
EFFICIENT, EXPRESSIVE, AND EFFECTIVE RUNTIME VERIFICATION

BY

PATRICK O’NEIL MEREDITH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Associate Professor Grigore Roşu, Chair and Director of Research
Senior Research Scientist Klaus Havelund, JPL Laboratory for Reliable Software
Associate Professor Marco Caccamo
Associate Professor Darko Marinov

PhD Thesis, University of Illinois, August 2012

Abstract

Runtime Verification is a quickly growing technique for providing many of the
guarantees of formal verification, but in a manner that is scalable. It useful informa-
tion available from actual runs of programs to make verification decisions, rather
than the purely static information used in formal verification.

One of the main facets of Runtime Verification is runtime monitoring, where
safety properties are checked against the execution of a program during (or in
some cases after) its run. Prior work on efficient monitoring focused primarily
on finite state properties. Non-finite state techniques existed, but added orders of
magnitude of runtime overhead on the monitored system. The vast majority of
runtime monitoring has also been limited to the application domain, with violations
of safety properties only found on the actual trace of a given program.

This thesis describes research that demonstrates that various logical formalisms,
including those more powerful than finite logics, can be efficiently monitored in
multiple monitoring domains. The demonstrated monitoring domains run the
gamut from the application level with the Java programming language, to monitor-
ing traces predicted from a given run of a program, to hardware based monitors
designed to ensure proper peripheral operation. The logical formalisms include
multicategory finite state machines, extended regular expressions, past-time linear
temporal logic with optimization for hardware based monitors, context-free gram-
mars, linear temporal logic with both past and future operators, and string rewriting.
This combination of domains and logical formalisms show that monitoring can
be both expressive and efficient, regardless of the expressive power of the logical
formalism, and that monitoring can be used not only for flat traces generated by
software applications, but also in predictive traces and a hardware context.

ii

PhD Thesis, University of Illinois, August 2012

Patrick Meredith

Acknowledgments

First, I must thank my parents for their constant support, both emotionally and
monetarily. Without them, this would not be possible.

I would like to thank my committee for having the patience to read this monolith,
and more specifically: I would like to thank Klaus for listening to my random
musings on gchat, Marco for his work on BusMOP, Darko for being a good sport,
and Grigore... for pretty much everything; it’s been an interesting ride.

Dongyun Jin and Feng Chen, may he rest in peace, have both been especially
instrumental to my work and have been good friends; I cannot thank them enough.

To my friends, for their necessary distractions keeping me sane over the years:
Aaron Hosek, Andre Ştefănescu, Andrew Belitto, Andrew Lenharth, Angela Sze,
Barbara Bibiloni Clua, Brandon Cottrell, Brandon Rollins, Brian Urbanek, Carrie
Heyen, Chucky Ellison, Chad Zalkin, Cody Slauson, Dan Watson, Dan Winkle,
Deepak Ramachandran, Dennis Griffith, Jared McCloy, Jason Evenden, Jay Gentile,
Josh Holman, Joe Tucek, Josh Laughlin, Mark Hills, Michael Katelman, Michael
Ilseman, Michael Matsche, Meghan Jones, Nelson Parrot, Nic Miller, Nitish Korula,
Oksana Tkachuk, Ralf Sasse, Steve Lauterburg, Rob Bocchino, Traian Şerbănuţă,
and Zac Cochran. Extra special mention to Joseph Jackan for “feats of unrestrained
manliness”.

Thanks to Margaret Pennell for always believing in me.
Thanks to all the McCalls and Merediths.
Thanks to Metal Music, particularly Black, for keeping my focus. Especially

thanks to Ulvhedin Hoest.
Thanks to the St. Louis Cardinals for winning two World Series while I was in

grad school.
The research in this dissertation has been supported in part by NSF grants

CCF-0916893, CNS-0720512, CNS-0509321, CCF-0448501, by NASA contract
NNL08AA23C, by a Samsung SAIT grant, and by several Microsoft gifts.

iii

PhD Thesis, University of Illinois, August 2012

Patrick Meredith

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Design of the MOP Framework 17

Chapter 3 JavaMOP . 32

Chapter 4 BusMOP . 72

Chapter 5 Finite Logics . 114

Chapter 6 Context-Free Grammars 131

Chapter 7 String Rewriting Systems 163

Chapter 8 Predictive Analysis . 190

Chapter 9 Conclusion . 215

References . 217

iv

PhD Thesis, University of Illinois, August 2012

Patrick Meredith

Chapter 1

Introduction

1.1 Problem Description

Computers have become an increasingly large part of our lives. Nearly everything
we use now contains computers: they control the fuel injection in our cars, they run
our televisions, and our phones are now computing devices. Computers also also
relied upon for safety critical systems such as flight controls in passenger aircraft.
All of these computers are controlled by increasingly complex software. This ever
growing reliance on software requires new methods to improve software reliability.

Runtime monitoring of requirements, most often specified as safety poli-
cies, can increase the reliability of the resulting hardware or software systems.
There is an increasingly broad interest in uses of monitoring in software devel-
opment and analysis, as reflected, for example, by abundant approaches pro-
posed recently ([6, 17, 23, 29, 41, 44, 54, 58, 81, 89] among others), and also by the
Runtime Verification (RV) and the formal aspects of testing (FATES) initia-
tives [15, 57, 58, 60, 61, 117] among many others. Many of these approaches
support what is know as parametric monitoring, wherein different instances of
objects in a system can be bound to parameters. Parametric properties are a gener-
alization of the well-known concept of typestates [118] that allow for specifying
safety properties that describe the interactions between objects, rather than prop-
erties of single objects.1 Most of these techniques, however, have either been
focused on finite-state properties or have added orders of magnitude overhead
to the monitored systems. Whatever the power of the formalism used, all of the
mentioned systems fix the choice of formalism. This thesis shows that many pos-
sible logical formalisms can be used, including those more powerful than finite
state, while still maintaining efficiency. This goal is achieved through a high
efficiency formalism-agnostic algorithm for parametric monitoring, as well as

1In this respect, typestates can be thought of as parametric properties with one parameter.

1

PhD Thesis, University of Illinois, August 2012

very efficient monitoring algorithms for the formalisms in question. The software
runtime monitoring presented in this thesis is embodied within the Monitoring Ori-
ented Programming (MOP) Framework, specifically JavaMOP, the Java instance
of the MOP framework.

Hardware approaches to monitoring have seen less active research. Most at-
tempts have been for the purpose of performance measurement or temperature
control rather than the safety properties with which we are concerned. [88] is an
approach that generates monitors from formal safety properties that are imple-
mented in hardware, but these hardware monitors are actually used to monitor
software programs, making it fit more with the software approaches mentioned
above than the hardware based monitoring of the BusMOP developed for this thesis.
BusMOP is an instance of the MOP framework for monitoring bus traffic, which
was developed to to satisfy the goal of monitoring formal safety properties with
hardware monitors, and is presented in this thesis.

Predictive runtime analysis [34, 37], itself a form of Runtime Verification,
is able to run a program, collect logs, and reconstruct a causal model of the
program that can be used to infer possible executions of a programs. These
inferred executions can be compared against the formal properties designed for
monitoring software applications. The RV-Predict system, developed for this thesis,
shows that predictive analysis, which was previously applied only to race detection
and atomicity checking, can be applied to formally stated properties written in
any of the logical formalisms described here. It also improves the efficiency of
predictive runtime analysis by orders of magnitude, making it applicable to a larger
set of programs.

The performance and expressivity advances in the realm of software mon-
itoring presented in this thesis and embodied in the JavaMOP instance of the
MOP framework work to further the goals of this thesis: efficient, expressive,
and effective Runtime Verification. The hardware monitoring of BusMOP and
the predictive monitoring of RV-Predict show that Runtime Verification can be
effective in totally new domains.

Contributions. The contributions of this thesis can be broken into eight
major areas. The individual areas well be presented in-depth in the remainder
of this thesis.

• The design of the MOP framework, which currently contains two instances:
JavaMOP, BusMOP. See Chapter 2.

2

PhD Thesis, University of Illinois, August 2012

• Formalism-generic software monitoring performance improvements. Two
optimizations revolving around static analysis of the property to be monitored
are presented. They both are formalism independent and lead to one of the
most efficient software monitoring systems in the world. See Chapter 3.

• Formalism-generic software monitoring expressivity improvements. Formal-
ism generic suffix monitoring and parameter binding modes allow for more
expressive control of monitoring, regardless of logical formalism used. See
Chapter 3.

• Formalism-generic hardware bus monitoring implementation. BusMOP
shows that Runtime Verification is both an effective and efficient means to
provide guarantees in hardware and hardware/software hybrid systems. See
Chapter 4.

• Efficient algorithms for monitoring finite formalisms. Several algorithms
are presenting for converting all of our finite logical formalisms into finite
state machines. This is important both because of an algorithm for minimiz-
ing multicategory finite state machines, as well as reducing the amount of
static analysis algorithms needed to allow for the optimizations presented in
Chapter 3. See Chapter 5.

• An efficient algorithm for monitoring context-free properties. An in depth
discussion of context-free grammars used for monitoring is presented, as
well as an efficient algorithm with a proof of correctness. This is the first
truly efficient means for monitoring parametric context-free grammars. See
Chapter 6.

• An efficient algorithm for monitoring string rewriting systems. An algorithm
for efficiently monitoring parametric string rewriting systems is shown. As
string rewriting systems are Turing-complete, we provide the first imple-
mentation of an efficient Turing-complete logical formalism monitoring
algorithm. See Chapter 7.

• Formalism-generic software predictive analysis implementation. We present
the first system to causally predict generic safety properties within a cone of
possible thread interleavings. Several theoretical and engineering decisions
are made to improve performance. This demonstrates the efficacy of Runtime
Verification in a new domain. See Chapter 8.

3

PhD Thesis, University of Illinois, August 2012

Additionally, Chapter 3 features an in-depth formal treatment of the semantics
of monitoring.

1.2 Summary of Related Work

What follows is a summary of related work so that there may be one point to refer
to. The related work presented here is aimed to give an overview of the work most
directly related to the topics of this thesis. Additional, more in-depth related work
is available in the respective chapters, where appropriate.

First, we discuss the relationships between the MOP framework and other
related paradigms, including AOP, design by contract, Runtime Verification, and
other trace monitoring approaches. Broadly speaking, all the approaches discussed
below are instances of runtime monitoring. Interestingly, even though most of
the systems mentioned below target the same programming languages, only two
share the exact same logical formalism for expressing properties. This observation
strengthens our belief that probably there is no silver bullet logic (or super logic)
for all purposes. A major objective in the design of the MOP framework was to
avoid hardwiring particular logical formalisms into the system.

1.2.1 Aspect Oriented Programming (AOP) Languages

Since its proposal in [80], AOP has been increasingly adopted and many tools have
been developed to support AOP in different programming languages, e.g., AspectJ
and JBoss [75] for Java, and AspectC++ [7] for C++. Built on these general AOP
languages, numerous extensions have been proposed to provide domain-specific
features for AOP. Among these extensions, Tracematches [6] and J-LO [23] support
history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the execution of certain code
by specifying a parametric regular pattern of events in a computation trace, where
the events are defined over entry/exit of AspectJ pointcuts. When the pattern
is matched during the execution, the associated code will be executed. In this
sense, Tracematches supports trace-based pointcuts for AspectJ. J-LO is a tool
for runtime-checking temporal assertions. These temporal assertions are specified
using parametric linear temporal logic (LTL) and the syntax adopted in J-LO is
similar to Tracematches’ except that the properties are specified in a different
formalism. J-LO also uses the same parametricity semantics as Tracematches.

4

PhD Thesis, University of Illinois, August 2012

J-LO mainly focuses on checking at runtime properties rather than providing
programming support. In J-LO, the temporal assertions are inserted into Java files
as annotations that are then compiled into runtime checks. Both Tracematches and
J-LO support parametric events, i.e., free variables can be used in the specified
properties and will be bound to specific values at runtime for matching events.

The MOP framework has logic plugins, which encapsulate different logical
formalisms and allow it to capture the capabilities of Tracematches and J-LO.
JavaMOP is the instantiation of the MOP framework for Java programs (see
Chapter 2 for an overview of the two current MOP instances).

JavaMOP allows for two different modes of matching traces, referred to as total
trace matching and suffix trace matching. Total is the default mode of JavaMOP,
while suffix mode is used by prefixing a JavaMOP property with the suffix modifier
(see Fig. 2.4 and the accompanying text).

With total matching, for example, with the pattern a

⇤
b, a sequence of events

abb will trigger the validation handler of the generated MOP monitor only at the
first b event and then the violation handler (if any) at the second b.

With suffix matching, however, the pattern will be matched twice, once for each
b event: the first matches either the whole trace a b or the partial trace consisting of
just the first b with zero occurrences of a, while the second matches the subsequent
partial trace b (the second b in the trace) with zero occurrences of a; thus, the
related advice will be executed twice.

With suffix matching one can count matches of a pattern open close without a
need to reset the monitor after each match, as would be required with total match
monitoring. On the other hand, total trace matching is more suitable for Runtime
Verification of formal properties, because it is the only semantics that makes sense
for some logical formalisms, such as LTL, and thus many users expect this behavior
for pattern languages like regular expressions and context-free grammars, as well.

J-LO can be captured by the JavaMOP with total matching because LTL (see
Section 5.4) is supported by the MOP framework. MOP supports regular expres-
sions as part of its extended regular expression (ERE) logic plugin (see Section 5.3),
and Tracematches may be captured by JavaMOP by using these ERE patterns with
suffix matching.

5

PhD Thesis, University of Illinois, August 2012

1.2.2 Runtime Verification

In Runtime Verification, monitors are automatically synthesized from formal spec-
ifications, and can be deployed offline for debugging, or online for dynamically
checking properties during execution. MaC [81], PathExplorer (PaX) [59], Ea-
gle [16], and RuleR [17] are Runtime Verification frameworks for logic based
monitoring, within which specific tools for Java – Java-MaC, Java PathExplorer,
and Hawk [41], respectively – are implemented. All these Runtime Verification sys-
tems work in outline monitoring mode and have hardwired specification languages:
MaC uses a specialized language based on interval temporal logic, JPaX supports
just LTL, and Eagle adopts a fixed-point logic. Java-MaC and Java PathExplorer
integrate monitors via Java bytecode instrumentation, making them difficult to
port to other languages. Our MOP approach supports inline, outline, and offline
monitoring; allows one to define new formalisms to extend the MOP framework;
and is adaptable to new languages (e.g., Java for JavaMOP and hardware design
languages for BusMOP). It is also extensible to traces predicted from viable thread
interleavings, as is shown in RV-Predict.

Temporal Rover [44] is a commercial Runtime Verification tool based on future
time metric temporal logic. It allows programmers to insert formal specifications
in programs via annotations, from which monitors are generated. An Automatic
Test Generation (ATG) component is also provided to generate test sequences
from logic specifications. Temporal Rover and its successor, DB Rover, support
both inline and offline monitoring. However, they also have their specification
formalisms hardwired and are tightly bound to Java. MOP currently has no metric
temporal logic plugin.

1.2.3 Design by Contract

Design by Contract (DBC) [95] is a technique allowing one to add semantic
specifications to a program in the form of assertions and invariants, which are then
compiled into runtime checks. It was first introduced as a built-in feature of the
Eiffel language [49]. Some DBC extensions have also been proposed for a number
of other languages. Jass [18] and jContractor [77] are two Java-based approaches.

Jass is a precompiler which turns the assertion comments into Java code. Be-
sides the standard DBC features such as pre-/post- conditions and class invariants,
it also provides refinement checks. The design of trace assertions in Jass is mainly
influenced by CSP [64], and the syntax is more like a programming language.

6

PhD Thesis, University of Illinois, August 2012

jContractor is implemented as a Java library which allows programmers to asso-
ciate contracts with any Java class or interface. Contract methods can be included
directly within the Java class or written as a separate contract class. Before loading
each class, jContractor detects the presence of contract code patterns in the Java
class bytecode and performs on-the-fly bytecode instrumentation to enable check-
ing of contracts during the program’s execution. jContractor also provides a support
library for writing expressions using predicate logic quantifiers and operators such
as Forall, Exists, suchThat, and implies. Using jContractor, the contracts can be
directly inserted into the Java bytecode even without the source code.

Java modeling language (JML) [85] is a behavioral interface specification
language for Java. It provides a more comprehensive modeling language than
DBC extensions. Not all features of JML can be checked at runtime; its runtime
checker supports a DBC-like subset of JML. Spec# [13] is a DBC-like extension
of the object-oriented language C#. It extends the type system to include non-null
types and checked exceptions and also provides method contracts in the form
of pre- and post-conditions as well as object invariants. Using the Spec# com-
piler, one can statically enforce non-null types, emit run-time checks for method
contracts and invariants, and record the contracts as metadata for consumption
by downstream tools.

We believe that the logics of assertions/invariants used in DBC approaches
fall under the uniform format of our logic engines, so that an MOP environment
following our principles would naturally support monitoring DBC specifications
as a special methodological case. In addition, the MOP framework also supports
outline monitoring, which we find important in assuring software reliability (e.g.,
monitoring for and detecting and fixing deadlocks) but which is not provided by
any of the current DBC approaches that we are aware of.

1.2.4 Other Related Approaches

Program Query Language (PQL) allows programmers to express design rules that
deal with sequences of events associated with a set of related objects [89]. Both
static and dynamic tools have been implemented to find solutions to PQL queries.
The static analysis conservatively looks for potential matches for queries and is
useful to reduce the number of dynamic checks. The dynamic analyzer checks the
runtime behavior and can perform user-defined actions when matches are found.
PQL has a “hardwired” specification language based on context-free grammars

7

PhD Thesis, University of Illinois, August 2012

(CFG) and supports only inline monitoring. CFGs can potentially express more
complex languages than regular expressions, so in principle PQL can express more
complex safety policies than Tracematches. The MOP CFG plugin described in
Chapter 6 allows the MOP framework to specify most of the properties that may
be specified in PQL.

Program Trace Query Language (PTQL) [54] is a language based on SQL-
like relational queries over program traces. The current PTQL compiler, Partiqle,
instruments Java programs to execute the relational queries on the fly. PTQL events
are timestamped and the timestamps can be explicitly used in queries. PTQL
queries can be arbitrarily complex and, as shown in [54], PTQL’s runtime overhead
seems acceptable in many cases but we were unable to obtain a working package
of PTQL and compare it in our experiments with JavaMOP because of license
issues. PTQL properties are globally scoped and their running mode is inline.
PTQL provides no support for recovery, its main use being to detect errors.

1.2.5 Hardware Based Monitoring

The PSL to Verilog compiler, P2V [88], is the sole attempt to perform runtime
monitoring of formal properties in hardware, other than our BusMOP instance
(see Chapters 2 and 4), of which we are aware. P2V is similar to BusMOP in
that monitors are implemented in hardware rather than software, and that both
approaches thus have no runtime overhead on the CPU. P2V, however, is more
like the above approaches in that it is designed for monitoring actual programs
rather than peripheral devices. Also it requires a dynamically extensible soft-core
processor implemented on an FPGA, while our approach can potentially be applied
to any COTS communication architecture. Further, P2V uses hardwired logic
(PSL) while BusMOP allows different formalisms.

1.2.6 Predictive Analysis

There are several other approaches aimed at detecting potential concurrency errors
by examining particular execution traces. Some approaches attempt to verify
general purpose properties [110, 112], including temporal ones, and are inspired
from debugging distributed systems based on Lamport’s happens-before causality
[84]. Other approaches work with particular properties, such as data-races and/or
atomicity. [108] introduced the first lock-set based algorithm to detect data-races

8

PhD Thesis, University of Illinois, August 2012

dynamically, followed by many variants aiming at improving its accuracy. For
example, an ownership model was used in [124] to achieve a more precise race
detection at the object level. [97] combines lock-sets with happen-before. [52]
provides a race detector that is both efficient and precise by switching between what
they call epochs and vector clocks as necessary. However, their technique works
only for race detection, not generic properties. Numerous other race-detection
techniques have been introduced, but we feel these are only tangentially related
to this work.

Previous efforts tend to focus on either soundness or coverage: those based
on happens-before try to be sound, but have limited coverage over interleavings,
thus missing errors; lock-set based approaches have better coverage but suffer from
false alarms. Our technique aims to improve coverage without giving up soundness
or genericity of properties. The only previous system to have the same features is
jPredictor [34, 37], on which RV-Predict is based. As mentioned, jPredictor does
not work on real sized programs due to the very limited working sets it can handle,
additionally, it offers no algorithm for generic property detection.

1.2.7 Discussion

All this research and associated tools show that runtime monitoring is an increas-
ingly accepted, powerful, and beneficial approach for developing reliable software
and hardware. Here we summarize the systems discussed above, and show how
they may be classified in terms of the five orthogonal attributes of the MOP frame-
work: programming language, logic, scope, running mode, and handlers. The
programming language determines what language the programs to be monitored
must be written in. The logic specifies which formalism is used to specify the
property. The scope determines where to check the property; it can be class in-
variant, global, interface, etc. The running mode denotes where the monitoring
code runs; it can be inline (weaved into the code), online (operating at the same
time as the program), outline (receiving events from the program remotely, e.g.,
over a socket), or offline (checking logged event traces).2 The handlers specify
what actions to perform under exceptional conditions; there can be violation and
validation handlers. It is worth noting that for many logics, violation and validation
are not complementary to each other, i.e., the violation of a formula does not
always imply the validation of the negation of the formula.

2Offline implies outline, and inline implies online.

9

PhD Thesis, University of Illinois, August 2012

Approach Lan-
guage

Logic Scope Mode Handler

Hawk [41] Java Eagle global inline violation
J-Lo [23] Java ParamLTL global inline violation
Jass [18] Java assertions global inline violation
JavaMaC [81] Java PastLTL class outline violation
jContractor [77] Java contracts global inline violation
JML [85] Java contracts global inline violation
JPaX [59] Java LTL class offline violation
P2V [88] C,

C++
PSL global inline validation/

violation
PQL [89] Java PQL global inline validation
PTQL [54] Java SQL global outline validation
Spec# [13] C# contracts global inline/

offline
violation

RuleR [17] Java RuleR global inline violation
Temporal
Rover [44]

C,
C++,
Java,
Ver-
ilog,
VHDL

MiTL class inline violation

Tracematches [10] Java Reg. Exp. global inline validation

Figure 1.1: Runtime Monitoring Breakdown.

Most runtime monitoring approaches can be framed in terms of these attributes,
while in the MOP framework they may be configured. Fig. 1.1 lists the attributes for
most of the software monitoring systems discussed above. For example, JPaX can
be regarded as an approach that uses linear temporal logic (LTL) to specify class-
scoped properties, whose monitors work in offline mode and only detect violation.

This observation essentially motivates the design discipline of the MOP frame-
work and specification language, namely that one should be allowed to choose the
most appropriate logic and the most efficient monitoring algorithm for her/his own
applications: while programming languages are designed and intended to be uni-
versal, logics and specifications tend to work best when they are domain-specific.

1.2.8 Examples

We next show examples for JavaMOP and BusMOP. Because RV-Predict uses
JavaMOP for its handling of general specifications, the JavaMOP example can also
be considered as an RV-Predict example. The difference is that, for RV-Predict, the

10

PhD Thesis, University of Illinois, August 2012

full�binding connected SafeEnum(Vector v, Enumeration e) {
Vector instanceV;

Enumeration instanceE;

event createE after(Vector v) returning(Enumeration e) :

call(⇤ Vector.elements()) && target(v)

{instanceE = e; instanceV = v; }
event updateV after(Vector v) :

(call(⇤ Vector.add ⇤ (..)) || call(⇤ Vector.remove(..))) && target(v)

{instanceV = v; }
event useE after(Enumeration e) :

call(⇤ Enumeration.nextElement()) && target(e)

{instanceE = e; }
fsm :

start [

updateV �> start

createE �> enumCreated

]

enumCreated [

useE �> enumCreated

updateV �> invalidEnum

]

invalidEnum [

updateV �> invalidEnum

]

@fail {
System.out.println(“Enumeration ” + MONITOR.instanceE

+ “ created from Vector ” + MONITOR.instanceV

+ “ not used properly at ” + LOC);

}
}

Figure 1.2: A JavaMOP Specification (SAFEENUM)

11

PhD Thesis, University of Illinois, August 2012

specification will be predicted within a causal cone, rather than monitored from a
single, flat trace of a program.

Fig. 1.2 shows an example specification using JavaMOP; recall that this is the
MOP instance for Java programs (see Chapters 2 and 3). Detailed explanation of
the specification syntax can be found in Sections 2.5.1 and 2.5.2. This specification,
called SafeEnum, describes the correct behavior of using Enumerations in Java.
Essentially, this specification requires that an Enumeration created from a Vector

not be used if the Vector has been updated since the Enumeration was created. This
is important in legacy code that still uses Vectors and Enumerations because Java
does not warn of this practice, it simply allows for non-deterministic results.

The specification is composed of five parts. The first line is the header of
the specification, starting with two modifiers, full-binding and connected; the first
states that monitor instances for this property should only raise failures when every
parameter for the monitor instance has been bound (Section 3.4.1 of Chapter 3),
the second states that the objects bound to the parameters must be connected by
an event that actually occurs (Section 3.4.1). An ID for the specification is given
after modifiers and followed by parameters of the property; in this example, two
parameters are used, namely a Vector object v and an Enumeration object e.

The second part contains the declaration of two monitor variables: instanceV

and instanceE. Each monitor instance for each instantiation of the specification
parameters has distinct monitor instance variables. Thus, they can be used for
many purposes: logging, extra states for monitoring, statistics, and so on. Here,
they are used for bug reporting, to keep track of which Vector and Enumeration

cause the failure.
The third part of the specification contains event declarations. Three events

are defined: createE for the creation of an Enumeration, updateV for updates to a
Vector, and useE for uses of an Enumeration. JavaMOP borrows (and extends; see
Section 2.5.2) the syntax of AspectJ [79] for event declarations. For example, the
createE event is declared to occur “after” a function call to the elements() method
of class Vector. Note that the target clause is used to bind parameters in the event.
Each event also sets one or both of the monitor variables, which will, again, be
distinct for each binding of the parameters, using an event action (the Java code
within the curly braces).

The fourth part of the specification is a formal description of the desired
property. As discussed in Chapter 2, MOP is specification formalism independent,
and one may choose different logics to specify properties. In this example, the

12

PhD Thesis, University of Illinois, August 2012

property description begins with fsm, meaning that a finite state machine (FSM) is
used, and continues with a finite state description of the monitor. Monitors for FSM
properties are initially in the first state listed in the specification, in this case start.
The monitor stays in the start state until an Enumeration is created from a given
Vector. Once the Enumeration has been created, it is safe to use the Enumeration

until such time as the underlying Vector is modified, at which point the invalidEnum

state is entered. Using an Enumeration in the invalidEnum state will result in a
failure of the property.

The last part of the specification consists of handlers to execute in different
states of the corresponding monitor, such as pattern match or failure. In Fig. 1.2,
the handler starts with @fail, defining the action, a simple warning in this case,
to execute when the trace fails to match the pattern. The handler reports which
Vector and Enumeration are used incorrectly, and the line number where the failure
occurs (given by the MOP-reserved variable LOC). The MONITOR keyword is
resolved to the monitor object by JavaMOP. This is needed because there is no way
from the context to tell if a given variable reference refers to a variable declared
locally or a monitor instance variable.

JavaMOP specifications are compiled into AspectJ [79] aspects. Specifications
as short as the one in Fig. 1.2 compile into several hundred lines of AspectJ code.
The generated aspect can then be weaved into a program one wishes to monitor,
using any AspectJ compiler. Once weaved, simply running the program as normal
results in a monitored run of the program.

Fig. 1.3 shows an example specification using BusMOP, the MOP instance
for PCI Bus monitoring (see Chapters 2 and 4). The main use for this instance
is ensuring the proper use of peripherals connected to the PCI Bus. Improper
use of peripherals may result from bugs in drivers or from misuse of the drivers
by application programs. This specification, SafeCounterModify, states a desired
property of the PCI703A digital-to-analog and analog-to-digital converter PCI
board (ADC) [47]. The ADC has counters that are used to determine when input
data is fully converted and ready to be placed on the PCI bus. The specification in
Fig. 1.3 is concerned with the ADC’s Counter 2. It requires that any modification
to cntr cntrl2, the control register on the ADC for Counter 2, happens only while
the Counter 2 is not enabled (running). Counter 2 is enabled when the 0’th bit of
cntr cntrl2 is set to ‘1’.

As in Fig. 1.2, the first line is the header of the specification. The keyword
pci specifies that this property should generate bus listening code for the PCI bus.

13

PhD Thesis, University of Illinois, August 2012

pci SafeCounterModify{
signal cntrlCurrent : STD LOGIC VECTOR(15 downto 0) := X“0000”;

signal cntrlOld : STD LOGIC VECTOR(15 downto 0) := X“0000”;

event countDisable : memory write address = base1 + X“220”

dbyte value(0) in ‘0’
event cntrlMod : memory write address in base1 + X“220”

{cntrlOld <= cntrlCurrent; cntrlCurrent <= value(15 downto 0); }
event countEnable : memory write address = base1 + X“220”

dbyte value(0) in ‘1’
ere : ((countEnable countDisable) | cntrlMod | countDisable)⇤
@fail {
mem reg <= ‘1’;
address reg <= base1 + X“220”;

value reg(15 downto 0) <= cntrlOld;

cntrlCurrent <= cntrlOld;

enable reg <= “0011”;

}
}

Figure 1.3: A BusMOP Specification (SAFECOUNTERMODIFY)

Again an ID naming the specification is provided. This time, because BusMOP
does not have parameters, there is no parameter list.

The second part of the specification declares two signals, cntrlCurrent and
cntrlOld, much like the monitor variables of Fig. 1.2, but BusMOP has no monitor
instances, so there is only one copy of the variables. These variables are used to
store the previous value of cntr cntrl2, which is the control register for Counter 2
on the ADC board. This is necessary because PCI bus properties cannot prevent
incorrect behavior, but only detect and correct it. The stored value is used to restore
the value of the register when the pattern fails to match (see below).

The third part of the specification contains event declarations, much like those
in Fig. 1.2, but using an instrumentation language specific to PCI Bus traffic, rather
than AspectJ. Three events are defined. The keyword dbyte used in each event
tells BusMOP that the quantity will be 16 bits wide (i.e., double byte). Event
countDisable occurs when cntr cntrl2, which is address X“220” in the address space
of the ADC (base1 contains the address of the beginning of the ADC’s address
space), has its 0th bit (value(0)) set to ‘0’, which disables Counter 2. The third
event, countEnable, is analogous, but, as mentioned earlier, the bit is set to ‘1’.
The event cntrlMod occurs when cntr cntrl2 is modified. The keyword in is used
rather than = to define the address for cntrlMod. This is because when no value for
the read or write is specified, it is possible to check a whole range of addresses.

14

PhD Thesis, University of Illinois, August 2012

Note that this event overlaps with countDisable and countEnable. The order of
the events in Fig. 1.3 is significant because simultaneous events are handled by
reporting them in the declared order (see Chapter 4). Each cntrlEnable saves the
previous value of the register, so that it may be restored if the property is violated.
The special variable value refers to the value of the data on the bus. A pipeline is
kept where the previous value is stored to cntrlOld before cntrlCurrent receives the
new bus value, so that the previous value may be recovered if the pattern fails (the
event action occurs before the pattern is checked).

