ′ ∈ {θ} ∪ U(θ) s.t. ∆(θ′) defined do
9 : ∆(θ′)← σ(∆(θ′), e)

10 endfor

function createNewMonitorStates(e〈θ〉)
1 foreach Xe ∈ enableXG (e) (in reversed topological order) do
2 : if Dom(θ) 6⊆ Xe then
3 : : θm ← θ′ s.t. θ′ @ θ and Dom(θ′) = Dom(θ) ∩Xe
4 : : foreach θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do
5 : : : if ∆(θ′′) defined and ∆(θ′′ t θ) undefined then
6 : : : : defineTo(θ′′ t θ, θ′′)
7 : : : endif
8 : : endfor
9 : endif

10 endfor

function defineNew(θ)
1 foreach θ′′ @ θ do
2 : if ∆(θ′′) defined then return endif
3 endfor
4 ∆(θ)← ı; T (θ)← timestamp; timestamp← timestamp + 1
5 foreach θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ} endfor

function defineTo(θ, θ′)
1 foreach θ′′ v θ s.t. θ′′ 6v θ′ do
2 : if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then
3 : : return
4 : endif
5 endfor
6 ∆(θ)← ∆(θ′); T (θ)← T (θ′)
7 foreach θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ} endfor

Fig. 17. Optimized Monitoring Algorithm D〈X〉.

and disable(θ′′) > T (θ′) then the trace slice for θ does
not belong to the desired verdict categories G. Intuitively,
disable(θ′′) > T (θ′) implies that an event e〈θ′′〉 has been
encountered after the monitor state for θ′ was created. But θ′′

was not taken into account (θ′′ 6@ θ′). The only possibility
is that e is omitted due to the enable set and thus the trace
slice for θ does not belong to G according to the definition of

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 19

the enable set. Therefore, in Fig. 16, no monitor instance is
created for 〈p1, q1〉 at e3 because disable(〈q1〉) > T (〈p1〉).

The above discussion applies when the skipped event
occurs after the initial creation of the monitor state. The
other case, i.e., an event is omitted before the initial moni-
tor state is created, can also be handled using timestamps. If
the skipped event is not a creation event, it does not affect
the soundness of the algorithm because of the definition of
creation events. In the above example, if the observed trace
is e2〈q1〉e1〈p1〉e3〈p1, q1〉, we will ignore e2 and report the
matching at e3 since e1 is the only creation event. It is more
sophisticated (but not much different) when the skipped event
is a creation event.

Based on the above discussion, we develop a new para-
metric monitoring algorithm that optimizes algorithm C〈X〉
using the enable set and timestamps, as shown in Fig. 17. This
algorithm makes use of the mappings discussed above, namely,
enableXG , ∆, U, disable, and T , and maintains an integer vari-
able to track the timestamp. Similar to algorithm C〈X〉, when
event e〈θ〉 is received, algorithm D〈X〉 first checks whether
∆(θ) is defined or not (line 1 in main). If not, monitor states
may be generated for new encountered parameter instances,
which is achieved by function createNewMonitorStates in
algorithm D〈X〉. Unlike in algorithm C〈X〉, where all the pa-
rameter instances less informative than θ are searched to find
all the compatible parameter instances using U, createNewMon-
itorStates enumerates parameter sets in enableXG (e) and looks
for parameter instances whose domains are in enableXG (e)
and which are compatible with θ, also using U. The inclusion
check at line 2 in createNewMonitorStates is to omit unneces-
sary search since if Dom(θ) ⊆ Xe then no new parameter in-
stance will be created from θ. This way, createNewMonitorStat-
es creates all the parameter instances from θ whenever the
enable set of e is satisfied using fewer lists in U.

If e is a creation event then a monitor state for θ is initial-
ized (lines 3 - 5 in main). Note that ∆(θ) can be defined in
function createNewMonitorStates if ∆(θ′) has been defined
for some θ′ @ θ. disable(θ) is set to the current timestamp
after all the creations and the timestamp is increased (line 6
in main). The rest of function main in D〈X〉 is the same as in
C〈X〉: all the relevant monitor states are updated according
to e. Function defineNew in D〈X〉 first searches for a defined
sub-instance of θ. If such instance exists, θ should be defined
using it; otherwise, ∆(θ) is set to the initial state. Then T (θ)
is set to the current timestamp, and the timestamp is incre-
mented. Function defineTo in D〈X〉 checks disable and T
as discussed above to decide whether ∆(θ) can be defined
using ∆(θ′). If ∆(θ) is defined using ∆(θ′), T (θ) is set to
T (θ′). Both functions then add θ to the sets in table U for the
bindings less informative than θ, as in C〈X〉.

In all of our tested cases D〈X〉 performs better than C〈X〉;
in most cases that C〈X〉 or D〈X〉 caused notable monitoring
overhead, the efficiency of D〈X〉 is significantly better (see
Section 4.5).

Monitor instances

… …

…

v 1

e 1

v 1 e 1 v 2
v 3 v 2 e 2

e 2
e 3

{v, e} Map {v} Map {e} Map

Fig. 18. Centralized indexing for the JavaMOP spec in Fig. 2

4.3 Indexing

Algorithm D〈X〉 gives an efficient algorithm for monitoring
parametric specifications, but it tells us nothing about the
data structures used to map parameter instances to their given
monitor states. The following techniques have been adapted
from [23] to algorithm D〈X〉. D〈X〉 is more powerful than
the monitoring algorithm used in [23].

4.3.1 Centralized Indexing

Efficient monitor lookup is crucial to reduce the runtime over-
head. The major requirement here is to quickly locate all
related monitor instances given a parameter instance. Recall
that different events can have different sets of parameters: e.g.,
in Fig. 11, all four events declare different parameter subsets.
Our centralized indexing algorithm constructs multiple index-
ing trees according to the event definitions to avoid inefficient
traversal of the indexes; more specifically, for every distinct
set of event parameters found in the specification, an indexing
tree is created to map the set of parameters directly into the
list of corresponding monitors.

The number and structure of indexing trees needed for a
specification can be determined by a simple static analysis of
event parameter declarations. For example, from our original
parametric specification in Fig. 2, since there are three differ-
ent sets of event parameters, namely 〈v, e〉, 〈v〉, and 〈e〉, three
indexing trees will be created to index monitors, as illustrated
in Fig. 18: the first tree uses a pair of v and e to find the corre-
sponding monitor, while the other two map v and, respectively,
e to the list of related monitors.

We use hash maps in JavaMOP to construct the indexing
tree. Fig. 19 shows the generated monitor lookup code for
the updateV event in Fig. 2. This code is inserted at the end
of every call to a Vector.add method6 or to Vector.remove,
according to the event definition. One parameter is associated
to this event, namely, the vector v on which we invoke the
method. A map, SafeEnum v map, is created to store the in-
dexing information for v, i.e., the {v}Map in Fig. 18. When
such a method call is encountered during the execution, a con-
crete vector object will be bound to v and the monitoring code

6 The ‘*’ tells AspectJ to weave at any method that begins with add.

20 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

Map SafeEnum v map = makeMap();
pointcut SafeEnum updateV0(Vector v) :

(call(∗ Vector.add ∗ (..))||call(∗ Vector.remove(..)))&& target(v);
after (Vector v) : SafeEnum updateV0(v) {
Map m = SafeEnum v map;
Object obj = null;
obj = m.get(v);
if(obj ! = null){
Iterator monitors = ((List)obj).iterator();
while (monitors.hasNext()) {

SafeEnumMonitor monitor =
(SafeEnumMonitor)monitors.next();
monitor.updateV(v);
if(monitor.MOP fail()) {
//fail handler
}

}//end of while
}//end of if
}

Fig. 19. Centralized indexing monitoring code generated by JavaMOP for
updateV (from the JavaMOP spec in Fig. 2)

Monitor instances

… … e 1 e 2
e 3

v.{e } Map v.List e.List

v 1 v 2 v 1 v 2 e 1 e 2

Fig. 20. Decentralized indexing for the JavaMOP spec in Fig. 2

will be triggered to fetch the list of related monitors using
SafeEnum v map. Then all the monitors in the list will be
invoked to process the event.

A performance-related concern in our implementation of
JavaMOP is to avoid memory leaks caused by hash maps. The
values of parameters are stored in hash maps as key values.
When these values are objects in the system, this might prevent
the Java garbage collector from removing them even when the
original program has released all references to them. We use
weakly referenced hash maps in JavaMOP. The weakly refer-
enced hash map only maintains weak references to key values;
hence, when an object that is a key in the hash map dies in the
original program, it can be garbage collected and the corre-
sponding key-value pair will also be removed from the hash
map. This way, once a monitor instance becomes unreachable,
it can also be garbage collected and its allocated memory re-
leased. Note that a monitor instance will be destroyed only
when it will never be triggered in the future because the moni-
tor is not destroyed unless all parameters are garbage collected.
If a future event can ever trigger monitor instance m, then m
is not garbage collectible. This guarantees the soundness of
our usage of weak references.

List Vector.SafeEnum v List = null;
pointcut SafeEnum updateV0(Vector v) :

(call(∗ Vector.add ∗ (..))||call(∗ Vector.remove(..)))&& target(v);
after (Vector v) : SafeEnum updateV0(v) {
if (v.SafeEnum v List ! = null) {
Iterator monitors =
(v.SafeEnum v List).iterator();
while (monitors.hasNext()) {
SafeEnumMonitor monitor =
(SafeEnumMonitor)monitors.next();
monitor.updateV(v);
if(monitor.MOP fail()) {
//fail handler
}
}//end of while
}//end of if

}

Fig. 21. Decentralized indexing monitoring code automatically generated by
JavaMOP for updateV

4.3.2 Optimization: Decentralized Indexing

The centralized-indexing approach above can be regarded as
a centralized database of monitors. This solution proves to
be acceptable with respect to runtime overhead in many of
the experiments that we have carried out. However, reducing
runtime overhead is and will always be a concern in runtime
verification. We next propose a further optimization based on
decentralizing the indexing. This optimization is also imple-
mented in JavaMOP using the decentralized keyword. Theo-
retically, decentralized indexing will not always outperform
centralized indexing, but in our experiments it has.

In decentralized indexing, the indexing trees are piggy-
backed into states of objects to reduce the lookup overhead.
For every distinct subset of parameters that appear as a pa-
rameter of some event, JavaMOP automatically chooses one
of the parameters as the master parameter and uses the other
parameters, if any, to build the indexing tree using hash maps
as before; the resulting map will then be declared as a new
field of the master parameter. For example, for the updateV
event in Fig. 2, since it has only the 〈v〉 parameter, v is se-
lected as master parameter and a new field will be added to
its Vector class to accommodate the list of related monitor
instances at runtime. Fig. 20 shows the decentralized version
of the centralized indexing example in Fig. 18.

Comparing Figs. 21 and 19, one can see that the major
difference between the centralized and the decentralized index-
ing approaches is that the list of monitors related to v can be
directly retrieved from v when using decentralized indexing;
in centralized indexing we need to look up the list from a hash
map. Decentralized indexing thus scatters the indexing over
objects in the system and avoids unnecessary lookup opera-
tions, reducing both runtime overhead and memory usage. It
is worth noting that decentralized indexing does not affect
the behavior of disposing unnecessary monitor instances as
discussed in the previous section: when an object is disposed,
all the references to monitor instances based on this object
will also be discarded, no matter whether they are stored in
maps using weak references or whether they are embedded as
fields of the object.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 21

On the negative side, decentralized indexing involves more
instrumentation than the centralized approach, sometimes be-
yond the boundaries of the monitored program, since it needs
to modify the original signature of the master parameter: for
the monitoring code in Fig. 21, the Java library class Vec-
tor has to be instrumented (add a new field). This is usually
acceptable for testing/debugging purposes, but may not be
appropriate if we use MOP as a development paradigm and
thus want to leave monitors as part of the released program.
If that is the case, then one should use centralized indexing
instead, by not using the modifier decentralized.

The choice of the master parameter may significantly af-
fect the runtime overhead. In the specification in Fig. 2, since
there is a one-to-many relationship between Collections and
Iterators, it would be more effective to choose the Iterator as
the master parameter of the create event. Presently, JavaMOP
picks the first parameter encountered in the analysis of the
MOP specification as the master parameter for each set of
event parameters. Hence, the user can control the choice of
the master parameter by putting, for each set of parameters P ,
the desired master parameter first in the list of parameters of
the first event parametric over P .