As in Fig. 1.2, the fourth part is a formal description of the desired property,
this time using an extended regular expression (ERE). This pattern specifies the
desired behavior where all modifications must happen after disabling the counter
(note again the order of event declarations, which ensures that the cntrlMod encoun-
tered from a countDisable is reported after the cntrlMod). The pair (countEnable

countDisable) enforces that no changes can be made to cntrl cntrl2 while Counter
2 is enabled, other than disabling it.

The last part of the specification is the handler for a pattern failure, similar to
SafeEnum. An assignment of ‘1’ to the special variable mem reg alerts the system
that a memory write is eminent. The address of the write is placed in address reg

(note that it is the control register for Counter 2). The special variable value reg

is the value to be written out by the monitor, and it is given the value of cntrlOld,
which stores the previous value of cntr cntrl2. Lastly, the enable reg is specific to
the PCI Bus interface (see Chapter 4).

BusMOP specifications are compiled into hardware description language
(HDL). As in JavaMOP, the size of the generated code is far greater than that
of the original specification. The HDL code is compiled into an FPGA bitstream
and programmed onto an FPGA that is inserted into an empty slot on the PCI bus
of the system one wishes to monitor.

The examples given in Figs. 1.2 and 1.3 may monitor completely different
properties in completely different problem domains, but they follow the same
pattern and philosophy. By a clear separation of monitor generation and monitor
integration, MOP provides fundamental and generic support for effective and
efficient application of runtime monitoring in different problem domains, and can
be understood from at least three perspectives:

1. As a discipline allowing one to improve safety, reliability and dependability
of a system by monitoring its requirements against its implementation at

15

PhD Thesis, University of Illinois, August 2012

runtime;

2. As an extension of programming languages with logics. One can add logical
statements anywhere in the program, referring to past or future states of
the program. These statements are like any other programming language
boolean expressions, so they give the user a maximum of flexibility on how
to use them: to terminate the program, guide its execution, recover from a
bad state, add new functionality, etc.;

3. As a lightweight formal method. While firmly based on logical formalisms
and mathematical techniques, MOP’s purpose is not program verification.
Instead, the idea is to avoid verifying an implementation against its specifica-
tion before operation, by not letting it go wrong at runtime.

RV-Predict demonstrates that the results of instances of MOP can be used
beyond simple monitoring purposes, by adapting the monitor output of JavaMOP
for prediction purposes.

16

PhD Thesis, University of Illinois, August 2012

Chapter 2

Design of the MOP Framework

2.1 Chapter Introduction

This chapter concerns itself with the design of the MOP framework, beginning with
an overview of the framework, followed by a brief description of the two current
instances of the framework: JavaMOP and BusMOP. Syntax for the instances is
also described. RV-Predict fits in as a client of JavaMOP, rather than as a part of
this framework, and will not be discussed until Chapter 8.1

All monitoring systems share some features, such as program instrumentation
and monitor integration, even when they aim at different domains or goals. MOP
separates monitor generation and integration and provides a generic, extensible
framework for runtime monitoring, allowing one to instantiate MOP with specific
programming languages and specification formalisms to support different domains.
In this section, we focus on the overall architecture of MOP.

2.1.1 Chapter Contributions

This chapter details the design of the Monitoring-Oriented Programming (MOP)
framework. From a theoretical standpoint, this is the only Runtime Verification
framework that is generic, not only in logical formalism, but also in terms of
platform (e.g., Java applications, PCI bus monitor, System-on-Chip design).

2.2 Architecture

Fig. 2.1 shows the architecture of MOP. There are two kinds of high level com-
ponents in MOP, namely the logic repository and language clients. The logic

1Work in this chapter is collaboration with Dongyun Jin, Dennis Griffith, Feng Chen, and
Grigore Roşu. BusMOP is collaboration with Rodolfo Pellizzoni and Marco Caccamo. The
majority of this chapter’s text is modified from [93].

17

PhD Thesis, University of Illinois, August 2012

Figure 2.1: Architecture of MOP

repository, shown in the bottom of Fig. 2.1, contains various logic plugins and
a logic plugin manager component. The logic plugin is the core component to
generate monitoring code from formulae written in a specific logic; for example,
the Linear Temporal Logic (LTL) plugin synthesizes state machines from LTL
formulae. The output of logic plugins is usually pseudo-code and not bound to any
specific programming language. This way, the essential monitoring generation can
be shared by different instances of MOP using different programming languages.
The logic plugin manager bridges the communication between the language clients
and the logic plugin. More specifically, it receives the monitor generation request
from the language client and distributes the request to an appropriate plugin. After
the plugin synthesizes the monitor for the request, the logic plugin manager collects
the result and sends it back to the language client. This way, one can easily add
new logic plugins into the repository to support new specification formalisms in
MOP without changing the language client.

18

PhD Thesis, University of Illinois, August 2012

2.3 Language Client

The language client hides the domain-independent logic repository and provides
domain specific support for the different MOP instances. Because the domain
client is the domain-specific portion of an MOP instance, we occasionally refer
to the language client by the name of the MOP instance to which it belongs.
Domain clients are responsible for all domain-specific aspects of monitoring, such
as instrumentation, parametricity, online/inline/outline, modifiers, etc. They are
usually composed of three layers: the bottom layer contains language translators
that translate the abstract output of logic plugins into concrete code in a specific
programming language; the middle layer is the specification processor, which
extracts formulae from the given property specification and then instruments the
generated monitoring code into the target program; finally, the top layer provides
usage interfaces to the user.

We next explain in some detail the Java language client for the JavaMOP
instance (which by abuse of terminology we will simply call JavaMOP). JavaMOP
generates AspectJ [79] aspects from a specification. At the bottom layer, it has
language translators for context-free grammars (CFGs), the pseudocode output
generated by the past time linear temporal logic with calls and returns plugin,
and finite state machine descriptions. All plugins not mentioned use finite state
machine descriptions as an output language. At the mid level, as mentioned, the
Java client instruments the program with the generated monitor code by creating
a stand-alone aspect that can be weaved into the program using any AspectJ
compiler, such as ajc [8]. At the top level there is a command line interface and a
web-based interface. The two current MOP instances are discussed in Section 2.5
of this chapter, and, respectively, Chapters 3 (JavaMOP) and 4 (BusMOP), and the
discussions essentially apply to the language clients associated with each instance.

2.4 Logic Plugins

Every logic plugin implements and encapsulates a monitor synthesis algorithm for
a particular specification formalism, such as the past-time linear temporal logic
(PTLTL) and the CFG plugins supported in the current MOP framework.2 The logic
plugin accepts, as input, a set of events and a formula or pattern written in the under-

2See Chapters 5, 6, and 7 for detailed descriptions of every plugin save the PTCaRet plugin,
which is not described in this thesis. Details about PTCaRet can be found in [105] and [93].

19

PhD Thesis, University of Illinois, August 2012

//Declaration of monitor state

int state = 0;

static final int transition createE[] = {2, 3, 3, 3};

static final int transition updateV[] = {0, 1, 1, 3};

static final int transition useE[] = {3, 3, 2, 3};

//Code for state update

state = transition createE[state];

state = transition updateV[state];

state = transition useE[state];

//Code for category checks

Category fail = state == 3;

Figure 2.2: Java code for the FSM in Fig. 1.2

lying formalism and outputs an abstract monitor. This abstract monitor is usually a
piece of pseudocode, which checks a trace of events against the given formula.

We next explain in some detail one particular plugin, the plugin for FSM
specifications. Fig. 2.2 shows the monitoring code generated by the MOP FSM
plugin from the FSM specification in Fig. 1.2.

FSM monitors are simple, as one might expect. Static arrays keep the next state.
There is one array for each event in the specification, as can be seen in Fig. 2.2.
When an event arrives, the proper array is queried with the current state, and the
next state is returned. After the state is updated, the category checks are preformed
to see which handlers must run. Because the specification only checked @fail, we
only have one check, which is for fail. As can be seen, fail is reached if the machine
is in state 3. This code must be combined with generic code to handle the other
properties of the specification, such as connectedness or full-binding, as well as the
indexing system used for parametric trace slicing. The FSM plugin is described
in Chapter 5.

2.5 MOP Instances

As one may expect, when putting together various languages and specification
formalisms, each with its own syntax and semantics, consistency and syntactic
separation may become a non-trivial problem. In this section we discuss the four
dimensions that need to be instantiated in order to develop a new MOP instance
(like JavaMOP or BusMOP), how they are instantiated, and where the boundary
between the various components of an instance is. Since the semantics of the
various pieces is typically implicit and not formally defined, in what follows we
place emphasis on syntax.

20

PhD Thesis, University of Illinois, August 2012

Shared syntax

hSpecificationi ::= {hInstance Modifieri} hIdi hInstance Parametersi “{”

{hInstance Declarationi}
{hEventi}
{hPropertyi

{hProperty Handleri}
}

“}”

hEventi ::= [“creation”]“event” hIdi hInstance Event Definitioni
“{” hInstance Actioni “}”

hPropertyi ::= hLogic Namei “ : ” hLogic Syntaxi
hProperty Handleri ::= “@” hLogic Statei hInstance Handleri

Instance-specific syntax

hInstance Modifieri ::= hIdi
hInstance Parametersi ::= hJavaMOP Parametersi | hBusMOP Parametersi | ...

hInstance Declarationi ::= hJavaMOP Declarationi | hBusMOP Declarationi | ...

hInstance Event Definitioni ::= hJavaMOP Event Definitioni | hBusMOP Event Definitioni | ...

hInstance Actioni ::= hJavaMOP Event Actioni | hBusMOP Event Actioni | ...

hInstance Handleri ::= hJavaMOP Event Handleri | hBusMOP Event Handleri | ...

Logic-plugin-specific syntax

hLogic Namei ::= hIdi
hLogic Syntaxi ::= hFSM Syntaxi | hERE Syntaxi | hLTL Syntaxi

| hPTLTL Syntaxi | hCFG Syntaxi
| hPTCaRet Syntaxi | hSRS Syntaxi ...

hLogic Statei ::= hFSM Statei | hERE Statei | hLTL Statei
| hPTLTL Statei | hCFG Statei
| hPTCaRet Statei | hSRS Statei ...

Figure 2.3: MOP Syntax

21

PhD Thesis, University of Illinois, August 2012

2.5.1 MOP Syntax

Every MOP instance needs to instantiate the MOP framework in four dimensions:
1) a specification language based on the problem domain, which is mainly related to
how one defines events in the domain; 2) a target language for generated monitors;
3) supported logic plugin specification formalisms; and 4) the handlers allowed in
the specification. Two MOP instances have been implemented and experimented
with at this point: JavaMOP and BusMOP. We expect to see more MOP instances
in the future because many problem domains can benefit from monitoring.

Each instance of MOP uses an instance of the generic MOP syntax. The syntax
of any instance of MOP can be generated by defining certain syntactic categories
(non-terminals) of the MOP grammar, which can be seen in Fig. 2.3. All of the
grammars used to define MOP syntax in this chapter use Extended Backus-Naur
Form (EBNF) [48]. Non-terminals in the grammars are surrounded by “h” and
“i”. Braces (“{” and “}”) enclose portions of the grammar that may appear zero
or more times. Brackets (“[” and “]”) enclose portions of the grammar that are
optional (i.e., it may or may not appear). Concrete examples of the syntax defined
below can be seen in Figs. 1.2 and 1.3.

Shared syntax

The following syntax constructs are shared by different MOP instances:

• hSpecificationi— hSpecificationi describes the generic MOP specification
syntax which can be instantiated for MOP language instances and MOP logic
plugins.

• hEventi— The hEventi declaration code allows for the definition of events,
which may then be referred to in the property (see hPropertyi below). Event
declarations can also have arbitrary code associated with them (hInstance
Actioni), which is run when the event is observed (hInstance Event Definitioni),
e.g. code to modify the program or the monitor state. For manual indication
of events that can start a trace, the keyword creation is used at the beginning
of each declaration.3

• hPropertyi— Every MOP specification may contain zero or more properties.
A hPropertyi consists of a named formalism (hLogic Namei), followed by

3The creation keyword has no effect in BusMOP specifications.

22

PhD Thesis, University of Illinois, August 2012

a colon, followed by a property specification using the named formalism
(see hLogic Syntaxi below) and usually referring to the declared events.
If the property is missing, then the MOP specification is called raw. Raw
specifications are useful when no existing logic plugin is powerful or efficient
enough to specify the desired property; in that case, one embeds the custom
monitoring code manually within the hInstance Actioni code.

• hProperty Handleri — Handlers contain arbitrary code from the instance
source language, and are invoked when a certain logic state (see hLogic Statei
below) or category is reached, e.g., match, fail, or a particular state in a finite
state machine description.

Instance-specific syntax

The following constructs are based on the particular instance of MOP used for a
particular specification. More information on the instances of MOP can be found
in the remainder of this section, and Chapters 3 (JavaMOP) and 4 (BusMOP).

• hInstance Modifieri — hInstance Modifieris are specific to each language
instance of MOP. Syntactically, they can be any valid identifier restricted by
the given language. They change the behavior of the monitoring code.

• hInstance Parametersi— allow one to define the parameters of a parametric
specification using the language corresponding to the MOP instance. Not all
MOP instances are parametric (e.g., BusMOP), however, so this non-terminal
may be empty.

• hInstance Declarationi— hInstance Declarationis are specific to each lan-
guage instance of MOP. They allow for the declaration of monitor local
variables.

• hInstance Event Definitioni — hInstance Event Definitionis are specific to
each language instance of MOP. They define the conditions under which an
event is triggered.

• hInstance Actioni — An event can have arbitrary code associated with it,
called an action. The action is run when the event is observed. An action
can modify the program or the monitor state, and the syntax of the allowed
statements are dependent upon the MOP instance in question. Typically the

23

PhD Thesis, University of Illinois, August 2012

statements used in actions have different variables and functions that may be
referred to than handlers. This is why different non-terminals are used for
actions and handlers.

• hInstance Handleri — hInstance Handleris are arbitrary code that is exe-
cuted when a property handler is triggered.

Logic-plugin-specific syntax

The following constructs are based on the logic plugin(s) used in a particular
specification. As mentioned, more information on logic plugins can be found in
Chapters 5, 6, and 7.

• hLogic Namei— An identifier to indicate in which logic a property is de-
fined.

• hLogic Syntaxi— This refers to the syntax of the actual property definition,
and is defined in the syntax section for each plugin.

• hLogic Statei— hLogic Stateis are constants defined for each plugin, stating
for which monitor states or categories (match, fail, etc.) a handler may be
written.

2.5.2 The JavaMOP Instance

JavaMOP is an MOP development tool for Java, supporting several logical for-
malisms and a general specification language using them to describe Java program
behaviors [32]. It compiles property specifications into optimized monitoring code.
The generated code uses AspectJ [79], and is currently4 program-independent. For
example, a user can write a JavaMOP specification for a library. Then, JavaMOP
generates monitoring code for this specification. This code can be applied to any
program that uses the library.

In JavaMOP, an event corresponds to a pointcut, which an AspectJ compiler
(such as ajc [8]) can use to weave monitoring code into the original program.
Pointcuts include function call, function return, function begin, function end, field
assignment, object creation, and more complex ones with pointcut operators, which

4 We intend to incorporate program static analysis, such as [24, 27], to further reduce runtime
overhead as future work.

24

PhD Thesis, University of Illinois, August 2012

hJavaMOP Modifieri ::= “full�binding” | “maximal�binding” | “any�binding”

| “connected” | “unsynchronized”

| “decentralized” | “perthread” | “su�x”

hJavaMOP Parametersi ::= “(”[{hJavaMOP Typei hIdi “, ”} hJavaMOP Typei hIdi}]“)”

hJavaMOP Declarationi ::= syntax of declarations in Java
hJavaMOP Event Definitioni ::= hAspectJ AdviceSpeci “ : ”

hAspectJ Pointcuti [“&&” hJavaMOP Pointcuti]
hJavaMOP Pointcuti ::= “thread”“(” hIdi “)”

| “condition”“(” hBooleanExpressioni “)”

| hAspectJ Pointcuti
| hJavaMOP Pointcuti “&&” hJavaMOP Pointcuti

hAspectJ Pointcuti ::= syntax of Pointcut in AspectJ
hAspectJ AdviceSpeci ::= syntax of AdviceSpec in AspectJ

hTypeListi ::= list of Exception types in Java
hBoolean Expressioni ::= hIdi | “!” hBoolean Expressioni

| hBoolean Expressioni hBoolean Operatori hBoolean Expressioni
| “(” hBoolean Expressioni “)”

hBoolean Operatori ::= “ || ” | “&&” | “ | ” | “&” | “ == ” | “! = ”

hJavaMOP TypeListi ::= “(”[{hJavaMOP Typei “, ”} hJavaMOP Typei]“)”

hJavaMOP Actioni := Java statements, which may refer to monitor local variables
hJavaMOP Handleri := Java statements with additional keywords
hJavaMOP Typei := Any valid Java type

Figure 2.4: JavaMOP Syntax

combine multiple simpler pointcuts. JavaMOP generates monitoring code for each
pointcut—corresponding to an event in a JavaMOP specification—to maintain
monitoring state, to check if the program conforms to the specification, and to
trigger a handler if appropriate.

A system behavior can be described using one of several logical formalisms
supported by JavaMOP, including all those described in Chapters 5, 6, and 7. A
specification will be interpreted by the logic repository, a generic server used by
all instances of MOP, and transformed into generic monitor code as mentioned in
Section 2.2. JavaMOP translates the monitor pseudocode to AspectJ code. Any
logic which can be translated to finite state machines (ERE, LTL, PTLTL) are
reported to JavaMOP using the MOP finite state machine plugin syntax to reduce
the number of translation algorithms necessary in JavaMOP (see Section 5.2
of Chapter 5).

A user can write a handler in Java for each monitoring state. There can be more
monitoring states than simple match and fail, depending on logical formalism. A
handler can be used for logging, recovering, blocking, or any other purpose. Since
handlers are specified as arbitrary Java code, a user has quite a bit of latitude to

25

PhD Thesis, University of Illinois, August 2012

achieve his or her purposes.

JavaMOP Syntax

The syntax of JavaMOP is discussed below, as an instance of the generic MOP
syntax defining the relevant modifiers and language-specific syntax (Java for dec-
larations and event/handler actions, enriched with AspectJ for event definitions).
The formal syntax can be seen in Fig. 2.4. Anything not explicitly described below
can be considered to be identical to the generic MOP syntax. Note that some
non-terminals such as hEventi refer to language instance specific non-terminals,
which are defined below for JavaMOP.

• hJavaMOP Modifieri— The three binding modifiers refer to the different
binding modes described in Section 3.4.1 of Chapter 3, the default is any-

binding. The modifier “unsynchronized” tells JavaMOP that the monitor
state needs not be protected against concurrent accesses; the default is
synchronized. The unsynchronized monitor is faster, but may suffer from
races on its state updates if the monitored program has multiple threads. The

“decentralized” modifier refers to decentralized monitor indexing. The default
indexing is centralized, meaning that the indexing trees needed to quickly
access and garbage-collect monitor instances are stored in a common place;
decentralized indexing means that the indexing trees are scattered all over
the code as additional fields of objects of interest. Decentralized indexing
typically yields lower runtime overhead, though it may not always work for
all settings. Indexing modes are not described in this thesis, as they are solely
the work of collaborators. Information regarding indexing can be found
in [33, 93]. The “perthread” modifier causes JavaMOP to consider events
from each thread as though from separate runs of the program, (i.e., one
parametric monitor for each thread monitors only events from its own thread).
The “suffix” modifier causes JavaMOP to consider a trace as matching if any
suffix of that trace would match.

• hJavaMOP Parametersi and hJavaMOP Declarationi— These are ordinary
Java parameters (as used in methods) and Java declarations. The former are
the parameters of the JavaMOP specification and the latter are additional
local monitor variables that one can access and modify in both event actions
and property handlers. Each parameter from hJavaMOP Parametersi should
be used in at least one event of the specification.

26

PhD Thesis, University of Illinois, August 2012

• hJavaMOP Actioni, hJavaMOP Handleri, and hJavaMOP Event Definitioni
— hJavaMOP Actioni are normal Java statements that may also refer to
monitor local variables. hJavaMOP Handleri, however, slightly extends Java
with three special variables:

– RESET — a special expression (evaluates to void) that resets the
monitor to its initial state, but does not affect any user defined varibles
of the monitor;

– LOC — a string variable that evaluates to the line number generating
the current event;

– MONITOR — a special variable that evaluates to the current monitor
object, so that one can read/write monitor variables.

Similarly, the advice used to define JavaMOP events slightly extends the
AspectJ advice syntax. The hJavaMOP Event Definitioni follows the As-
pectJ syntax except for its extension with hJavaMOP Pointcuti, which can
only be added in a top-level conjunct context. hAspectJ Pointcuti and
hAspectJ AdviceSpeci are both standard AspectJ syntax [8]. The additional
pointcuts have the following meaning:

– “thread” — The thread pointcut captures the current thread and takes
an identifier as a parameter. The identifier can be a class name or a
variable name. For the former, the type of the captured thread should
be a sub-class of the given class to trigger the event. For the latter, the
captured thread is bound to the variable. The thread pointcut allows
for the easy specification of properties which are parameterized by the
current thread of execution.

– “condition” — The condition pointcut takes a boolean expression as a
parameter. An event containing a condition pointcut is not triggered if
the boolean expression evaluates to false. This differs only from the if

pointcut in standard AspectJ in that monitor instance variables may be
used in the conditional expression.

2.5.3 The BusMOP Instance

BusMOP [100, 101] was designed to address the safety problem of third party
consumer off-the-shelf (COTS) components. The complexity of safety critical

27

PhD Thesis, University of Illinois, August 2012

hBusMOP Modifieri ::= “pci” | “soc”

hBusMOP Parametersi ::= ✏ (i.e., none)
hBusMOP Declarationi ::= syntax of declarations in VHDL

hBusMOP Event Definitioni ::= “ : ” hMemory or IOi hRead or Writei “address”
“ = ” hArithmetic Opi “value”[“(” hIndexi “)”][“not”]

“in” hRangei “{”[hBusMOP Actioni]“}”

| “ : ” hMemory or IOi hRead or Writei “address”
“in” hRangei

| “interrupt”“{”[hBusMOP Actioni]“}”

hMemory or IOi ::= “memory” | “io”

hRead or Writei ::= “read” | “write”

hRangei ::= hArithmetic Opi [“, ” hArithmetic Opi]
hArithmetic Opi ::= hNumberi | hIDi

| hArithmetic Opi “ + ” hArithmetic Opi
| hArithmetic Opi “&” hArithmetic Opi
| hArithmetic Opi “� ” hArithmetic Opi
| “(” hArithmetic Opi “)”

hNumberi ::= hVHDL number or bitstringi
hIDi ::= hVHDL identifieri

hBusMOP Actioni := Bus statements, which may refer to monitor local variables
hBusMOP Handleri := Bus statements, which may refer to monitor local variables,

with additional output variables

Figure 2.5: BusMOP Syntax

systems has grown to the point where the ability to use COTS in a safe manner is
almost mandatory. Additionally, the vast majority of OS crashes in PCs are caused
by faulty peripherals or their drivers. BusMOP answers both of these problems by
allowing the specification and monitoring of properties with respect to PCI Bus
traffic [100]. Its efficacy was further demonstrated in providing reliability in a
System on a Chip (SoC) design platform [101].

In BusMOP, the events correspond to reads and writes of specified values to
specified memory locations on a bus. PCI Bus interrupts are also allowed as events
for the PCI monitoring version. The monitors, and the logic to extract events
from bus traffic, are synthesized from hardware design language (HDL) code and
programmed onto a field programmable gate array (FPGA), which is plugged into
the PCI Bus, or they are integrated directly into the SoC.

BusMOP supports the ERE and PTLTL plugins of MOP (see Chapter 5).
PTCaRet, CFG, and SRS have the problem of unbounded logic response time,
which would cause the monitor to not meet timing constraints in some cases, and
are thus not suitable for inclusion in BusMOP. It is also not clear exactly where
the structured capabilities of PTCaRet and CFG are useful when considering flat

28

PhD Thesis, University of Illinois, August 2012

bus traffic traces. BusMOP was created before the current version of the logic
repository. In the future it will support all finite MOP logics.

Handlers in BusMOP can be specified using arbitrary VHDL code. Several
resources are provided for the user for use in handler code, such as serial output
for logging, and the actual ability to write to the PCI Bus to perform recovery. PCI
Bus recovery actions require bus arbitration to undo deleterious actions of faulty
peripherals or their drivers (the SoC platform is able to stop bad operation before it
occurs). This bus arbitration is the only possible overhead incurred by BusMOP, in
cases of heavy Bus traffic. In the majority of systems, BusMOP can be used with
no runtime overhead.

BusMOP Syntax

Below we discuss the BusMOP syntax. Anything not explicitly described below
can be considered to be identical to the generic MOP syntax. Note that some
non-terminals such as hEventi refer to language instance specific non-terminals,
which are defined below for BusMOP. The grammar for the syntax can be seen in
Fig. 2.5.

• hBusMOP Modifieri— Modifiers in BusMOP are used to distinguish the
bus architecture to be monitored. Currently, the PIC bus and an SoC platform
specific bus are supported.

• hBusMOP Parametersi and hBusMOP Declarationi — BusMOP is not
parametric because there is no clear unit of parametrization. The nonterminal
hBusMOP Declarationi refers to standard VHDL signal declarations. These
are used to define additional local monitor variables that one can access and
modify in both event actions and property handlers.

• hBusMOP Event Definitioni— BusMOP event definitions use an original
syntax to define interesting potential bus traffic. At the basic level there are
three types of events: memory, IO, and interrupt. The SoC platform only
has memory events. The last event is triggered when there is an interrupt
on the bus. The first two are further subdivided into reads and writes. The
difference between memory and IO is the address space of the read or write
in question. This is important for correctly specifying the necessary bus
enable signals in the generated code. Reads and writes can be concerned with
the read or write of a specific location with a select range of values, or a read

29

PhD Thesis, University of Illinois, August 2012

or write to a range of locations where the value is of no concern. Specifying
a range of read or write addresses is valuable for enforcing memory safety
policies (such as, if the value 0xdeadbeef is written to address 0xffff0000

then allow no writes to some buffer until 0x000000 is written to 0xffff0000).
In our SoC platform, predefined logical address names may be used in
places of numerical ranges. hArithmetic Opi allows for arithmetic operations
combining variables and literal numbers. This is useful both for specifying
monitor local variables and monitor input variables. Placing a numerical
index on the keyword “value” indicates that one bit, specified by the index,
should be checked rather than the whole value read or written. The monitor
input variables hold the values of inputs to the monitor, and are as follows
for PCI bus monitoring:

– The value register holds the value of the read or write in question.

– The address register holds the address of the read or write in question.

– The baseN registers allow a user to specify a memory value relative
to a given peripheral. Without this support monitoring would be very
difficult due to the plug-and-play PCI bus interface that assigns memory
spaces to peripherals at boot time.

For SoC monitoring, the inputs are the same except there are no baseN

registers.

• hBusMOP Actioni— Actions are arbitrary VHDL statements that may refer
to monitor local variables as well as the input variables described above in
hBusMOP Event Definitioni. As mentioned in hInstance Actioni, these state-
ments are executed when the event for which they are defined is observed.

• hBusMOP Handleri— Handlers are arbitrary VHDL statements that may
refer to monitor local variables as well as the input variables described above
in hBusMOP Event Definitioni. Additionally, there are variables the may be
set in order to perform recovery actions. They are as follows for the PCI bus:

– The io reg is used to specify a read or write to I/O space. It is asserted
as ‘1’ to select the I/O space.

– The mem reg is used to specify a read or write to memory space by
asserting it as ‘1’.

30

PhD Thesis, University of Illinois, August 2012

– The address reg is used to specify the 32 bit address of a read or write.

– The value reg is used to specify the value of a 32 bit read or write.

– The enable reg is used to specify the byte enables for a read or write
(specific to PCI, see Chapter 4).

– The serial reg allows output of an ASCII value to a serial port for
debugging.

– The stop reg register that stops the peripheral in question from reading
from or writing to the PCI bus when it is asserted as ‘1’.

The set of registers is slightly different for the SoC platform:

– The address reg is the same as above.

– The value reg is the same as above.

– The execute reg is used to start a transfer.

– The reject reg is used to reject a transfer. It is actually able to stop a
faulty action before it occurs.

– The stop reg is used to stop a process. It is similar to the stop reg

above.

– the reset reg is used to reset a process.

As mentioned in hInstance Handleri these statements are executed when a property
handler is triggered.

2.6 Chapter Conclusion

This chapter thoroughly explains the syntax and design of the Monitoring-Oriented
Programming (MOP) framework. The information in this chapter eases the under-
standing of the rest of this thesis, and shows that Runtime Verification can be made
efficient, expressive, and effective with a system that is generic both in terms of
logical formalism and supported platforms.

31

PhD Thesis, University of Illinois, August 2012

Chapter 3

JavaMOP

3.1 Chapter Introduction

Each instance of MOP has issues specific to its domain. JavaMOP must deal
with the complexities of parametric monitoring, in order to make itself useful in
highly object-oriented systems. We first provide an introduction to parametric
trace slicing (Section 3.2). We next cover improving the efficiency of parametric
monitoring3.3 Lastly, we discuss different modes of parameter binding, which
define which parameter instance monitors trigger handlers (Section 3.4.1).1

3.1.1 Chapter Contributions

This chapter introduces all of the logic independent features of the JavaMOP
instance of the MOP framework. This chapter also details the formalization of
parametric monitoring, which is both a contribution of this chapter, and a feature
necessary to understand the remainder of the chapter. Two specific optimiza-
tions for formalism-independent parametric monitoring are presented. The enable
set based optimization allows the algorithm to avoid creating monitor instances
that will never be necessary, while the coenable optimization is able to deter-
mine which monitor instances have become unnecessary through the course of
monitoring due to garbage collection, and thus mark them for removal by the
system. Both of these optimizations vastly improve the efficiency of Runtime
Verification. This chapter also showcases suffix matching and different param-
eter binding techniques, which are formalism-generic methods to improve the
expressivity of parametric monitoring.

1Work in this chapter is collaboration with Dongyun Jin, Feng Chen, Dennis Griffith, and
Grigore Roşu. It is primarily from [92] and [93], the work from the latter drawing much from [31].

32

PhD Thesis, University of Illinois, August 2012

3.2 Parametric Trace Slicing and Naive Monitoring

Parametric specifications are widely used in practice, particularly in object oriented
languages, like Java, where we need to describe properties over a group of objects.
For example, consider again the property in Fig. 1.2 from Chapter 1. Here the
events are parametrized by the Vector v and the Enumeration e. This is because
we do not want uses of an Enumeration e1 to be flagged as an error because of an
intervening modification to Vector v2, when it has Vector v1 as its underlying Vector.

When monitoring a parametric specification, the observed execution trace is
parametric, i.e., the events in the trace come with parameter information. For
example, a possible parametric trace for the specification in Fig. 1.2 is:
updateVhv 7! v1i createEhv 7! v1, e 7! e1i createEhv 7! v1, e 7! e2i createEhv 7!
v2, e 7! e3i useEhe 7! e3i useEhe 7! e1i updateVhv 7! v1i useEhe 7! e1i
useEhe 7! e2i.

Every event in this trace is associated with a concrete parameter binding, such
as hv 7! v1, e 7! e2i that indicates that the parameters v and e in Fig. 1.2 are bound
to concrete objects v1 and e2, respectively. Such a parametric trace represents a
set of non-parametric traces each of which corresponds to a particular parameter
binding. For example, the above trace contains eleven non-parametric traces for
eleven parameter bindings (one for each of five singleton objects, and one for each
element in the cross product of the singleton objects). The non-parametric trace
for four of these bindings are summarized in the table below.

Parameter binding Non-parametric trace slice

hv 7! v1i updateV updateV

hv 7! v1, e 7! e1i updateV createE useE up-

dateV useE

hv 7! v1, e 7! e2i updateV createE updateV

useE

hv 7! v2, e 7! e3i createE useE

The second and third of these fail to match the pattern in Fig. 1.2, thus two
failures are produced. It is highly non-trivial to monitor parametric specifications
efficiently since there can be a tremendous number of parameter bindings during a
single execution. For example, in a few experiments that we carried out, millions
of parameter bindings were created [33]. Most other approaches for monitoring

33

PhD Thesis, University of Illinois, August 2012

parametric specifications handle parameters in a logic-specific way [6, 23, 89],
that is, they extended the underlying specification formalisms with parameters
and devised algorithms for the extended formalism. Such a solution results in
very complicated monitor synthesis algorithms and makes it difficult to support
new problem domains. In MOP, parameters are handled in a completely logical
formalism independent manner and separated from the monitor synthesis process,
vastly simplifying the implementation of new logic plugins. Surprisingly, this
logic independent consideration of parameters turns out to be more efficient than
those closely coupled systems (see Section 3.4.2) thanks to the clean separation
of concerns. In the following sections we will explain parametric monitoring
in more detail.

3.2.1 Events, Traces, Properties, and Parameters

First, we introduce the notions of event, trace and property, first non-parametric and
then parametric. Trace slicing is then defined as a reduct operation that forgets the
events that are unrelated to the given parameter instance. Most of this discussion is
derived from [35].

Definition 1 Let E be a set of (non-parametric) events, called base events or sim-
ply events. An E-trace, or simply a (non-parametric) trace when E is understood
or not important, is any finite sequence of events in E , that is, an element in E⇤. If
event e 2 E appears in trace w 2 E⇤ then we write e 2 w.

Example. Consider again the SafeEnum policy from Fig. 1.2. E = {createE,
updateV, useE} and execution traces corresponding to this are sequences of the
form createE useE updateV createE useE, etc. For now we ignore the distinction
between “good” and “bad” execution traces. ⇤

Definition 2 An E-property P , or simply a (base or non-parametric) property,
is a function P : E⇤ ! C partitioning the set of traces into categories C. It is
common, but not enforced, that C includes “match”, “fail”, and “don’t know” (or
“?”) categories. In general, C, may be any set and is referred to as the set of verdict
categories when it eases readability.

Example. Consider again Fig. 1.2. The FSM has no match category as we did not
define it. The fail category is reached by “falling off the machine”, that is, receiving

34

PhD Thesis, University of Illinois, August 2012

an event in a state for which there is no transition. For example, the trace createE

updateV useE would result in the fail category. ⇤

We next extend the above definitions to the parametric case, i.e., traces contain-
ing events that carry concrete data instantiating abstract parameters.
Example. Event useE is parametric in the Enumeration; if e is the name of the
generic Enumeration parameter and e1 and e2 are concrete Enumerations, then
parametric useE events have the form useEhe 7! e1i, useEhe 7! e2i, etc. ⇤

In what follows, let [A!B] be the set of total functions and [A+B] be the set
of partial functions, both from A to B.

Definition 3 (Parametric events and traces). Let X be a set of parameters and
let V be a set of corresponding parameter values. If E is a set of base events
like in Def. 1, then let EhXi be the set of corresponding parametric events eh✓i,
where e is a base event in E and ✓ is a partial function in [X+V]. A parametric
trace is a trace with events in EhXi, that is, a word in EhXi⇤.

To simplify writing, we occasionally assume the parameter values set V implicit.
Example. A parametric trace for our property in Fig. 1.2 can be:

updateVhv 7! v1i createEhv 7! v1, e 7! e1i createEhv 7! v1, e 7! e2i createEhv 7!
v2, e 7! e3i useEhe 7! e3i useEhe 7! e1i updateVhv 7! v1i useEhe 7! e1i
useEhe 7! e2i.

We take the freedom to only list the parameter values when writing parameter
instances, that is, hv1i instead of hv 7! v1i. With this notation, the above trace is:

updateVhv1i createEhv1, e1i createEhv1, e2i createEhv2, e3i useEhe3i useEhe1i
updateVhv1i useEhe1i useEhe2i.

As mentioned earlier, this trace induces eleven trace slices. The slice corresponding
to hv1, e1i is

updateV createE useE updateV useE ⇤

Definition 4 Partial functions ✓ in [X+V] are called parameter instances. ✓, ✓

0 2
[A+B] are compatible if for any x 2 Dom(✓) \Dom(✓

0
), ✓(x) = ✓

0
(x). We can

combine compatible instances ✓ and ✓

0, written ✓ t ✓

0, as follows:

(✓ t ✓

0
)(x) =

8
><

>:

✓(x) when ✓(x) is defined
✓

0
(x) when ✓

0
(x) is defined

undefined otherwise

35

PhD Thesis, University of Illinois, August 2012

✓ t ✓

0 is also called the least upper bound (lub) of ✓ and ✓

0. ✓ is less informa-
tive than ✓

0, or ✓

0 is more informative than ✓, written ✓ v ✓

0, if for any x 2 X , if
✓(x) is defined then ✓

0
(x) is also defined and ✓(x) = ✓

0
(x).

Definition 5 (Trace slicing) Given parametric trace ⌧ 2 EhXi⇤ and ✓ in [X+V],
let the ✓-trace slice ⌧�

✓

2 E⇤ be the non-parametric trace defined as:

• ✏�
✓

= ✏, where ✏ is the empty trace/word, and

• (⌧ eh✓0i)�
✓

=

(
(⌧�

✓

) e when ✓

0 v ✓

⌧�
✓

when ✓

0 6v ✓

The trace slice ⌧�
✓

first filters out all the parametric events that are not relevant
for the instance ✓, i.e., which contain instances of parameters that ✓ does not care
about, and then, for the remaining events relevant to ✓, it forgets the parameters so
that the trace can be checked against base, non-parametric properties. It is crucial
to discard events for parameter instances that are not relevant to ✓ during the slicing,
including those more informative than ✓, in order to achieve a “proper” slice for ✓:
in our running example, the trace slice for hv1i should contain only updateV events
and no createE or useE events.

Definition 6 Let X be a set of parameters together with their corresponding pa-
rameter values V , like in Def. 3, and let P : E⇤ ! C be a non-parametric property
like in Def. 2. Then we define the parametric property ⇤X.P as the property
(over traces EhXi⇤ and categories [[X+V]! C])

⇤X.P : EhXi⇤ ! [[X+V]! C]

defined as (⇤X.P)(⌧)(✓) = P (⌧�
✓

) for any ⌧ 2 EhXi⇤ and any ✓ 2 [X+V]. If
X = {x1, ..., xn

} we may write ⇤x1, ..., xn

.P instead of (⇤{x1, ..., xn

}.)P . Also,
if P

'

is defined using a pattern or formula ' in some particular trace specification
formalism, we take the liberty to write ⇤X.' instead of ⇤X.P

'

.

A parametric property is therefore similar to a normal property, except that the
domain is parametric traces, and the output, rather than being one category, is a
mapping of parameter instances to categories. This allows the parametric property
to associate an output category for each parameter instance from [X+V].

36

PhD Thesis, University of Illinois, August 2012

3.2.2 Monitors and Parametric Monitors

Here we define monitors M and parametric monitors ⇤X.M . Like for parametric
properties, which are just properties over parametric traces, parametric monitors
are also just monitors, but for parametric events and with instance-indexed states
and output categories: a parametric monitor ⇤X.M is a monitor for the parametric
property ⇤X.P , with P the property monitored by M [35].

Monitors are defined as a variant of Moore machines:

Definition 7 A monitor M is a tuple (S, E , C, ı, � : S ⇥ E ! S, � : S ! C),
where S is the set of states, E is the set of input events, C is the set of output
categories, ı 2 S is the initial state, � is the transition function, and � is the
output function. The transition function is extended to handle traces of events (i.e.,
� : S ⇥ E⇤ ! S) the standard way.

The notion of a monitor above is often impractical. Actual implementations of
monitors need not generate all the state space a priori, but rather on an “as needed”
basis. Allowing monitors with infinitely many states is a necessity in our context.
Even though only a finite number of states is reached during any given (finite)
execution trace, there is, in general, no bound on how many may be reached. For
example, monitors for context-free grammars have potentially unbounded stacks
as part of their state. Also, as shown shortly, parametric monitors have domains of
functions as state spaces, which are infinite as well.

Definition 8 M = (S, E , C, ı, �, �) is a monitor for property P : E⇤ ! C if
�(�(ı, w)) = P (w) for each w 2 E⇤. Every monitor M defines the property P

M

:
E⇤ ! C with P

M

(w) = �(�(ı, w)); We write P
M

to denote the property defined
by M . Monitors M and M

0 are equivalent, written M ⌘M

0 if P
M

= P
M

0 .

We next define parametric monitors in the same style as the other parametric
entities defined in this chapter: starting with a base monitor and a set of parameters,
the corresponding parametric monitor can be thought of as a set of base monitors
running in parallel, one for each parameter instance.

Definition 9 Given parameters X with corresponding values V and monitor M =

(S, E , C, ı, � : S ⇥ E ! S, � : S ! C), the parametric monitor ⇤X.M is the
monitor ([[X+V]! S], EhXi, [[X+V]! C], �✓.ı, ⇤X.�, ⇤X.�), with ⇤X.� :

37

PhD Thesis, University of Illinois, August 2012

[[X+V]!S]⇥EhXi ! [[X+V]!S] and ⇤X.� : [[X+V]!S]! [[X+V]!
C] defined as

(⇤X.�)(�, eh✓0i)(✓) =

(
�(�(✓), e) if ✓

0 v ✓

�(✓) if ✓

0 6v ✓

(⇤X.�)(�)(✓) = �(�(✓))

for any � 2 [[X+V]!S] and any ✓, ✓

0 2 [X+V].

Therefore, a state � of parametric monitor ⇤X.M maintains a state �(✓) of M

for each parameter instance ✓, takes parametric events as input, and outputs cate-
gories indexed by parameter instances (one category of M per instance). Intuitively,
one can think of a parametric monitor as a collection of “monitor instances”. Each
monitor instance, which is indexed by a parameter instance, keeps track of the
state of one trace slice. The rule for ⇤X.� can be read as stating that when an
event with parameter instance ✓

0 is evaluated, it updates the state for all monitor
instances more informative than the instance for ✓

0, and the instance for ✓

0 itself,
leaving all other monitor instances untouched. The rule for ⇤X.� simply states
that � is applied to a state, as normal, but the state is found by looking up the state
of the monitor instance for ✓.

3.2.3 Naive Parametric Monitoring

Intuitively, the necessary steps for online monitoring of parametric properties are
as follows:

1. Begin with a monitor instance for the empty parameter instance ? initialized
to the start state of the monitor, ı.

2. As each event, eh✓i, arrives there are two possibilities:

• There is already a monitor instance for ✓, in this case the instance is
simply updated with e.

• There is not already a monitor instance for ✓, in this case an instance
is created for ✓. It is initialized to the state of the most informative
✓

0 less informative than ✓. Such a ✓’ is guaranteed to exist because
we begin with a monitor instance for ?, which is less informative
than all other possible ✓’s. We also create monitor instances for every
parameter instance that may be created by combining ✓ with previously

38

PhD Thesis, University of Illinois, August 2012

Algorithm BhXi(M = (S, E , C, ı, �, �))

Globals : mapping � : [[X+V]+S]

function main(⌧)

1 �(?) ı; ⇥ {?}
2 for all eh✓i in order in ⌧do
3

... for all ✓

0 2 {✓} t⇥ do
4

...
... �(✓

0
) �(�(max (✓

0
]⇥), e)

5

...
... �(✓

0
) �(�(✓

0
))

6

... endfor
7

... ⇥ {?, ✓} t⇥

8 endfor

Figure 3.1: Naive Monitoring Algorithm BhXi

seen parameter instances. Each of these created instances is initialized
similarly to the instance for ✓, using the most informative instance
less than itself. All created monitor instances are updated with e after
initialization.

3. e is then used to update the monitor instances for all ✓

0 that are strictly more
informative than ✓.

We next present a more concrete monitoring algorithm for parametric properties
first introduced in [35]. It is derived from the algorithm AhXi, which is omitted
here, that was also first presented in [35]. A first challenge here is how to represent
the states of the parametric monitor. We encode the functions [[X+V]+S] as
tables with entries indexed by parameter instances in [X+V] and with contents
states in S. Such tables will have finite entries since each event binds only a finite
number of parameters. Fig. 3.1 shows our monitoring algorithm for parametric
properties. Given parametric property ⇤X.P and M a monitor for P , BhXi(M)

yields a monitor that is equivalent to ⇤X.M , that is, a monitor for ⇤X.P .
BhXi first assigns ı, the initial state, to �(?) (� is a mapping from parameter

instance to monitor state). ⇥, which contains all known parameter instances is
initialized to contain {?}, as ? is always known. For each event eh✓i that arrives
during program execution (line 2), BhXi generates every compatible parameter

39

PhD Thesis, University of Illinois, August 2012

instance by combining {✓} with all the previously known parameter instances.
It then updates the state of every one of these compatible parameter instances
(✓0) on line 4 with the state, transitioned by event e, of the “monitor instance”
corresponding to the “largest” parameter instance less than or equal to ✓

0. At the
same time we also calculate the output corresponding to that monitor instance and
store it in table �. Rather than storing a whole slice as in Def. 5, the knowledge
of the slice is encoded in the state of the monitor instance for ✓

0. After the
algorithm completes � contains the category for each possible trace slice. An
actual implementation is free to report a category (e.g., match) as soon as it is
discovered. In fact, in JavaMOP, it is necessary to report a category as soon as it
occurs so that recovery actions can be performed, and also because the category of
a trace may change several times throughout its lifetime, while BhXi only gives
the final result.

3.3 Efficient Parametric Monitoring

Algorithm BhXi is correct, and easy to understand, but it is not very efficient. It
creates many more monitor instances than are actually required to correctly monitor
a given property. An algorithm designed for runtime monitoring should receive
a trace one event at a time, rather than all at once as BhXi. Next we show an
algorithm that receives a trace one event as a time. We also discuss optimizations
to the algorithm that vastly improve efficiency [31].

3.3.1 Algorithm ChXi

Fig. 3.2 shows the algorithm ChXi2 for online monitoring of parametric property
⇤X.P , given that M is a monitor for P . Note that we assume the notation of hi
for empty maps throughout the remainder. The algorithm shows which actions
to perform, e.g., creating a new monitor state and/or updating the state of related
monitors, when an event is received. Algorithm ChXi refines Algorithm BhXi
in Fig. 3.1 for efficient online monitoring. ChXi essentially expands the body of
the outer loop in BhXi (lines 3 to 7 in Fig. 3.1). The direct use of BhXi would
yield prohibitive runtime overhead when monitoring large traces, because its inner
loop requires searching for all parameter instances in ⇥ that are compatible with

2This algorithm was referred to as C+hXi in [31]. The distinctions between ChXi and C+hXi
are small, and elided for conciseness.

40

PhD Thesis, University of Illinois, August 2012

Algorithm ChXi(M = (S, E , C, ı, �, �))

Globals : mapping � : [[X+V]+S]

mapping U : [X+V]! P
f

([X+V])

Initialization : � hi, U hi
U(✓) ; for any ✓ 2 [X+V]

function main(eh✓i)
1 if �(✓) undefined then
2

... for all ✓

m

@ ✓ (in reversed topological order) do
3

...
... if �(✓

m

) defined then goto 5 endif
4

... endfor
5

... if �(✓

m

) defined then defineTo(✓, ✓

m

)

6

... elseif e is a creation event then defineNew(✓)

7

... endif
8

... for all ✓

m

@ ✓ (in reversed topological order) do
9

...
... for all ✓

comp

2 U(✓

m

) compatible with ✓ do
10

...
...

... if �(✓

comp

t ✓) undefined then
11

...
...

...
... defineTo(✓

comp

t ✓, ✓

comp

)

12

...
...

... endif
13

...
... endfor

14

... endfor
15 endif
16 for all ✓

0 2 {✓} [U(✓) do �(✓

0
) �(�(✓

0
), e) endfor

function defineNew(✓)

1 �(✓) ı

2 for all ✓

00 @ ✓ do U(✓

00
) U(✓

00
) [{✓} endfor

function defineTo(✓, ✓

0
)

1 �(✓) �(✓

0
)

2 for all ✓

00 @ ✓ do U(✓

00
) U(✓

00
) [{✓} endfor

Figure 3.2: Monitoring Algorithm ChXi.

41

PhD Thesis, University of Illinois, August 2012

⇤m, c, i . createChm, ci updateMhmi⇤createIhc, ii
useIhii⇤ updateMhmi+ useIhii

Figure 3.3: Parametric Property (UnsafeMapIterator)

✓; this search can be very expensive. ChXi introduces an auxiliary data structure
and illustrates a mechanical way to accomplish the search, which also facilitates
further optimizations.

Algorithm ChXi also extends algorithm BhXi to support creation events.
Recall from Section 2.5.1 of Chapter 2 that users may specifically choose creation
events using the keyword creation. Supporting creation events in algorithm ChXi
is justified and motivated by experience with implementing and evaluating BhXi
in [35], mainly by the following observation: one often chooses to start monitoring
at the witness of a specific set of events (versus the beginning of the program).

Two mappings are used in ChXi: � and U. � stores the monitor states for
parameter instances, and U maps a parameter instance ✓ to all the parameter
instances that have been defined and are properly more informative than ✓. In
what follows, “to create a parameter instance ✓” and “to create a monitor state for
parameter instance ✓” have the same meaning: to define �(✓).

We next use an example about the interaction between the classes Map, Col-

lection and Iterator in Java (Fig. 3.3), as this provides a better demonstration of
the power of ChXi than does the pattern in Fig. 1.2. This also provides us an
opportunity to show how parametric trace slicing is truly generic with respect to
the logical formalism by using extended regular expressions (ERE) in place of
finite state machines (FSM). Map and Collection implement data structures for
mappings and collections, respectively. Iterator is an interface used to enumerate
elements in a collection-typed object. One can also enumerate elements in a Map

object using Iterator. But, since a Map object contains key-value pairs, one needs
to first obtain a collection object that represents the contents of the map, e.g., the
set of keys or the set of values stored in the map, and then create an iterator from
the obtained collection. An intricate safety property in this usage, according to the
Java API specification, is that when the iterator is used to enumerate elements in
the map, the contents of the map should not be changed, or unexpected behaviors
may occur. The parametric LTL formula in Fig. 3.3 specifies the incorrect behavior
of the system.

In Fig. 3.3, createC is an event corresponding to creating a collection from

42

PhD Thesis, University of Illinois, August 2012

u
p
d
a
t
e
M

hm
1
i

c
r
e
a
t
e
C
hm

1
,
c

1
i

c
r
e
a
t
e
C
hm

2
,
c

2
i

c
r
e
a
t
e
I
hc

1
,
i

1
i

�
;

hm
1
,
c

1
i:

�
(
ı
,
c
r
e
a
t
e
C
)

hm
1
,
c

1
i:

�
(
ı
,
c
r
e
a
t
e
C
)

hm
2
,
c

2
i:

�
(
ı
,
c
r
e
a
t
e
C
)

hm
1
,
c

1
i:

�
(
ı
,
c
r
e
a
t
e
C
)

hm
2
,
c

2
i:

�
(
ı
,
c
r
e
a
t
e
C
)

hm
1
,
c

1
,
i

1
i:

�
(
�
(
ı
,
c
r
e
a
t
e
C
)
,
c
r
e
a
t
e
I
)

U
;

hi
:
hm

1
,
c

1
i

hm
1
i:

hm
1
,
c

1
i

hc
1
i:

hm
1
,
c

1
i

hi
:
hm

1
,
c

1
i,

hm
2
,
c

2
i

hm
1
i:

hm
1
,
c

1
i

hc
1
i:

hm
1
,
c

1
i

hm
2
i:

hm
2
,
c

2
i

hc
2
i:

hm
2
,
c

2
i

hi
:
hm

1
,
c

1
i,

hm
2
,
c

2
i,

hm
1
,
c

1
,
i

1
i

hm
1
i:

hm
1
,
c

1
i,

hm
1
,
c

1
,
i

1
i

hc
1
i:

hm
1
,
c

1
i,

hm
1
,
c

1
,
i

1
i

hm
2
i:

hm
2
,
c

2
i

hc
2
i:

hm
2
,
c

2
i

hi
1
i:

hm
1
,
c

1
,
i

1
i,

hm
2
,
c

2
,
i

1
i

hm
1
,
c

1
i:

hm
1
,
c

1
,
i

1
i

hm
1
,
i

1
i:

hm
1
,
c

1
,
i

1
i

hc
1
,
i

1
i:

hm
1
,
c

1
,
i

1
i

Fi
gu

re
3.

4:
Sa

m
pl

e
ru

n
of

C
hX

i.
Th

e
fir

st
ro

w
gi

ve
s

th
e

re
ce

iv
ed

ev
en

ts
;t

he
se

co
nd

an
d

th
e

th
ird

ro
w

s
gi

ve
th

e
co

nt
en

to
f

�
an

d
U

,r
es

pe
ct

iv
el

y,
af

te
re

ve
ry

ev
en

ti
s

pr
oc

es
se

d.
M

on
ito

rs
ta

te
s

ar
e

re
pr

es
en

te
d

sy
m

bo
lic

al
ly

in
th

e
ta

bl
e,

e.
g.

,
�
(
ı
,
c
r
e
a
t
e
C
)

re
pr

es
en

ts
th

e
st

at
e

af
te

rt
he

ev
en

tc
re

at
eC

.

to
fir

st
ob

ta
in

a
co

lle
ct

io
n

ob
je

ct
th

at
re

pr
es

en
ts

th
e

co
nt

en
ts

of
th

e
m

ap
,e

.g
.,

th
e

se
to

fk
ey

s
or

th
e

se
to

fv
al

ue
s

st
or

ed
in

th
e

m
ap

,a
nd

th
en

cr
ea

te
an

ite
ra

to
rf

ro
m

th
e

ob
ta

in
ed

co
lle

ct
io

n.
A

n
in

tri
ca

te
sa

fe
ty

pr
op

er
ty

in
th

is
us

ag
e,

ac
co

rd
in

g
to

th
e

Ja
va

A
PI

sp
ec

ifi
ca

tio
n,

is
th

at
w

he
n

th
e

ite
ra

to
ri

s
us

ed
to

en
um

er
at

e
el

em
en

ts
in

th
e

m
ap

,t
he

co
nt

en
ts

of
th

e
m

ap
sh

ou
ld

no
tb

e
ch

an
ge

d,
or

un
ex

pe
ct

ed
be

ha
vi

or
s

m
ay

oc
cu

r.
Th

e
pa

ra
m

et
ric

LT
L

fo
rm

ul
a

in
Fi

g.
3.

3
sp

ec
ifi

es
th

e
in

co
rr

ec
tb

eh
av

io
r

of
th

e
sy

st
em

.
In

Fi
g.

3.
3,

cr
ea

te
C

is
an

ev
en

tc
or

re
sp

on
di

ng
to

cr
ea

tin
g

a
co

lle
ct

io
n

fr
om

a
m

ap
,

cr
ea

te
I

co
rr

es
po

nd
s

to
cr

ea
tin

g
an

ite
ra

to
r

fr
om

a
co

lle
ct

io
n,

up
da

te
M

co
rr

es
po

nd
s

to
up

da
tin

g
th

e
m

ap
,a

nd
us

eI
co

rr
es

po
nd

s
to

us
in

g
th

e
ite

ra
to

r.
Th

e
pa

tte
rn

sa
ys

th
at

a
C

ol
le

ct
io

n
is

cr
ea

te
d

fr
om

a
M

ap
,a

n
Ite

ra
to

ri
s

cr
ea

te
d

fr
om

th
e

C
ol

le
ct

io
n,

th
e

M
ap

is
up

da
te

d
at

le
as

to
nc

e
(+

m
ea

ns
on

e
or

m
or

e
tim

es
),

an
d

th
en

th
e

Ite
ra

to
ri

s
us

ed
af

te
rt

he
up

da
te

.T
he

ex
tra

u
p
d
a
t
e
M

hm
i⇤

an
d

u
s
e
I
hc

,
i
i⇤

de
fin

e
pl

ac
es

w
he

re
th

es
e

ev
en

ts
ar

e
st

ill
va

lid
.W

he
n

an
ob

se
rv

ed
ex

ec
ut

io
n

m
at

ch
es

th
is

pa
tte

rn
,t

he
U

ns
af

eM
ap

Ite
ra

to
rp

ro
pe

rty
is

br
ok

en
.

In
Fi

g.
3.

4,
w

e
sh

ow
th

e
co

nt
en

ts
of

�
an

d
U

af
te

re
ve

ry
ev

en
t(

gi
ve

n
in

th
e

fir
st

ro
w

of
th

e
ta

bl
e)

is
pr

oc
es

se
d.

Th
e

ob
se

rv
ed

tra
ce

is
u
p
d
a
t
e
M

hm
1
ic

r
e
a
t
e
C
hm

1
,
c

1
i

c
r
e
a
t
e
C

hm
2
,
c

2
ic

r
e
a
t
e
I
hc

1
,
i

1
i.

W
e

as
su

m
e

th
at

cr
ea

te
C

is
th

e
on

ly
cr

ea
tio

n
ev

en
t.

Th
e

fir
st

ev
en

t,
u
p
d
a
t
e
M

hm
1
i,

is
no

ta
cr

ea
tio

n
ev

en
ta

nd
no

th
in

g
is

ad
de

d
to

�

an
d

U
.T

he
se

co
nd

ev
en

t,
c
r
e
a
t
e
C
hm

1
,
c

1
i,

is
a

cr
ea

tio
n

ev
en

t.
So

a
ne

w
m

on
ito

r
st

at
e

is
de

fin
ed

in
�

fo
r

hm
1
,
c

1
i,

w
hi

ch
is

al
so

ad
de

d
to

th
e

lis
ts

in
U

fo
r

?
,

hm
1
ia

nd
hc

1
i.

N
ot

e
th

at
?

is
le

ss
in

fo
rm

at
iv

e
th

an
an

y
ot

he
rp

ar
am

et
er

in
st

an
ce

s.

41

Fi
gu

re
3.

4:
Sa

m
pl

e
ru

n
of

C
hX
i.

Th
e

fir
st

ro
w

gi
ve

s
th

e
re

ce
iv

ed
ev

en
ts

;t
he

se
co

nd
an

d
th

e
th

ird
ro

w
s

gi
ve

th
e

co
nt

en
to

f
�

an
d

U
,

re
sp

ec
tiv

el
y,

af
te

re
ve

ry
ev

en
ti

s
pr

oc
es

se
d.

M
on

ito
rs

ta
te

s
ar

e
re

pr
es

en
te

d
sy

m
bo

lic
al

ly
in

th
e

ta
bl

e,
e.

g.
,�

(
ı
,
c
r
e
a
t
e
C
)

re
pr

es
en

ts
th

e
st

at
e

af
te

rt
he

ev
en

tc
re

at
eC

.

43

PhD Thesis, University of Illinois, August 2012

a map, createI corresponds to creating an iterator from a collection, updateM

corresponds to updating the map, and useI corresponds to using the iterator. The
pattern says that a Collection is created from a Map, an Iterator is created from the
Collection, the Map is updated at least once (+ means one or more times), and then
the Iterator is used after the update. The extra updateMhmi⇤ and useIhc, ii⇤ define
places where these events are still valid. When an observed execution matches this
pattern, the UnsafeMapIterator property is broken.

In Fig. 3.4, we show the contents of � and U after every event (given in the first
row of the table) is processed. The observed trace is updateMhm1i createChm1, c1i
createC hm2, c2i createIhc1, i1i. We assume that createC is the only creation event.
The first event, updateM hm1i, is not a creation event and nothing is added to �

and U. The second event, createChm1, c1i, is a creation event. So a new monitor
state is defined in � for hm1, c1i, which is also added to the lists in U for ?,
hm1i and hc1i. Note that ? is less informative than any other parameter instances.
The third event createChm2, c2i is another creation event, incompatible with the
second event. Hence, only one new monitor state is added to �. U is updated
similarly. The last event createIhc1, i1i is not a creation event. So no monitor
instance is created for hc1, i1i. It is compatible with the existing parameter instance
hm1, c1i (found from the list for hc1i in U) introduced by the second event but
not compatible with hm2, c2i due to the conflict binding on c. Therefore, a new
monitor instance is created for the combined parameter instance hm1, c1, i1i using
the state for hm1, c1i in �. U is also updated to add the new instance into lists of
parameter instances that are less informative.

3.3.2 Enable Set Optimization

While ChXi is an improvement over BhXi, it is possible to improve ChXi by
making assumptions on the given monitor M . In other words, one may monitor
properties written in any specification formalism, e.g., ERE, CFG, PTLTL etc.,
as long as one also provides a monitor generation algorithm for said formalism.
However, this generality leads to extra monitoring overhead in some cases. It
is possible to optimize monitor creation using the concept of enable sets [31].
Algorithms for computing enable sets can be found in Chapter 5 for finite logics
and in Chapter 6 for context-free grammars. Enable sets computation for string-
rewriting systems, unfortunately, is reducible to the Halting problem.

To motivate the optimization, let us continue the run in Fig. 3.4 to process one

44

PhD Thesis, University of Illinois, August 2012

useIhi1i

�

hm1, c1i : �(ı, createC)

hm2, c2i : �(ı, createC)

hm1, c1, i1i : �(�(�(ı, createC), createI), useI)

hm2, c2, i1i : �(�(ı, createC), useI)

U hi : hm1, c1i, hm2, c2i, hm2, c2, i1i, hm1, c1, i1i
hm1i : hm1, c1i, hm1, c1, i1i
hc1i : hm1, c1i, hm1, c1, i1i
hm2i : hm2, c2i, hm2, c2, i1i
hc2i : hm2, c2i, hm2, c2, i1i
hi1i : hm2, c2, i1i, hm1, c1, i1i
hm2, c2i : hm2, c2, i1i
hm2, i1i : hm2, c2, i1i
hc2, i1i : hm2, c2, i1i
hm1, c1i : hm1, c1, i1i
hm1, i1i : hm1, c1, i1i
hc1, i1i : hm1, c1, i1i

Figure 3.5: Following the run of Fig. 3.4.

more event, useIhi1i. The result is shown in Fig. 3.5. useIhi1i is not a creation
event and no monitor instance is created for hi1i. Since hi1i is compatible with
hm2, c2i, a new monitor instance is defined for hm2, c2, i1i. The monitor instance
for hm1, c1, i1i is then updated according to useI because hi1i is less informative
than hm1, c1, i1i. U is also updated to add hm2, c2, i1i to the lists for all the
parameter instances less informative than hm2, c2, i1i. New entries are added into
U during the update since some of the less informative parameter instances, e.g.,
hm2, i1i, have not been used before this event.