4.4 Binding Modes and Connectedness

There are three parameter binding modes available in Java-
MOP, as well as the concept of connectedness, which may be
used in conjunction with any binding mode. These modes and
connectedness determine which monitor instances are allowed
to report verdict categories (e.g., match or fail). This allows
a user to essentially apply a filter on the number of results
they want from their monitors. For each binding mode we will
consider the pattern:

Λa, b . e1〈〉(e2〈a, b〉 | e3〈b〉)∗

And the following trace:

e1〈〉 e2〈a1, b1〉 e3〈b1〉

The default binding mode is the any-binding mode. In this
mode any instance monitor is allowed to report categories.
When the above trace is monitored using any-binding four
matches are reported, one on each of the first two events
as they arrive and two for the last event, e3. Two matches
are reported when e3 arrives because one is reported from
the monitor instance for 〈a1, b1〉 and one is reported from
the monitor instance for 〈b1〉, and categories can be reported
from any monitor instance. The trace slices for each monitor
instance after all three events can be seen in Fig. 22. Note
that each one matches the pattern, and that the one for 〈a1, b1〉
has two prefixes that match the pattern (e1 e2 and e1 e2 e3),
resulting in four total matches, as expected.

The other extreme, full-binding is allowing only those in-
stance monitors that correspond to fully instantiated parameter
instances to report categories. This is similar to the semantics
of Tracematches [4, 8, 18]. Looking at our example trace, two
matches will be reported because two prefixes of the trace
e1 e2 e3, which comes from the only instance we consider

Instance Trace

〈〉 e1

〈b1〉 e1 e3

〈a1, b1〉 e1 e2 e3

Fig. 22. Trace Slices for Binding Mode Example Trace

(〈a1, b1〉), match (see Fig. 22). To implement this mode, dur-
ing monitor generation we count the number of parameters
in the parameter list of the monitor. Whenever we check a
monitor instance for a category (such as the check for the
match category in Figs. 19 and 21) we compare the number
of bound parameters of the monitor instance to the number of
parameters of the specification. If the numbers of parameters
do not match, the monitor instance’s output is ignored.

In between these two extremes is maximal-binding. The
“less informative or as informative as” relation “v” in Def. 4
induces a partial order over parameter instances. In this mode
we only report verdict categories from those instances that are
currently maximal in that partial order. Considering again our
example, this is a bit more complex. When event e1 arrives, the
instance 〈〉 is maximal, so a match is reported. When e2 arrives
the new maximal instance is 〈a1, b1〉, and a match is reported.
When e3 arrives, 〈a1, b1〉 is still larger than 〈b1〉 so only the
instance 〈a1, b1〉 is allowed to report a match, thus only three
matches are reported, unlike the four from any-binding. To
implement this binding mode, all monitor instances contain
flags; when defineTo in Algorithm D〈X〉 (Fig. 17) defines a
new monitor from a less informative monitor the flag in the
less informative monitor is set to false. Additionally, when a
new instance is created we must check if there is a monitor
instance for a more informative parameter instance already in
existence, as happens in our example, and set the flag to false
if there is. Results from the monitor instance are only reported
when the flag is true.

Connectedness, which may be used to augment any bind-
ing mode, filters out all those monitor instances for which the
parameters are not connected to each other by some event.
For example, if events e1〈p1〉 and e2〈q1〉 are the only events
that have been seen that are sent to the 〈p1, q1〉 instance, no
categories will be reported from that instance until some event
such as e3〈p1, q1〉 occurs. For connectedness we will consider
again the SafeEnum property of Fig. 2, and we will consider
the trace:

updateV〈v1〉 createE〈v1, e1〉 updateV〈v2〉 useE〈e1〉

Nothing violating the SafeEnum condition of not using an
Enumeration created from a Vector that has been modified
occurs in this pattern, however, because of the generic para-
metric trace slicing algorithm, some monitor instances will be
generated that will flag failures, as can be seen in Fig. 23. With
connectedness the results of extraneous monitor instances such
as 〈v2, e1〉, which would signal an undesired fail verdict, can
be filtered out. Note that the instance for 〈v2, e1〉 must be cre-
ated by the generic parametric monitoring algorithm, because
it has no way to know that 〈v2, e1〉 cannot be connected at

22 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

Instance Trace

〈v1〉 updateV
〈e1〉 useE
〈v2〉 updateV
〈v1, e1〉 updateV createE useE
〈v2, e1〉 updateV useE

Fig. 23. Trace Slices for Connectedness Example Trace

some time in the future, as it has no semantic knowledge of
the createE event. Connectedness can be added to a speci-
fication via the connected keyword shown in Fig. 7, and is
implemented using a union-find data structure in which each
set represents parameter objects which have been connected
by a given event. When an event arrives, all of its associated
parameter objects are unioned in the union-find data structure.
When a monitor instance attempts to report a verdict cate-
gory, the union-find data structure is queried to ensure that all
parameter objects of the instance are in the same set of the
union-find.

4.5 JavaMOP Evaluation

The evaluation presented here is a summary of the evaluation
of JavaMOP that we performed in the summer of 2009 and
described in [21]. Algorithms C〈X〉 and D〈X〉 described in
Section 4.2 were both used to showcase the effectiveness
of using enable sets to reduce extraneous monitor creations.
Results from Tracematches [4,8,18] are also presented because
it is the most efficient Java monitoring system of which we
are aware, other than JavaMOP.
Experimental Settings.

Our experiments were performed on a machine with 2GB
RAM and a Pentium 4 2.66GHz processor using Ubuntu
Linux 7.10. We used version 2006-10 of the DaCapo bench-
mark suite [15]. The default input for DaCapo was used, and
we use the -converge option to ensure the validity of our
test by running each test multiple times, until the execution
time converges. After convergence, the runtime is stabilized
within 3%, thus numbers in Fig. 24 should be interpreted
as ”±3%”. Additional code introduced by the AspectJ weav-
ing process changes the program structure in DaCapo, some-
times causing the benchmark to run slightly faster due to
better instruction cache layout. Both of these facts account for
the negative overheads.
Properties. These properties, borrowed from [17, 18, 47] and
specified using formalisms discussed in Section 6, were used
in the evaluation of JavaMOP.

– UnsafeMapIterator: Do not update a Map when using the
Iterator interface to iterate its values or its keys;

– UnsafeSyncCollection: If a Collection is synchronized, then
its iterator also should be accessed synchronously;

– UnsafeSyncMap: If a Collection is synchronized, then its
iterators on values and keys also should be accessed in a
synchronized manner;

– UnsafeIterator: Do not update a Collection when using the
Iterator interface to iterate its elements;

– UnsafeFileWriter: Do not write to a FileWriter after closing.

UnsafeMapIterator and UnsafeIterator specify properties
that catch conditions in which the Java Virtual Machine will
throw an exception. However, the exception will not always
be properly thrown when the Map or Collection in question is
modified in a separate thread from the thread iterating over the
Map or Collection. Also, each of these properties is relevant to
most of our benchmarks, and show large overheads that are
useful for comparisons between Tracematches and JavaMOP,
which is the goal of this evaluation.

UnsafeFileWriter cannot be expressed in Tracematches
because it is a context-free property.
Results and Discussion. Figs. 24 and 25 summarize the re-
sults of the experiments from [21]. Fig. 24 shows the percent
overheads of C〈X〉, D〈X〉, and Tracematches. All the prop-
erties were heavily monitored in the experiments. Millions
of parameter instances were observed for some properties un-
der monitoring, e.g., UnsafeIterator, putting a critical test on
the generated monitoring code. Note that Soot [59, 61], the
underlying bytecode engine for Tracematches, cannot han-
dle the DaCapo benchmark properly, resulting in fewer in-
strumentation points in the pmd program. Accordingly, our
specifications are modified to have the same scope of instru-
mentation in pmd for a fair comparison. All three systems
generated low runtime overhead in most experiments, show-
ing their efficiency. For D〈X〉, only 7 out of 66 cases caused
more than 10% runtime overhead. The numbers for C〈X〉 and
Tracematches are 9 out of 66 and 15 out of 44, respectively.
Fig. 25 shows the comparison among three systems using 7
cases where significant numbers of monitors were created in
monitoring. Fig. 25 (A) compares runtime overhead. In all
cases, D〈X〉 outperformed the other two and C〈X〉 is better
than Tracematches. This shows that JavaMOP provides an
efficient solution to monitor parametric specifications despite
its genericity in terms of specification formalisms. The results
also illustrate the effectiveness of the enable set based opti-
mization: on average, the overhead of D〈X〉 is about 20%
less than C〈X〉. Moreover, when the property to monitor be-
comes more complicated, the improvement achieved by the
optimization is more significant. In the two extreme cases,
namely, bloat-UnsafeMapIterator and pmd-UnsafeMapIterator,
where both the non-optimized JavaMOP and Tracematches
ran out of memory, the optimized JavaMOP managed to finish
the executions with overheads that are reasonable for many
applications, such as testing and debugging.

Fig. 25 (B) shows the maximum memory usages of our
experiments in log10 scale, in Megabytes. It shows that the
enable set optimization does not always reduce peak memory
usage. In two out of five pictured cases, algorithm D〈X〉 pro-
duces significantly lower peak memory usage than C〈X〉. In
fact, in bloat-UnsafeMapIterator and pmd-UnsafeMapIterator,
where C〈X〉 ran out of memory, D〈X〉 managed to complete.
In general, peak memory usage with D〈X〉was never observed
to be higher than C〈X〉 by any significant amount. Wherever

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 23

UnsafeMapIterator UnsafeSyncCollection UnsafeSyncMap UnsafeIterator UnsafeFileWriter

TM C〈X〉 D〈X〉 TM C〈X〉 D〈X〉 TM C〈X〉 D〈X〉 TM C〈X〉 D〈X〉 C〈X〉 D〈X〉

antlr -2 5 2 -2 2 1 -3 2 1 0 0 0 2 5
bloat OOM OOM 935 1448 735 712 2267 858 660 11258 769 749 5 0
chart -1 4 0 0 1 1 1 3 0 11 5 3 -1 0
eclipse 8 2 1 0 0 0 0 1 1 2 0 1 1 2
fop 11 -2 -3 -4 -3 0 16 -5 -3 5 4 1 -3 -5
hsqldb 29 0 0 24 0 0 22 -1 0 17 -1 0 0 -1
jython 57 11 7 6 -4 -4 8 -4 -5 16 -2 0 -3 -5
luindex 7 12 5 0 1 1 3 1 4 9 3 5 -1 -1
lusearch 9 1 -1 9 1 1 8 2 -1 34 4 2 -1 0
pmd OOM OOM 196 33 18 15 50 21 12 196 19 14 -2 -2
xalan 10 4 4 7 -1 1 6 0 0 10 9 8 2 1

Fig. 24. Average Percent Runtime Overhead for Tracematches(TM), C〈X〉, and D〈X〉 (convergence within 3%, OOM = Out of Memory). D〈X〉, at its worst,
has less than an order of magnitude of overhead.

TM C<X> D<X> TM C<X> D<X> Original C<X> D<X>
bloat,
UnsafeMapI
terator

10000 10000 935 bloat,
UnsafeMapI
terator

6000 6000 200 9 10000000 5.00E+04

pmd,
UnsafeMapI
terator

10000 10000 196 pmd,
UnsafeMapI
terator

6000 6000 110 50 1.00E+07 5.10E+04

jython,
UnsafeMapI
terator

57 11 7 jython,
UnsafeMapI
terator

6 7 7.5 5.5 150 95

bloat,
UnsafeIterat
or

11258 769 749 bloat,
UnsafeIterat
or

9 450 460 6 6.20E+06 6.20E+06

pmd,
UnsafeIterat
or

196 19 14 pmd,
UnsafeIterat
or

50 90 91 49 6.20E+06 8.00E+04

bloat, UnsafeMapIterator

pmd, UnsafeMapIterator

jython, UnsafeMapIterator

bloat, UnsafeIterator

pmd, UnsafeIterator

0 200 400 600 800 1000 1200 1 10 100 1000 10000 1 100 10000 1000000

TM Original

Fig. 25. Statistics. (A): Runtime Overhead. (B) Peak Memory Usage. (C) Number of Monitor Instances.

C〈X〉 was observed to have lower peak memory usage, it was
at the expense of more garbage collections than with D〈X〉.
For example, in pmd-UnsafeIterator, the C〈X〉 monitored pro-
gram had 1361 young generation garbage collections while
the D〈X〉monitored program had 1167 collections. Of course,
fewer garbage collection cycles contributes to the performance
increase of the enable set optimization. This observation also
applies to Tracematches: in three out of five cases, Trace-
matches caused less peak memory usage with more garbage
collection but more runtime overhead.

Fig. 25 (C) shows the number of monitor instances gen-
erated by C〈X〉 and D〈X〉. Tracematches is absent from the
graph because it does not produce monitor instances per se. In
general fewer monitor instances are generated by D〈X〉.

5 BusMOP

Every MOP instance has issues specific to its domain. Bus-
MOP must deal with interfacing with buses at a hardware
level. There is also complexity in the mechanisms for recovery
actions, which require specialized hardware modules. We first
provide an introduction to the PCI bus, which is the currently
supported bus architecture for BusMOP. While we intend to
support more bus architectures in the future, the operation of
the PCI bus was instrumental in guiding the design of Bus-
MOP. We then discuss the design of the BusMOP monitoring

device. Particular care must be taken to support certain fea-
tures of the current MOP logical formalism semantics that
expect serialized events. To use BusMOP, one writes a prop-
erty for a specific peripheral, say p, that is plugged into the
bus. The property is then synthesized onto an FPGA that is
also plugged into the bus. A small program is used to write
the proper value of the Base Access Register (BAR) for p to
the FPGA (see below for more explanation on the BARs).

5.1 PCI Bus

While BusMOP [52] is a generic approach to generating hard-
ware based monitors that can be adapted to any bus structure7.
the current implementation is specific to the PCI Bus architec-
ture. The idiosyncrasies of the PCI bus architecture guided the
design of BusMOP.

The Peripheral Component Interconnect (PCI) is the cur-
rent standard family of communication architectures for moth-
erboard/peripheral interconnection in the personal computer
market; it is also widely popular in the embedded domain [50].
The standard can be divided in two parts: a logical specifi-
cation, which details how the CPU configures and accesses
peripherals through the system controller, and a physical spec-
ification, which details how peripherals are connected to and
communicate with the motherboard. While the logical specifi-
cation has remained largely unaltered since the introduction

7 As demonstrated in [53].

24 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

of the original PCI 1.0 standard in 1992, several different
physical specifications have emerged since then.

One of the main features of the logical layer is plug-
and-play (automatic configuration) functionality. On start-up,
the OS executes a PCI base driver which reads information
from special configuration registers implemented by each PCI-
compliant peripheral and uses them to configure the system.
Of peculiar importance is a set of up to 6 Base Access Reg-
isters (BARs) (recall the baseN registers from Section 3.3.1).
Each BAR represents a request by the peripheral for a block
of addresses in either the I/O or memory space; the PCI base
driver is responsible for accepting such requests, allocating
address blocks and communicating back the chosen addresses
to the peripheral, by writing in the BARs.

To communicate with the peripheral, the CPU can, then,
issue write and read commands, called transactions, to either
I/O or memory space; each peripheral is required to imple-
ment bus slave logic, which decodes and responds to trans-
actions targeting all address spaces allocated to the periph-
eral. Typically, address spaces are used to implement either
registers, which control and determine the logical status of
the peripheral, or data buffers. Peripherals can also imple-
ment bus master logic: they can autonomously initiate read
and write transactions to either main memory or the address
space of another peripheral. Master mode is typically used by
high-performance peripherals to perform a DMA transfer, i.e.,
transfer data from the peripheral to a buffer in main memory.
The peripheral’s driver can then read the data directly from
memory, which is much faster than issuing a read transac-
tion on the bus. Finally, each peripheral is provided with an
interrupt line that can be used to send interrupts to the CPU.

There are two main flavors of physical architecture: both
PCI and PCI-X are parallel, while PCI-E is serial but runs
at much higher frequency (2.5Ghz against up to 133Mhz for
PCI-X). We have focused on PCI/PCI-X,8 which implements
a shared bus architecture. The logical PCI tree is physically
divided into bus segments, and most bus wires are shared
among all peripherals connected to a single segment. We refer
to [50] for detailed bus specifications. Each transaction seen
on the bus consists of an address phase, which provides the
initial address in either memory or I/O space, followed by one
or more data phases, each of which carries up to 32 or 64 bits
of data for PCI/PCI-X, respectively (individual bytes can be
masked using byte enables). Since each bus segment is shared,
arbitration is required to determine which master peripheral
is allowed to transmit at any one time. Arbitration uses two
active-low, point-to-point wires between the peripheral and
the bus segment arbiter, REQ# and GNT#. A standard request-
grant handshake is used, where the peripheral first lowers
REQ# to request access to the bus, and the arbiter grants
permission to start a new transaction by lowering GNT#.

8 We also plan to extend our design to PCI-E, as mentioned in Sec-
tion 3.3.1.

5.2 Monitoring Device

The current version of BusMOP is designed for the Xilinx
ML455 board [62], but adapting the generated code to differ-
ent FPGA boards takes minimal effort. The monitoring device
uses a mixed VHDL/Verilog register transfer level (RTL) de-
scription. The board is outfitted with a Virtex-4 FPGA and
it can be plugged into a standard 3.3V PCI/PCI-X socket.
The FPGA implements both a slave and a master peripheral
module, together with the monitoring modules. Events for the
system are specified in terms of read/write data transfers on
the bus and interrupt requests; the device continuously “sniffs”
all ongoing activities on the bus, and is therefore able to mon-
itor communication for all other peripherals located on the
same bus segment. Whenever a failure to meet the specifica-
tion is detected, the device can execute a recovery action using
strategies based on the detected error.

For a vast category of errors that involve incorrect interac-
tion between the peripheral and its software driver, it is often
possible to recover from the failure by forcing the peripheral
into a consistent state. The monitoring device implements a
master module, and can therefore initiate transactions on the
bus. For example, consider a common type of error, where
the driver fails to validate some input from the user and as a
result writes an invalid value to a register in the peripheral.
We can recover by rewriting the register with a valid value.
However, if the error is caused by a fault in the peripheral
hardware, interacting with registers may not be enough to
bring the peripheral to a consistent and safe state.

To handle peripherals that cannot be put into a consistent
and safe state, a hardware device, the peripheral gate [51], is
used that is able to force the REQ# signal from the peripheral
to the bus arbiter to be high. Hence, the peripheral never re-
ceives the grant and it is prohibited from initiating any further
transaction on the bus.9 The peripheral gate is implemented
based on a PCI extender card, i.e., a debug card that is inter-
posed between the peripheral card and the bus and provides
easy access to all signals. A clarifying picture for monitoring
of a single peripheral is provided in Fig. 26(a). The monitoring
device can output a stop signal, which closes the gate when ac-
tive high; this can be achieved in a specification by setting the
stop reg described in Section 3.3.1 to ‘1’. Finally, sometimes
the monitoring device cannot perform a suitable recovery ac-
tion by itself, but there is a higher level actor, such as the OS
or the system user, that can provide better recovery; examples
include complex software operations such as restarting the
driver or the whole PCI stack, and physically interacting with
the peripheral. In this case, the best strategy is to communicate
the failure to the chosen actor. Additionally, we implemented
an RS-232 controller that can be used to send information to
the user over a serial connection.

The reader should notice that the nature of our implemen-
tation is such that if a trace is seen, which does not conform

9 While technically it is always possible for a faulty peripheral to disrupt
the bus by altering the state of the signals, in practice the described approach
is effective since access to the bus is mediated by three-state buffers enabled
by GNT#.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 25

PCI/PCI-X bus

Peripheral

Gate
Monitoring

Device
stop

(a) Gated Monitoring Device.

!"#$%&'(

)(%&)(

*+,-('

,.+/(
*+,-('

01(1(

,('2+.3

01(1(

,('2+.$&1-41-

51,$26-('7+%(8 51,$26-('7+%(9 51,$26-('7+%(:!"!"!

! !

!"!"!

"#$%$&'()*+,-.*

/012'()*+,-.*

3
-
!
*
45
67
8
9

:*.;:*:2:-)-

*&62-&'8 *&62-&'9 *&62-&':

!
*
<
&
*
=
*
(
)!

>
+;
>
*
+)
'*
!

!
);
>

;+

!);>
!"!"!

!?!)*@5 !?!)*@7 !?!)*@A

B2@-(C-DD?2

E+'))*(

B2-C);@-)'.-DD?2

F*(*+-)*:

B2>+;=':*:21/

PCI_core serial_output

Friday, November 5, 2010

(b) Block Diagram.

Fig. 26. Monitoring Device.

to a specification, as a consequence of a bus transaction, that
specific bus transaction cannot be prevented from propagating
to the rest of the system. For example, if a faulty peripheral
performs a write transaction to an area in main memory which
is not supposed to modify, we can detect the error, disconnect
the peripheral, and report the failure to the OS/user. However,
the information in the overwritten area will be lost. As part of
our future work, we are working to implement an interposed
monitoring device: by sitting between the bus and a periph-
eral, it will be able to buffer all transactions that target that
specific peripheral or are initiated by it. If a property is vali-
dated/violated, it is then possible to take preventive measures
(i.e., either discard or modify the transaction before propa-
gating it). While this solution will provide a higher degree of
reliability, there is a price to be paid in terms of increased com-
munication delay due to buffering in the monitoring device.10

A simplified block diagram for the monitoring device is
shown in Fig. 26(b). We distinguish three types of blocks:
1) blocks provided by Xilinx as proprietary intellectual prop-
erties (IPs); 2) manually coded RTL modules provided by
BusMOP, which are independent of the peripheral specifi-
cation; 3) automatically generated RTL modules, which are
dependent on the specification (see Section 3.3.1 for specifica-
tion syntax). PCI transaction signals are routed to two different
modules: the PCI core and the decode module.

5.2.1 The PCI core Module

The PCI core module is a hard IP11 that implements all logic
required to handle basic PCI functions such as plug-and-play.
Bus slave and bus master logic is implemented by the slave
and master modules, respectively. In particular, slave imple-
ments a set of 16 registers, base0 through base15. Since the

10 Note, however, that communication bandwidth will be unaffected.
11 A hard IP is a module that is provided already synthesized rather than as

an HDL or net list description (which are soft IPs). This means that it cannot
be readily modified by users of the IP.

OS configures the BAR registers at system boot, a peripheral
cannot directly determine the location of address blocks used
by another peripheral. Hence, the OS must also write the loca-
tions of the address blocks allocated to monitored peripherals
in the base registers. The decode module is used to simplify
event generation. It translates all transactions on the bus (ex-
cept for those initiated by the monitoring device itself) into a
series of I/O or memory reads/writes, one for each data phase,
as well as the occurrence of an interrupt, and forwards the
translated information to the monitoring logic.

5.2.2 The systemN Modules

The system0, . . ., systemN blocks implement the monitor-
ing logic for each of N user specified properties. Each sys-
temI block consists of two automatically generated modules:
bus interfaceI contains all logic that depends on the specific
choice of communication interface (PCI bus), while moni-
torI contains all logic that depends on the formal language
used to specify the property. This separation provides good
modularity and facilitates code reuse. bus interfaceI first re-
ceives as input the decoded bus signals and generates events,
which are sequentialized by the events sequentializer submod-
ule (see Section 5.2.3), and then passed to monitorI using the
seq events wires. monitorI checks whenever the formula for
the I-th property is validated/violated and passes the informa-
tion back to bus interfaceI, which can then execute three types
of recovery: 1) disconnect a monitored peripheral from the bus
using the stop signal; 2) send information to the user using the
serial output module, which implements a RS-232 transmitter;
3) start a write transaction on the bus using the master module.
Finally, since it is possible for multiple systemI modules to
initiate recovery at the same time, we provide queuing func-
tions for serial output and master in modules master queue
and serial queue, respectively.

Notice that in the current implementation the time elapsed
from any event that requires a handler to executing that corre-

26 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

sponding handler is at most 4 clock cycles. This time is short
enough to execute a recovery action before a faulty periph-
eral is allowed to start a new transaction, as PCI arbitration
overhead prevents a peripheral from transmitting immediately.

5.2.3 The bus interface Module

The code for the 〈BusMOP Declarations〉 (see Section 3.3.1),
〈BusMOP Action〉, and 〈BusMOP Handler〉 is copied
verbatim into the VHDL module defining the bus interface.
The events are expanded to combinatorial statements imple-
menting the specified logic. The output of the combinato-
rial statements is assigned to an events wire vector (not pic-
tured), which is connected to the monitor module through an
event sequentializer submodule. Each index in the bus corre-
sponds to the truth value of a specific event, numbered with
the 0’th index as the first event, and the n’th index as the n’th
event from top to bottom in the specification. This ordering is
important, because it directs the event linearization performed
by the event sequentializer submodule.