Creating the monitor instance for hm2, c2, i1i is needed for the correctness of
ChXi, but it can be avoided when more information about the program or the
specification is available. For example, according to the semantics of Iterator,
no event createIhc2, i1i will occur in the subsequent execution since an iterator
can be associated to only one collection. Hence, the monitor for hm2, c2, i1i will
never reach the validation state and we do not need to create it from the beginning.
However, such semantic information about the program is very difficult to infer
automatically. Below, we show a simpler yet effective solution to avoid unnecessary
monitor creations by analyzing the specification to monitor.

When monitoring a program against a specific property, usually only a certain

45

PhD Thesis, University of Illinois, August 2012

subset of property categories, (C in Def. 2), is checked. For example, in the
UnsafeMapIterator property in Fig. 3.3, the regular expression specifies a defective
interaction among related Map, Collection and Iterator objects. To find an error
in the program using monitoring is thus to detect matches of the specified pattern
during the execution. In other words, we are only interested in the validation
category of the specified pattern. Obviously, to match the pattern, for a parameter
instance of parameter set {m, c, i}, createC and createI should be observed before
useI is encountered for the first time in monitoring. Otherwise, the trace slice for
{m, c, i} will never match the pattern. Based on this information, we next show
that creating the monitor state for hm2, c2, i1i in Fig. 3.5 is not needed. When event
useIhi1i is encountered, if the monitor state for a parameter instance hm2, c2i exists
without the monitor state for hm2, c2, i1i, like in Fig. 3.5, it can be inferred that in
the trace slice for hm2, c2, i1i, only events createC and/or updateM occur before
useI because, otherwise, if createI also occurred before useI, the monitor state for
hm2, c2, i1i should have been created. Therefore, we can infer, when event useIhi1i
is observed and before the execution continues, that no match of the specified
pattern can be reached by the trace slice for hm2, c2, i1i, that is to say, the monitor
for hm2, c2, i1i will never reach the validation state.

This observation shows that the knowledge about the specified property can be
applied to avoid unnecessary creation of monitor instances. This way, the sizes of
� and U can be reduced, reducing the monitoring overhead. We next formalize
the information needed for the optimization and argue that it is not specific to the
underlying specification formalism. How this information is used is discussed in
Section 3.3.3.

Definition 10 Given w, w1, w2, w3 2 E⇤ and e, e

0 2 E , for trace w = w1 e

0
w2 e w3,

i.e., a trace w where e

0 occurs before an occurrence of e, we denote the relationship
between e and e

0 with respect to w as e

0
w

e. Let the trace enable set of e 2 E
be the function enable

w

: E ! P
f

(E), defined as: enable

w

(e) = {e

0 | e

0
w

e}.

Note that if e 62 w then enable

w

(e) = ;. The trace enable set can be used to
examine whether the execution under observation may generate a particular trace
of interest, or not: if event e is encountered during monitoring but some event
e

0 2 enable

w

(e) has not been observed, then the (incomplete) execution being
monitored will not produce the trace w when it finishes. This observation can
be extended to check, before an execution finishes, whether the execution can

46

PhD Thesis, University of Illinois, August 2012

Event enable

E
G enable

X

G

createC {;} {;}

createI
{{createC},
{createC, updateM}} {{m, c}}

useI
{{createC, createI},
{createC, createI, updateM}} {{m, c, i}}

updateM
{{createC},
{createC, createI},
{createC, createI, useI}}

{{m, c},
{m, c, i}}

Figure 3.6: Property and Parameter Enable Sets for UnsafeMapIterator.

generate a trace belonging to some designated property categories. The designated
categories are called the goal of the monitoring.

Definition 11 Given P : E⇤ ! C and a set of categories G ✓ C as the goal,
the property enable set is defined as a function enable

E
G : E ! P

f

(P
f

(E)) with
enable

E
G(e) = {enable

w

(e) | P (w) 2 G}.

Intuitively, if event e is encountered during monitoring but none of event sets
enable

E
G(e) has been completely observed, the (incomplete) execution being mon-

itored will not produce a trace w s.t. P (w) 2 G. For example, given the reg-
ular expression specifying the UnsafeMapIterator property in Fig. 3.3, where
G = {match}, the second column in Fig. 3.6 shows the property enable sets of
events in UnsafeMapIterator.

The property enable set provides a sound and fast way to decide whether an
incomplete trace slice has the possibility of reaching the desired categories by
looking at the events that have already occurred. In the above example, if a trace
slice starts with createC useI, it will never reach the match category, because
{createC} 62 enable

E
G(useI). In such case, no monitor state need be created even

when the newly observed event may lead to new parameter instances. For example,
suppose that the observed (incomplete) trace is createC useI from before. At
the second event, useI, a new parameter instance can be constructed, namely,
hm1, c1, i1i, and a monitor state s will be created for hm1, c1, i1i if algorithm ChXi
is applied. However, since the trace slice for s is createC useI, we immediately
know that s cannot reach state match. So there is no need to create and maintain s

during monitoring if match is the goal.
A direct application of the above idea to optimize ChXi requires maintaining

observed events for every created monitor and comparing event sets when a new

47

PhD Thesis, University of Illinois, August 2012

parameter instance is found, reducing the performance. Therefore, we adapt the
notion of the enable set to be based on parameter sets instead of event sets.

Definition 12 Given a property P : E⇤ ! C, a set of categories G ✓ C as the goal,
a set of parameters X and a function DE : E ! P

f

(X) mapping an event to its
parameters, the property parameter enable set of event e 2 E is defined as a
function enable

X

G : E ! P
f

(P
f

(X)) as follows: enable

X

G (e) = {[{DE(e

0
) | e

0 2
enable

w

(e)} | P (w) 2 G}.

From now on, we use “enable set” to refer to “property parameter enable set”
for simplicity. For example, given the regular pattern for the UnsafeMapIterator

property in Fig. 3.3 and G = {match}; the third column in Fig. 3.6 shows the
parameter enable sets of events in UnsafeMapIterator. Then, given again the trace
createChm1, c1i useIhi1i, no monitor state need be created at the second event for
hm1, c1, i1i since the parameter instance used to initialize the new monitor state,
namely, hm1, c1i, is not in enable

X

G (useI). In other words, one may simply compare
the parameter instance used to initialize the new parameter instance with the enable
set of the observed event to decide whether a new monitor state is needed or not.
Note that in JavaMOP, the property parameter enable sets are generated from the
property enable sets provided by the formalism plugin. This allows the plugins to
remain totally parameter agnostic.

3.3.3 Algorithm DhXi

We next integrate the concept of enable sets with algorithm ChXi, to improve
performance and memory usage [31].

Given a set of desired verdict categories G, we are guaranteed that we can
optimize the monitoring process by omitting creating monitor states for certain
parameter instances when an event is received using the enable set without missing
any trace belonging to G. However, skipping the creation of monitor states may
result in false alarms, i.e., a trace that is not in G can be reported to belong to G.
Let us consider the following example. We monitor to find matching of a regular
pattern e1e3. Relevant events and their parameters are e1(p), e2(q), e3(p, q). The
observed trace is e1hp1ie2hq1ie3hp1, q1i. Also, suppose e1 is the only creation event.
Obviously, the trace does not match the pattern. Fig. 3.7 shows the run using the
enable set optimization (i.e., not creating monitor states for parameter instances
disallowed by the enable sets). Only the content of � is given for simplicity. At

48

PhD Thesis, University of Illinois, August 2012

e1hp1i e2hq1i e3hp1, q1i

�

hp1i : �(ı, e1) hp1i : �(ı, e1) hp1i : �(ı, e1)

hp1, q1i : �(�(ı, e1), e3)

Figure 3.7: Unsound Usage of the Enable Set.

e1hp1i e2hq1i e3hp1, q1i

�

hp1i : �(ı, e1) hp1i : �(ı, e1) hp1i : �(ı, e1)

hp1, q1i : �(�(ı, e1), e3)

T hp1i : 1 hp1i : 1 hp1i : 1

disable

hp1i : 2 hp1i : 2

hq1i : 3

hp1i : 2

hq1i : 3

hp1, q1i : 4

Figure 3.8: Sound Monitoring Using Timestamps.

e1, a monitor state is created for hp1i since it is the creation event. At e2, no action
is taken since enable

X

G (e2) = ;. At e3, a monitor state will be created for hp1, q1i
using the monitor state for hp 7! p1i since enable

X

G (e3) = {{p}}. This way, e2 is
forgotten and a match of the pattern is reported incorrectly.

To avoid unsoundness, we introduce the notion of disable stamps of events.
disable : [[X+V]+integer] maps a parameter instance to an integer timestamp.
disable(✓) gives the time when the last event with ✓ was received. We maintain
timestamps for monitors using a mapping T : [[X+V]+integer]. T maps a
parameter instance for which a monitor state is defined to the time when the
original monitor state is created from a creation event. Specifically, if a monitor
state for ✓ is created using the initial state when a creation event is received (i.e.,
using the defineNew function in algorithm ChXi), T (✓) is set to the time of
creation; if a monitor state for ✓ is created from the monitor state for ✓

0, T (✓

0
) is

passed to T (✓). Fig. 3.8 shows the evolution of disable and T while processing the
trace in Fig. 3.7.

disable and T can be used together to track “skipped events”: when a monitor
state for ✓ is created using the monitor state for ✓

0, if there exists some ✓

00 @ ✓ s.t.
✓

00 6@ ✓

0 and disable(✓

00
) > T (✓

0
) then the trace slice for ✓ does not belong to the

49

PhD Thesis, University of Illinois, August 2012

Algorithm DhXi(M = (S, E , C, ı, �, �))

Input : mapping enable

X

G : [E+P
f

(P
f

(X))]

Globals : mapping � : [[X+V]+S]

mapping T : [[X+V]+integer]
mapping U : [X+V]! P

f

([X+V])

mapping disable : [[X+V]+integer]
integer mesdames

Initialization : T hi, U hi, disable hi
disable(✓) 0 for any ✓

U(✓) ; for any ✓, mesdames 0

function main(eh✓i)
1 if �(✓) undefined then
2

... createNewMonitorState(eh✓i)
3

... if �(✓) undefined and e is a creation event then
4

...
... defineNew(✓)

5

... endif
6

... disable(✓) mesdames; mesdames mesdames + 1
7 endif
8 for all ✓

0 2 {✓} [U(✓) s.t. �(✓

0
) defined do

9

... �(✓

0
) �(�(✓

0
), e)

10 endfor

function createNewMonitorStates(eh✓i)
1 for all X

e

2 enable

X

G (e) (in reversed topological order) do
2

... if Dom(✓) 6✓ X

e

then
3

...
... ✓

m

 ✓

0 s.t. ✓

0 @ ✓ and Dom(✓

0
) = Dom(✓) \X

e

4

...
... for all ✓

00 2 U(✓

m

) [{✓

m

} s.t. Dom(✓

00
) = X

e

do
5

...
...

... if �(✓

00
) defined and �(✓

00 t ✓) undefined then
6

...
...

...
... defineTo(✓

00 t ✓, ✓

00
)

7

...
...

... endif
8

...
... endfor

9

... endif
10 endfor

function defineNew(✓)

1 for all ✓

00 @ ✓ do
2

... if �(✓

00
) defined then return endif

3 endfor
4 �(✓) ı; T (✓) mesdames; mesdames mesdames + 1
5 for all ✓

00 @ ✓ do U(✓

00
) U(✓

00
) [{✓} endfor

function defineTo(✓, ✓

0
)

1 for all ✓

00 v ✓ s.t. ✓

00 6v ✓

0 do
2

... if disable(✓

00
) > T (✓

0
) or T (✓

00
) < T (✓

0
) then

3

...
... return

4

... endif
5 endfor
6 �(✓) �(✓

0
); T (✓) T (✓

0
)

7 for all ✓

00 @ ✓ do U(✓

00
) U(✓

00
) [{✓} endfor

Figure 3.9: Optimized Monitoring Algorithm DhXi.

50

PhD Thesis, University of Illinois, August 2012

desired verdict categories G. Intuitively, disable(✓

00
) > T (✓

0
) implies that an event

eh✓00i has been encountered after the monitor state for ✓

0 was created. But ✓

00 was
not taken into account (✓00 6@ ✓

0). The only possibility is that e is omitted due to
the enable set and thus the trace slice for ✓ does not belong to G according to the
definition of the enable set. Therefore, in Fig. 3.8, no monitor instance is created
for hp1, q1i at e3 because disable(hq1i) > T (hp1i).

The above discussion applies when the skipped event occurs after the initial
creation of the monitor state. The other case, i.e., an event is omitted before
the initial monitor state is created, can also be handled using timestamps. If
the skipped event is not a creation event, it does not affect the soundness of the
algorithm because of the definition of creation events. In the above example, if the
observed trace is e2hq1ie1hp1ie3hp1, q1i, we will ignore e2 and report the matching
at e3 since e1 is the only creation event. It is more sophisticated (but not much
different) when the skipped event is a creation event.

Based on the above discussion, we develop a new parametric monitoring
algorithm that optimizes algorithm ChXi using the enable set and timestamps, as
shown in Fig. 3.9. This algorithm makes use of the mappings discussed above,
namely, enable

X

G , �, U, disable, and T , and maintains an integer variable to track
the timestamp. Similar to algorithm ChXi, when event eh✓i is received, algorithm
DhXi first checks whether �(✓) is defined or not (line 1 in main). If not, monitor
states may be generated for new encountered parameter instances, which is achieved
by function createNewMonitorStates in algorithm DhXi. Unlike in algorithm
ChXi, where all the parameter instances less informative than ✓ are searched to
find all the compatible parameter instances using U, createNewMon- itorStates

enumerates parameter sets in enable

X

G (e) and looks for parameter instances whose
domains are in enable

X

G (e) and which are compatible with ✓, also using U. The
inclusion check at line 2 in createNewMonitorStates is to omit unnecessary search
since if Dom(✓) ✓ X

e

then no new parameter instance will be created from ✓.
This way, createNewMonitorStat- es creates all the parameter instances from ✓

whenever the enable set of e is satisfied using fewer lists in U.
If e is a creation event then a monitor state for ✓ is initialized (lines 3–5 in

main). Note that �(✓) can be defined in function createNewMonitorStates if �(✓

0
)

has been defined for some ✓

0 @ ✓. disable(✓) is set to the current timestamp after
all the creations and the timestamp is increased (line 6 in main). The rest of
function main in DhXi is the same as in ChXi: all the relevant monitor states are
updated according to e. Function defineNew in DhXi first searches for a defined

51

PhD Thesis, University of Illinois, August 2012

sub-instance of ✓. If such instance exists, ✓ should be defined using it; otherwise,
�(✓) is set to the initial state. Then T (✓) is set to the current timestamp, and the
timestamp is incremented. Function defineTo in DhXi checks disable and T as
discussed above to decide whether �(✓) can be defined using �(✓

0
). If �(✓) is

defined using �(✓

0
), T (✓) is set to T (✓

0
). Both functions then add ✓ to the sets in

table U for the bindings less informative than ✓, as in ChXi.

3.3.4 Coenable Set Optimization

When monitoring parametric properties, it is easy to generate a large number of
monitor instances. For example, as seen in [76], the program bloat generates 1.9
million monitor instances when monitored for the UNSAFEITER property. After
some time, some of these monitor instances may become unnecessary, e.g., because
they have no hope of reaching a verdict category in G. Here we show how a dual
method of the “enable set” optimization of the previous section can be derived
to avoid needlessly retaining monitors that will never trigger. Computing the
coenable sets is expected to be a quick static operation in practice, because they
are a function of the specification to monitor (which is expected to be small) and
not of the program (which is expected to be large). In versions of JavaMOP before
the coenable optimization, presented in this section, there was a large memory leak
when monitoring the UNSAFEITER property. This memory leak would happen
because long living Collections would cause monitor instances for dead Iterators to
be retained, as it could not remove a monitor instance unless all bound parameter
objects were collected.

Definition 13 Given w 2 E⇤ and e, e

0 2 w, we let e
w

e

0 denote that e

0 occurs
after e in w. Let coenable

w

(e) = {e

0 | e
w

e

0} be the trace coenable set of
e. Given property P : E⇤ ! C and a subset of verdict categories of interest (or
goal) G ✓ C, the property coenable set is defined as the map coenable

P,G : E !
P(P(E)) where coenable

P,G(e) = {coenable

w

(e) | w 2 E⇤ s.t. P (w) 2 G, e 2
w, coenable

w

(e) 6= ;} for each e 2 E .

Intuitively, if event e is encountered during monitoring, but none of the event sets
of coenable

P,G(e) are possible in the future, it is impossible to reach any verdict
category in G, so a monitor for P observing e will never trigger. We drop all ;s
from coenable

P,G because they can cause monitor instances to be retained that
are unnecessary. An ; in coenable

P,G(e) means that the trace suffix consisting of

52

PhD Thesis, University of Illinois, August 2012

only the event e can lead to a category in G for some trace prefix. However, our
interest is in the ability to reach G again in the future. If there is a trace suffix
that can lead to a state in G from e, then its events will be added to coenable

P,G(e).
If there is no trace suffix that can lead back to a state in G, there is no reason
to maintain the monitor instance after it has executed the proper handler due to
the occurrence of e. Coenable sets can be computed by reversing the finite state
machine or context-free grammar and using the enable set calculations presented in
Chapters 5 and 6, respectively. Coenable sets, like enables sets, are not computable
for string rewriting systems.

Definition 14 Given property P : E⇤ ! C, goal G ✓ C, set of parameters X

and event definition DE : E ! P(X) (see Definition 12), the property param-

eter coenable set is defined as the map coenable

X

P,G : E ! P(P(X)) where
coenable

X

P,G(e) = {DE(E) | E 2 coenable

P,G(e)} for each e 2 E .

The coenable

X

P,G sets tell us which parameter objects must be alive for a verdict
category in G to be reachable. For P = UNSAFEITER, G = {match}, and
X = {c, i}, the coenable

X

P,G sets are:

coenable

X

P,G(create) = {{c, i}}

coenable

X

P,G(update) = {{i}, {c, i}}

coenable

X

P,G(next) = {{c, i}}

Now with the coenable

X

P,G sets we can explicitly decide when a monitor instance
may be collected. For example, in UNSAFEITER we know that if, at any time, the
Iterator bound to i is garbage collected, then a match can never occur because
i occurs in every one of the inner sets. This makes sense because the event that
causes a match in the UNSAFEITER pattern is use of the Iterator. As mentioned,
this situation could produce a very large memory leak in previous versions of
JavaMOP where long living Collections would cause monitor instances for dead
Iterators to be retained because it could not remove a monitor instance unless all
bound parameter objects were collected. We prove this concept by showing that
certain parameters specified by coenable

X

P,G(e) for a trace wew

0 must be able to
occur in w

0 for a verdict category to be reached.

Theorem 1 Consider the same assumptions as in Definition 14, and a trace slice
wew

0 2 E⇤. If for each Y 2 coenable

X

P,G(e) there exists some y 2 Y such that
y 62 DE(w

0
) then P (wew

0
) 62 G.

53

PhD Thesis, University of Illinois, August 2012

Proof 1 Suppose, for the sake of contradiction, that P (wew

0
) 2 G and that each

Y 2 coenable

X

P,G(e) contains a y such that y 62 DE(w

0
). By Definition 13, because

P (wew

0
) 2 G there must be some E 2 coenable

P,G(e) that contains exactly those
events in w

0. Then, by Definition 14, there must be Y 2 coenable

X

P,G(e) containing
exactly the parameters in DE(w

0
). Contradiction.

Discussion The coenable

X

P,G sets are a conservative approximation of the situations
in which a monitor instance may be collected. From Definition 5 we know that
an event e where x 2 DE(e) can only occur in a trace-slice ⌧�

✓

if ✓(x) is still
alive in the system. If ✓(x) has been garbage collected, there is no way for any
e with x 2 DE(e) to occur in trace slice for ✓. This is precisely how monitoring
arrives in the situation presented in Theorem 1, where all possible suffixes w

0

of the trace slice wew

0 do not contain at least one parameter in each set of the
coenable

X

P,G(e), and it becomes impossible to reach a verdict category in G. Clearly,
if it is impossible for the ✓ trace slice to ever reach a verdict category in G, there is
no reason to keep the monitor instance for ✓.

The Tracematches system uses a more precise formulation, which is similar,
but based on the state of the monitor. Intuitively, the Tracematches garbage
collection technique can be thought of as coenables sets indexed by state rather
than events, but the formulation as presented in [10] is considerably different.
While theirs is more precise, our empirical results, presented in Section 3.4.2, show
that the coenable set technique is able to reduce memory usage in the JavaMOP
system to comparable levels with Tracematches, while the JavaMOP system has
considerably lower runtime overhead. More importantly, the Tracematches garbage
collection technique is limited to finite logics, such as the regular expressions of
Tracematches. However, our coenable approach is extensible to any underlying
monitor implementation. We have a coenables sets generation algorithm for the
context-free grammar plugin (see Chapter 6). A static state-based technique, such
as the one used by Tracematches, could not be used for context-free properties
because the state space is unbounded.

3.4 Suffix Matching

According to application requirements, one may want to check a property against
either the whole execution trace or every suffix of a trace. Total matching has
been adopted by many Runtime Verification approaches to detect pattern failures

54

PhD Thesis, University of Illinois, August 2012

of properties, e.g., JPaX [59] and JavaMaC [82]. Suffix matching has been used
mainly by monitoring approaches that aim to find pattern matches of properties,
e.g., Tracematches [10]. PQL has a skip semantics, wherein a specification is
matched against the trace, but events may be skipped. A precise explanation of
PQL’s semantics is available in [89]. In general, experience shows that suffix
matching only makes sense for pattern languages such as context-free grammars
or extended regular expressions, so we only define it for the match category of
the pattern languages. To define suffix and total matching, we first give a slightly
different definition of properties. Note that this definition is correct, because suffix
matching is only allowed for the match category of pattern languages.

Definition 15 An E-property P, or simply a property, is a pair of disjoint sets (P+,
P�) where P+ ✓ E⇤ and P� ✓ E⇤; P+ is the set of pattern matching traces and P�

is its set of pattern failing traces

For each particular pattern formalism, one needs to associate an appropriate
property to each pattern in that formalism. For example, for a CFG G, we let
P

G

= (P+, P�) be defined as expected: P+ is L(G) (the language of G, see
Section 6.2.1 of Chapter 6) and w 2 P� iff w is not the prefix of any w

0 2 L(G)

Definition 16 The total matching semantics of P is a function

JP Ktotal : E⇤ ! {match, fail, ?}

defined as follows for each w 2 E⇤:

JP Ktotal(w) =

8
><

>:

match if w 2 P+

fail if w 2 P�

? otherwise

The suffix matching semantics of P is a function

JP Ksuffix : E⇤ ! {match, ?}

55

PhD Thesis, University of Illinois, August 2012

defined as follows for each w 2 E⇤:

JP Ksuffix(w) =

8
>>>><

>>>>:

match if there are w1, w2 such that w = w1w2 and
JP Ktotal(w2) = match

? otherwise

As an example of where suffix matching is useful, consider the HASNEXT

property. This property specifies that the Java API method hasNext must be called
before every call of next for an Iterator. If we use total matching and a match
handler, we must define the pattern as (using a regular expression) “(hasNext +

(hasNext next))* next next”, to allow for all of the hasNext events, or correct uses
of next that may occur before the two temporally adjacent calls to next. If we use
suffix matching, because all suffixes of the trace are tried, the pattern “next next” is
sufficient, so long as the hasNext event is still defined.

Suffix matching is implemented as a logic-independent extension of JavaMOP.
This extension is based on the observation that, although total matching and suffix
matching have inherently different semantics, it is not difficult to support suffix
matching in a total matching setting, if one maintains a set of monitor states during
monitoring and creates a new monitor instance at each event (this amounts to
checking the property on each suffix incrementally). However, the situation be-
comes more complicated when one wants to develop a logic-independent solution,
since different logical formalisms can have different state representations. For
example, the monitor state can be an integer when the monitor is based on a state
machine or a stack such as the CFG monitor discussed in Chapter 6. Hence, our
solution is to treat every monitor as a black-box without assumptions on its internal
state. Also, instead of maintaining a set of monitor states in the monitor, we use a
wrapper monitor that keeps a set of total matching monitors as its state for suffix
matching. For simplicity, from now on, when we say “monitor” without specific
constraints, we mean the monitor generated for total matching. When an event is
received, the wrapper monitor for suffix matching operates as follows:

1. create a new monitor and add it to the “suffix matching” monitor set;

2. invoke every monitor in the monitor set to handle the received event;

3. if a monitor enters its “pattern fail” state, remove it from the monitor set;

56

PhD Thesis, University of Illinois, August 2012

4. if a monitor enters its “pattern match” state, report the pattern match.

The third step is used to keep the “suffix matching” monitor set small by removing
unnecessary monitors. Indeed, this implements suffix matching semantics because
each total monitor is monitoring a suffix of the current trace, and “pattern match”
is only reported if one of the suffixes is valid.

Using our current implementation of suffix matching in JavaMOP, one may
further improve the monitoring efficiency if the monitor provides an equals method
that compares two monitors with regard to their internal states, and a hashCode

method used to reduce the amount of calls to equals. This interface is used to
populate a Java HashSet: the combination of the definition of hashCode and
equals ensures the monitors in the HashSet are declared duplicates, and removed,
based on monitor state rather than memory location. This interface can be easily
generated by each JavaMOP logic plugin because it has full knowledge of the
monitor semantics. It is important to note that our approach does not depend on
the underlying specification formalism.

3.4.1 Binding Modes and Connectedness

There are three parameter binding modes available in JavaMOP, as well as the
concept of connectedness, which may be used in conjunction with any binding
mode. These modes and connectedness determine which monitor instances are
allowed to report verdict categories (e.g., match or fail). This allows a user to
essentially apply a filter on the number of results they want from their monitors.
For each binding mode we will consider the pattern:

⇤a, b . e1hi(e2ha, bi | e3hbi)⇤

And the following trace:

e1hi e2ha1, b1i e3hb1i

The default binding mode is the any-binding mode. In this mode any instance
monitor is allowed to report categories. When the above trace is monitored using
any-binding four matches are reported, one on each of the first two events as they
arrive and two for the last event, e3. Two matches are reported when e3 arrives
because one is reported from the monitor instance for ha1, b1i and one is reported
from the monitor instance for hb1i, and categories can be reported from any monitor

57

PhD Thesis, University of Illinois, August 2012

Instance Trace

hi e1

hb1i e1 e3

ha1, b1i e1 e2 e3

Figure 3.10: Trace Slices for Binding Mode Example Trace

instance. The trace slices for each monitor instance after all three events can be
seen in Fig. 3.10. Note that each one matches the pattern, and that the one for
ha1, b1i has two prefixes that match the pattern (e1 e2 and e1 e2 e3), resulting in
four total matches, as expected.

The other extreme, full-binding is allowing only those instance monitors that
correspond to fully instantiated parameter instances to report categories. This
is similar to the semantics of Tracematches [6, 10, 26]. Looking at our example
trace, two matches will be reported because two prefixes of the trace e1 e2 e3,
which comes from the only instance we consider (ha1, b1i), match (see Fig. 3.10).
To implement this mode, during monitor generation we count the number of
parameters in the parameter list of the monitor. Whenever we check a monitor
instance for a category we compare the number of bound parameters of the monitor
instance to the number of parameters of the specification. If the numbers of
parameters do not match, the monitor instance’s output is ignored.

In between these two extremes is maximal-binding. The “less informative or
as informative as” relation “v” in Def. 4 induces a partial order over parameter
instances. In this mode we only report verdict categories from those instances that
are currently maximal in that partial order. Considering again our example, this is
a bit more complex. When event e1 arrives, the instance hi is maximal, so a match
is reported. When e2 arrives the new maximal instance is ha1, b1i, and a match
is reported. When e3 arrives, ha1, b1i is still larger than hb1i so only the instance
ha1, b1i is allowed to report a match, thus only three matches are reported, unlike
the four from any-binding. To implement this binding mode, all monitor instances
contain flags; when defineTo in Algorithm DhXi (Fig. 3.9) defines a new monitor
from a less informative monitor the flag in the less informative monitor is set to
false. Additionally, when a new instance is created we must check if there is a
monitor instance for a more informative parameter instance already in existence,
as happens in our example, and set the flag to false if there is. Results from the
monitor instance are only reported when the flag is true.

58

PhD Thesis, University of Illinois, August 2012

Instance Trace

hv1i updateV
he1i useE
hv2i updateV
hv1, e1i updateV createE useE
hv2, e1i updateV useE

Figure 3.11: Trace Slices for Connectedness Example Trace

Connectedness, which may be used to augment any binding mode, filters out all
those monitor instances for which the parameters are not connected to each other
by some event. For example, if events e1hp1i and e2hq1i are the only events that
have been seen that are sent to the hp1, q1i instance, no categories will be reported
from that instance until some event such as e3hp1, q1i occurs. For connectedness
we will consider again the SafeEnum property of Fig. 1.2, and we will consider
the trace:

updateVhv1i createEhv1, e1i updateVhv2i useEhe1i

Nothing violating the SafeEnum condition of not using an Enumeration created
from a Vector that has been modified occurs in this pattern, however, because of
the generic parametric trace slicing algorithm, some monitor instances will be
generated that will flag failures, as can be seen in Fig. 3.11. With connectedness
the results of extraneous monitor instances such as hv2, e1i, which would signal
an undesired fail verdict, can be filtered out. Note that the instance for hv2, e1i
must be created by the generic parametric monitoring algorithm, because it has no
way to know that hv2, e1i cannot be connected at some time in the future, as it has
no semantic knowledge of the createE event. Connectedness can be added to a
specification via the connected keyword shown in Fig. 2.4, and is implemented
using a union-find data structure in which each set represents parameter objects
which have been connected by a given event. When an event arrives, all of its
associated parameter objects are unioned in the union-find data structure. When a
monitor instance attempts to report a verdict category, the union-find data structure
is queried to ensure that all parameter objects of the instance are in the same set of
the union-find.

59

PhD Thesis, University of Illinois, August 2012

3.4.2 JavaMOP Evaluation

In this section we evaluate JavaMOP with the enable (Section 3.3.2), and coenable
(Section 3.3.4) set optimizations. Additionally, several engineering improvements
such as indexing caching and different indexing techniques which can be found
in [76] and [33] were used. These are not mentioned in this thesis because they
are the sole work of collaborators. This version of JavaMOP is compared to
the previous version, which had the distributed indexing scheme, but no enable,
coenable, or index caching techniques and Tracematches, the two more performant
runtime monitoring systems prior to the work of this chapter.

3.4.3 Experimental Settings

For our experiments, we used a Pentium 4 2.66GHz / 2GB RAM / Ubuntu 9.10
machine and version 9.12 of the DaCapo (DaCapo 9.12) benchmark suite [22].
We also present results from the previous version, 2006-10 MR2, of DaCapo,
but only for the benchmarks that are not included in the new version of DaCapo:
antlr, bloat, chart, hsqldb, and jython. Among deprecated benchmarks that DaCapo
9.12 does not provide anymore, we particularly favor the bloat benchmark from
DaCapo 2006-10 because it generates large overheads when monitoring Iterator-
based properties. The bloat benchmark with the UNSAFEITER specification causes
11258% runtime overhead (i.e., 113 times slower) and uses 7.8MB of heap memory
in Tracematches, and causes 769% runtime overhead and uses 175MB in the
previous version of JavaMOP, while the original program uses only 4.9MB. Also,
although DaCapo 9.12 provides jython, Tracematches cannot instrument jython

due to an error, while all versions of JavaMOP are able to instrument it. Thus, we
present the result of jython from DaCapo 2006-10. We use the default data input for
DaCapo and the -converge option to obtain the numbers after convergence within
±3%. We also tested other benchmarks including Java Grande [115] and SPECjvm
2008 [1], and saw little to no overhead even with our Iterator-based properties, so
we omit the results. Instrumentation causes different garbage collection behavior in
the monitored program, sometimes causing the it to slightly outperform the original
program; this, as well as the fact that convergence is only within 3%, accounts for
the negative overheads seen in both runtime and memory.