The event sequentializer is necessary because the logical
formalisms expect linear, disjoint events. The event sequential-
izer takes coincident events and sends them to the monitor in
subsequent clock cycles, in ascending index order, using the
seq events wire vector (Fig. 26(b)). Therefore, if events(0)
and events(3) occur in the same cycle, the monitor will see 0
followed by 3. To see why simultaneous events are possible,
consider, again, Fig. 3 from Section 1. The cntrlMod event
is asserted whenever the cntr cntrl2 register (base1 + X”220”)
is written. Because both the countEnable and countDisable
events require writes to the same address as the cntrlMod event,
any time countEnable or countDisable are triggered, a cntrlMod
is also triggered. As the property tries to enforce the policy
that all modifications happen when the counter is not enabled,
we must serialize events such that cntrlMod happens after a
countDisable and before a countEnable. The ordering of events
in Fig. 3, is consistent with this, because countDisable is listed
before cntrlMod, which is listed before countDisable.

The @fail handler is placed in the module such that it is
only executed if the monitor module denotes that the property
has failed to match. The situation is similar for an @match
handler, save that it is executed only when the formula or
pattern is matched.12 As can be seen in the Fig. 26(b), the
monitor module reports the validation, violation, or neutral
state of the monitored property, via the properties wire vector,
to the bus interface module. Several actions are available in
〈Property Handlers〉 as described under 〈BusMOP Handler〉
in Section 3.3.1. Aside from manipulating any local state of
the monitor (such as the write to cntrlCurrent in Fig. 3), the
bus interface module makes available several registers which
can be used used to execute the recovery actions detailed
in Section 5.2. The registers are described under 〈BusMOP
Handler〉 in Section 3.3.1.

12 The same is true for @validation and @violation for PTLTL (Section 6.4).

5.2.4 The monitor Module

The monitor module is responsible for monitoring the prop-
erty given serialized events. It encompasses the logic of the
formula, and it is the only portion of our system dependent
on the logical formalism used. The module is generated from
the pseudocode monitor descriptions returned by the logic
repository from Fig. 4. The parallel assignment algorithm for
monitoring PTLTL described in Section 6.4 was originally
designed for use in BusMOP monitors.

5.3 BusMOP Evaluation

In general, BusMOP imposes 0% runtime overhead on the
system it monitors13, therefore, our evaluation is a case study
on the usefulness of BusMOP, first presented in [52]. We show
how our runtime monitoring technique can be applied to a
concrete case by providing specification and runtime experi-
ments for a specific COTS peripheral, the PCI703A board [27].
PCI703A is a high performance Analog-to-Digital/Digital-to-
Analog Conversion (ADC/DAC) peripheral for the PCI bus. In
particular, it can perform high-speed, 14-bits precision ADC at
a rate of up to 450,000 conversions/s, and transfer data to main
memory in bus master mode. At the same time, the periph-
eral is simple enough that we were able to carefully check all
provided hardware manuals and to manually inspect its Linux
driver; specifying formal properties for a peripheral clearly
requires a deep understanding of its inner working. In our
proposed model, the peripheral’s manufacturer is responsible
for writing the runtime specification. In this sense, the formal
specification can be thought of as a correctness certification
provided by the manufacturer, as long as the user employs
a monitoring device and recovery actions can be proved to
restore the system to a safe state.

To better mimic what we think would be a typical pro-
cess for a COTS manufacturer, we produced a requirement
specification for the PCI703A in two steps. First, we prepared
a detailed description of the communication behavior of the
peripheral in plain English. Then, we converted this informal
description into a formal set of events and formulae for Bus-
MOP. Inspection of the driver revealed two software faults,
both of which can cause errors that are detected and recov-
ered by the monitoring device. While in this case we could
have prevented errors by simply removing the faults, we argue
that drivers for more complex peripherals can be thousands of
lines long and neither code inspection nor testing is sufficient
to remove all bugs. We further injected additional faults in
the driver to test all written formal properties. It would have
been nice to also show recovery for hardware faults, but we
did not find any in the tested peripheral and injecting faults
in the hardware is difficult. In what follows, we first provide
an overview of PCI703A and then we detail properties for an
example subsystem, a counter used in the ADC process. The

13 Because the monitor is implemented on a peripheral card, overhead
from the users perspective can only occur by increased bus traffic caused by
specification handlers. Specification handlers typically run infrequently, and
do not add much traffic to the PCI bus even when they do run.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 27

!"#$
#%&'(%)

"!#$#%&'(%)
#%*&'+($
,-.+(/

"0!$
#%&'(%)

!"#$0&'

1#2$3*/

4)56+$7*/
8%9-:$

05/'+($7*/
8%9-:$

Fig. 27. PCI703A Diagram.

example is particularly instructive as we show how a small
but representative set of properties is able to catch one of the
aforementioned driver bugs.

A block diagram for the PCI703A is shown in Fig. 27.
The bus slave logic implements two memory address blocks
in BAR0 and BAR1, used for conversion data and control
registers, respectively; the corresponding base addresses are
written in base0 and base1 in the monitoring device. The ADC
Control and DAC Control blocks control the ADC/DAC opera-
tions and write/read data into internal FIFOs. The DMA Control
block can be programmed to move data between each FIFO
and main memory using bus master functionality. Finally, the
Counter Timers block implements four counters. Counter 0
and 1 are user programmable and can be used either for debug-
ging purposes or to trigger a DA conversion. Counter 3 is also
user programmable and produces an external output. Finally,
Counter 2 is not meant to be user programmable; it is to be
used exclusively to generate the clock for AD conversions.
The C user library provided with the driver exports an ADCon-
fig function used to configure ADC Control and the associated
Counter 2. The library also provides a CTConfig function to
be used to configure the user counters; unfortunately, under
Linux the function can also be used to change the configura-
tion of Counter 2. This is a problem, as any user in the system
could erroneously or maliciously change Counter 2 while an
ADC is in progress.

Three 16-bit control registers are relevant to our discussion:
cntr cntrl2 (at hexadecimal location 220 relative to BAR1),
cntr divr2 (228), and adc cntrl (300). Bit 0 of cntr cntrl2 deter-
mines whether Counter 2 is enabled, and bits 2-1 determine its
clock source (either 20Mhz or 100Khz); when the counter is
enabled, it first loads the content of cntr divr2 and then starts
counting down at the selected frequency. When it reaches zero,
the value of cntr divr2 is reloaded, a clock signal is sent to ADC
Control, and finally if bit 4 of cntr cntrl2 is set, an interrupt
is generated. Register adc cntrl controls the behavior of ADC
Control; in particular, bit 0 enables/disables the ADC process

pci InterruptFix{

signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event cntrlMod : memory write address in base1 + X"220"

{

cntrlOld <= cntrlCurrent;

cntrlCurrent <= value(15 downto 0);

}

event setBit4 : memory write

address = base1 + X"220"

dbyte value(4) in ’1’

ere: setBit4

@match {

mem_reg <= ’1’;

address_reg <= base1 + X"220";

-- roll back to the previous cntr_cntrl2 value

value_reg(15 downto 0) <= cntrlOld;

cntrlCurrent <= cntrlOld;

enable_reg <= "0011";

}

}

1

Fig. 28. InterruptFix Specification

and bits 2-1 determine the clock source, with a value of ”00”
indicating that Counter 2 is used.

We express three requirements:

Requirement 1 Bit 4 of cntr cntrl2 should never be set. While
the functionality is relevant for Counters 0,1, in the case of
Counter 2 setting bit 4 would cause the generation of spurious
interrupts that increase load on the driver.

Requirement 2 If the ADC is using Counter 2, and the clock
source for Counter 2 is set to 20 Mhz, then the value of
cntr divr2 must be at least 45 to avoid violating the maximum
conversion speed of the peripheral.

Requirement 3 If the ADC is active and using Counter 2,
then Counter 2 must also be active; furthermore, while Counter 2
is active no change to the counter configuration is allowed.

Requirements 1-3 are able to catch the driver bug in the sense
that an invalid counter configuration cannot be set before start-
ing the ADC, and furthermore while the ADC is active no
counter modification is allowed. We wrote four (five includ-
ing the example from Section 1) formal properties to cap-
ture the requirements:

InterruptFix. The InterruptFix specification is the formaliza-
tion of Requirement 1, and can be seen in Fig. 28. Because
we do not want the 4th bit set, we simply monitor the pat-
tern setBit4, an event which corresponds to setting the 4th
bit. We perform recovery when the pattern is validated by
overwriting cntr cntrl2 with the last valid value, similarly to
SafeCounterModify in Fig. 3.

SafeConversionSpeed. The SafeConversionSpeed specifica-
tion is the formalization of Requirement 2, and can be seen
in Fig. 29. For this property we chose to show how event
side effects can be used in handlers as part of checking that
a property has been validated/violated. When the clkSrcSet
or srcSet events are triggered, meaning that the cntr cntrl2

28 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

pci SafeConversionSpeed{

signal clkSrc : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

signal src : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event divrBad: memory write address = base1 + X"228"

dbyte value in 0,44

event divrGood: memory write address = base1 + X"228"

dbyte value in 45,65535

event clkSrcSet : memory write address in base1 + X"300"

{ clkSrc <= value(15 downto 0); }

event srcSet : memory write address in base1 + X"220"

{ src <= value(15 downto 0); }

event countEnable : memory write address = base1 + X"220"

dbyte value(0) in ’1’

ere : (divrBad (clkSrcSet + srcSet)* countEnable)*

@match {

if (clkSrc(2 downto 1) = "01") and (src(2 downto 1) = "00") then

mem_reg <= ’1’;

address_reg <= base1 + X"228";

--set cntr_divr2 to 45

value_reg(15 downto 0) <= X"2D";

enable_reg <= "0011";

end if;

}

}

1

Fig. 29. SafeConversionSpeed Specification

or adc cntrl registers have been modified, respectively, we
store the value written to the register in monitor local registers
(e.g., src <= value(15 downto 0)). The pattern specifies that
the cntr divr2 be set to a bad value (less than 45), followed
by any number of updates to cntr cntrl2 or adc cntrl, followed
by the enabling of the counter. If cntr divr2 is set to a value
larger than 44, the pattern will be violated, and the monitor
will be reset. This means that the validation handler will be
executed only when the value of cntr divr2 is too low for safe
conversion, but regardless of whether or not the board is ac-
tually using Counter 2. The handler then checks that it is, in
fact using Counter 2, and that Counter 2 is using the 20Mhz
source, before performing the recovery: setting cntr divr2 to a
valid value (45).

NoDisableWhileConverting. The NoDisableWhileConverting
specification is the formalization of part of Requirement 3,
and can be seen in Fig. 30. This could have been written in
a similar manner to SafeConversionSpeed, i.e., using event
side effects to store current register values and checking them
in the handler. We decided to use a fully formal specification,
that defines events for setting the registers to good or bad
values. The formula itself specifies that, if the ADC is enabled,
and clkSrc2 is good, meaning that Counter 2 is being used to
time the ADC, then Counter 2 must be enabled. The part of
the formula before the implies keyword, states that the ADC
is enabled and the ADC clock source is Counter 2, the second
half of the formula is the requirement that Counter 2 not be
disabled. The formula is true when correct behavior is exhib-
ited, so we use a violation handler for the recovery action,
which again is simply to set cntr cntrl2 to the last valid value.