All experiments were performed with Sun JVM 1.6.0. The AspectJ compiler
(ajc) version 1.6.4 was used for weaving the JavaMOP generated aspects. Another
AspectJ compiler, abc [9] 1.3.0, was used for weaving Tracematches properties

60

PhD Thesis, University of Illinois, August 2012

because Tracematches is part of abc, rather than generating stand-alone aspects
as does JavaMOP. For the previous version of JavaMOP, we used JavaMOP 2.1.2,
which can be found at [74], but with the -noopt1 option to turn off the enable
set optimization. For the new version of JavaMOP, we used the release version,
2.3.2, which can be found at the same location. For Tracematches, we used release
version 1.3.0, from [121], which is included in the abc compiler as an extension. To
discover why some examples do not terminate when using Tracematches, we also
used the abc compiler for weaving aspects generated from JavaMOP properties.
Note that JavaMOP is AspectJ compiler independent. JavaMOP shows similar
overheads and terminates on all examples when using the abc compiler for weaving
as when ajc is used. Because the overheads are similar, we do not present the
results of using abc to weave JavaMOP generated aspects in this thesis. However,
using abc to weave JavaMOP properties confirms that the high overhead and
non-termination come from Tracematches itself, not from the abc compiler.

The following properties are used in our experiments. They were borrowed
from [24, 26, 31, 92].

• HASNEXT: Do not use the next element in an Iterator without checking for
the existence of it;

• UNSAFEITER: Do not update a Collection when using the Iterator interface
to iterate its elements;

• UNSAFEMAPITER: Do not update a Map when using the Iterator interface
to iterate its values or its keys;

• UNSAFESYNCCOLL: If a Collection is synchronized, then its iterator also
should be accessed synchronously;

• UNSAFESYNCMAP: If a Collection is synchronized, then its iterators on
values and keys also should be accessed in a synchronized manner.

All of them are tested with Tracematches, and with the previous and new versions
of JavaMOP for comparison. We have tested several non-Iterator based properties:
HASHSET, SAFEENUM, SAFEFILE, and SAFEFILEWRITER [24,26,31,92]. None
of these properties produce overheads above 5% in any of the DaCapo benchmarks,
thus their results are not presented here.

61

PhD Thesis, University of Illinois, August 2012

3.4.4 Results and Discussions

Tables 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 summarize the results of the evaluation. Note
that the structure of DaCapo 9.12 allows us to instrument all of the benchmarks
plus all supplementary libraries that the benchmarks use, which was not possible
for DaCapo 2006-10. Therefore, fop and pmd show higher overheads than the
benchmarks using DaCapo 2006-10 from [31]. While other benchmarks show
overheads less than 80% in the previous version of JavaMOP, bloat, avrora, batik,
and pmd show prohibitive overhead in both runtime and memory performance.
This is because they generate many Iterators and all properties in this evaluation
are intended to monitor Iterators. For example, bloat creates 1,625,770 Collections
and 941,466 Iterators in total while 19,605 Iterators coexist at the same time at
peak, in an execution. avrora and pmd also create many Collections and Iterators.
Also, they call hasNext() 78,451,585 times, 1,158,152 times and 4,670,555 times
and next() 77,666,243 times, 352,697 times and 3,607,164 times, respectively.
Therefore, in this section, we mainly discuss those examples that have shown the
most overhead for the previous version of JavaMOP, although the new version of
JavaMOP shows improvements for other examples as well.

Tables 3.1, 3.2, 3.3 show the percent runtime overhead of Tracematches and
the previous and new versions of JavaMOP. The previous version of JavaMOP
shows, on average, 54% runtime overhead, but the optimized JavaMOP shows
only 21% runtime overhead (16% except the cases where the previous version
crashed due to running out of memory). This is less than half of the average
runtime overhead that the previous version of JavaMOP showed. Compared to
Tracematches, the optimized JavaMOP shows orders of magnitude less runtime
overhead; Tracematches shows, on average, 309% runtime overhead. Even if we
ignore the fact that Tracematches and the previous version of JavaMOP crashed
on several cases, it clearly shows the improvements in runtime overhead when our
optimization techniques are used. In the worst case benchmark program, bloat,
the optimized JavaMOP had runtime overhead below 260%, while the previous
JavaMOP showed more than 440% runtime overhead and Tracematches showed
more than 1300%. Both Tracematches and the previous version of JavaMOP
crashed when monitoring UNSAFEMAPITER. With avrora, on average, the new
version of JavaMOP shows 62% runtime overhead, while the previous version of
JavaMOP showed 140% runtime overhead and Tracematches showed 203%. Both
of them hanged when monitoring UNSAFEMAPITER. With pmd, on average, the

62

PhD Thesis, University of Illinois, August 2012

HASNEXT UNSAFEITER

ORIG (sec) TM Old New TM Old New

antlr 3.6 -1 4 -2 0 0 -2
bloat 14.4 2119 448 116 11258 769 251
chart 12.2 0 0 -2 11 5 -1

hsqldb 8.4 15 0 -3 17 -1 -3
jython 9.0 13 0 0 11 -4 1

avrora 13.9 45 48 55 637 298 118
batik 3.5 3 4 3 355 11 8

eclipse 79.5 -2 1 -1 0 2 -1
fop 2.0 200 57 48 350 23 13
h2 18.7 89 17 13 128 7 4

luindex 2.9 0 1 1 0 1 1
lusearch 25.3 -1 7 0 1 0 2

pmd 8.4 176 89 59 1423 162 123
sunflow 32.5 47 5 3 7 0 0
tomcat 14.1 8 -1 1 37 -1 1

tradebeans 45.7 0 1 1 1 0 2
tradesoap 95.0 1 0 0 2 -2 1

xalan 20.9 4 -2 2 27 2 2

Table 3.1: Average Percent Runtime Overhead for Tracematches(TM), Previ-
ous JavaMOP(Old), and optimized JavaMOP(New) against HASNEXT and UN-
SAFEITER (convergence within 3%, OOM = Out of Memory)

63

PhD Thesis, University of Illinois, August 2012

UNSAFEMAPITER UNSAFESYNCCOLL

ORIG (sec) TM Old New TM Old New

antlr 3.6 -2 5 1 -1 2 -1
bloat 14.4 OOM OOM 178 1359 735 212
chart 12.2 -1 4 -2 -2 1 -1

hsqldb 8.4 29 0 -3 9 0 -2
jython 9.0 150 11 3 11 -4 1

avrora 13.9 OOM OOM 42 75 140 80
batik 3.5 OOM 65 5 208 444 9

eclipse 79.5 5 -1 0 -4 -1 1
fop 2.0 OOM OOM 14 OOM OOM 25
h2 18.7 1350 OOM 6 868 69 4

luindex 2.9 1 0 1 1 1 1
lusearch 25.3 2 2 0 4 0 1

pmd 8.4 OOM OOM 188 1818 OOM 76
sunflow 32.5 9 6 1 13 6 5
tomcat 14.1 3 -1 1 2 -1 1

tradebeans 45.7 5 -1 -1 -1 -1 2
tradesoap 95.0 2 0 1 0 0 1

xalan 20.9 10 1 2 3 1 3

Table 3.2: Average Percent Runtime Overhead for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against UNSAFEMAPITER and
UNSAFESYNCCOLL (convergence within 3%, OOM = Out of Memory)

64

PhD Thesis, University of Illinois, August 2012

UNSAFESYNCMAP

ORIG (sec) TM Old New

antlr 3.6 0 2 0
bloat 14.4 1942 858 130
chart 12.2 -2 3 -2

hsqldb 8.4 7 -1 -3
jython 9.0 10 -4 0

avrora 13.9 54 73 16
batik 3.5 5 7 0

eclipse 79.5 OOM 2 -1
fop 2.0 OOM OOM 19
h2 18.7 83 25 5

luindex 2.9 2 2 0
lusearch 25.3 3 1 1

pmd 8.4 OOM OOM 26
sunflow 32.5 17 8 6
tomcat 14.1 2 -1 3

tradebeans 45.7 3 2 5
tradesoap 95.0 2 0 5

xalan 20.9 4 -2 3

Table 3.3: Average Percent Runtime Overhead for Tracematches(TM), Previous
JavaMOP(Old), and optimized JavaMOP(New) against UNSAFESYNCMAP (con-
vergence within 3%, OOM = Out of Memory)

65

PhD Thesis, University of Illinois, August 2012

HASNEXT UNSAFEITER

ORIG (MB) TM Old New TM Old New

antlr 4.3 4.4 4.1 3.8 4.8 4.0 4.5
bloat 4.9 40.3 19.3 13.9 7.8 175.4 79.0
chart 17.0 17.4 17.3 17.0 16.9 16.5 17.2
hsqldb 136.5 136.1 136.7 137.6 139.1 136.8 137.6
jython 4.9 5.1 4.7 4.8 5.5 5.1 5.0

avrora 4.7 4.6 12.1 9.1 4.4 114.0 15.8
batik 77.3 79.2 81.9 79.3 75.2 93.4 86.6
eclipse 101.0 100.8 104.0 97.1 98.3 100.3 110.3
fop 23.9 97.4 47.1 52.5 24.3 25.6 29.4
h2 267.1 267.8 588.8 565.2 267.2 267.5 262.4
luindex 6.8 5.6 6.7 5.6 6.3 7.4 6.8
lusearch 4.6 4.7 4.6 4.8 4.6 4.3 4.2
pmd 22.3 56.9 65.5 48.5 17.2 147.2 86.4
sunflow 4.5 4.5 4.8 4.9 4.8 4.6 4.7
tomcat 11.7 11.4 11.6 11.4 12.5 11.8 11.5
tradebeans 62.9 62.9 62.4 62.1 63.7 63.9 64.1
tradesoap 63.9 61.8 64.8 63.3 63.4 64.7 64.4
xalan 4.9 4.9 5.0 5.1 4.9 5.0 4.9

Table 3.4: Peak memory usage (in MB) for Tracematches(TM), Previous Java-
MOP(Old), and optimized JavaMOP(New) against HASNEXT and UNSAFEITER
(during 5 iterations, OOM = Out of Memory)

66

PhD Thesis, University of Illinois, August 2012

UNSAFEMAPITER UNSAFESYNCCOLL

ORIG (MB) TM Old New TM Old New

antlr 4.3 4.1 4.0 4.6 4.1 4.2 4.2
bloat 4.9 OOM OOM 56.7 6.7 100.0 48.3
chart 17.0 16.6 15.9 19.2 17.0 16.4 17.2

hsqldb 136.5 136.0 140.0 136.8 136.1 146.2 146.3
jython 4.9 6.1 20.9 5.1 5.3 4.9 5.4

avrora 4.7 OOM OOM 8.5 4.3 18.4 12.6
batik 77.3 OOM 173.8 79.6 78.2 180.7 85.1

eclipse 101.0 106.9 198.9 101.1 100.4 115.1 90.1
fop 23.9 OOM OOM 28.1 OOM OOM 24.8
h2 267.1 312.4 OOM 268.2 271.4 1456.7 265.5

luindex 6.8 7.4 6.8 6.9 7.4 7.5 7.5
lusearch 4.6 4.0 4.2 4.8 4.5 4.3 4.6

pmd 22.3 OOM OOM 93.6 20.3 OOM 84.6
sunflow 4.5 4.7 4.6 4.4 5.1 4.4 4.9
tomcat 11.7 11.9 12.0 11.0 11.3 11.9 11.3

tradebeans 62.9 63.3 62.4 62.7 63.2 62.8 62.0
tradesoap 63.9 64.1 65.4 62.0 60.7 64.1 65.9

xalan 4.9 4.9 4.9 4.9 5.0 4.7 5.0

Table 3.5: Peak memory usage (in MB) for Tracematches(TM), Previous Java-
MOP(Old), and optimized JavaMOP(New) against UNSAFEMAPITER and UN-
SAFESYNCCOLL (during 5 iterations, OOM = Out of Memory)

67

PhD Thesis, University of Illinois, August 2012

UNSAFESYNCMAP

ORIG (MB) TM Old New

antlr 4.3 4.6 4.4 4.9
bloat 4.9 6.9 25.8 12.3
chart 17.0 17.4 16.4 17.1

hsqldb 136.5 142.1 136.4 137.0
jython 4.9 5.8 5.0 5.1

avrora 4.7 4.4 12.4 4.9
batik 77.3 79.9 84.8 76.7

eclipse 101.0 OOM 102.3 98.7
fop 23.9 OOM OOM 25.2
h2 267.1 271.0 688.2 270.0

luindex 6.8 7.1 7.3 11.0
lusearch 4.6 4.6 4.8 4.7

pmd 22.3 OOM OOM 32.9
sunflow 4.5 4.5 4.8 4.5
tomcat 11.7 11.4 11.3 11.8

tradebeans 62.9 64.0 62.7 64.0
tradesoap 63.9 65.5 65.1 65.6

xalan 4.9 5.1 5.1 4.9

Table 3.6: Peak memory usage (in MB) for Tracematches(TM), Previous Java-
MOP(Old), and optimized JavaMOP(New) against UNSAFESYNCMAP (during 5
iterations, OOM = Out of Memory)

68

PhD Thesis, University of Illinois, August 2012

new version of JavaMOP shows 94% runtime overhead, while the previous version
of JavaMOP shows 125% runtime overhead and hangs for three specifications, and
Tracematches shows 1139% and hangs for two specifications.

Tables 3.4, 3.5, and 3.6 show the peak memory usage of the three systems. the
new version of JavaMOP has lower peak memory usage than the previous version
of JavaMOP in most cases. The cases where the new version of JavaMOP does not
show lower peak memory usage are within the limits of expected memory jitter.
However, memory usage of the new version of JavaMOP is still higher than the
memory usage of Tracematches in some cases. Tracematches has several finite
automata specific memory optimizations [10], which cannot be implemented in
a formalism-independent system like JavaMOP. Although Tracematches is some-
times more memory efficient, it shows prohibitive runtime overhead monitoring
bloat and pmd. There is a trade-off between memory usage and runtime overhead.
The new version of JavaMOP uses a lazy garbage collection scheme [76] that
does not immediately remove terminated monitor instances. If the new version
of JavaMOP actively removed terminated monitors, memory usage will be lower,
but at the cost of runtime performance. Overall, our monitor termination optimiza-
tion achieves the most efficient—with respect to runtime overhead— parametric
monitoring system with reasonable memory performance.

From these results, especially considering the fact that these cases are the worst
combinations of benchmark programs and properties, we can conclude that our
research on efficiency of runtime monitoring has been successful.

3.5 Chapter Related Work

Many approaches have been proposed to monitor program execution against for-
mally specified properties (see the summary of related work in the Introduction
to this thesis). Briefly, all runtime monitoring approaches except MOP have their
specification formalisms hardwired, and few of them share the same logic.

There are four orthogonal attributes of a runtime monitoring system: logic,
scope, running mode, and handlers. The logic specifies which formalism is used
to specify the property. The scope determines where to check the property; it can
be class invariant, global, interface, etc. The running mode denotes where the
monitoring code runs; it can be inline (weaved into the code), online (operating at
the same time as the program), outline (receiving events from the program remotely,

69

PhD Thesis, University of Illinois, August 2012

Approach Logic Scope Mode Handler

JPaX [59] LTL class offline violation
TemporalRover [44] MiTL class inline violation

JavaMaC [82] PastLTL class outline violation
Hawk [41] Eagle global inline violation
RuleR [17] RuleR global inline violation

Tracematches [10] Reg. Exp. global inline validation
J-Lo [23] LTL global inline violation
Pal [29] modified Blast global inline validation

PQL [89] PQL global inline validation
PTQL [54] SQL global outline validation

Figure 3.12: A Selection of Monitoring Systems

e.g., over a socket), or offline (checking logged event traces). The handlers specify
what actions to perform under exceptional conditions; such conditions include
violation and/or validation of the property. It is worth noting that for some logics,
violation and validation are not complementary to each other, i.e., the violation
of a formula does not always imply the validation of the negation of the formula.
The Monitoring-Oriented Programming (MOP) framework allows for handlers
for any number of user defined exceptional situations (called handler categories).
Fig. 3.12 provides a brief breakdown of these systems. MOP, and, in particular, the
JavaMOP instance of it presented in this chapter strives to be generic with respect
to all of these attributes.

With respect to the coenable set based garbage collection scheme presented
in this chapter, only the Tracematches system has studied the impact of garbage
collection on parametric monitoring in any depth. As mentioned earlier, it uses a
more precise formulation, which is similar, but based on the state of the monitor.
Intuitively, the Tracematches garbage collection technique can be thought of as
coenables sets indexed by state rather than events, but the formulation as presented
in [10] is considerably different. While theirs is more precise, our empirical results,
presented in Section 3.4.2, show that the coenable set technique is able to reduce
memory usage in the JavaMOP system to comparable levels with Tracematches,
while the JavaMOP system has considerably lower runtime overhead. More im-
portantly, the Tracematches garbage collection technique is limited to finite logics,
such as the regular expressions of Tracematches. However, our coenable approach
is extensible to any underlying monitor implementation. We have a coenables sets
generation algorithm for the context-free grammar plugin (see Chapter 6). A static
state-based technique, such as the one used by Tracematches, could not be used for

70

PhD Thesis, University of Illinois, August 2012

context-free properties because the state space is unbounded.
Likewise, our suffix matching algorithm was inspired by the matching mode

used in Tracematches, however, JavaMOP is able to select between total matching
and suffix matching, and our algorithm is completely logical-formalism independent.

3.6 Chapter Conclusion

Efficient monitoring of parametric properties is a very challenging problem, due to
the potentially huge number of parameter instances. Until now, solutions to this
problem have either used a hardwired logical formalism, or limited their handling
of parameters. Our approach, based on a general semantics of parametric traces
with a property-based optimization, called enable sets, overcomes these limitations.

Additionally, We presented an effective novel garbage collection technique
for monitoring parametric properties. Previous techniques were either completely
agnostic to the property to monitor, thus incurring prohibitive runtime overheads
due to memory leaks, or were intrinsically dependent on particular specification
formalisms, thus being hard or impossible to use in other contexts. Our technique
is the first which is both formalism-generic and efficient. As extensive evalua-
tion shows, it is in fact significantly more efficient than the existing techniques,
both formalism-generic and formalism-specific. Our results have at least two
implications. On the one hand, they show that runtime monitoring of complex
specifications can be used not only for testing, but also as an integral part of the
deployed system. Indeed, in most practical cases the runtime overhead is negligible,
so a well-designed recovery schema implemented by means of specification han-
dlers can ensure highly dependable systems by simply not letting them go wrong
at runtime. Note that the combinations program/property selected for evaluation in
this paper were specifically chosen to be bad.

Our evaluation in this chapter shows that both of these optimization techniques
are very important for improving the efficiency of Runtime Verification.

Two different techniques were demonstrated for improving the expressivity
of formalism-independent parametric monitoring. Suffix matching allows for a
method of pattern matching that is equivalent to that allowed by Tracematches,
while the different parameter binding modes are completely unique to the represen-
tation used by JavaMOP, and allow for filtering undesirable results from monitors,
such a property violations from monitor instances that bind unrelated variables.

71

PhD Thesis, University of Illinois, August 2012

Chapter 4

BusMOP

4.1 Chapter Introduction

This chapter presents all the research pertaining to BusMOP, which provides
hardware implemented monitors for the purposes of monitoring bus traffic. It is
implemented in two discrete instances: one for the PCI Bus in a typical computer,
and an implementation that is used to enforce properties in a system on a chip
(SoC) setting, presented as two separate case studies in this chapter.1

4.1.1 Chapter Contributions

This Chapter presents the first system to provide Runtime Verification capabili-
ties for hardware and hardware/software co-designed platforms. By demonstrat-
ing its usefulness in both monitoring PCI bus traffic to determine misbehaving
Commercial-Off-The-Shelf (COTS) components and its ability to make guarantees
in a System-on-Chip (SoC) design platform, we show that Runtime Verification can
be effective outside of the software application domain for which it was initially
envisioned. Runtime Verification is particularly efficient in this domain, generally
producing 0% overhead.

4.2 PCI Bus Monitoring

The real-time embedded system industry is progressively moving towards the use
of Commercial-Off-The-Shelf (COTS) components in an attempt to reduce costs
and time-to-market, even for highly critical systems like those deployed by the

1Work on BusMOP for the PCI bus is work with Rodolfo Pellizzoni, Marco Caccamo, and
Grigore Roşu. It was originally presented in [100]. Work on BusMOP within a SoC context was
performed with Rodolfo Pellizzoni, Min-Young Nam, Mu Sun, Marco Caccamo, and Lui Sha. It
was originally presented in [101]. Note that syntax has changed since those papers in order to be
more consistent with JavaMOP.

72

PhD Thesis, University of Illinois, August 2012

avionic industry. While specialized hardware and software solutions are sometimes
available for such markets, their average performance and ease of integration is
lagging behind the development of COTS components. For example, a commercial
plane like the Boeing 777 uses the SAFEbus backplane [69], which, while specially
designed to meet the hard real-time constraints of an avionic system, is only capable
of transferring data up to 60 Mbps. On the other side, a modern COTS peripheral
bus such as PCI Express 2.0 [98] can reach transfer speeds of 16 Gbyte/s, over
three orders of magnitude greater than SAFEbus.

Unfortunately, when trying to use COTS for building high-integrity, real-time
embedded systems, current engineering practices face significant challenges. While
one can capture relevant assumptions about COTS as formal specifications, they
are hard or impossible to formally verify: this is both because manufacturers are
unwilling to disclose details of their implementation, for fear of losing competitive
edge, and because the increase in performance is often matched by a similar
increase in design complexity (out-of-order execution and branch prediction are
examples of this trend in CPU design). Modern COTS peripherals running in master
mode are particularly challenging. A master peripheral can directly communicate
with all other elements in the system, including main memory and other peripherals,
thus reducing the load on the CPU. On the other side, providing fault-containment
becomes extremely hard: a misbehaving, low-criticality master peripheral could
very well disrupt the entire system.

Based on the above discussion, our proposal for the safe integration of COTS
peripherals in critical embedded systems is to use runtime monitoring: the periph-
eral requirement specifications are checked at runtime against its current observable
behavior. If any violation is detected, then a suitable recovery action can be taken
to restore the system to a safe state. The validity of the runtime monitoring ap-
proach has been proved in the field of software engineering by a large number
of developed tools and techniques (see Section 4.5). However, applying runtime
monitoring to our scenario poses some new challenges. First of all, the behavior
of a COTS peripheral is controlled both by the hardware of the peripheral itself
and by its software driver, hence we must check the correctness of their interac-
tions. Second, master peripherals can directly interact with the rest of the system
without requiring any action by the CPU. Based on these two considerations, our
monitoring solution must be able to detect and check all communication between
the peripheral and the rest of the system. Finally, runtime monitoring typically
comes with an unforgivable price: runtime overhead. We can split such overhead

73

PhD Thesis, University of Illinois, August 2012

in two components: 1) overhead due to the observation and generation of relevant
events 2) overhead due to running a monitor at each event to check if any property
of the specification is violated. Both types of overhead tend to be unpredictable
and thus unsuitable for real-time computation.

To combat these problems, we propose a distributed monitoring technique based
on the development of a monitoring device. The idea is to introduce an additional
hardware component into the system that can check all peripheral communication
and perform recovery actions, when necessary. Assuming “sniffing” data transfers
does not add delay to the system, our solution prevents the first type of overhead.
The second type of overhead is removed by running all monitors directly on the
device, adding no runtime overhead to the CPU. Additionally, the system can run
completely undisturbed as long as no recovery action is needed.

The speed of modern COTS communication architectures rules out the possibil-
ity of a software implementation for the device; instead, all logic is implemented
on a reconfigurable FPGA. Finally, to show that a monitored system is safe, we
need to prove that the monitoring logic monitors, indeed, the right properties. In
our system, this is ensured by automatically synthesizing the monitoring logic
from formal requirements specification, so that it is “correct by construction”. In
particular, we leverage the Monitor Oriented Programming (MOP) framework (see
Chapter 2), which is highly extensible and supports multiple formalisms, creating
a new MOP instance: BusMOP.

Illustrative Example. An example of BusMOP can be seen in Fig. 4.1.
This example is a property used in the case study of Section 4.2.4 and related
to the behavior of Counter 2, a counter on the PCI703A board we used in our
experiments. A complete formal description of the syntax used by BusMOP can be
found in Chapter 2. This property, called SAFECOUNTERMODIFY, requires that
any modification to cntr cntrl2, the control register for Counter 2, happens only
while the counter is not in use. This modification is captured by the cntrlMod event,
because cntr cntrl2 is at address X”220”. The counter can be enabled/disabled by
modifying bit 0 of cntr cntrl2 (captured by the countEnable/countDisable events;
“-” is the VHDL ‘don’t care”).

Two monitor-local registers, cntrlCurrent and cntrlOld, are created and initial-
ized to 0. These registers will hold the current and previous values of the cntr cntrl2

register. This allows us to repair the register when/if the property is violated by
writing the old value to the register on the peripheral itself (the value reg assign-
ment), and forcing the current value the monitor stores to be the previous value, as

74

PhD Thesis, University of Illinois, August 2012

pci SafeCounterModify{
signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event countDisable : memory write address = base1 + X"220"
dbyte value(0) in ’0’

event cntrlMod : memory write address in base1 + X"220"
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event countEnable : memory write address = base1 + X"220"

dbyte value(0) in ’1’

ere: ((countEnable countDisable) + cntrlMod + countDisable)*

@validation {
mem_reg <= ’1’;
address_reg <= base1 + X"220";
-- roll back to the previous cntr_cntrl2 value
value_reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable_reg <= "0011";

}
}

1

Figure 4.1: Example Property: SAFECOUNTERMODIFY

can be seen in the violation handler section of the specification.
ere: before the property specification tells BusMOP that the property will be

expressed using an extended regular expression pattern. The pattern itself matches
any trace that consists of a cntr cntrl2 modification, a disable of the counter, or an
enable followed by a disable. The pattern is followed by *, allowing it to match
repeatedly. The only way to violate this pattern, then, is to see a modification after
an enable that is not followed by a disable first.

The implementation of the events, declarations, and the actions available to
handlers is explained in Section 4.2.3. The formula/pattern implementation, and
the use of handlers is explained in Section 4.2.3.

Key contributions. We provide three main contributions. First, in Section
4.2.2 we describe the design of a monitoring device for the PCI/PCI-X bus (a
brief overview of PCI is presented in Section 4.2.1). The monitoring device can
be plugged in on a PCI bus segment, and monitor all peripherals attached to the
segment. Whenever peripheral activity fails to conform to the specification, the
device can perform a corrective action: either bring the peripheral back to a safe
state if the error is recoverable, or otherwise disconnect it from the system. While
certain implementation decisions are necessarily specific to our choice of PCI, we
believe that the general design principles and lessons learned can be applied to

75

PhD Thesis, University of Illinois, August 2012

most other communication architectures, as is illustrated in Section 4.3. Second,
in Section 4.2.3 we provide a new instantiation of the MOP framework, called
BusMOP, that is able to generate hardware modules; the generated monitoring logic
is then integrated with the rest of the monitoring device design and synthesized on
the FPGA. Third, in Section 4.2.4 we show the feasibility of the overall approach
by applying our technique together with the developed monitoring device to check
a COTS data acquisition board. Our experimental results reveal that the monitoring
device is able to detect, and recover from, errors caused by faults in the driver that
we discovered after manually inspecting it. We conclude by discussing related
work in Section 4.5, and providing final remarks and future work in Section 4.6.

4.2.1 PCI Bus Overview

The Peripheral Component Interconnect (PCI) is the current standard family of
communication architectures for motherboard/peripheral interconnection in the
personal computer market; it is also widely popular in the embedded domain [98].
The standard can be divided in two parts: a logical specification, which details
how the CPU configures and accesses peripherals through the system controller,
and a physical specification, which details how peripherals are connected to and
communicate with the motherboard. While the logical specification has remained
largely unaltered since the introduction of the original PCI 1.0 standard in 1992,
several different physical specifications have emerged since then.

One of the main features of the logical layer is plug-and-play (automatic
configuration) functionality. On start-up, the OS executes a PCI base driver which
reads information from special configuration registers implemented by each PCI-
compliant peripheral and uses them to configure the system. Of peculiar importance
is a set of up to 6 Base Access Registers (BARs). Each BAR represents a request by
the peripheral for a block of addresses in either the I/O or memory space; the PCI
base driver is responsible for accepting such requests, allocating address blocks
and communicating back the chosen addresses to the peripheral, by writing in
the BARs. To communicate with the peripheral, the CPU can, then, issue write
and read commands, called transactions, to either I/O or memory space; each
peripheral is required to implement bus slave logic, which decodes and responds
to transactions targeting all address spaces allocated to the peripheral. Typically,
address spaces are used to implement either registers, which control and determine
the logical status of the peripheral, or data buffers. Peripherals can also implement

76

PhD Thesis, University of Illinois, August 2012

bus master logic: they can autonomously initiate read and write transactions to
either main memory or the address space of another peripheral. Master mode is
typically used by high-performance peripherals to perform a DMA transfer, i.e.,
transfer data from the peripheral to a buffer in main memory. The peripheral’s
driver can then read the data directly from memory, which is much faster than
issuing a read transaction on the bus. Finally, each peripheral is provided with an
interrupt line that can be used to send interrupts to the CPU.

There are two main flavors of physical architecture: PCI/PCI-X is parallel,
while PCI-E is serial but runs at much higher frequency (2.5Ghz against up to
133Mhz for PCI-X). We have focused on PCI/PCI-X,2 which implements a shared
bus architecture. The logical PCI tree is physically divided into bus segments, and
most bus wires are shared among all peripherals connected to a single segment.
We refer to [98] for detailed bus specifications. Each transaction seen on the bus
consists of an address phase, which provides the initial address in either memory
or I/O space, followed by one or multiples data phases, each of which carries
up to 32 or 64 bits of data for PCI/PCI-X, respectively (individual bytes can be
masked using byte enables). Since each bus segment is shared, arbitration is
required to determine which master peripheral is allowed to transmit at any one
time. Arbitration uses two active-low, point-to-point wires between the peripheral
and the bus segment arbiter, REQ# and GNT#. A standard request-grant handshake
is used, where the peripheral first lowers REQ# to request access to the bus, and
the arbiter grants permission to start a new transaction by lowering GNT#.