SafeDivrModify. The SafeDivrModify specification is the for-
malization of part of Requirement 3, and can be seen in Fig. 31.
In conjunction with NoDisableWhileConverting and SafeCoun-
terModify (from Section 1), all of requirement 3 is covered.

pci NoDisableWhileConverting{

signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event countEnable : memory write address = base1 + X"220"

dbyte value(0) in ’1’

{

cntrlOld <= cntrlCurrent;

cntrlCurrent <= value(15 downto 0);

}

event countDisable : memory write address = base1 + X"220"

dbyte value(0) in ’0’

{

cntrlOld <= cntrlCurrent;

cntrlCurrent <= value(15 downto 0);

}

event clkSrc2Good : memory write address = base1 + X"300"

dbyte value(2 downto 1) in "01"

event clkSrc2Bad : memory write address = base1 + X"300"

dbyte value(2 downto 1) not in "01"

event adcEnable : memory write address = base1 + X"300"

dbyte value(0) in ’1’

event adcDisable : memory write address = base1 + X"300"

dbyte value(0) in ’0’

ptltl : (((not adcDisable) S adcEnable) and

((not clkSrc2Bad) S clkSrc2Good))

implies

((not countDisable) S countEnable)

@violation {

mem_reg <= ’1’;

address_reg <= base1 + X"220";

-- roll back to the previous cntr_cntrl2 value

value_reg(15 downto 0) <= cntrlOld;

cntrlCurrent <= cntrlOld;

enable_reg <= "0011";

}

}

1

Fig. 30. NoDisableWhileConverting Specification

pci SafeDivrModify{

signal divrCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

signal divrOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event countDisable : memory write address = base1 + X"220"

dbyte value(0) in ’0’

event divrMod : memory write address in base1 + X"228"

{

divrOld <= divrCurrent;

divrCurrent <= value(15 downto 0);

}

event countEnable : memory write address = base1 + X"220"

dbyte value(0) in ’1’

ptltl: (divrMod) and (*)((not countDisable) S countEnable)

@validation {

mem_reg <= ’1’;

address_reg <= base1 + X"228";

-- roll back to the previous cntr_divr2 value

value_reg(15 downto 0) <= divrOld;

divrCurrent <= divrOld;

enable_reg <= "0011";

}

}

1

Fig. 31. SafeDivrModify Specification

This specification ensures that cntr divr2 is not modified while
Counter 2 is enabled. This property is the same as SafeCoun-
terModify from Fig. 3, save that we are ensuring that cntr divr2
is not modified, rather than cntr cntrl2. We also used PTLTL
rather than ERE, to show how two very similar properties look
in both logics. These could be collapsed into one specification,
but it would make recovery more complicated, because we

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 29

only want to roll back the register that was actually modi-
fied (cntr cntrl2 or cntr divr2). The formula itself states that if
cntr divr2 has been modified and the counter has not been dis-
abled since the last time it was enabled, than we must recover.
Unlike SafeCounterModify we use a validation rather than a
violation handler, because the formula was easier to express
with recovery being on validation.

As a final consideration, note that the handlers of Safe-
CounterModify, InterruptFix and NoDisableWhileConverting
can be invoked simultaneously if an incorrect value is written
to cntr cntrl2, which results in the execution of multiple bus
writes. However, this causes no problem since all handlers
overwrite cntr cntrl2 with the same valid value.

6 Logic Plugins

Each logical formalism provided by the MOP framework is
implemented as a program called a logic plugin, as mentioned
in Section 2. The individual logic plugins are controlled by
the logic repository as can be seen in Fig. 4.

For each plugin we first discuss the syntax of specifica-
tions using the formalism. Each plugin syntax instantiates
the generic 〈Logic Name〉, 〈Logic Syntax〉, 〈Logic State〉 non-
terminals described in Section 3.1 (see also Fig. 6). Internally,
aside from the specified syntax, each plugin is also given the
set of events used in the property by the instance client (ei-
ther JavaMOP or BusMOP). The instance client simply drops
the instance-specific event definition and actions, which are
irrelevant to the plugin, and sends only the event names. For
simplicity, in what follows, the event declarations are dropped
from the logic plugin’s syntax. To clarify the syntax we show
an example property in each logic, which also does not include
event descriptions. Because only the property is shown, with-
out any event definitions, the parameters, which are part of
event definitions in JavaMOP, are absent. One should be aware,
if one wishes to use the logic repository described in Section 2
without using one of the two pre-defined instance clients, that
one should also provide the event names with the property.14

We then discuss some issues specific to the particular plu-
gin as well as how monitor pseudocode suitable for conversion
to Java and HDL is generated. The pseudocode generated from
each example property is shown to make the explanation of
monitor pseudocode generation more concrete.

For every plugin we also describe how enable sets are
generated. Recall that enable sets distill information about
which prior events must be seen for a given event to create a
new monitor instance (see Defs. 10, 11, 12 and the surrounding
text in Section 4.2 for a complete explanation of enable sets).

6.1 Finite State Machines

The finite state machine (FSM) plugin is one of the most
important plugins for MOP. Not only is it a useful logical
formalism in itself, but it is used as a backend for all logics

14 Additionally, one must use the logic repository XML syntax, which
distinguishes the events from the property.

〈FSM Name〉 ::= “fsm”
〈FSM Syntax〉 ::= {〈Item〉}{〈Alias〉}

〈Item〉 ::= 〈State Name〉 “[” { 〈Transition〉 [“,”]} “]”
〈Transition〉 ::= 〈Event Name〉 “−>” 〈State Name〉

| “default” 〈State Name〉
〈Alias〉 ::= “alias” 〈Group Name〉 “=”

{ 〈State Name〉 “,” } 〈State Name〉
〈FSM State〉 ::= 〈Group Name〉 | 〈State Name〉 | “fail”

Fig. 32. FSM Syntax

start [
default start
next -> unsafe
hasnext -> safe

]
safe [
next -> start
hasnext -> safe
dummy -> safe

]
unsafe [
next -> unsafe
hasnext -> safe

]
alias all states = start, safe, unsafe
alias safe states = start, safe

Fig. 33. FSM Example

reducible to finite automata. Currently, all logic plugins ex-
cept for the context-free grammar (CFG; Section 6.5) and past
time linear temporal logic with calls and returns (PTCaRet;
Section 6.6) generate FSM output. This allows for a strong
separation of concerns. For instance, minimization need occur
only once, and it allows us to use one enable set generation
algorithm for all of these plugins. Additionally, each instance
of MOP need only know how to translate the pseudocode for
FSMs, CFGs, and PTCaRet. Some MOP instances, such as
BusMOP, may even opt to support only finite state monitors,
in which case they only need to provide support for translat-
ing FSM pseudocode.15

Fig. 32 shows the syntax for FSM properties. An FSM
property is a series of 〈Item〉s followed by 〈Alias〉s. An 〈Item〉
is essentially a state in the finite state machine, and the dif-
ferent transitions to take on a given input (〈Transition〉). The
〈Alias〉 allows for giving a name to a set of states. This is
invaluable, because the 〈FSM State〉 non-terminal, which de-
fines what categories may trigger handlers, both 〈Group
Name〉s, which are the names associated to sets of states in
〈Alias〉s, and 〈State Name〉s may be associated with handlers.
This allows one to write a property that triggers actions when
any state in a given 〈Alias〉 is entered.

Fig. 33 shows an example FSM property. In this example,
three events: next, hasnext and dummy, and three states: start,
safe and unsafe are defined. Two state aliases are declared:

15 Though note that in the case of BusMOP, finite state machines are not
used for PTLTL in favor of using parallel assignments (see Section 6.4).

30 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

all states represents all the states in the state machine and
safe states includes the start state and the safe state. The
fail category is reported whenever an event occurs that is not
specified for the current state. For example, the state machine
will go into fail when the dummy event is seen in the unsafe
state. The default transition in the start state covers any event
not specified in the transition. Because of this, any state with
a default transition cannot lead to a fail category for any input.
As mentioned in Fig. 32, handlers may be associated with any
state (e.g., start) or group name (e.g., all states).

In the interest of keeping runtime monitoring as efficient
as possible, we wish to use minimized finite state machines
for monitors. Because of the ability to trigger handlers from
〈State Name〉s and 〈Group Name〉s, MOP FSM properties are
multicategory finite state machines (finite state machines that
recognize more than one language; essentially equivalent to
Moore machines). This requires a small change to the normal
Hopcroft FSM minimization algorithm [39].

The Hopcroft algorithm works by assuming the largest
possible equivalence class of states, and then partitioning the
equivalence classes into smaller classes if necessary. The way
the algorithm determines that it is necessary to split is by
considering two equivalence classes C1 and C2 and an input,
e. For each state s in C1, if s goes to a state in C2 on e then
it goes into class C11, otherwise it goes to class C12. Classes
are continuously split by other classes until a fixed point is
reached. When a fixed point is reached, each equivalence class
becomes a state in the final machine.

The way our algorithm differs is in the initial partition.
The normal algorithm partitions the states into two classes,
those states that are final states and those which are not. We,
however, have multiple categories. The particularly interesting
feature, is that categories may overlap on states. If two cate-
gories C1 and C2 overlap, they must have three equivalence
classes: those states in C1 − C2, those in C2 − C1, and those
in C1 ∩ C2. The naive algorithm would be to compute the
intersections between all the categories, but that is quadratic
in nature. A better algorithm, which we use, is to find the set
of categories each state belongs to. This takes time linear in
the number of states. Those states that have the same set of
categories are placed in the same initial equivalence class.

The monitor pseudocode for an FSM property appears
the same as the input code, except that it will be minimized,
whereas the input code may not be minimal. Because of this,
we omit the output of the example in Fig. 33. Each MOP
instance that wants to support the finite state machine-based
logics must convert the FSM pseudocode into executable code.

The algorithm in Fig. 34 computes the property enable
sets for a finite state machine [21]. We use this algorithm to
compute the enable sets for any logic that is reducible to a
finite state machine, including ERE, LTL, and PTLTL. The
algorithm assumes a finite state machine, defined as FSM =
(E , S, s0 ∈ S, δ : S × E⇁S). E is the alphabet, traditionally
listed as Σ but changed for consistency, because the alphabets
of our FSMs are event sets. s0 is the start state, corresponding
to ı in the definition of a monitor. δ is the transition partial
function, taking a state and an event and potentially mapping

Algorithm EN fsm(FSM = (E , S, s0, δ))
Globals: mapping Vµ : S → Pf (Pf (E))

mapping enableEG : E → Pf (Pf (E))
Initialization: Vµ(s)← ∅ for any s ∈ s

enableEG(e)← ∅ for any e ∈ E
function main()
1 compute enables(s0, ∅)

function compute enables(s, µ)
1 foreach defined δ(s, e) do
2 : enableEG(e)← enableEG(e) ∪ {µ}
3 : let µ′ ← µ ∪ {e}
4 : if µ′ 6∈ Vµ(s)
5 : : Vµ(s)← Vµ(s) ∪ {µ′}
6 : : compute enables(δ(s, e), µ′)
7 : endif
8 endfor

Fig. 34. FSM enableEG Computation Algorithm [21].

to a next state for the machine. Note that we can extend δ
to be consistent with σ in Def. 7 by simply completing the
function by adding an undefined state, undef, and making all
non-existent transitions point to undef. This is how FSMs are
handled in the JavaMOP instance. We assume that all states
not reachable from the initial state and not coreachable from
the states of interest (states of interest being those states s such
that γ(s) ∈ G, where G is the goal category; see Def. 11) are
pruned from the FSM before running the algorithm, leaving
the transitions that pointed to them undefined. Vµ is a mapping
from states to sets of events; it is used to check for algorithm
termination. enableEG is the output property enable set, which is
converted into a parameter enable set by the language instance
client, discussed in Section 2.

Function compute enables is first called from main with
µ = ∅ and the initial state s0. If we think of the FSM as a
graph, µ represents the set of edges we have seen at least once
in a given traversal path. For each defined δ(s, e) (line 1), we
add the current µ to the enableEG(e) (line 2) because this means
we have seen a viable prefix set (as all non-viable paths in the
machine have been pruned). This follows from the definition
of enableEG . Line 3 begins the recursive step of the algorithm.
We let µ′ = µ ∪ {e}, because we have traversed another edge,
and that edge is labeled as e. The map Vµ tells us which µ
have been seen in previous recursive steps, in a given state. If
a µ has been seen before, in a state, taking a recursive step can
add no new information. Because of this, line 4 ensures that
we only call the recursive step on line 6, if new information
can be added. Line 5 keeps V consistent. Thus the algorithm
terminates only when every viable µ has been seen in every
reachable state, effectively computing a fixed point. Thus,
the algorithm is bounded by the number of one cycle paths
through the graph (and is faster in practice, because most paths
will have repeated events).

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 31

〈ERE Name〉 ::= “ere”
〈ERE Syntax〉 ::= “empty” | “epsilon”

| 〈Event Name〉
| 〈ERE Syntax〉 “*”
| 〈ERE Syntax〉 “+”
| “˜” 〈ERE Syntax〉
| 〈ERE Syntax〉 “|” 〈ERE Syntax〉
| 〈ERE Syntax〉 “&” 〈ERE Syntax〉
| 〈ERE Syntax〉 〈ERE Syntax〉
| “(” 〈ERE Syntax〉 “)”

〈ERE State〉 ::= “match” | “fail | “?”