The entity that starts a transaction, either the CPU or a master peripheral, is
known as the initiator, while the entity that receives the transaction, either a slave
peripheral or main memory, is known as the target. All signals shown are active
low. The peripheral first lowers REQ# to request access to the bus. After the arbiter
grants access by lowering GNT#, the peripheral waits for the previous transaction
to finish and then starts the address phase. During the address phase, the AD wires
contain the address for the first data phase, while C/BE# determines the type of
transaction: memory or I/O, read or write. During each data phase, the value is
carried in AD and the address is implicitly incremented by 4/8 for a 32/64 bits bus
respectively. C/BE# carries a set of byte enables for the value in AD; this permits to
read/write only some of the bytes in AD in each data phase. The beginning and end
of the transaction is signaled by the initiator using the FRAME# signal, while the

2We also plan to extend our design to PCI-E; see Section 4.6.

77

PhD Thesis, University of Illinois, August 2012

target uses DEVSEL# to signal that it has correctly decoded the address as being
part of its address space. Finally, the IRDY# and TRDY# signals can be used by the
initiator and target respectively to introduce wait cycles in the transaction: a data
transfer happens only when both

4.2.2 Monitoring Device

We designed a prototype monitoring device based on a Xilinx ML455 board [127]
using a mixed VHDL/Verilog register transfer level (RTL) description. The board
is outfitted with a Virtex-4 FPGA and is can be plugged into a standard 3.3Volts
PCI/PCI-X socket. The FPGA implements both a slave and a master peripheral
module, together with the monitoring modules. Events for the system are specified
in terms of read/write data transfers on the bus and interrupt requests; the device
continuously “sniffs” all ongoing activities on the bus, and it is therefore able to
monitor communication for all other peripherals located on the same bus segment.
Whenever a failure to meet the specification is detected, the device can execute a
recovery action using strategies based on the detected error.

For a vast category of errors that involves incorrect interaction between the
peripheral and its software driver, it is often possible to recover from the failure by
forcing the peripheral into a consistent state. The monitoring device implements
a master module, and can therefore initiate transactions on the bus. For example,
consider a common type of error, where the driver fails to validate some input from
the user and as a result writes an invalid value to a register in the peripheral. We
can recover by rewriting the register with a valid value. However, if the error is
caused by a fault in the peripheral hardware, interacting with registers may not be
enough to bring the peripheral to a consistent and safe state.

We propose a mechanism that lets the monitoring device disconnect the faulty
peripheral from the bus. We developed a simple hardware device, the peripheral
gate [99], that is able to force the REQ# signal from the peripheral to the bus arbiter
to be high; hence, the peripheral never receives the grant and it is prohibited from
initiating any further transaction on the bus.3 The peripheral gate is implemented
based on a PCI extender card, i.e., a debug card that is interposed between the
peripheral card and the bus and provides easy access to all signals. A clarifying

3While technically it is always possible for a faulty peripheral to disrupt the bus by altering
the state of the signals, in practice the described approach is effective since access to the bus is
mediated by three-state buffers enabled by GNT#.

78

PhD Thesis, University of Illinois, August 2012

PCI/PCI-X bus

Peripheral

Gate
Monitoring

Device

stop

(a) Gated Monitoring Device.

PCI_core

decode

master

slave
master

queue

serial

queue

serial_output

bus_interface0 bus_interface1 bus_interfaceN. . .

s s

. . .

RS232_interface

PCI interface

b
a

s
e

[0
-1

5
]

decoded data

monitor0 monitor1 monitorN

s
e

q
_

e
v
e

n
ts

p
ro

p
e

rt
ie

s

s
to

p

or

stop
. . .

system0 system1 systemN

: manually

written

: automatically

generated

: provided IP

(b) Block Diagram.

Figure 4.2: Monitoring Device.

79

PhD Thesis, University of Illinois, August 2012

picture for monitoring of a single peripheral is provided in Fig. 4.2(a). The
monitoring device can output a stop signal, which closes the gate when active
high. Finally, sometimes the monitoring device cannot perform a suitable recovery
action by itself, but there is a higher level actor, such as the OS or the system user,
that can provide better recovery; examples include complex software operations
such as restarting the driver or the whole PCI stack, and physically interacting with
the peripheral. In this case, the best strategy is to communicate the failure to the
chosen actor. The study of OS-level reliability techniques is outside the scope of
this thesis; instead, for our prototype design we implemented a RS-232 controller
that can be used to send information to the user over a serial connection.

The reader should notice that the nature of our implementation is such that if a
trace is seen, which does not conform to a specification, as a consequence of a bus
transaction, that specific bus transaction can not be prevented from propagating
to the rest of the system. For example, if a faulty peripheral performs a write
transaction to an area in main memory which is not supposed to modify, we can
detect the error, disconnect the peripheral and report the failure to the OS/user.
However, the information in the overwritten area will be lost. As part of our future
work, we are working to implement an interposed monitoring device: by sitting
between the bus and a peripheral, it will be able to buffer all transactions that target
that specific peripheral or are initiated by it. If a property is validated/violated,
it is then possible to take preventive measures (i.e., either discard or modify the
transaction before propagating it). While this solution will provide a higher degree
of reliability, there is a price to be paid in terms of increased communication delay
due to buffering in the monitoring device.

A simplified block diagram for the monitoring device is shown in Fig. 4.2(b).
We distinguish three types of blocks: 1) blocks provided by Xilinx as proprietary
intellectual properties (IPs); 2) manually coded RTL modules provided by BusMOP,
which are independent of the peripheral specification; 3) automatically generated
RTL modules, which are dependent on the specification (see Section 4.2.3). PCI
transaction signals are routed to two different modules: the PCI core and the
decode module.

The PCI core module is a hard IP that implements all logic required to handle
basic PCI functionalities such as plug-and-play. Bus slave and bus master logic
is implemented by the slave and master modules, respectively. In particular,
slave implements a set of 16 registers, base0 through base15. Since the OS
configures the BAR registers at system boot, a peripheral cannot directly determine

80

PhD Thesis, University of Illinois, August 2012

the location of address blocks used by another peripheral. Hence, the OS must
also write the locations of the address blocks allocated to monitored peripherals
in the base registers. The decode module is used to simplify event generation. It
translates all transactions on the bus (except for those initiated by the monitoring
device itself) into a series of I/O or memory reads/writes, one for each data phase,
as well as the occurrence of an interrupt, and forwards the translated information
to the monitoring logic.

The system0, . . ., systemI, . . ., systemN blocks implement the monitoring
logic for each of N user specified properties. Each systemI block consists of two
automatically generated modules: bus interfaceI contains all logic that depends on
the specific choice of communication interface (PCI bus), while monitorI contains
all logic that depends on the formal language used to specify the property. This
separation provides good modularity and facilitates code reuse. bus interfaceI

first receives as input the decoded bus signals and generates events, which are
sequentialized by the events sequentializer submodule (see Section 4.2.3), and
then passed to monitorI using the seq events wires. monitorI checks whenever the
formula for the I-th property is validated/violated and passes the information back
to bus interfaceI, which can then execute three types of recovery: 1) disconnect a
monitored peripheral from the bus using the stop signal; 2) send information to
the user using the serial output module, which implements a RS-232 transmitter;
3) start a write transaction on the bus using the master module. Finally, since it is
possible for multiple systemI modules to initiate recovery at the same time, we pro-
vide queuing functionalities for serial output and master in modules master queue

and serial queue, respectively.
It is important to notice that in the current implementation the time elapsed

from any event that triggers a validation/violation to executing the corresponding
handler is at most 4 clock cycles. This time is short enough to execute a recovery
action before a faulty peripheral is allowed to start a new transaction, as PCI
arbitration overhead prevents a peripheral from transmitting immediately.

4.2.3 Property Specifications

Properties are specified using a domain specific event syntax, and formulae or
patterns written in the logic of a particular plugin. Additional monitor state can
also be declared using the declarations section. The violation handler and validation

handler sections allow for arbitrary code to be executed on the occurrence of a

81

PhD Thesis, University of Illinois, August 2012

violation or validation, respectively. An example of how they are used can be seen
in Fig. 4.1 in Section 4.1. Currently, we have support for the extended regular
expression (ERE) and past-time temporal logic (PTLTL) MOP Plugins, and adding
most of the others will require a minimal amount of work, as only the monitor
component changes from one logical specification formalism to another. This
means that properties may be specified, formally, using an ERE pattern or a PTLTL
formula. BusMOP was created before the MOP logic repository was in its current
form, and will be eventually updated to use it. At that time it will support all
finite-state logical formalisms.

Events

A formal description of BusMOP event syntax can be found in Chapter 2, as well as
BusMOP syntax in general. There are three basic types of events in BusMOP: I/O
accesses, memory accesses, and interrupts. It is important to distinguish between
I/O and memory events because they require different enable functionality and
different read/write signals. I/O and memory events must specify at least an address,
which may be an arithmetic expression over identifiers, VHDL numbers, addition,
subtraction, and concatenation, and whether the event is a read or a write. An
I/O or memory event may also specify a value range, which is the value of the
address read or written by the bus transaction. Ranges can consist of a single
arithmetic expression, or a pair of comma separated arithmetic expression denoting
the minimum and maximum values that may trigger the event (thus, ranges are
inclusive). Value ranges must also specify a size, byte, dbyte (16 bits), or qbyte
(32 bits), so that the correct comparison code and byte enables can be generated
(values smaller than a byte require masking the proper bits). Address ranges are
used in events that do not have specified value ranges. The reason for this is
that when a value range is specified, the code generator must generate the proper
byte enables based on address alignment, and alignment does not make sense for
ranges. Address ranges are useful for some properties, e.g. a property that monitors
accesses to a certain buffer in memory.

The bus interface Module

The code for all declarations handlers is copied verbatim into the VHDL module
defining the bus interface. Because of this copying, the code must be written
in VHDL. The events are expanded to combinatoric statements implementing

82

PhD Thesis, University of Illinois, August 2012

the specified logic. The output of the combinatoric statements is assigned to
an events wire vector, which is connected to the monitor module through an
event sequentializer submodule. Each index in the bus corresponds to the truth
value of a specific event, numbered with the 0’th index as the first event, and
the n’th index as the n’th event from top to bottom in the specification. This
ordering is important, because it directs the event linearization performed by the
event sequentializer submodule.

The event sequentializer is necessary because the logical formalisms expect
linear, disjoint events. The event sequentializer takes coincident events and sends
them to the monitor in subsequent clock cycles, in ascending index order, using
the seq events wire vector. Therefore, if events(0) and events(3) occur in the same
cycle, the monitor will see 0 followed by 3. To see why simultaneous events are
possible, consider, again, Fig. 4.1 from Section 4.1. The cntrlMod event is asserted
whenever the cntr cntrl2 register (base1 + X”220”) is written. Because both the
countEnable and countDisable events require writes to the same address as the
cntrlMod event, any time countEnable or countDisable are triggered, a cntrlMod

is also triggered. As the property tries to enforce the policy that all modifications
happen when the counter is not enabled, we must serialize events such that cntrlMod

happens after a countDisable and before a countEnable. The ordering of events
in Fig. 4.1, is consistent with this, because countDisable is listed before cntrlMod,
which is listed before countDisable.

The handler is placed in the module such that it is only executed if the monitor

module denotes that the property has been violated. The situation is similar for
a validation handler, save that it is executed only when the formula or pattern
is validated. As can be seen in the Fig. 4.2(b), the monitor module reports the
validation, violation, or neutral state of the monitored property, via the properties

wire vector, to the bus interface module. Several actions are available in validation
and violation handlers. Aside from manipulating any local state of the monitor
(such as the write to cntrlCurrent in Fig. 4.1), the bus interface module makes
available several registers which can be used used to execute the recovery actions
detailed in Section 4.2.2. The registers are summarized in the table below for
convenience, they may also be found in Chapter 2:

83

PhD Thesis, University of Illinois, August 2012

Write Interface

io reg write request in I/O space
mem reg write request in memory space

address reg write address
value reg write value

enable reg byte enables
serial reg ASCII value to serial output
stop reg Peripheral gate control

As can be seen in Fig. 4.1, we perform a memory write to the cntr cntrl2 register
of its previous value. The address reg is used to denote the address of cntr cntrl2

(base1 + X”202”), while the value reg is set to the old value of cntr cntrl2, the
mem reg is asserted to tell the PCI bus that the write performed is a memory
write, and the byte enables are set to ”0011” to denote that the lower two bytes
must be written.

The monitor Module

The monitor module is responsible for monitoring the property given serialized
events. It encompasses the logic of the formula, and it is the only portion of our
system dependent on the logical formalism used. More information on the ERE
and PTLTL plugins used by BusMOP can be found in Chapter 5.

A design decision relating to both logics we have implemented, and all future
logics, is that properties cannot be violated or validated before an event arrives. This
helps eliminate some strange interactions. JavaMOP has the same functionality,
but in JavaMOP it is due to the fact that a monitor does not exist before the first
event, whereas in BusMOP, the monitor exists as soon as the FPGA is configured.

4.2.4 Case Study: The PCI703A ADC/DAC Board

In this section, we show how our runtime monitoring technique can be applied to
a concrete case by providing specification and runtime experiments for a specific
COTS peripheral, the PCI703A board [47]. PCI703A is a high performance Analog-
to-Digital/Digital-to-Analog Conversion (ADC/DAC) peripheral for the PCI bus.
In particular, it can perform high-speed, 14-bits precision ADC at a rate of up to
450,000 conversions/s, and transfer data to main memory in bus master mode. At

84

PhD Thesis, University of Illinois, August 2012

the same time, the peripheral is simple enough that we were able to carefully check
all provided hardware manuals and to manually inspect its Linux driver; specifying
formal properties for a peripheral clearly requires a deep understanding of its inner
working. In our proposed model, the peripheral’s manufacturer is responsible for
writing the runtime specification. In this sense, the formal specification can be
thought of as a correctness certification provided by the manufacturer, as long as
the user employs a monitoring device and recovery actions can be proved to restore
the system to a safe state.

To better mimic what we think would be a typical process for a COTS manu-
facturer, we produced a requirement specification for the PCI703A in two steps.
First, we prepared a detailed description of the communication behavior of the
peripheral in plain English. Then, we converted this informal description into a
formal set of events and formulae for BusMOP. Inspection of the driver revealed
two software faults, both of which can cause errors that are detected and recovered
by the monitoring device. While in this case we could have prevented errors by
simply removing the faults, we argue that drivers for more complex peripherals can
be thousands of lines long and neither code inspection nor testing is sufficient to
remove all bugs. We further injected additional faults in the driver to test all written
formal properties. It would have been nice to also show recovery for hardware
faults, but we did not find any in the tested peripheral and injecting faults in the
hardware is difficult. In what follows, we first provide an overview of PCI703A
and then we detail properties for an example subsystem, a counter used in the ADC
process. The example is particularly instructive as we show how a small but repre-
sentative set of properties is able to catch one of the aforementioned driver bug.

A block diagram for the PCI703A is shown in Fig. 4.2.4. The bus slave logic
implements two memory address blocks in BAR0 and BAR1, used for conversion
data and control registers, respectively; the corresponding base addresses are
written in base0 and base1 in the monitoring device. The ADC Control and DAC

Control blocks control the ADC/DAC operations and write/read data into internal
FIFOs. The DMA Control block can be programmed to move data between each
FIFO and main memory using bus master functionality. Finally, the Counter Timers

block implements four counters. Counter 0 and 1 are user programmable and can
be used either for debugging purposes or to trigger a DA conversion. Counter 3
is also user programmable and produces an external output. Finally, Counter 2 is
not meant to be user programmable; it is to be used exclusively to generate the
clock for AD conversions. The C user library provided with the driver exports

85

PhD Thesis, University of Illinois, August 2012

!"#$

#%&'(%)

"!#$#%&'(%)
#%*&'+($

,-.+(/

"0!$

#%&'(%)

!"#$0&'

1#2$3*/

4)56+$7*/

8%9-:$

05/'+($7*/

8%9-:$

Figure 4.3: PCI703A Diagram.

an ADConfig function used to configure ADC Control and the associated Counter
2. The library also provides a CTConfig function to be used to configure the user
counters; unfortunately, under Linux the function can also be used to change the
configuration of Counter 2. This is a problem, as any user in the system could
erroneously or maliciously change Counter 2 while an ADC is in progress.

Three 16-bits control registers are relevant to our discussion: cntr cntrl2 (at
hexadecimal location 220 relative to BAR1), cntr divr2 (228), and adc cntrl (300).
Bit 0 of cntr cntrl2 determines whether Counter 2 is enabled, and bits 2-1 deter-
mine its clock source (either 20Mhz or 100Khz); when the counter is enabled, it
first loads the content of cntr divr2 and then starts counting down at the selected
frequency. When it reaches zero, the value of cntr divr2 is reloaded, a clock signal
is sent to ADC Control, and finally if bit 4 of cntr cntrl2 is set, an interrupt is
generated. Register adc cntrl controls the behavior of ADC Control; in particular,
bit 0 enables/disables the ADC process and bits 2-1 determine the clock source,
with a value of ”00” indicating that Counter 2 is used.

We express three requirements:

Requirement 1 Bit 4 of cntr cntrl2 should never be set. While the functionality is
relevant for Counters 0,1, in the case of Counter 2 setting bit 4 would cause the
generation of spurious interrupts that increase load on the driver.

Requirement 2 If the ADC is using Counter 2, and the clock source for Counter
2 is set to 20 Mhz, then the value of cntr divr2 must be at least 45 to avoid violating

86

PhD Thesis, University of Illinois, August 2012

pci InterruptFix{
signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event cntrlMod : memory write address in base1 + X"220"
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event setBit4 : memory write

address = base1 + X"220"
dbyte value(4) in ’1’

ere: setBit4

@match {
mem_reg <= ’1’;
address_reg <= base1 + X"220";
-- roll back to the previous cntr_cntrl2 value
value_reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable_reg <= "0011";

}
}

1

Figure 4.4: INTERRUPTFIX Specification

the maximum conversion speed of the peripheral.

Requirement 3 If the ADC is active and using Counter 2, then Counter 2 must
also be active; furthermore, while Counter 2 is active no change to the counter
configuration is allowed.

Requirements 1-3 are able to catch the driver bug in the sense that an invalid counter
configuration can not be set before starting the ADC, and furthermore while the
ADC is active no counter modification is allowed. We wrote four (five including
the example from Section 4.1) formal properties to capture the requirements:

INTERRUPTFIX. The INTERRUPTFIX specification is the formalization of
Requirement 1, and can be seen in Fig. 4.4. Because we do not want the 4th bit
set, we simply monitor the pattern setBit4, an event which corresponds to setting
the 4th bit. We perform recovery when the pattern is validated by overwriting
cntr cntrl2 with the last valid value, similarly to SAFECOUNTERMODIFY in Fig.
4.1.

SAFECONVERSIONSPEED. The SAFECONVERSIONSPEED specification is
the formalization of Requirement 2, and can be seen in Fig. 4.5. For this property
we chose to show how event side effects can be used in handlers as part of checking
that a property has been validated/violated. When the clkSrcSet or srcSet events

87

PhD Thesis, University of Illinois, August 2012

pci SafeConversionSpeed{
signal clkSrc : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal src : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event divrBad: memory write address = base1 + X"228"
dbyte value in 0,44

event divrGood: memory write address = base1 + X"228"
dbyte value in 45,65535

event clkSrcSet : memory write address in base1 + X"300"
{ clkSrc <= value(15 downto 0); }

event srcSet : memory write address in base1 + X"220"
{ src <= value(15 downto 0); }

event countEnable : memory write address = base1 + X"220"
dbyte value(0) in ’1’

ere : (divrBad (clkSrcSet + srcSet)* countEnable)*

@match {
if (clkSrc(2 downto 1) = "01") and (src(2 downto 1) = "00") then
mem_reg <= ’1’;
address_reg <= base1 + X"228";
--set cntr_divr2 to 45
value_reg(15 downto 0) <= X"2D";
enable_reg <= "0011";

end if;
}

}

1

Figure 4.5: SAFECONVERSIONSPEED Specification

are triggered, meaning that the cntr cntrl2 or adc cntrl registers have been modified,
respectively, we store the value written to the register in monitor local registers (e.g.,
src <= value(15 downto 0)). The pattern specifies that the cntr divr2 be set to a bad
value (less than 45), followed by any number of updates to cntr cntrl2 or adc cntrl,
followed by the enabling of the counter. If cntr divr2 is set to a value larger than
44, the pattern will be violated, and the monitor will be reset. This means that the
validation handler will be executed only when then value of cntr divr2 is too low
for safe conversion, but regardless of whether or not the board is actually using
Counter 2. The handler then checks that it is, in fact using Counter 2, and that
Counter 2 is using the 20Mhz source, before performing the recovery: setting
cntr divr2 to a valid value (45).

NODISABLEWHILECONVERTING. The NODISABLEWHILECONVERTING

specification is the formalization of part of Requirement 3, and can be seen in Fig.
4.6. This could have been written in a similar manner to SAFECONVERSIONSPEED,
i.e., using event side effects to store current register values and checking them in
the handler. We decided to use a fully formal specification, that defines events
for setting the registers to good or bad values. The formula itself specifies that, if
the ADC is enabled, and clkSrc2 is good, meaning that Counter 2 is being used

88

PhD Thesis, University of Illinois, August 2012

pci NoDisableWhileConverting{
signal cntrlCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal cntrlOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event countEnable : memory write address = base1 + X"220"
dbyte value(0) in ’1’
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event countDisable : memory write address = base1 + X"220"

dbyte value(0) in ’0’
{
cntrlOld <= cntrlCurrent;
cntrlCurrent <= value(15 downto 0);

}
event clkSrc2Good : memory write address = base1 + X"300"

dbyte value(2 downto 1) in "01"
event clkSrc2Bad : memory write address = base1 + X"300"

dbyte value(2 downto 1) not in "01"
event adcEnable : memory write address = base1 + X"300"

dbyte value(0) in ’1’
event adcDisable : memory write address = base1 + X"300"

dbyte value(0) in ’0’

ptltl : (((not adcDisable) S adcEnable) and
((not clkSrc2Bad) S clkSrc2Good))

implies
((not countDisable) S countEnable)

@violation {
mem_reg <= ’1’;
address_reg <= base1 + X"220";
-- roll back to the previous cntr_cntrl2 value
value_reg(15 downto 0) <= cntrlOld;
cntrlCurrent <= cntrlOld;
enable_reg <= "0011";

}
}

1

Figure 4.6: NODISABLEWHILECONVERTING Specification

to time the ADC, then Counter 2 must be enabled. The part of the formula before
the implies keyword, states that the ADC is enabled and the ADC clock source is
Counter 2, the second half of the formula is the requirement that Counter 2 not
be disabled. The formula is true when correct behavior is exhibited, so we use a
violation handler for the recovery action, which again is simply to set cntr cntrl2 to
the last valid value.

SAFEDIVRMODIFY. The SAFEDIVRMODIFY specification is the formaliza-
tion of part of Requirement 3, and can be seen in Fig. 4.7. In conjunction with
NODISABLEWHILECONVERTING and SAFECOUNTERMODIFY (from Section
4.1), all of requirement 3 is covered. This specification ensures that cntr divr2

is not modified while Counter 2 is enabled. This property is the same as SAFE-

89

PhD Thesis, University of Illinois, August 2012

pci SafeDivrModify{
signal divrCurrent : STD_LOGIC_VECTOR(15 downto 0) := X"0000";
signal divrOld : STD_LOGIC_VECTOR(15 downto 0) := X"0000";

event countDisable : memory write address = base1 + X"220"
dbyte value(0) in ’0’

event divrMod : memory write address in base1 + X"228"
{
divrOld <= divrCurrent;
divrCurrent <= value(15 downto 0);

}
event countEnable : memory write address = base1 + X"220"

dbyte value(0) in ’1’

ptltl: (divrMod) and (*)((not countDisable) S countEnable)

@validation {
mem_reg <= ’1’;
address_reg <= base1 + X"228";
-- roll back to the previous cntr_divr2 value
value_reg(15 downto 0) <= divrOld;
divrCurrent <= divrOld;
enable_reg <= "0011";

}
}

1

Figure 4.7: SAFEDIVRMODIFY Specification

COUNTERMODIFY from Fig. 4.1, save that we are ensuring that cntr divr2 is not
modified, rather than cntr cntrl2. We also used PTLTL rather than ERE, to show
how two very similar properties look in both logics. These could be collapsed into
one specification, but it would make recovery more complicated, because we only
want to roll back the register that was actually modified (cntr cntrl2 or cntr divr2).
The formula itself states that if cntr divr2 has been modified and the counter has
not been disabled since the last time it was enabled, than we must recover. Un-
like SAFECOUNTERMODIFY we use a validation rather than a violation handler,
because the formula was easier to express with recovery being on validation.

As a final consideration, note that the handlers of SAFECOUNTERMODIFY,
INTERRUPTFIX and NODISABLEWHILECONVERTING can be invoked simultane-
ously if an incorrect value is written to cntr cntrl2, which results in the execution of
multiple bus writes. However, this causes no problem since all handlers overwrite
cntr cntrl2 with the same valid value.

4.3 SoC Monitoring

Systems-on-Chip (SoCs) are increasingly popular in the embedded system domain
because they consume less power and cost less money than the multi-chip solutions

90

PhD Thesis, University of Illinois, August 2012

they replace. We believe that the SoC paradigm is especially promising for safety-
critical embedded systems such as those employed in the medical market [126]:
it is easier to formally verify the correctness of critical functionalities when they
are implemented in hardware rather than in software on top of an OS and library
stack [11]. Furthermore, SoC design can offer higher hardware reliability.

However, implementing safety-critical applications on SoC brings additional
design challenges. The high degree of integration possible in modern fabrication
processes can easily lead to mixed-criticality systems: multiple applications with
different criticalities run simultaneously on the same chip. As an example, consider
a medical pacemaker (a more detailed description can be found in Section 4.3).
Implanted cardiac pacemakers are used to provide pacing assistance for patients
with slow or abnormal heart rates. The life-critical pacing component uses leads
to send shocks to the heart to force contraction. However, modern pacemakers
also implement a variety of other applications such as data logging and remote
communication and programming that are used for diagnosis. Since these lower-
criticality functionalities must communicate with the life-critical module and share
physical resources such as battery energy, memory and communication bandwidth,
faults could potentially propagate from a lower to a higher criticality application.
This is a daunting problem because formally verifying and/or certifying non safety-
critical modules is either extremely expensive or unfeasible: they typically make
large use of both software and hardware Intellectual Properties (IP) such as CPU
cores and OSes that are very complex. This is a domain in which BusMOP can
play a crucial part to providing safety and reliability.

In this section, we introduce a new design methodology for SoC that specifi-
cally targets mixed-criticality systems. Our methodology, which relies heavily on
BusMOP, provides strong isolation guarantees to applications and imposes limits
to fault propagation. In detail, we distinguish between functional isolation, which
deals with the correct exchange of data, and physical isolation, which deals with
the correct sharing of system resources. Our methodology is similar to the concept
of Platform-Based Design (PBD) [107].

A platform is a library of components. A platform instance is a set of library
components selected to generate a concrete design. In a PBD design flow, the de-
signer first specifies the system functionality using an implementation-independent
description language. The designer then selects a suitable platform and performs
mapping of functional elements to platform components, thus creating a plat-
form instance.

91

PhD Thesis, University of Illinois, August 2012

Our platform contains three types of architectural components: processors
(which can either be CPUs or hardware processors, e.g. logic circuits imple-
menting a specific functionality), communication infrastructures and memories.
Functional specification, architectural specification and mapping are all performed
using the Architectural Analysis and Design Language (AADL) [50]. AADL is
rapidly gaining support in safety-critical markets such as avionic and medical
domain and it has been applied to many industrial examples (see Section 4.3).
Mapping is performed by binding functional processes to architectural processors
and specifying processes’ requirements in term of data transfers and resource
usage. This requirement specification creates a certificate for each process, e.g. it
determines the complete set of acceptable runtime behaviors for the process.

We provide isolation using the following key idea. Each processor is encap-
sulated in a monitoring hardware wrapper that leverages the power of BusMOP
to control all communication and resource usage by the processes executed on
that processor, and can therefore enforce their certificates at runtime. System level
verification is greatly simplified because it is sufficient to verify that the system is
correct based on the certificates of low-criticality applications, and not the complex
behavior of the IPs that implement them.4

To summarize, our main contributions are as follows. 1) We developed a new
PBD methodology for SoC based on AADL that is targeted for safety-critical
systems. In particular, we developed tools that are able to automatically generate
monitoring wrappers based on an AADL specification. 2) We employ BusMOP
to enforce functional isolation by formally checking the communication behavior
of processes at runtime. If a violation is detected, the wrapper is able to take a
preventive measure by rejecting the faulty communication. 3) At the physical
isolation level, we derive a static coschedule of computation and communication
and assign timing reservations to all processes in the form of temporal budgets
based on their certificates. The wrapper checks usage of both computation and
communication resources and prevents a process from exceeding its assigned
budget. Finally, in battery-operated devices the platform can monitor overall power
consumption and use the wrappers to shut down low-criticality processes and save
energy for higher criticality applications.

4Note that obviously the platform can not prevent a low-criticality process from failing if the
unverified processor on which it is executed suffers a critical internal error. Therefore, the certificate
must state that such process can stop at any time. However, the platform will prevent the internal
error from propagating to other processors.

92

PhD Thesis, University of Illinois, August 2012

Our AADL-based system modeling is introduced in Section 4.3, together with
a case study based on a medical pacemaker; we continue to elaborate on the case
study in the remainder of this chapter. Section 4.3.2 describes our architectural
implementation, focusing on the wrappers. Sections 4.4 details functional isolation.
Timing isolation is detailed in [101]. It is not detailed here because it is not
related to BusMOP.

System Model

The importance of model-based Architecture Description Languages (ADLs) and
formal analysis of system models is becoming apparent in the industry of hard
real-time systems, such as avionics, aerospace, and medical devices. Model-based
ADLs provide the automation capability of generating beneficial abstractions from
system models to be verified or examined by computed-aided tools. AADL is a
type of ADL initially developed for the avionic market. It is based on 15 years
of research, including the MetaH language developed by Honeywell Labs and
several DARPA programs [20]. AADL-based tools and analysis methodologies
have been developed in the area of safety analysis [119], dependability [106] and
schedulability [72, 113, 116]; however, to the best of our knowledge this is the
first time that an AADL-based model is used to automatically generate code that
enforces safe process behavior. In this section, we first describe how AADL can be
used to provide both functional specification and mapping in our platform. Then,
we introduce our case study of a medical pacemaker.

AADL-Based Modeling. AADL lets the designer specify the logical func-
tional model separately from the hardware platform. An AADL specification is
comprised of different components and their interactions. Components used for
the logical design include process, thread, and data. AADL execution platform
components include processor, memory and bus; they have a one-to-one corre-
spondence with our architectural components. Each processor represents either a
custom-built hardware processor or a CPU. Memory is used, among others, for all
external memories (such as external SRAM or DRAM chips) used to hold shared
data. Bus represents the unique communication infrastructure used to interconnect
all processors and memories. Finally, the system component is a special composite
component which is used to either encapsulate other components, divide them into
groups or represent any new abstract entity that can not be modeled by preexisting
components. In our design methodology, the logical components and architectural

93

PhD Thesis, University of Illinois, August 2012

components belonging to a platform instance are grouped in separate system com-
ponents for modularity and clarity of representation. All components are tagged
with properties which add extra information that can not be expressed by structural
descriptions (for example, the processor type is specified by a class property). The
core AADL standard has pre-declared properties that support real-time scheduling
as well as other areas of research. AADL also provides the syntax to add new
user-defined properties.