Fig. 35. ERE Syntax

(R1|R2){e} = R1{e}|R2{e}
(R1R2){e} = (R1{e}) R2

| if(epsilon in R1) then R2{e} else empty
R ∗ {e} = (R{e})R ∗

˜R{e} = ˜(R{e})
e1{e2} = if(e1 = e2) then epsilon else empty

epsilon{e} = empty
empty{e} = empty

Fig. 36. ERE Derivative Equations

6.2 Extended Regular Expressions

Regular expressions can be easily understood by the average
software engineer or programmer, as shown by the immense
interest in and the success of scripting languages like Perl,
based essentially on regular expression pattern matching. We
believe that regular expressions provide an elegant and power-
ful specification language also for monitoring requirements,
because an execution trace of a program is in fact a string of
states. Extended regular expressions (EREs) add complemen-
tation to regular expressions, which brings additional benefits
by allowing one to specify patterns that must not occur dur-
ing an execution. Complementation gives one the power to
express patterns on strings non-elementarily more compactly.
Also, one important observation about the use of ERE in the
context of runtime verification is that ERE patterns are often
used to describe buggy patterns instead of desired properties.

Fig. 35 shows the syntax for ERE properties. The opera-
tors are standard for regular expressions, except that “˜” is
the language complement of an ERE, and “&” is language
intersection. While “epsilon” is the empty string, as is normal,
“empty” refers to the empty language.

Here is an example ERE property for the UnsafeMapItera-
tor property previously shown in Fig. 11:

create coll update map* create iter
use iter* update map+ use iter

Recall that in this property the sequence of actions of
importance is the creation of an Iterator from a Collection
that was created from a Map, which is updated between the
creation of the Iterator and its use.

s0[
create coll -> s1

]
s2[

use iter -> s4
update map -> s3

]
s1[

createIter -> s2
update map -> s1

]
s4[

use iter -> s4
update map -> s3

]
s3[

use iter -> s5
update map -> s3

]
s5[
]
alias match = s4, s5

Fig. 37. ERE Example Output

FSMs are generated from EREs using coinductive tech-
niques [57]. Briefly, in our approach we use the concept of
derivatives of a regular expression, which is based on the idea
of event consumption, in the sense that an extended regular
expression R and an event e produce another extended regular
expression, denoted R{e}, with the property that for any trace
w, trace e w is in L(R) (i.e., the language denoted by R) iff
w is in L(R{e}). Fig. 36 defines this derivative semantics re-
cursively on the structure of regular expressions; the operators
without equations can be defined in terms of operators that
do have equations specified. In the equations “|” refers to the
ERE operator “|”. The generated FSM is not minimal; the min-
imization algorithm of the FSM plugin (Section 6.1) is used
to make it minimal. A deterministic automaton is produced,
saving memory and time (in contrast to the more conventional
Thompson approach [60], which operates by first producing a
non-deterministic automaton, and then using a determinization
algorithm to produce a deterministic automaton).

Fig. 37 shows the output FSM for the UnsafeMapIterator
example ERE above. Note that the alias match is assigned so
that ERE properties properly allow match as a verdict category.
This was the initial motivation for aliases in the FSM plugin.
Also note that the states do not have fully specified input, so
fail is a possible output category.

As mentioned in Section 6.1, the property enable sets for
EREs are computed by using the algorithm in Fig. 34 after the
ERE has been converted to an FSM.

6.3 (Future Time) Linear Temporal Logic

Linear temporal logic (LTL) [54] is often used to specify
properties in model checking. LTL formulae allow one to
express concepts such as the occurrence of an event requiring

32 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

〈LTL Name〉 ::= “ltl”
〈LTL Syntax〉 ::= “true” | “false”

| 〈Event Name〉
| “not” 〈LTL Syntax〉
| 〈LTL Syntax〉“and” 〈LTL Syntax〉
| 〈LTL Syntax〉“or” 〈LTL Syntax〉
| 〈LTL Syntax〉“xor” 〈LTL Syntax〉
| 〈LTL Syntax〉“implies” 〈LTL Syntax〉
| “[]” 〈LTL Syntax〉
| “<>” 〈LTL Syntax〉
| “o” 〈LTL Syntax〉
| 〈LTL Syntax〉 “U” 〈LTL Syntax〉
| 〈LTL Syntax〉 “R” 〈LTL Syntax〉

〈LTL State〉 ::= “validation” | “violation” | “?”

Fig. 38. LTL Syntax

that another event happen in the future. Note that runtime
monitoring cannot guarantee the correctness of a safety or
liveness property. Even though the properties might hold for a
given execution of the system, they can only be proved to hold,
in general, by exploring every possible state of the program.
LTL specifications must be used with this in mind.

Fig. 38 shows the complete syntax for LTL supported by
our plugin. The operators “not”, “and”, “or” , and “implies”
are the standard boolean connectives. The operator “[]” stands
for “always”, meaning the formula following it must hold at all
times, while “<>” stands for “eventually”, meaning that the
formula following it must eventually hold in the future. The
operator “o” means “next”: the formula following it, say F ,
must hold in the next time step; in terms of MOP, this means
that F must hold when the next event occurs. The operators
“U” and ”R” are duals of each other. “U” is “until”: “F1 U
F2” means “either F2 must hold now, or F1 must hold until
F2 eventually holds”. “<> F ” can be defined as “true U F ”.
The operator “R” means “release”. “F1 R F2” means “once
F1 holds, F2 can be released in the next time step;” F2 must
hold at all periods before F1 holds, and it must hold during
the first time step in which F1 holds. “[] F ” can be defined in
terms of “R” as “false R F ”.

Below is an example LTL property, which states that all
requests of a resource must be immediately fulfilled (grant)
until the end of a program:

(request implies o grant) U end

The property does not hold until end occurs, and it must
be that any request is fulfilled until such a time as end occurs.

FSMs are generated from LTL formulae in much the
same way as from EREs, following a technique described
in [33, 55]. Derivations based on event consumption are again
used. Fig. 39 shows the equations used to derive FSMs. Moni-
tors generated by our current LTL plugin report violation when
a state is reached where there is no way to reach validation,
and vice versa. To handle this, we use an LTL satisfiability
checker on each derived formula. Not only does this allow
us to collapse unsatisfiable and tautological states, but it al-
lows us to perform minimization on the fly (by comparing

(F1 and F2){e} = F1{e} and F2{e}
(F1 or F2){e} = F1{e} or F2{e}

(F1 xor F2){e} = F1{e} xor F2{e}
not F{e} = not (F{e})

(F1 U F2){e} = F2{e} or F1{e} and F1 U F2

(F1 R F2){e} = F2{e} and (F1{e} or F1 R F2)
o F{e} = F
e1{e2} = if(e1 = e2) then true else false

true{e} = true
false{e} = false

Fig. 39. LTL Derivative Equations

n0[
end -> validation
grant -> n0
request -> n1

]
n1[

end -> violation
grant -> n0
request -> violation

]
validation[default: validation]
violation[default: violation]

Fig. 40. LTL Example Output

states to each other using “iff” in the SAT solver). This mini-
mization could be handled by the FSM plugin, but since we
must check for unsatisfiable and tautological states to cor-
rectly implement the LTL monitoring algorithm, we perform
the minimization on the fly.

Fig. 40 shows the output FSM for the example given above.
Note that the states validation and violation are named so that
LTL properties properly allow validation and violation as output
categories. Note that the validation and violation states cannot
be left on any input.

As mentioned in Section 6.1, the property enable sets for
LTL formulae are computed by using the algorithm in Fig. 34
after a formula has been converted to an FSM.

6.4 Past Time Linear Temporal Logic

Past time linear temporal logic is similar to LTL, except that
all operators refer to the past. Some safety properties are more
easily expressed in terms of the past than the future, for exam-
ple the property that a user authentication be required before
accessing some resource is most naturally expressed as “ac-
cess implies<∗> authenticate”, e.g., that an access requires an
authentication at some point in the past. Monitors generated
from PTLTL formulae also have the quality of validating or
violating on every event because the past is already known.
This contrasts with LTL monitors, which can also be in an
intermediate, ?, state. Additionally, once an LTL monitor vali-
dates or violates, it is always violated or validated, whereas
PTLTL is allowed to change on each event. The earlier caveat

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 33

〈PTLTL Name〉 ::= “ptltl”
〈PTLTL Syntax〉 ::= “true” | “false”

| 〈Event Name〉
| “not” 〈PTLTL Syntax〉
| 〈PTLTL Syntax〉“and” 〈PTLTL Syntax〉
| 〈PTLTL Syntax〉“or” 〈PTLTL Syntax〉
| 〈PTLTL Syntax〉“xor” 〈PTLTL Syntax〉
| 〈PTLTL Syntax〉“implies” 〈PTLTL Syntax〉
| “[*]” 〈PTLTL Syntax〉
| “<∗>” 〈PTLTL Syntax〉
| “(*)” 〈PTLTL Syntax〉
| 〈PTLTL Syntax〉 “S” 〈PTLTL Syntax〉

〈PTLTL State〉 ::= “validation” | “violation”

Fig. 41. PTLTL Syntax

Formula Assignment Initial b[n]

F1 S F2 b[n]← B(F1) and b[n] or B(F2) false
[*] F b[n]← B(F) and b[n] true
<∗> F b[n]← B(F) or b[n] false
(*) F b[n]← B(F) false

Formula Expression

B(F) F if F is a simple boolean formula,
otherwise the b[n] storing the value of F

Fig. 42. PTLTL Assignment Equations

of LTL not guaranteeing that its formula holds for all program
executions applies to PTLTL, as well.

Fig. 41 shows the syntax for our PTLTL plugin. The op-
erators “not”, “and”, “or” , and “implies” are the standard
boolean connectives. The operator “[*]” stands for “always
in the past”, meaning the formula following it must hold at
all times in the past, while “<∗>” stands for “eventually in
the past”, meaning that the formula following it must either
currently hold or it must have held somewhere previously in
the trace. The operator “(*)” means “previously”: the formula
following it, say F , must hold in the previous time step; in
terms of MOP, this means that F must have held when the
previous event occurred. “S” means “since”; “F1 S F2” means
“either F2 must hold now, or F2 must have held in the past and
F1 must have held since then.”; “<∗> F ” can be defined as
“true S F .”

Below is an example PTLTL property. In this property the
goal is to ensure that next is never called on an Iterator without
first calling hasNext:

next implies (*)hasNext

The event definition should make sure that the call to the
hasNext method actually returns true, as well. Recall that
(*) means previously, so the property states that the event
preceding next must be hasNext.

The original algorithm for PTLTL monitor generation, as
outlined in [36,37], works by using a bitvector to keep the state
of each temporal operator in the formula. A series of sequen-
tial assignments updates the bitvector as each event arrives.

For example, “hold S acquire” would need one bitvector index
to monitor. The assignment for this bitvector index would
be “b[0] ← b[0] and hold or acquire”. Fig. 42
shows the assignments necessary for each PTLTL temporal
operator. Note that if one of the operands to a temporal for-
mula is itself a temporal formula, it will appear as a bitvector
index in the assignment. It is, then, essential to generate the
assignments in the proper order (depth-first).

In [52], it was determined that a parallel series of assign-
ments would be more efficient for monitoring PTLTL proper-
ties on an FPGA. Sequential assignments are parallelized by
back substitution of terms for the bitvector index they com-
puted. This back substitution in an assignment to b[n] is
only performed, however, for bitvector indices b[m] that are
computed before the assignment to b[n] in the original se-
quential assignments. For example, consider the following
sequential bitvector assignments:

b[0] ← b[0] or e1
b[1] ← b[0] and b[2] or e2
b[2] ← e3

When parallelized (we us ↽ to denote parallel assign-
ments and← for sequential), the code becomes:

b[0] ↽ b[0] or e1
b[1] ↽ (b[0] or e1) and b[2] or e2
b[2] ↽ e3

Note how “b[0] or e1” was substituted for “b[0]” in
the assignment to b[1] because the assignment to “b[0]”
occurred before the assignment to b[1] in the sequential code,
while the assignment to b[2] was not substituted, because
b[2] was computed after b[1] in the sequential code.

By using the parallel assignments it also becomes straight-
forward to generate an FSM by exhaustively computing and
enumerating the reachable bitvectors. This allows us to eas-
ily compute the property enable sets of a PTLTL formula by
using the algorithm in Fig. 34 on the FSM generated from
the formula. This is the strategy now used in JavaMOP, while
BusMOP continues to use the parallel assignments.

Figs. 43(a) and 43(b) show the monitor pseudocode for
the example above. Fig. 43(a) shows the parallel assignment
format (which, in this case, is equivalent to the sequential
code), while Fig. 43(b) shows the FSM output. Note that in
the parallel assignments b[0] is initialized to false. In the
parallel assignments the output statement outputs the actual
category. If it evaluates to false a violation is reported, if it
evaluates to true a validation is reported. The FSM output
uses aliases for validation and violation because, unlike in LTL,
multiple states can be validation or violation states due to the
manner in which the FSM is generated (e.g., n1 and n2 are
both in the validation alias).