Every application is modeled as a collection of processes with one or more
thread subcomponents. Threads are active agents: they receive inputs, process
and output data. Period, deadline, and execution time properties are associated
with each process as a timing reservation for all of its subcomponent threads.
The platform guarantees that at each period a process is provided with an amount
of execution time at least equal to its request within a time window equal to the
specified deadline. Each process represents a dedicated memory and design space
protected by the system architecture. The platform ensures that all threads inside a
process are functionally isolated from other threads running on different processes.

Two types of inter-process communication are supported. A process can
declare any number of input message queues to which other processes can send
data. Furthermore, shared data objects can be declared and accessed by any
process. In AADL, message queues are modeled as event data port connections
and data accesses are used to connect processes to shared data object. Each
communication has an associated data component which represents the type and
size of data that is to be sent or shared and an associated deadline property which
represents the maximum allowed amount of time to complete the data transfer.
The acceptable communication behavior of a process can be further specified by
a PropertyList and associated EventLists. Each entry in an EventList describes a
specific communication event, e.g. a send/receive to a message queue or a DMA
read/write to a data object. Properties are defined using BusMOP. Recall that
property syntax is described in Chapter 2.

Platform mapping is performed by “binding” logical components to architec-
tural components. Each process is bound to a processor and each data component
is bound to a memory (either a message queue or an external memory). Each
HW processor can execute a single process, while a CPU processor can execute
multiple processes. Note that some properties of logical components depend on the
binding. For example, required execution time depends on the processor to which
a process is bound. The values of these properties need to be re-examined every

94

PhD Thesis, University of Illinois, August 2012

time a related change in the mapping occurs.
The AADL platform specification would not be nearly as useful if the designer

had to manually check it for correctness and convert it into an implementation,
since the potential for human error during translation is very high. As such, we
built a set of tools to assist the design flow. Our AADL tool makes sure that
the model conforms to predefined analysis specific rules for correctness; these
include all aforementioned binding rules. The tool also automatically derives some
property values required for implementation which depend on the binding (in
particular, addresses are associated with all memory elements), and generates an
XML file based on a customized schema containing a description of the platform
instance. In particular, each process is characterized by a certificate specifying
timing requirements for the process itself and its communication plus all attached
formal properties. Additional tools read the XML file and automatically generate
the monitoring wrapper; a detailed description is provided in Sections 4.3.2, 4.4.

4.3.1 Case Study: Medical Pacemaker

Pacemakers are one of the most critical medical devices [126]. Once they are
implanted, they must continue to operate correctly with very little maintenance
for at least 5 years. Having methods of self-diagnosis and recovery of software
and hardware errors could go a long way for prolonging the lifespan of reliable
operation. There have been designs to ensure the safety of pacemaker systems
in terms of the control algorithm [11], including model-checking of the pacing
controller using UPPAAL [122]. However, such previous work is based on the
assumption that the underlying implementation can offer strong isolation guarantees
for memory, power and communication. Here, we take a more general approach
where isolation guarantees are not a by-product of the system implementation, but
are instead specified as requirements in the functional model.

A typical functional decomposition of cardiac pacemaker is shown in Fig. 4.8.
A pacemaker is connected to the heart via leads (typically two). These leads provide
EKG signals which the internal pacer uses to detect whether the heart is contracting
properly and to send shocks to the heart to force contraction. The internal pacer
has various control parameters which can be tuned to each patient: these include
a reference rate of pacing, the operational mode, and the thresholds for sensing
and actuation. The operational mode determines how to pace the heart; modes can
determine which leads are used for sensing if any, whether rate adaptation is used,

95

PhD Thesis, University of Illinois, August 2012

!"#$%&'()*#$+

,'#-'.%/$.0'+

1.#$+."2%3"4$+

5$"60

/$.0$6%789 :4#*"#-'.%;'2#"<$

!"#$%=-2#$+

/$.0-#->-#?%@A+$0A'26

,"B%+"#$

,-.%+"#$

,"B%"##"4C%02')$

,"B%6$4"?%02')$

7>$.#%5'<

!=

&'((*.-4"#-'.

3"+"($#$+

3+'<+"((-.<

D"0$%+"#$

E)$+"#-'."2%,'6$

789%/$.0-#->-#?

3"4$%;'2#"<$

Figure 4.8: Pacemaker Block Diagram

and whether certain types of special therapies should be provided.
A simple pacemaker only needs the leads and the internal pacer to be functional.

However, for more effective pacing, it is desired to have the pacing rate adapt to the
activity levels of the patient. Rate adaptation normally uses some form of motion
sensing, usually through accelerometers or pressure sensors. The motion data is
then used to compute a rate. A rate computation uses a sensitivity threshold to
filter out motion noise (i.e. when riding a car). Furthermore, to match biological
characteristics, the computed heart rates values are bounded (min and max rate) as
well as their rates of change (attack and decay slope).

Finally, the pacemaker employs a communication component using RF signals.
RF communication allows medical personnel to program various parameters of
the pacemaker without intrusively removing the pacemaker. Furthermore, logged
events and real time sensor data can be sent to the medical personnel during
diagnostics and check-up.

A schematic of an AADL-modeled pacemaker platform instance is shown in
Fig. 4.9. The life-critical functionality is the core pacing implemented by the Pacer
process in a HW processor. The Pacer includes the sensor and actuation interfaces
to the leads and also the pacing logic. EKG Sensor data arrives at the frequency of
128 16-bit samples per second, which also determines the Pacer period. Also, the
Pacer logs EKG Signal values and Shock Events in the signalBuffer memory area
for later retrieval and diagnosis.

The values written to the signalBuffer are time-stamped and will eventually be

96

PhD Thesis, University of Illinois, August 2012

PLB Bus

Microblaze

Rate

Adapter
Event

Tagger

Programmer

RAM

Log Buffer

Signal Buffer

Hardware Task
EKG Sensor Lead Actuator

Hardware Task

Pacing Logic

CPU Tasks

Motion Sensor Pacer

Leads

RF Module

Hardware Task

Figure 4.9: Mapped Pacemaker Platform

overwritten in a circular manner. The Motion Sensor process is also implemented
in hardware. It samples data at 80Hz and sends the measured values to the Rate
Adapter through a message queue.

Three processes requiring complex microprocessing functionality are executed
on a Microblaze CPU. The Rate Adapter uses motion data to compute a reasonable
rate required for pacing and sends it to the Pacer twice per second; its failure is
not life-critical but could still cause significant discomfort to the patient. The other
two processes are less critical since they do not immediately affect the condition
of the patient. The Event Tagger, running at 8Hz, reads in a window of EKG
signal values and shock events from the signalBuffer and finds anomalies that
are then logged to another section of memory (the logBuffer) for more permanent
storage and later diagnostics. Finally the Programmer is used to send parameter
updates. It processes commands sent by medical personal through the RF Module
(implemented in hardware) and it sends rate adaptation parameters (ie. max/min
rate, attack/decay slope) to the Rate Adapter process and pacing parameters (ie.
sensor/actuator thresholds, base rate) to the Pacer process through message queues.

97

PhD Thesis, University of Illinois, August 2012

!"#$%&&'(#)*$'

+,',"-..%"'

/#01"#2'3#452%'

/#01"#2'

3#452%'

/#6650*$-7#0'

8$9%452%"'

:"-6%'

;%0%"-1#"'

3-05-22<'="*>%0'

?%&*)0%"'&.%$*@%4'

A51#6-7$-22<''

)%0%"-1%4'

BC1%"0-2'

3%6#"<'

D8EA3F'

/!G'

D5H2-I%F'
J0&1"5$7#0'

8$"-1$9.-4'

!"#$%&&'

8$9%452%"'

3#0*1#"*0)'

B0)*0%'

!"#$%&&'K'

/#4%'

!"#$%&&'L'

/#4%'

/#01"#2'3#452%'

/!G'

8$9%452%"'

3#0*1#"*0)'

B0)*0%'

''
'M
'M
'

!#=%"'3-0-)%"'

J01%"N-$%'

3#452%'
?-1-'

8$"-1$9.-4'

J01%"N-$%'

3#452%'

O8'

/#4%'

3%6#"<'

/#01"#22%"'

/#6650*$-7#0'J01%"$#00%$7#0'

?-1-'

8$"-1$9.-4'

/!G',"-..%"'

$2PQ%0'

$2PQ%0'

!"#R*4%4'J!'

N"-6%Q&*)0-2'

N"-6%Q&*)0-2'

N"-6%Q)"-01'

N"-6%Q)"-01'

(a) Architecture Block Diagram

!"#$%&&#"'()*%"+,$%'

-,*,'

.$",*$/0,1'

2#334)5$,6#)'()*%"+,$%'

-78'%)95)%'

7#)5*#"5)9'

&59),:&'

+",3%;9",)*'

7
%
&&
,
9
%
'!
,
*/
'

<
(<
=
'>
4
%
4
%
&'

2
#
3
0
:%
6
#
)
'>
4
%
4
%
'

?
%
@
4
%
&*
'>
4
%
4
%
'

A"
,
)
&3

5&
&5
#
)
'>
4
%
4
%
'

?
%
$%
0
6
#
)
'!
,
*/
'

2
#
3
3
,
)
1
'!
,
*/
'

c
o

m
m

u
n

ic
a

ti
o

n

c
lo

c
k

s
y
s
te

m
_

c
lk

p

ro
c
_

c
lk

(b) Interface Module Block Diagram

Figure 4.10: Pacemaker Platform Instance

98

PhD Thesis, University of Illinois, August 2012

4.3.2 Architecture Implementation

In this section, we detail the architectural components that comprise our platform
focusing on how the monitoring wrappers can enforce isolation. Our general
platform principles are orthogonal to the specific chip fabrication process being
used, albeit certain implementation details and the choice of available IPs neces-
sarily depend on it. Our described prototype implementation is based on a Xilinx
Virtex-5 FPGA [128].

Fig. 4.10(a) shows a block diagram for an example platform instance. For
simplicity, the example is composed of only one hardware processor, one CPU and
one external memory, but note that in our prototype implementation the number
of CPUs, HW processors and memories is only limited by the available chip
resources. Monitoring wrappers depend on the type of processor they control:
HW wrappers and CPU wrappers are employed for hardware processors and CPU
respectively. Each wrapper is comprised of two modules: an interface module
and a control module. The interface module mediates access from the processor
to the communication infrastructure and provides standardized communication
services. Processes can only exchange information by transmitting data through
their interface module.5 This effectively prevents fault propagation since the
interface module is able to reject any data transfer that would lead to a certificate
violation. The control module implements the actual monitoring logic: it checks all
data transfers performed by the interface module against the property specification
included in the certificate, and enforces the process timing reservation. A more
detailed description of the interface and control module is provided in Section 4.3.2.
Similarly, each external memory is connected to the communication infrastructure
by a memory controller; however, since memories are passive component, no
monitoring is required. Finally, the platform includes three additional global
modules: the Communication Scheduler, the Frame Generator, and the Power
Manager, which are used to enforce communication timing reservation and power
consumption. They are described in Section 4.3.2.

We can distinguish among four types of blocks in Fig. 4.10(a): 1) blocks that are
generated by the designer. These include the hardware logic of each HW processor
implementing the executed process and the code for each software process executed
on a CPU. 2) Blocks that are automatically generated by our implementation tools.

5Note that since processors can implement external I/O, processes could potentially communi-
cate through the environment. We assume that designers do not intentionally introduce such covert
channels, and any environment dependency is solved through application of control theory.

99

PhD Thesis, University of Illinois, August 2012

These include the portion of the control module that implements the certificate
and the Communication Scheduler. 3) Blocks that represent available IPs. These
include: A) memories and their controllers; B) the communication infrastructure;
C) CPU and associated Operating System (OS). 4) Blocks that are manually
written by the platform provider, and depend both on the fabrication process
and the supported IPs. These include the wrappers, Frame Generator and Power
Manager. We implemented these blocks in a parameterized, mixed VHDL/Verilog
Register-Transfer-Level (RTL) description.

The platform can support a variety of different IPs, albeit due to time con-
straints we only implemented wrapper support for some of them. However, specific
constraints must be imposed on IPs to ensure required isolation and timing pre-
dictability. In what follows, we specify the required constraints for A) memories,
B) communication infrastructure and C) CPU and OS. A) The access time to
external memories should be predictable, or at least upper bounds must be easily
computable. Our pacemaker prototype employs an external SRAM, which offers
deterministic access time. Predictable DRAM controllers for real-time systems
have been described in the literature [5]. B) Shared buses, segmented buses and
Networks-on-Chips (NoCs) can all be employed as communication infrastructure,
but the specific IP choice impacts the derivation of the communication schedule as
described in [101], but not included here because it is unrelated to understanding
the function BusMOP within an SoC context. For simplicity, in the rest of the
chapter we consider a simple shared bus, deferring the analysis of more complex
infrastructures to future work; our prototype employs the IBM PLB [73]. C) We do
not allow caches on CPU. While caches can greatly improve average computation
times for general purpose computing, their inherent unpredictability makes it very
hard to obtain tight computation time bounds for processes and to schedule cache
miss traffic. Instead, we provide each CPU with local instruction and data memory
used as scratchpads. Scratchpads can be as fast as caches, but data transfers to/from
external memory must be explicitly initiated by the running process instead of
being handled by the cache controller. While this imposes additional responsi-
bility to the designer, advantages in term of timing predictability and simplicity
of implementation are well documented both in academia [87] and industry [38].
Furthermore, a large number of embedded CPU available either as soft or firm
IPs for SoC design have configurable memory paths, and can therefore be easily
connected to custom-designed scratchpads. Our platform can implement separate
instruction and data scratchpads to support Harvard CPU architectures. In particu-

100

PhD Thesis, University of Illinois, August 2012

lar, our prototype supports the Xilinx Microblaze soft CPU running the Xilkernel
OS. We shall assume that the code of all processes and of the OS executed on the
CPU fits in the instruction scratchpad, which is typically possible thanks to the
small footprint of embedded processes. The data scratchpad is controlled by the
interface module: the processor can request it to transfer data from/to any external
memory to/from the data scratchpad. The designer specifies the size of both the
instruction and data scratchpad as part of the mapping process. Finally, if multiple
processes are executed on the same processor, additional isolation requirements
are imposed on the CPU and OS. In particular, the CPU must provide memory
protection since scratchpads are shared. Furthermore, the OS must provide strong
code isolation, especially regarding shared memory structures and libraries. A full
description of OS-level isolation techniques is outside the scope of this thesis. As
an example, the ARINC653 avionic standard [2] prescribes a set of requirements
for the safe integration of mixed-criticality applications on a shared CPU, and
ARINC653 certified OSs are available on the market.

An important note is relative to the criticality of the various platform blocks.
Any fault in the communication infrastructure, external memories and controllers,
global modules or in any monitoring wrapper can potentially compromise the whole
system. As such, these components must be formally verified and/or certified to
the highest degree of safety required by any application executed on the platform.
While this can be expensive for the communication infrastructure and memories,
we argue that if any form of communication and memory sharing is required in a
mixed-criticality system, such requirement can not be avoided. The monitoring
wrappers and global modules, in particular the control module and all schedulers,
has been designed to be relatively easy to certify. A formal proof of the correctness
of generated runtime monitors is available [33], albeit this does not remove the
need for certification of the final implemented wrappers, since it is unfeasible to
formally verify FPGA implementation tools like the placer and router.

Global Modules

Three global modules, the Frame Generator, Communication Scheduler and Power
Manager, are included in each platform instance to manage system-wide behavior.
Each HW component in our platform can be clocked independently. In particular,
each monitoring wrapper employs two distinct clocks: a system clk that is used for
the control module and interface module, and has the same frequency for all wrap-

101

PhD Thesis, University of Illinois, August 2012

pers; and a proc clk that is used for the processor. In this way, different CPU and
HW processors can run at different frequencies. As the integration scale of SoC be-
comes larger and clock frequency increases, it becomes impossible to synchronize
all HW modules based on the same clock because signal propagation delay grows
larger compared to the clock period. As such, large ASIC designs are moving
towards a Globally-Asynchronous, Locally-Synchronous (GALS) paradigm where
individual modules are based on synchronous logic but inter-module communica-
tion is asynchronous. Unfortunately, asynchronous communication is ill-suited
to safety-critical systems: formally verifying asynchronous systems is order of
magnitudes more complex when compared to synchronous design.

To solve this problem, we divide time into fixed-length intervals which we call
frames. The Frame Generator periodically produces a frame signal that is propa-
gated to all wrappers; the frame period is significantly larger than both the physical
clocks (in our prototype, we use a frame period of 1us, while the system clk has a
8ns period) and signal propagation delays. All timing requirements (period, dead-
line and execution time) expressed in the AADL model are multiples of the frame
period, and processors are synchronized based on frames. In particular, processes
are periodically activated and communication is initiated on a frame boundary.

The Communication Scheduler uses the frame information to control data
transmission on the communication infrastructure. For each process, a frame grant

signal is propagated to the corresponding monitoring wrapper: during each frame,
the interface module is allowed to transmit on behalf of the process only if the
provided frame grant signal is set. Internally, the Communication Scheduler im-
plements a scheduling table based on a fixed length hyperperiod: for each frame
in the hyperperiod, the table determines which processes are allowed to transmit.
In practice, since a same set of processes could be allowed to transmit for an
interval of several frames in a row, the table encodes the length of every such
interval. To ensure timing predictability, the table is built to enforce contentionless
communication: two processes can be allowed to transmit in the same frame only
if their data transmissions can be carried out in parallel. In particular, since our
prototype employs a shared bus, we allow a single process to transmit in each
frame. If for example the communication infrastructure is implemented as a seg-
mented bus connected by bridges, processes using different bus segments could be
allowed to transmit simultaneously. Note that apart from timing predictability, the
contentionless principle can simplify infrastructure design: for example, wormhole
routers with no packet buffers can be used in a NoC [55].

102

PhD Thesis, University of Illinois, August 2012

Finally, the Power Manager monitors power consumption. A clk en signal is
propagated to each monitoring wrapper. The proc clk is periodically generated
only while the clk en is high; therefore, the Power Manager can completely stop a
processor by simply lowering the corresponding clk en signal. In our implemented
prototype, the Power Manager periodically checks the input voltage to the system
using the System Monitor functionality of the Virtex-5 FPGA; in a battery-operated
system such as a pacemaker, this can be used to derive an estimate of remaining
battery energy. If the energy becomes dangerously low, the Power Manager can
shut down the non-life critical systems running on the CPU to save energy for the
base pacing module. If additional measurement functionalities were available on
the chip, the Power Manager could implement more refined control actions. For ex-
ample, if power consumption could be measured for each processor, a misbehaving
processor consuming an excessive amount of energy could be selectively turned off.

Interface and Control Module

Fig. 4.10(b) shows a detailed block diagram of the interface module for a HW
processor: it is composed of three main submodules, the Processor Interface, the
DMA Engine, and the Communication Interface. The Processor Interface is directly
connected to the processor and exports the communication services; it uses the same
proc clk as the processor. The DMA Engine uses the system clk and implements
most of the interface module logic. Finally, the Communication Interface connects
to the communication infrastructure and shares its physical clock: it converts data
transfer commands issued by the DMA Engine into read/write transactions on the
communication infrastructure. This division of concerns simplifies development
and certification: a new Communication Interface must be implemented for each
communication infrastructure IP, but the DMA Engine is fully reusable. The
Communication Interface receives the frame grant as input, and it is allowed to
read/write only when the signal is high. In practice, to account for the effect of
propagation delay, after frame grant goes high the Communication Interface must
wait for a guard time equal to twice the maximum signal propagation delay before
it can start to transmit.

Since all three submodules lie in different clock regions, dual-port memory
elements are used to connect them. The data scratchpad can be simultaneously
accessed by both the Processor Interface and DMA Engine. A variable number of
FIFO queues are used to hold incoming data to message queues; the processor can

103

PhD Thesis, University of Illinois, August 2012

read from the FIFO queues at any time. Service request by the processor are sent
to the request queue. There are two types of requests: 1) sending a message to the
message queue of another processor; 2) performing either a read (from external
memory to data scratchpad) or write (viceversa) DMA operation. A message
transfer request contains an ID for the destination queue and the data to be sent,
while a DMA request contains the length of the transfer and the base addresses in
both external memory and the scratchpad. All transfers are multiple of a 32-bits
word. The completion queue is used to signal the end of a DMA operation back to
the processor. Finally, the transfer queue is used to connect the DMA Engine to
the Communication Interface.

The DMA Engine processes incoming service requests in order based on the
request type. First of all, for every message transfer it translates the queue ID into
an address. All external memories and message queues are automatically assigned
unique system-wide addresses by our tools. The address is used by the communi-
cation infrastructure and Communication Interface to determine the destination of
a data transfer. Second, for message transfers and DMA write, the DMA Engine
simultaneously moves data from the request queue or the data scratchpad to the
transfer queue, and sends the data to the Run-Time Monitoring Engine in the control
module. The engine is responsible for checking each transferred data word against
the functional properties included in the certificate, and it issues either a reject or
accept command in 4 clock cycles, and it uses monitors generated by BusMOP.
If the transfer is rejected, the transfer queue is flushed. Otherwise, the DMA
Engine commands the Communication Interface to start the data transfer. The
DMA Engine then immediately proceeds to service the next request; in particular,
to avoid stalling the Communication Interface, it can write to the transfer queue
while a previously accepted data transfer is being carried out. Incoming data from
DMA read operations is forwarded to the Run-Time Monitoring Engine but never
rejected, hence a reception queue is not required; as explained in Section 4.4, this is
allowed because read operations can not cause side-effects in the system. Similarly,
incoming messages are monitored but immediately injected into the corresponding
message queue.

The control module for a HW processor is composed of two main submodules.
The aforementioned runtime monitoring engine is described in more details in
Section 4.4. The process scheduler receives the frame signal as input and peri-
odically activates the HW process through a process start wire. The process is
responsible for signaling the end of its periodic execution through a process stop

104

PhD Thesis, University of Illinois, August 2012

signal. Failure to do so denotes a critical error; as a consequence, the process is
stopped by halting its proc clk clock.

The interface and control module for a CPU processor have some added com-
plexity, mainly because multiple processes can be executed on the same CPU.
Message queues, request and completion queues, transfer queues and Run-Time
Monitoring Engines are duplicated for each process; our wrapper VHDL descrip-
tion is parametric in the number of processes and our Microblaze implementation
supports up to ten. Note that we expect few processes to be mapped on each CPU
(typically one per executed application), since each process can have multiple
threads. One frame grant signal for each executed process is provided to both
the DMA Engine and Communication Interface; they each service the process for
which the frame grant is high. The Processor Interface is customized based on the
CPU IP; in our implementation for the Microblaze all services are exported through
memory-addressable registers. Finally, the process scheduler is replaced with a
CPU scheduler. It implements a scheduling table for processes which is similar to
the table in the Communication Scheduler. Whenever a different process must be
executed, the CPU scheduler interrupts the CPU and communicates the ID of the
process. In this way we make sure that computation is synchronized at the frame
boundary, while requiring only minimal kernel modification. Note that while we do
not support it in our Xilkernel implementation, the OS can implement a two-level
scheduler (as required for example by ARINC653), where the time assigned to
each process by the CPU Scheduler is distributed to its threads according to a
low-level, process-specific software scheduler.

Implementation Results

We have used our developed tools to automatically generate wrappers based on
the AADL pacemaker specification described in Section 4.3.1. The platform was
instantiated and synthesized using Xilinx Embedded Development Kit 10.1.3 on
a Virtex-5 VLX50T FPGA. We created both correct and faulty versions of low-
criticality processes (in particular, the programmer process) to test the capability
of the monitoring wrappers to reject faults. The design behaved according to
specification, albeit more stringent testing would be required for certification.

Since propagation delay is less of a concern in current FPGA chips, a single
125Mhz system clk is shared among all wrappers. The VLX50T FPGA can
support up to 11 additional clocks for processors and memories; in our pacemaker

105

PhD Thesis, University of Illinois, August 2012

implementation, the CPU and all HW processors use separate proc clk clocks
also running at 125Mhz. The communication infrastructure can transfer up to 4
bytes per cycle, for a total bandwidth of 500MB/s; however, due to guard time, a
maximum of 480 bytes can be transferred every 1us frame, resulting in an effective
bandwidth of 480MB/s. Finally, we measured an OS footprint of 7648 bytes in
instruction and 15234 bytes in data scratchpad.

4.4 Functional Isolation

Our approach to provide functional isolation relies on runtime monitoring. As
described in Section 4.3, for each process the designer specifies a set of formal
properties that describe its allowed communication behavior. At runtime, the
monitoring engine in the control module checks that all properties are satisfied. If a
violation is detected, then the control module can take a suitable recovery action to
keep the system in a safe state; in particular, any faulty data transfer can be rejected
before it is propagated on the communication infrastructure.

Our toolset is based on Monitoring-Oriented Programming (MOP) (see Chap-
ter 2). MOP is a highly extensible and configurable Runtime Verification frame-
work. The user is allowed to extend MOP with his/her own logics via logic plugins
which encapsulate the monitor synthesis algorithms. Currently, we support both
Past-Time Linear Temporal Logic (PTLTL) and Extended Regular Expressions
(ERE). Property specification consists of event definitions and logical formulae
or patterns. The formula or pattern designates which “traces” (observed series of
events) are valid or invalid. Recovery can be initiated either when a validation or
violation of the trace is detected. For EREs, valid traces are those which are strings
in the language represented by the ERE, with events treated as the letters in the
alphabet of the language. Neutral traces are prefixes of strings in the language,
while violations are invalid strings. For PTLTL formulae, valid traces are any
traces for which the formula evaluates to true, invalid traces are those for which
the formula evaluates to false; there are no neutral traces. For more information on
regular languages and temporal logic see Chapter 5.

Illustrative Example. An example of property specification for the Event
Tagger process can be seen in Fig. 4.11. Recall from Section 4.3 that two data
objects are placed in external memory: the signalBuffer and the logBuffer. The
property, called SAFEMEMORYACCESS, makes sure that the Event Tagger can

106

PhD Thesis, University of Illinois, August 2012

soc SafeMemoryAccess{
signal numFailures : STD_LOGIC_VECTOR(11 downto 0) := X"000";

event logBufferWrite : write in logBuffer
event signalBufferWrite : write in signalBuffer

ere: (logBufferWrite)*

@violation {
reject_reg <= ’1’;
if(numFailues >= 1000) then
reset_reg <= ’1’;
numFailures <= (others => ’0’);

end if;
}

}

1

Figure 4.11: Example Property: SAFEMEMORYACCESS

not erroneously overwrite the data written by the critical Pacer module in the
signalBuffer. Each property is comprised of a formula, an EventList, a declaration
section and validation/violation handlers. In this example, the declaration section
simply introduces one monitor-local register that keeps track of the number of
erroneously attempted writes. The two events, signalBufferWrite and logBufferWrite,
capture writes to the signalBuffer and logBuffer respectively. The ERE pattern
matches zero or more occurrences of the logBufferWrite event; hence, any write to
signalBuffer will cause a violation. Recovery is specified in the violation handler:
the data transfer is rejected. Furthermore, after 1000 erroneous writes, presumably
indicating the presence of a bug rather than a transient fault, the process is reset.

As described in Section 4.2, BusMOP generates a VHDL module for each
property. We have developed new logic that connects all generated property
modules together in the Monitoring Engine. Compared to PCI Bus monitoring,
this implementation has two important novelties. First of all, BusMOP for PCI bus
monitoring could only recover through corrective actions (in particular, overwriting
memory locations): this is because data transfers could not be prevented from
being propagated on the bus. In our SoC platform, faulty data transfers can be
rejected in the interface module. Second, since properties are specified in the
AADL model, events can be expressed using the symbolic names of message
queues and data objects; our tool then automatically translates from names to
corresponding addresses. In BusMOP, the designer had to manually specify all
memory addresses, which is error prone.

Event Specification. Again, a formal syntax of event specifications can be see
in Chapter 2. The only difference is that within the SoC framework, names can be

107

PhD Thesis, University of Illinois, August 2012

used for memories rather than numerical addressed.
All events are read/writes from/to either a message queue or a data element in

external memory, identified by its name in the AADL model. Normally, an event is
triggered whenever any word of a data element is changed. However, the designer
can specify a numerical address inside the data element, in which case the event
is triggered only when that specific memory location is read/written. This can
useful to access individual components of a complex data structure. In this case,
the designer can also specify a desired value range. Ranges can consist of a single
arithmetic expression, or a pair of comma separated arithmetic expressions denoting
the minimum and maximum values that can trigger the event. Since all transfers in
the system are multiple of the word size, values are always assumed to be 32-bits.

Recovery. Recovery actions in the handlers are specified as a list of concurrent
VHDL statements. Several recovery actions are possible in the handler: 1) the
current data transfer can be rejected in the interface module; 2) the monitored
process can be stopped. In a HW processor, this is achieved by stopping the proc clk.
In a CPU, the output of the CPU Scheduler is altered so that the processor is never
executed; 3) the process can be reset. The reset functionality depends on the design
of the processor. HW processors implemented on FPGA use synchronous logic
and are provided with a reset signal from the control module. In our Microblaze
implementation, the control module can interrupt the CPU and signal the reset
action. Xilkernel can then kill the process and restart it. 4) The DMA Engine
can be instructed to carry out a send to a message queue or a write to external
memory. Monitor requests take precedence over all other data transfer requests,
but they can still be carried out only during a frame assigned to the process by
the Communication Scheduler. The set of registers described below is used to
specify the recovery action in VHDL; as with events, symbolic names can be used
in place of addresses.

Data Transfer Interface

address reg address
value reg value send/written

execute reg start transfer
reject reg reject transfer
stop reg stop process

reset reg reset process

Note that only outgoing data transfers can be rejected; incoming data is always

108

PhD Thesis, University of Illinois, August 2012

accepted. By checking all outgoing transfers, we always make sure that any data
propagated on the communication infrastructure conforms to specified certificates.
Hence, incoming data must also conform to system specification. Furthermore,
since timing isolation is always enforced, DMA read operations can not steal
resources or change the state of other processes.

Programmer Process. We now describe a more detailed example to show how
monitors can be directly exploited to enforce correct communication between lower
and higher criticality applications. As described in Section 4.3, the Programmer
process is used to update execution parameters of both the Pacer and Rate Adapter
based on received RF commands. This is potentially dangerous, because both the
Pacer and Rate Adapter are more critical than the Programmer and RF process. To
solve the problem, we can introduce a commit protocol. The Programmer sends
new parameters followed by a check command to the Rate Adapter through the
RateAdapter.parameters message queue. The Rate Adapter validates the received
parameters and sends back either a success or a failure answer to the Program-
mer.response message queue. The Programmer then repeats the same steps for
the Pacer using its Pacer.parameters queue. If the Programmer receives success

answers from both processes, it then sends commit messages to the Rate Adapter
and Pacer process, causing them to load the received parameters. Unfortunately,
since the Programmer is a complex, non safety-critical process, it could fail after
sending a commit command to just one of the two processes. While this would not
compromise the life-critical functionality (the Pacer control algorithm rejects any
unsafe control points [11]), it can nevertheless disrupt the Rate Adapter causing
significant discomfort to the patient.

checkPacer : write at Pacer.parameters value in X"40000000"
checkRate : write at RateAdapter.parameters value in X"40000000"
successPacer : read at Programmer.response value in X"80000000"
successRate : read at Programmer.response value in X"20000000"
failurePacer : read at Programmer.response value in X"40000000"
failureRate : read at Programmer.response value in X"10000000"
commitPacer : write at Pacer.parameters value in X"80000000"
commitRate : write at RateAdapter.parameters value in X"80000000"

1

Figure 4.12: Event List

The solution that we adopt is to send the commit command directly from the
monitor; in this way, we isolate the critical functionality of the Programmer module
inside the certified wrapper. A set of Programmer events are specified in Fig. 4.12,
consisting of check and commit commands and success and failure answers for

109

PhD Thesis, University of Illinois, August 2012

...
1. ptltl : successPacer and <*>successRate and
2. (*)(not (not(successRate) S successPacer)) and
3. (*)(not (not(successRate) S failureRate))

@validation {
address_reg <= Pacer.parameters;
value_reg <= X"800000";
execute_reg <= ’1’;

}
...