As mentioned in Section 6.1, the enable sets for PTLTL are
computed by generating an FSM and using the FSM enable
set computation algorithm.

6.5 Context-Free Grammars

Context-free grammars (CFG) are nearly as widely adopted by
the average programmer as are regular expressions. Numerous

34 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

b[0]↽ hasNext
output(not next or b[0])

(a) Parallel Assignments

n0[
default n2
hasnext -> n1
next -> n0

]
n1[

default n2
hasnext -> n1
next -> n2

]
n2[

default n2
hasnext -> n1
next -> n0

]
alias violation = n0
alias validation = n1,n2

(b) FSM

Fig. 43. PTLTL Example Output

〈CFG Name〉 ::= “cfg”
〈CFG Syntax〉 ::= 〈Rule〉 {“, ” 〈Rule〉}

〈Rule〉 ::= 〈Symbol〉 “−> ” 〈Symbols〉 {“|” 〈Symbols〉}
〈Symbols〉 ::= 〈Symbols〉 {〈Symbols〉}

| 〈Event Name〉
| 〈Non-terminal Name〉

〈Non-terminal Name〉 ::= 〈Letter or “ ” 〉 {〈Letter, digit, or “ ” 〉}
〈CFG State〉 ::= “match” | “fail” | “?”

Fig. 44. CFG Syntax

context-free parser generators such as Bison [14] exist and are
widely used. CFGs offer a level of expressibility greater than
that of finite-monitor logics, and allow for the specification of
properties that involve proper nesting and a notion of counting.

Fig. 44 shows the syntax for our CFG plugin, where “,”
separates rules and “|” multiple alternatives within one rule.
The “–>” separates the non-terminal head of a production
from its body. While a CFG can contain epsilon, the language
it represents will have the empty string removed from it.

Below is an example CFG property.

S -> P endThread,
P -> P acquire P release | epsilon

In this example there are three events: acquire, release,
and endThread, and one non-terminal, S. The fail category
is reported whenever the program cannot have followed the
proper lock nesting property, e.g., releasing a lock more times
than it was acquired or not releasing it enough times before
the end of the Thread. Additionally, we could handle match,
which is reported whenever our locking discipline is faithfully
completed.

The CFG plugin uses a generalized LR (GLR) parser.
Specifically, when an ambiguity is encountered, instead of
choosing one of the particular alternatives, all are tried in par-
allel. The parser accepts a string if any of its parallel parses

Action Goto

$ endThread acquire release P S

0 error shift(11) shift(8) error 5 10
1 error reduce(P,2) reduce(P,2) reduce(P,2) error error
2 error reduce(P,3) reduce(P,3) reduce(P,3) error error
3 error reduce(P,3) reduce(P,3) reduce(P,3) error error
4 error reduce(P,4) reduce(P,4) reduce(P,4) error error
5 error shift(12) shift(9) error error error
6 error error shift(9) shift(2) error error
7 error error shift(9) shift(4) error error
8 error error shift(8) shift(1) 6 error
9 error error shift(8) shift(3) 7 error
10 accept error error error error error
11 reduce(S,1) error error error error error
12 reduce(S,2) error error error error error

Fig. 45. CFG Example Output

does and rejects it if there is no possible parse in any of the
alternate parses. Thus, unlike normal LR(1) parsers, the GLR
algorithm is capable of recognizing all context-free languages.
This parsing algorithm is both online and the overhead relative
to a normal LR parser is proportional to the amount of ambigu-
ity in the grammar. The LR parser tables are generated using
Knuth’s LR(1) parser table generation algorithm as presented
in [3]. The table, which constitutes the monitor pseudocode,
used for monitoring our nested locking example can be seen
in Fig. 45.16

As with the other logic plugins we have the problem of
not knowing when the last event of a trace slice will be seen.
Thus, the plugin classifies traces into {match, fail, ?} (see Sec-
tion 4.1.1). Originally, in [47], this was done by cloning the
state of the monitor and seeing if the copy would accept on an
end of trace event. After examining how the LR tables were
constructed we noticed in [48] that if our parser is able to re-
duce on seeing an end of trace at all, then it must accept after
some number of reductions. Thus, we just need to check if we
can reduce assuming we are at the end of the trace instead of
actually preforming the reductions. We refer to this concept
as guaranteed acceptance. As a result, we no longer need to
copy our parser’s state and can just check whether the current
state is the member of the set of states that would reduce at the
end of the trace. More information on how to monitor CFGs
can be found in [48].17

It should be noted that guaranteed acceptance is specific
to monitoring and is not suitable for use in most parser gen-
erators since they do not need to only verify that a string is
in the language but also to assemble an abstract syntax tree
or produce some other side effects. Since these side effects
are performed as part of the reductions omitting them is not,
in general, possible. There are a number of open optimiza-
tion opportunities, e.g., those suggested in [3, 5]. Additionally,
there are GLR specific opportunities to share common seg-
ments of the copied stacks. Therefore, there is still room for

16 This is actually an LALR table, which is smaller than the full LR table,
see [48].

17 Note that normal LR(1) and LALR(1) parsing are used in [48], while in
the meanwhile, as presented here, we generalized the techniques in [48] to
work with arbitrary context-free languages.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 35

G(ε) = {∅}
G(t) = {{t}}

G(A) =
⋃
A→β G(β)

G(β1β2) = {S ∪ T | S ∈ G(β1), T ∈ G(β2)}
P(γ) = {S ∪ T | A→ β1γβ2, S ∈ P(A), T ∈ G(β1)}

enableEG(e) = P(e)

Fig. 46. CFG enableEG Defining Equations

〈PTCaRet Name〉 ::= “ptcaret”
〈PTCaRet Syntax〉 ::= “true” | “false” | 〈Event Name〉

| 〈Unary Operator〉 〈PTCaRet Syntax〉
| 〈PTCaRet Syntax〉 〈Binary Operator〉

〈PTCaRet Syntax〉
〈Unary Operator〉 ::= “not” | “[∗]” | “<∗>” | “(∗)”

| “[∗a]” | “<∗a>” | “(∗a)”
| “@b” | “@c”
| “[∗s@b]” | “[∗s@c]” | “[∗s@bc]”
| “<∗s@b>” | “<∗s@c>” | “<∗s@bc>”

〈Binary Operator〉 ::= “and” | “or” | “implies” | “S” | “Sa”
| “Ss@b” | “Ss@c” | “Ss@bc”

〈PTCaRet State〉 ::= “validation” | “violation”

Fig. 47. PTCaRet Syntax

generating better CFG monitors, though the current ones were
satisfactory in our practical experiments.

To find the enables sets of a CFG we find the least fixed
point of the equations in Fig. 46. Here, informally, G(A) is
the set of events generated by the CFG, if the symbol A were
used as the start symbol of the CFG. The rule G(β1β2) =
{S ∪ T | S ∈ G(β1), T ∈ G(β2)} generalizes this notion
to entire strings of symbols. P is the enable sets function
generalized to strings that include both non-terminals and
terminals. For example, the prefixes of abTB for B would
be {{a, b} ∪ S | S ∈ G(T)}. For a rule, A → β1Bβ2, P(B)
needs to cope with the fact that A has its own enables set of
possible prefixes. Thus its definition unions possible prefixes
of A with the sets of symbols that are generated by β1. The
rest of MOP only needs to know sets of prefixes for events so
enableEG is just the restriction of P to events.

6.6 Past Time Linear Temporal Logic with Calls and Returns

Past time linear temporal logic with calls and returns (PT-
CaRet) [56] is a specialization of CaRet [5] for safety proper-
ties and their monitoring. CaRet is an extension of LTL with
calls and returns. Matching call/return events in traces allows
one to express program trace properties not expressible using
plain LTL. One can express properties related to the contents
of the program execution stack, such as “function g is always
called from within function f”, or one can express properties
that are allowed to be temporarily validated/violated, such
as “a user u may never directly access a password file (but
may access it through system procedures)” [56]. Motivated
by practical reasons, PTCaRet distinguishes call and return
points from begin and end points: the former take place in
the method caller’s context and the latter take place in the

enter phase 2 implies (
not (not enter phase 1 Sa begin)
and (not acquire Sa enter phase 1

or not(not release Sa acquire))
and @c (has phase 2 pass)
and <∗s@b>(safe exec))

Fig. 48. PTCaRet Example

callee’s context. This distinction allows more flexible and
elegant expressions of properties.

PTCaRet is a past time variant of CaRet. Essentially, it
is PTLTL extended by adding abstract variants of temporal
operators. Fig. 47 shows the syntax for our PTCaRet plugin.
PTCaRet includes all operators from PTLTL: the standard
boolean operators and the temporal operators. PTCaRet, as
mentioned, also has abstract temporal operators. The seman-
tics of abstract operators is defined exactly as the semantics of
their concrete counterpart operators, but they operate on the
abstract version of the trace from which all the intermediate
events of terminated method or function executions deeper in
the call stack are erased [56]. In other words, abstract opera-
tors refer only to the trace of the current call stack level. In
the syntax of the abstract temporal operators, “∗” and “S” are
followed by “a”, meaning that the operator is an abstract vari-
ant of the concrete counterpart operator. The operators “[∗a]”,
“<∗a>”, “(∗a)”, and “Sa” stand for “abstract always in the
past”, “abstract eventually in the past”, “abstract previously in
the past”, and “abstract since”, respectively.

PTCaRet also includes several derived operators which
are convenient in practice, both for temporal and for stack
operators. The operators “@b” and “@c”, read “at begin” and
“at call” respectively, are derived temporal operators meaning
that the formula they take as an argument must hold “at the
Beginning of the execution of the current function” and “at the
context when the current function was Called”, respectively.
The semantics of the derived stack operators are defined ex-
actly as the semantics of their abstract counterpart operators,
but they operate only on the begin/call points on the abstract
version of the trace. For example, derived stack operators de-
fined on “begin” operate on a trace where we have filtered out
all events except events in “begin” contexts from the abstract
trace. Similar to the abstract temporal operators, in the syntax
of the derived stack operators, “*” and “S” are followed by “s”,
meaning that the operator is a derived stack variant of the con-
crete counterpart operator. In addition to this keyword, either
of “@b”, “@c”, or “@bc” follows right after “s”, to indicate
that the derived stack operator is defined on “begins”, “calls”,
or “both begins and calls”, respectively. In particular, the oper-
ators “[∗s@b]”, “<∗s@b>”, and “Ss@b” are the derived stack
operators on the beginnings of method calls, meaning “always
on begin contexts on abstract traces”, “eventually on begin
contexts on abstract traces”, and “since on begin contexts on
abstract traces”, respectively. The derived stack operators for
“calls” and “begins” are defined similarly.

Fig. 48 shows an example PTCaRet property from [56],
which states that a program carrying out a critical multi-phase

36 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

if begin then {
push(beta)
exit

}
if end then {

pop(beta)
exit

}
beta[0] ← beta[0] or begin and safe exec
beta[1] ← enter phase 1 or not acquire

and beta[1]
beta[2] ← acquire or not release and beta[2]
beta[3] ← begin or beta[3] and

(not alpha[3] or alpha[2])
beta[4] ← begin or not enter phase 1 and beta[4]
output(not enter phase 2 or not beta[4]

and beta[0]
and (begin or beta[3])
and (not begin or alpha[0])
and (not beta[2] or beta[1])))

alpha[3] ← begin
alpha[2] ← alpha[1]
alpha[1] ← has phase 2 pass
alpha[0] ← has phase 2 pass

Fig. 49. PTCaRet Example Output

task should satisfy the following safety properties when exe-
cution enters the second phase:

– Execution entered the first phase in the same procedure;
– Resources acquired within the same procedure since the

first phase must be released;
– The caller of the current procedure must have had approval

for the second phase;
– Task is executed directly or indirectly by the procedure

safe exec.

Since the operators “Sa”, “@c”, and “<∗s@b>” are abstract
temporal operators, the example abstracts out events that hap-
pened in the procedure calls from within the current procedure.

Our technique for generating monitors from PTCaRet for-
mulae is inspired from and generalizes the synthesis from
plain PTLTL formulae (Section 6.4). The difference is that
two bitvectors are kept for PTCaRet monitors, alpha[] and
beta[]. The former plays the same role as the bitvector b from
PTLTL (Section 6.4). The other bitvector, beta[], stores the
validity status of the subformulae corresponding to abstract
temporal operators. When a new function or method is called,
a copy of the abstract bitvector is pushed onto the top of a
stack. When the function or method ends, the bitvector is
popped from the stack, effectively erasing all updates that
happened during the called function or method.

Fig. 49 shows the output for Fig. 48. PTCaRet uses the
sequential assignments explained in Section 6.4. In this ex-
ample, we use the bitvector names and roles from previously,
alpha[] and beta[]. Note that all elements in alpha[] and beta[]
are initialized to false. When a new function or method is
called, a copy of beta[] is pushed onto the top of a stack and
when the function or method returns, the bitvector is popped
from the stack, replacing beta[], while alpha[] stays as it is.

Updating bitvectors before output is related to “since” oper-
ators, processing inner “since” operators before the outer ones.
Updating bitvectors after output is related to “previously”
operators, processing outer “previously” operators before the
inner ones. Thus, bitvector updates before output are in
order and bitvector updates after output are in reverse order.
We refer to [56] for detailed monitor synthesis algorithm.

7 Conclusion

In this article we presented an overview of the Monitoring
Oriented Programming (MOP) framework. We detailed the or-
ganization of the framework, and presented the formal syntax
of specifications. We presented an in depth discussion of the
two current instances of MOP: JavaMOP and BusMOP.

JavaMOP is an MOP instance for monitoring Java pro-
grams. JavaMOP specifications are compiled into AspectJ [41]
aspects, which can be weaved into a program a user wishes to
monitor using any standard AspectJ compiler such as ajc [7].
The theory of parametric monitoring was presented in the
context of JavaMOP (currently, the only parametric instance
of MOP). We discussed both naive and optimized monitoring
algorithms for parametric properties. One important optimiza-
tion, the enable set optimization, was explained in detail. We
explained the two different modes of indexing from JavaMOP
(centralized and decentralized), and we introduced three bind-
ing modes, which can be used as a filter on the number of
handlers invoked by a given monitor. An evaluation of Java-
MOP shows that, in general, parametric monitoring of Java
programs is efficient.

BusMOP is an instance for monitoring PCI bus peripherals.
BusMOP specifications are compiled into hardware design
language code suitable for implementation on an FPGA [52].
Using a monitor implemented on an FPGA, it is possible to
ensure the proper interaction between a peripheral and the
system to which it is attached. BusMOP, in general, adds no
runtime overhead to the monitored system.

Each logic plugin currently implemented in the MOP
framework was presented. For each logic plugin we explained
the syntax of the implemented logical formalism, how to gen-
erate a monitor, as well as how to generate enable sets.

8 Acknowledgments

Special thanks to Rodolfo Pellizzoni and Marco Caccamo, co-
authors on [52], without whom the work on BusMOP would
never have been completed. Also thanks to Choonghwan Lee
for creating the JavaMOP installer program, and Michael
Pradel for discussions that lead to the inclusion of the full-
binding and connectedness modifiers of JavaMOP. Thanks to
Klaus Havelund for using JavaMOP in his class at Caltech
and Matthew Dwyer for using it at the University of Nebraska,
thus forcing us to iron out the numerous bugs in earlier imple-
mentations.

Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework 37

References

1. ISO/IEC 14977:1996, Information technology – Syntactic meta-
language – Extended BNF. ISO, Geneva, Switzerland.

2. P. Abercrombie and M. Karaorman. jContractor: Bytecode in-
strumentation techniques for implementing DBC in Java. In
Runtime Verification (RV’02), volume 70 of ENTCS. Elsevier,
2002.

3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, 1986. pages 215–246.

4. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. Adding trace matching with free variables to
AspectJ. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’05), pages 345–364. ACM, 2005.

5. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic
of nested calls and returns. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’04), volume 2988
of LNCS, pages 467–481. Springer, 2004.

6. AspectC++. http://www.aspectc.org/.
7. AspectJ. http://eclipse.org/aspectj/.
8. P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors

feasible. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’07), pages 589–608. ACM, 2007.

9. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. In Construction and Analysis
of Safe, Secure and Interoperable Smart devices (CASSIS’04),
volume 3362 of LNCS, pages 49–69. Springer, 2004.

10. H. Barringer, B. Finkbeiner, Y. Gurevich, and H. Sipma, editors.
Runtime Verification (RV’05), volume 144 of ENTCS. Elsevier,
2005.

11. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
Based Runtime Verification. In Verification, Model Checking,
and Abstract Interpretation (VMCAI’04), volume 2937 of LNCS,
pages 44–57. Springer, 2004.

12. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems
for run-time monitoring: from EAGLE to RULER. J. Logic
Computation, November 2008.

13. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass-Java
with Assertions. In Runtime Verification (RV’01), volume 55 of
ENTCS, pages 103–117. Elsevier, 2001.

14. Bison. http://www.gnu.org/software/bison/.
15. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’06), pages 169–
190. ACM, 2006.

16. E. Bodden. J-LO, a tool for runtime-checking temporal asser-
tions. Master’s thesis, RWTH Aachen University, 2005.

17. E. Bodden, F. Chen, and G. Roşu. Dependent advice: A gen-
eral approach to optimizing history-based aspects. In Aspect-
Oriented Software Development (AOSD’09), pages 3–14. ACM,
2009.

18. E. Bodden, L. Hendren, and O. Lhoták. A staged static pro-
gram analysis to improve the performance of runtime monitor-
ing. In European Conference on Object-Oriented Programming
(ECOOP’07), volume 4609 of LNCS, pages 525–549. Springer,
2007.

19. S. Chaudhuri and R. Alur. Instumenting C programs with nested
word monitors. In Model Checking Software (SPIN’07), volume
4595 of LNCS, pages 279–283. Springer, 2007.

20. F. Chen, M. D’Amorim, and G. Roşu. A formal monitoring-
based framework for software development and analysis. In
International Conference on Formal Engineering Methods
(ICFEM’04), volume 3308 of LNCS, pages 357–372. Springer,
2004.

21. F. Chen, P. Meredith, D. Jin, and G. Roşu. Efficient formalism-
independent monitoring of parametric properties. In Automated
Software Engineering (ASE’09), pages 383–394. IEEE, 2009.

22. F. Chen and G. Roşu. Towards monitoring-oriented program-
ming: A paradigm combining specification and implementation.
In Runtime Verification (RV’03), volume 89 of ENTCS, pages
108–127. Elsevier, 2003.

23. F. Chen and G. Roşu. MOP: An efficient and generic runtime
verification framework. In Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA’07), pages 569–
588. ACM, 2007.

24. F. Chen and G. Roşu. Parametric trace slicing and monitoring.
In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’09), volume 5505 of LNCS, pages 246–261.
Springer, 2009.

25. M. d’Amorim and K. Havelund. Event-based runtime verifica-
tion of Java programs. ACM SIGSOFT Software Engineering
Notes, 30(4):1–7, 2005.

26. D. Drusinsky. The Temporal Rover and the ATG Rover. In
Model Checking and Software Verification (SPIN’00), volume
1885 of LNCS, pages 323–330. Springer, 2000.

27. Eagle Technology. PCI 703 Series User’s Manual. http:
//www.eagledaq.com/display_product_36.htm.

28. Eiffel Language. http://www.eiffel.com/.
29. S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries

over program traces. In Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA’05), pages 385–
402. ACM, 2005.

30. K. Havelund, M. Nunez, G. Roşu, and B. Wolff, editors. Formal
Approaches to Testing and Runtime Verification (FATES/RV’06),
volume 4264 of LNCS. Springer, 2006.

31. K. Havelund and G. Roşu. Monitoring Java programs with Java
PathExplorer. In Runtime Verification (RV’01), volume 55 of
ENTCS, pages 97–114. Elsevier, 2001.

32. K. Havelund and G. Roşu. Monitoring Java programs with Java
PathExplorer. In Runtime Verification (RV’01), volume 55 of
ENTCS. Elsevier, 2001.

33. K. Havelund and G. Roşu. Monitoring programs using rewriting.
In Automated Software Engineering (ASE’01), pages 135–143.
IEEE, 2001.

34. K. Havelund and G. Roşu, editors. Runtime Verification (RV’02),
volume 70 of ENTCS. Elsevier, 2002.

35. K. Havelund and G. Roşu, editors. Runtime Verification (RV’04),
volume 113 of ENTCS. Elsevier, 2004.

36. K. Havelund and G. Roşu. Synthesizing Monitors for Safety
Properties. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), volume 2280 of LNCS, pages
342–356. Springer, 2002.

37. K. Havelund and G. Rosu. Efficient monitoring of safety proper-
ties. J. Software Tools for Technology Transfer, 6(2):158–173,
2004.

38. C. Hoare. Communicating Sequential Processes. Prentice-Hall
Intl., New York, 1985.

39. J. E. Hopcroft. An n log n algorithm for minimizing states in a
finite automaton. Technical report, 1971.

38 Patrick O’Neil Meredith et al.: An Overview of the MOP Runtime Verification Framework

40. JBoss. http://www.jboss.org.
41. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and

W. G. Griswold. An overview of AspectJ. In European Confer-
ence on Object-Oriented Programming (ECOOP’01), volume
2072 of LNCS, pages 327–353. Springer, 2001.

42. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In European Conference on Object-Oriented Programming
(ECOOP’97), volume 1241 of LNCS, pages 220–242. Springer,
1997.

43. M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee,
and O. Sokolsky. Formally specified monitoring of temporal
properties. In Europoean Conference on Real-Time Systems
(ECRTS’99), 1999.

44. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Ja-
cobs. JML: notations and tools supporting detailed design in
Java. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’00), pages 105–106. ACM, 2000.

45. H. Lu and A. Forin. The design and implementation of P2V,
an architecture for zero-overhead online verification of software
programs. Technical Report MSR-TR-2007–99, Microsoft Re-
search, 2007.

46. M. Martin, V. B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query language.
In Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA’07), pages 365–383. ACM, 2005.

47. P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring
of parametric context-free patterns. In Automated Software
Engineering (ASE ’08), pages 148–157. IEEE, 2008.

48. P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitor-
ing of parametric context-free patterns. J. Automated Software
Engineering, pages 149–180, 2010.

49. B. Meyer. Object-Oriented Software Construction, 2nd edition.
Prentice Hall, New Jersey, 2000.

50. PCI SIG. Conventional PCI 3.0, PCI-X 2.0 and PCI-E 2.0
Specifications. http://www.pcisig.com.

51. R. Pellizzoni, B. D. Buy, M. Caccamo, and L. Sha. Coschedul-
ing of real-time tasks and PCI bus transactions. Techni-
cal report, University of Illinois at Urbana-Champaign, 2008.
Available at http://netfiles.uiuc.edu/rpelliz2/
www/techreps/.

52. R. Pellizzoni, P. Meredith, M. Caccamo, and G. Roşu. Hardware
runtime monitoring for dependable cots-based real-time embed-
ded systems. In Real-Time System Symposium (RTSS’08), pages
481–491. IEEE, 2008.

53. R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo,
and L. Sha. Handling mixed-criticality in soc-based real-time
embedded systems. In Embedded Software (Emsoft’09), pages
235–244, 2009.

54. A. Pnueli. The temporal logic of programs. In Foundations of
Computer Science (FOCS’77), pages 46–57. IEEE, 1977.

55. G. Roşu and K. Havelund. Rewriting-based techniques for run-
time verification. J. Automated Software Engineering, 2004.

56. G. Roşu, F. Chen, and T. Ball. Synthesizing monitors for safety
properties – this time with calls and returns –. In Runtime Verifi-
cation (RV’08), volume 5289 of LNCS, pages 51–68. Springer,
2008.

57. K. Sen and G. Roşu. Generating optimal monitors for extended
regular expressions. In Runtime Verification (RV’03), volume 89
of ENTCS, pages 162–181. Elsevier, 2003.

58. O. Sokolsky and M. Viswanathan, editors. Runtime Verification
(RV’03), volume 89 of ENTCS. Elsevier, 2003.

59. Soot website. http://www.sable.mcgill.ca/soot/.
60. K. Thompson. Regular expression search algorithm. Communi-

cations of the ACM, 11(6):419–422, 1968.
61. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon,

and P. Co. Soot - a Java optimization framework. In IBM Centre
for Advanced Studies Conference (CASCON’99), pages 125–135.
ACM, 1999.

62. Xilinx, Inc. Virtex-4 ML455 PCI/PCI-X Development
Kit User Guide. http://www.xilinx.com/support/
documentation/boards_and_kits/ug084.pdf.