1

Figure 4.13: SENDPACERCOMMIT Specification

...
1. ptltl : commitRate or commitPacer or (
2. (checkRate or checkPacer) and
3. (*)(
4. (not(successRate or failureRate) S checkRate) or
5. (not(successPacer or failurePacer) S checkPacer)
6.)
7.)
@validation { reject_reg <= ’1’;}
...

1

Figure 4.14: CHECKPROGRAMMERCOMMANDS Specification

both the Pacer and the Rate Adapter. The SendPacerCommit property in Fig. 4.13
is used to send the commit command to the Pacer on validation (an equivalent
property with different handler can be used to send the commit to the Rate Adapter).
In the PTLTL formula, <*>, (*) and S are temporal operators denoting eventually
in the past, previously and since. Line 1 of the formula specifies that a success is
received from the Pacer in the present and a success from the Rate Adapter has
been received in the past. Line 2 implies that at least one successRate event has
been received since the previous successPacer (if any), and Line 3 implies that at
least one successRate has been received since the previous failureRate (if any);
this makes sure that a valid parameter set has been passed to the Rate Adapter
since the last commit operation. Finally, property CheckProgrammerCommands
in Fig. 4.14 is used to reject any erroneous Programmer command. Line 1 is
used to reject commit commands from the Programmer, since only the monitor
should send them. Lines 2-7 make sure that the Programmer can not send a check

command if it has not received an answer (either a success or a failure) to its
previous check commands to both the Pacer and Rate Adapter: otherwise, the
Programmer could send a check command immediately before a commit is sent by
the monitor, causing a wrong set of parameters to be loaded.

110

PhD Thesis, University of Illinois, August 2012

4.5 Chapter Related Work

There are two main Runtime Verification approaches: 1) offline, where a log, or
trace is kept, which can then be used for purposes of debugging; and 2) online,
where a property is checked while the program is running. As BusMOP is an
online technique, we will only describe online approaches to Runtime Verification.
This is a short related work, a summary with more related work on monitoring in
general can be found in Chapter 1.

MaC [82], Tracematches [10], Eagle [16], and all the various other runtime
monitoring systems of which we are aware use specific verification languages
which cannot be changed, while BusMOP, as an extension of MOP [93], will
eventually support all the finite logics supported in JavaMOP. Temporal Rover [44]
is a commercial Runtime Verification tool which uses future time metric temporal
logic. It provides inline specification of monitors, where the monitors are written
straight in the source file. Inline specification does not make sense for BusMOP, as
there is no program being monitored per se. Program Query Language (PQL) [89],
is an approach somewhat similar to MOP, although it also only allows one speci-
fication language. PQL can support the full generality of context free languages.
Tracematches is very similar to JavaMOP. The biggest difference is that its choice
of regular expressions for logical formalism is hardwired. It is an extension of
the AB [9] AspectJ compiler. All of the above approaches are designed to mon-
itor specific programs, and are implemented in software. This has the effect of
both adding runtime overhead, and performing a function different from that of
BusMOP, which monitors COTS peripherals.

The PSL to Verilog compiler, P2 [88], is the sole attempt to perform formal
Runtime Verification in hardware, of which we are aware. P2V is similar to
BusMOP in that monitors are implemented in hardware rather than software, and
that both approaches thus have no runtime overhead on the CPU. P2V, however,
is more like the above approaches in that it is designed for monitoring actual
programs rather than peripheral devices. Also it requires a dynamically extensible
soft-core processor implemented on an FPGA, while our approach can potentially
be applied to any COTS communication architecture. Further, P2V uses hardwired
logic while BusMOP allows different formalisms.

The concept of PBD is well established and several SoC platforms are commer-
cially available [40, 96]; however, they are not targeted at safety-critical systems.
Similarly, a variety of PBD and model-driven design methodologies have been

111

PhD Thesis, University of Illinois, August 2012

proposed (see [107] for an overview), several of which (for example, see [12, 78])
support formal verification of modeled application behavior. The main difference is
that our methodology and platform does not simply allow to verify the correctness
of a high-level model: it enforces application isolation at runtime, as long as the
designer can correctly specify system isolation requirements in the model.

4.6 Chapter Conclusion

The efficacy of the BusMOP system has been demonstrated in a hardware and
hardware/software domain through two usages: monitoring bus traffic for PCI
COTS components, and providing functional isolation in System-on-Chip (SoC)
design. This shows that Runtime Verification is effective outside of its originally
intended software environment.

COTS peripherals are increasingly being adopted in the embedded market for
performance reasons. However, COTS components introduce challenges in the
development of critical systems, as they are unpredictable and often complete
hardware specification is not publicly available. In this chapter, we have proposed
runtime monitoring of bus activities as a way to cope with such unpredictability.
A monitoring device can be plugged on a PCI bus segment and check that all
communication between peripherals and the rest of the system behaves according
to specifications. Monitoring logic is automatically generated by the BusMOP
framework and synthesized on FPGA, resulting in zero CPU runtime overhead.
Finally, we showed the applicability of our monitoring infrastructure and recovery
mechanisms on a real test case.

Implementing safety-critical embedded systems like medical devices as SoC is
promising, but unfortunately there is a lack of suitable design methodologies. Inte-
grating mixed-criticality systems is especially challenging because low-criticality
IPs are too expensive to be verified and/or certified, but they must be prevented
from interfering with high-criticality applications. To solve this problem, a new de-
sign methodology and architectural platform were introduced. The key idea is that
our platform supports behavioral enforcement through BusMOP: low-criticality
processes are guaranteed to behave according to a published certificate. This
does not remove the need to certify high-criticality components and verify correct
system-level behavior, but it enables the design to do so without worrying about
unpredictable faults in low-criticality components.

112

PhD Thesis, University of Illinois, August 2012

We plan to extend this work in two directions. From a system point of view,
we plan to develop a interposing PCI/PCI-X/PCI-E monitoring device capable
of executing preventive recovery actions as described in Section 4.2.2. While
the SoC case study shows that preventative actions are feasible, we believe a
PCI/PCI-X/PCI-E monitoring device capable of preventative action would be
highly desirable. From a formal specification point of view, we plan to extend
BusMOP to support all MOP logic plugins through the current MOP FSM plugin.

113

PhD Thesis, University of Illinois, August 2012

Chapter 5

Finite Logics

5.1 Chapter Introduction

In this chapter, we discuss the finite-state logic plugins available in MOP. Each
logical formalism provided by the MOP framework is implemented as a program
called a logic plugin, as mentioned in Chapter 2. The individual logic plugins are
controlled by the logic repository as can be seen in Fig. 2.1.1

For each plugin we first discuss the syntax of specifications using the formal-
ism. Each plugin syntax instantiates the generic hLogic Namei, hLogic Syntaxi,
hLogic Statei non-terminals described in Section 2.5.1 (see also Fig. 2.3). Inter-
nally, aside from the specified syntax, each plugin is also given the set of events
used in the property by the instance client (either JavaMOP or BusMOP). The in-
stance client simply drops the instance-specific event definition and actions, which
are irrelevant to the plugin, and sends only the event names. For simplicity, in
what follows, the event declarations are dropped from the logic plugin’s syntax. To
clarify the syntax we show an example property in each logic, which also does not
include event descriptions. Because only the property is shown, without any event
definitions, the parameters, which are part of event definitions in JavaMOP, are
absent. One should be aware, if one wishes to use the logic repository described
in Chapter 2 without using one of the two pre-defined instance clients, that one
should also provide the event names with the property.2

We then discuss some issues specific to the particular plugin as well as how
monitor pseudocode suitable for conversion to Java and HDL is generated. The

1The Finite State Machine (FSM) plugin is work with Grigore Roşu that appeared in [93] the
extended-regular expressions plugin is a reimplementation of an older algorithm [111], past time
linear temporal logic (PTLTL) is an extension of an older algorithm, and linear temporal logic with
past builds upon the work of [53] and [42] to provide the first monitoring algorithm for LTL with
both past and future operators.

2Additionally, one must use the logic repository XML syntax, which distinguishes the events
from the property.

114

PhD Thesis, University of Illinois, August 2012

hFSM Namei ::= “fsm”
hFSM Syntaxi ::= {hItemi}{hAliasi}

hItemi ::= hState Namei “[” { hTransitioni [“,”]} “]”
hTransitioni ::= hEvent Namei “�>” hState Namei

| “default” hState Namei
hAliasi ::= “alias” hGroup Namei “=”

{ hState Namei “,” } hState Namei
hFSM Statei ::= hGroup Namei | hState Namei | “fail”

Figure 5.1: FSM Syntax

pseudocode generated from each example property is shown to make the explana-
tion of monitor pseudocode generation more concrete.

For every plugin we also describe how enable sets are generated. Recall that
enable sets distill information about which prior events must be seen for a given
event to create a new monitor instance (see Defs. 10, 11, 12 and the surrounding
text in Sections 3.3 and 3.3.2, all from Chapter 3, for a complete explanation
of enable sets).

5.1.1 Chapter Contributions

This chapter presents algorithms for minimizing multicategory finite state machines,
as well as enable set calculations for finite state machines. It contains a description
of a reimplementation of the translation from extended regular expressions to finite
state machines, a parallel algorithm for efficiently monitoring past time linear
temporal logic in hardware, and the first implementation of a monitoring algorithm
for linear temporal logic with both future and past operators.

5.2 Finite State Machines

The finite state machine (FSM) plugin is one of the most important plugins for
MOP. Not only is it a useful logical formalism in itself, but it is used as a back-
end for all logics reducible to finite automata. Currently, all logic plugins except
for the context-free grammar (CFG; Chapter 6), string rewriting systems (SRS;
Chapter 7), and past time linear temporal logic with calls and returns (PTCaRet;
see [105] and [93]) generate FSM output. This allows for a strong separation of
concerns. For instance, minimization need occur only once, and it allows us to use
one enable set generation algorithm for all of these plugins. Additionally, each

115

PhD Thesis, University of Illinois, August 2012

start [
default start
next -> unsafe
hasnext -> safe

]
safe [

next -> start
hasnext -> safe
dummy -> safe

]
unsafe [

next -> unsafe
hasnext -> safe

]
alias all states = start, safe, unsafe
alias safe states = start, safe

Figure 5.2: FSM Example

instance of MOP need only know how to translate the pseudocode for FSMs, CFGs,
SRSs, and PTCaRet. Some MOP instances, such as BusMOP, may even opt to
support only finite state monitors, in which case they only need to provide support
for translating FSM pseudocode.3

Fig. 5.1 shows the syntax for FSM properties. An FSM property is a series
of hItemis followed by hAliasis. An hItemi is essentially a state in the finite state
machine, and the different transitions to take on a given input (hTransitioni). The
hAliasi allows for giving a name to a set of states. This is invaluable, because the
hFSM Statei non-terminal, which defines what categories may trigger handlers,
both hGroup Nameis, which are the names associated to sets of states in hAliasis,
and hState Nameis may be associated with handlers. This allows one to write a
property that triggers actions when any state in a given hAliasi is entered.

Fig. 5.2 shows an example FSM property. In this example, three events: next,
hasnext and dummy, and three states: start, safe and unsafe are defined. Two state
aliases are declared: all states represents all the states in the state machine and
safe states includes the start state and the safe state. The fail category is reported
whenever an event occurs that is not specified for the current state. For example,
the state machine will go into fail when the dummy event is seen in the unsafe

state. The default transition in the start state covers any event not specified in the
3Though note that in the case of BusMOP, finite state machines are not used for PTLTL in favor

of using parallel assignments (see Section 5.3.1).

116

PhD Thesis, University of Illinois, August 2012

transition. Because of this, any state with a default transition cannot lead to a fail

category for any input. As mentioned in Fig. 5.1, handlers may be associated with
any state (e.g., start) or group name (e.g., all states).

In the interest of keeping runtime monitoring as efficient as possible, we wish
to use minimized finite state machines for monitors. Because of the ability to
trigger handlers from hState Nameis and hGroup Nameis, MOP FSM properties
are multicategory finite state machines (finite state machines that recognize more
than one language; essentially equivalent to Moore machines). This requires a
small change to the normal Hopcroft FSM minimization algorithm [65].

The Hopcroft algorithm works by assuming the largest possible equivalence
class of states, and then partitioning the equivalence classes into smaller classes
if necessary. The way the algorithm determines that it is necessary to split is by
considering two equivalence classes C1 and C2 and an input, e. For each state s

in C1, if s goes to a state in C2 on e then it goes into class C11, otherwise it goes
to class C12. Classes are continuously split by other classes until a fixed point is
reached. When a fixed point is reached, each equivalence class becomes a state in
the final machine.

The way our algorithm differs is in the initial partition. The normal algorithm
partitions the states into two classes, those states that are final states and those
which are not. We, however, have multiple categories. The particularly interesting
feature, is that categories may overlap on states. If two categories C1 and C2

overlap, they must have three equivalence classes: those states in C1 � C2, those
in C2 � C1, and those in C1 \ C2. The naive algorithm would be to compute the
intersections between all the categories, but that is quadratic in nature. A better
algorithm, which we use, is to find the set of categories each state belongs to. This
takes time linear in the number of states. Those states that have the same set of
categories are placed in the same initial equivalence class.

The monitor pseudocode for an FSM property appears the same as the input
code, except that it will be minimized, whereas the input code may not be minimal.
Because of this, we omit the output of the example in Fig. 5.2. Each MOP instance
that wants to support the finite state machine-based logics must convert the FSM
pseudocode into executable code.

The algorithm in Fig. 5.3 computes the property enable sets for a finite state
machine [31]. We use this algorithm to compute the enable sets for any logic that is
reducible to a finite state machine, including ERE, LTL, and PTLTL. The algorithm
assumes a finite state machine, defined as FSM = (E , S, s0 2 S, � : S ⇥ E+S).

117

PhD Thesis, University of Illinois, August 2012

Algorithm EN fsm(FSM = (E , S, s0, �))

Globals: mapping V
µ

: S ! P
f

(P
f

(E))

mapping enable

E
G : E ! P

f

(P
f

(E))

Initialization: V
µ

(s) ; for any s 2 s

enable

E
G(e) ; for any e 2 E

function main()

1 compute enables(s0, ;)
function compute enables(s, µ)

1 for all defined �(s, e) do
2

... enable

E
G(e) enable

E
G(e) [{µ}

3

... let µ

0 µ [{e}
4

... if µ

0 62 V
µ

(s)

5

...
... V

µ

(s) V
µ

(s) [{µ

0}
6

...
... compute enables(�(s, e), µ0)

7

... endif
8 endfor

Figure 5.3: FSM enable

E
G Computation Algorithm [31].

E is the alphabet, traditionally listed as ⌃ but changed for consistency, because the
alphabets of our FSMs are event sets. s0 is the start state, corresponding to ı in the
definition of a monitor. � is the transition partial function, taking a state and an
event and potentially mapping to a next state for the machine. Note that we can
extend � to be consistent with � in Def. 7 by simply completing the function by
adding an undefined state, undef, and making all non-existent transitions point to
undef. This is how FSMs are handled in the JavaMOP instance. We assume that all
states not reachable from the initial state and not coreachable from the states of
interest (states of interest being those states s such that �(s) 2 G, where G is the
goal category; see Def. 11) are pruned from the FSM before running the algorithm,
leaving the transitions that pointed to them undefined. V

µ

is a mapping from states
to sets of events; it is used to check for algorithm termination. enable

E
G is the output

property enable set, which is converted into a parameter enable set by the language
instance client, discussed in Chapter 2.

Function compute enables is first called from main with µ = ; and the initial
state s0. If we think of the FSM as a graph, µ represents the set of edges we have
seen at least once in a given traversal path. For each defined �(s, e) (line 1), we add
the current µ to the enable

E
G(e) (line 2) because this means we have seen a viable

118

PhD Thesis, University of Illinois, August 2012

hERE Namei ::= “ere”
hERE Syntaxi ::= “empty” | “epsilon”

| hEvent Namei
| hERE Syntaxi “*”
| hERE Syntaxi “+”
| “˜” hERE Syntaxi
| hERE Syntaxi “|” hERE Syntaxi
| hERE Syntaxi “&” hERE Syntaxi
| hERE Syntaxi hERE Syntaxi
| “(” hERE Syntaxi “)”

hERE Statei ::= “match” | “fail | “?”

Figure 5.4: ERE Syntax

prefix set (as all non-viable paths in the machine have been pruned). This follows
from the definition of enable

E
G . Line 3 begins the recursive step of the algorithm.

We let µ

0
= µ [{e}, because we have traversed another edge, and that edge is

labeled as e. The map V
µ

tells us which µ have been seen in previous recursive
steps, in a given state. If a µ has been seen before, in a state, taking a recursive
step can add no new information. Because of this, line 4 ensures that we only
call the recursive step on line 6, if new information can be added. Line 5 keeps V
consistent. Thus the algorithm terminates only when every viable µ has been seen
in every reachable state, effectively computing a fixed point. Thus, the algorithm
is bounded by the number of one cycle paths through the graph (and is faster in
practice, because most paths will have repeated events).

5.3 Extended Regular Expressions

Regular expressions can be easily understood by the average software engineer
or programmer, as shown by the immense interest in and the success of scripting
languages like Perl, based essentially on regular expression pattern matching. We
believe that regular expressions provide an elegant and powerful specification lan-
guage also for monitoring requirements, because an execution trace of a program
is in fact a string of states. Extended regular expressions (EREs) add complemen-
tation to regular expressions, which brings additional benefits by allowing one to
specify patterns that must not occur during an execution. Complementation gives
one the power to express patterns on strings non-elementarily more compactly.
Also, one important observation about the use of ERE in the context of Runtime

119

PhD Thesis, University of Illinois, August 2012

(R1|R2){e} = R1{e}|R2{e}
(R1R2){e} = (R1{e}) R2

| if(epsilon in R1) then R2{e} else empty

R ⇤ {e} = (R{e})R ⇤
˜R{e} = ˜(R{e})

e1{e2} = if(e1 = e2) then epsilon else empty

epsilon{e} = empty

empty{e} = empty

Figure 5.5: ERE Derivative Equations

Verification is that ERE patterns are often used to describe buggy patterns instead
of desired properties.

Fig. 5.4 shows the syntax for ERE properties. The operators are standard for
regular expressions, except that “˜” is the language complement of an ERE, and
“&” is language intersection. While “epsilon” is the empty string, as is normal,
“empty” refers to the empty language.

Here is an example ERE property for the UnsafeMapIterator property previously
shown in Fig. 3.3:

create coll update map* create iter

use iter* update map+ use iter

Recall that in this property the sequence of actions of importance is the creation
of an Iterator from a Collection that was created from a Map, which is updated
between the creation of the Iterator and its use.

FSMs are generated from EREs using coinductive techniques [111]. Briefly,
in our approach we use the concept of derivatives of a regular expression, which
is based on the idea of event consumption, in the sense that an extended regular
expression R and an event e produce another extended regular expression, denoted
R{e}, with the property that for any trace w, trace e w is in L(R) (i.e., the
language denoted by R) iff w is in L(R{e}). Fig. 5.5 defines this derivative
semantics recursively on the structure of regular expressions; the operators without
equations can be defined in terms of operators that do have equations specified.
In the equations “|” refers to the ERE operator “|”. The generated FSM is not
minimal; the minimization algorithm of the FSM plugin (Section 5.2) is used to
make it minimal. A deterministic automaton is produced, saving memory and time
(in contrast to the more conventional Thompson approach [120], which operates
by first producing a non-deterministic automaton, and then using a determinization

120

PhD Thesis, University of Illinois, August 2012

s0[
create coll -> s1

]
s2[

use iter -> s4
update map -> s3

]
s1[

createIter -> s2
update map -> s1

]
s4[

use iter -> s4
update map -> s3

]
s3[

use iter -> s5
update map -> s3

]
s5[
]
alias match = s4, s5

Figure 5.6: ERE Example Output

121

PhD Thesis, University of Illinois, August 2012

hPTLTL Namei ::= “ptltl”
hPTLTL Syntaxi ::= “true” | “false”

| hEvent Namei
| “not” hPTLTL Syntaxi
| hPTLTL Syntaxi“and” hPTLTL Syntaxi
| hPTLTL Syntaxi“or” hPTLTL Syntaxi
| hPTLTL Syntaxi“xor” hPTLTL Syntaxi
| hPTLTL Syntaxi“=>” hPTLTL Syntaxi
| “[*]” hPTLTL Syntaxi
| “<⇤>” hPTLTL Syntaxi
| “(*)” hPTLTL Syntaxi
| hPTLTL Syntaxi “S” hPTLTL Syntaxi

hPTLTL Statei ::= “validation” | “violation”

Figure 5.7: PTLTL Syntax

algorithm to produce a deterministic automaton).
Fig. 5.6 shows the output FSM for the UnsafeMapIterator example ERE above.

Note that the alias match is assigned so that ERE properties properly allow match

as a verdict category. This was the initial motivation for aliases in the FSM
plugin. Also note that the states do not have fully specified input, so fail is a
possible output category.

As mentioned in Section 5.2, the property enable sets for EREs are computed
by using the algorithm in Fig. 5.3 after the ERE has been converted to an FSM.

5.3.1 Past Time Linear Temporal Logic

Past time linear temporal logic is similar to standard linear temporal logic [102],
except that all operators refer to the past. Some safety properties are more easily
expressed in terms of the past than the future, for example the property that a
user authentication be required before accessing some resource is most naturally
expressed as “access => <⇤> authenticate”, e.g., that an access requires an
authentication at some point in the past. Monitors generated from PTLTL formulae
also have the quality of validating or violating on every event because the past is
already known. This contrasts with LTL monitors (see Section 5.4), which can
also be in an intermediate, ?, state. Additionally, once an LTL monitor validates or
violates, it is always violated or validated, whereas PTLTL is allowed to change
on each event. PTLTL does not guarantee that its formula holds for all program
executions, as one may expect from model checking, because a monitor never sees
all possible paths through a program.

122

PhD Thesis, University of Illinois, August 2012

Formula Assignment Initial b[n]

F1 S F2 b[n] B(F1) and b[n] or B(F2) false
[*] F b[n] B(F) and b[n] true
<⇤> F b[n] B(F) or b[n] false
(*) F b[n] B(F) false

Formula Expression

B(F) F if F is a simple boolean formula,
otherwise the b[n] storing the value of F

Figure 5.8: PTLTL Assignment Equations

Fig. 5.7 shows the syntax for our PTLTL plugin. The operators “not”, “and”,
“or” , and “=>” (implication) are the standard boolean connectives. The operator
“[*]” stands for “always in the past”, meaning the formula following it must hold at
all times in the past, while “<⇤>” stands for “eventually in the past”, meaning that
the formula following it must either currently hold or it must have held somewhere
previously in the trace. The operator “(*)” means “previously”: the formula
following it, say F , must hold in the previous time step; in terms of MOP, this
means that F must have held when the previous event occurred. “S” means “since”;
“F1 S F2” means “either F2 must hold now, or F2 must have held in the past and F1

must have held since then.”; “<⇤> F ” can be defined as “true S F .”
Below is an example PTLTL property. In this property the goal is to ensure that

next is never called on an Iterator without first calling hasNext:
next => (*)hasNext

The event definition should make sure that the call to the hasNext method
actually returns true, as well. Recall that (*) means previously, so the property
states that the event preceding next must be hasNext.

The original algorithm for PTLTL monitor generation, as outlined in [62, 63],
works by using a bitvector to keep the state of each temporal operator in the
formula. A series of sequential assignments updates the bitvector as each event
arrives. For example, “hold S acquire” would need one bitvector index to monitor.
The assignment for this bitvector index would be “b[0] b[0] and hold or acquire”.
Fig. 5.8 shows the assignments necessary for each PTLTL temporal operator. Note
that if one of the operands to a temporal formula is itself a temporal formula, it
will appear as a bitvector index in the assignment. It is, then, essential to generate

123

PhD Thesis, University of Illinois, August 2012

the assignments in the proper order (depth-first).
In [100], it was determined that a parallel series of assignments would be more

efficient for monitoring PTLTL properties on an FPGA. Sequential assignments
are parallelized by back substitution of terms for the bitvector index they computed.
This back substitution in an assignment to b[n] is only performed, however, for
bitvector indices b[m] that are computed before the assignment to b[n] in the original
sequential assignments. For example, consider the following sequential bitvector
assignments:

b[0] b[0] or e1

b[1] b[0] and b[2] or e2

b[2] e3
When parallelized (we us) to denote parallel assignments and for sequen-

tial), the code becomes:
b[0]) b[0] or e1

b[1]) (b[0] or e1) and b[2] or e2
b[2]) e3

Note how “b[0] or e1” was substituted for “b[0]” in the assignment to b[1]

because the assignment to “b[0]” occurred before the assignment to b[1] in the
sequential code, while the assignment to b[2] was not substituted, because b[2] was
computed after b[1] in the sequential code.

By using the parallel assignments it also becomes straightforward to generate an
FSM by exhaustively computing and enumerating the reachable bitvectors. This al-
lows us to easily compute the property enable sets of a PTLTL formula by using the
algorithm in Fig. 5.3 on the FSM generated from the formula. This is the strategy
now used in JavaMOP, while BusMOP continues to use the parallel assignments.

Figs. 5.9(a) and 5.9(b) show the monitor pseudocode for the example above.
Fig. 5.9(a) shows the parallel assignment format (which, in this case, is equivalent
to the sequential code), while Fig. 5.9(b) shows the FSM output. Note that in the
parallel assignments b[0] is initialized to false. In the parallel assignments the
output statement outputs the actual category. If it evaluates to false a violation is
reported, if it evaluates to true a validation is reported. The FSM output uses aliases
for validation and violation because, unlike in LTL, multiple states can be validation

or violation states due to the manner in which the FSM is generated (e.g., n1 and
n2 are both in the validation alias).

As mentioned in Section 5.2, the enable sets for PTLTL are computed by
generating an FSM and using the FSM enable set computation algorithm.

124

PhD Thesis, University of Illinois, August 2012

b[0]) hasNext
output(not next or b[0])

(a) Parallel Assignments

n0[
default n2
hasnext -> n1
next -> n0

]
n1[
default n2
hasnext -> n1
next -> n2

]
n2[
default n2
hasnext -> n1
next -> n0

]
alias violation = n0
alias validation = n1,n2

(b) FSM

Figure 5.9: PTLTL Example Output

5.4 Linear Temporal Logic with Past

Linear temporal logic (LTL) [102] is often used to specify properties in model
checking. LTL formulae allow one to express concepts such as the occurrence
of an event requiring that another event happen in the future. Note that runtime
monitoring cannot guarantee the correctness of a safety or liveness property. Even
though the properties might hold for a given execution of the system, they can only
be proved to hold, in general, by exploring every possible state of the program.
LTL specifications must be used with this in mind.

Fig. 5.10 shows the complete syntax for LTL supported by our plugin. The
operators “not”, “and”, “or” , and “=>” (implication) are the standard boolean
connectives. The operator “[]” stands for “always”, meaning the formula following
it must hold at all times, while “<>” stands for “eventually”, meaning that the
formula following it must eventually hold in the future. The operator “o” means
“next”: the formula following it, say F , must hold in the next time step; in terms of
MOP, this means that F must hold when the next event occurs. As with PTLTL in
the last section, an asterisk in the symbol means the past version, thus “<*>” is
“eventually in the past”, and “(*)” means previously (next in the past).

125

PhD Thesis, University of Illinois, August 2012

hLTL Namei ::= “ltl”
hLTL Syntaxi ::= “true” | “false”

| hEvent Namei
| “not” hLTL Syntaxi
| hLTL Syntaxi“and” hLTL Syntaxi
| hLTL Syntaxi“or” hLTL Syntaxi
| hLTL Syntaxi“xor” hLTL Syntaxi
| hLTL Syntaxi“=>” hLTL Syntaxi
| “[]” hLTL Syntaxi
| “<>” hLTL Syntaxi
| “o” hLTL Syntaxi
| hLTL Syntaxi “U” hLTL Syntaxi
| hLTL Syntaxi “⇠U” hLTL Syntaxi
| hLTL Syntaxi “R” hLTL Syntaxi
| “< ⇤ >” hLTL Syntaxi
| “(*)” hLTL Syntaxi
| hLTL Syntaxi “S” hLTL Syntaxi
| hLTL Syntaxi “⇠S” hLTL Syntaxi

hLTL Statei ::= “violation” | “?”

Figure 5.10: LTL Syntax

The operators “U” and “⇠U” are duals of each other; “R” is a preferred alias for
“⇠U”. “U” is “until”: “F1 U F2” means “either F2 must hold now, or F1 must hold
until F2 eventually holds”. “<> F ” can be defined as “true U F ”. The operator “R”
means “release”. “F1 R F2” means “once F1 holds, F2 can be released in the next
time step;” F2 must hold at all periods before F1 holds, and it must hold during the
first time step in which F1 holds. “[] F ” can be defined in terms of “R” as “false R
F ”. “S” and “⇠S” are the past versions of “U” and “R”, respectively.

It should be noted that the past time operators in this LTL algorithm do not
work exactly like the past time operators available in the PTLTL plugin. This is
because the notion of past time operators in that plugin is not compatible with
how standard linear temporal logic works. In standard linear temporal logic one
essentially is asking “does this formula hold in the first state (i.e. upon receipt of
the first event in a trace) of the program?” For example if we use the specification
o hasNext, which means next hasNext holds, we are asking if this holds after the
first event. For this to hold the second event must be hasNext. This notion of time
is static and unshifting, and this is the notion we have adopted for the LTL plugin.
The alternative semantics for past time operators of the PTLTL plugin we refer to
as shifting time. What this means is that we reevaluate the formula in each state of

126

PhD Thesis, University of Illinois, August 2012

the program (i.e. after each event is received). As a clear example if we wrote a
formula a S b (a holds since b held, and b held at some point in the past) in the
PTLTL plugin, this will be true after the first event if and only if the first event is b,
if the second event is a it still holds after the second event. If the third event is c, it
ceases to hold again until b occurs again. However, it may hold again.

In the LTL plugin, if one writes the specification a S b, however, it will hold
if and only if the first event is b. This is because this notion of time is unshifting
and only cares about whether the property holds after the first event. Clearly, at the
first event, b could not have occurred in the past, because there is no past. The only
event the monitor based on the specification can be aware of is the first event. This
means if the first even is a or c it is a violation.

However, if a past time operator is used within a future time construct, the
meaning is intuitive. For instance if we monitored the property o(a S b), “b a” and
“b b” are valid traces as one would expect. Further for oo(a S b), “b a a” would be
a valid trace.

Below is an example LTL property that restates the UNSAFEMAPITER prop-
erty:

[](useIter => (not updateMap S createColl))

This says that, always, any time we see the useIter event, it must be in the
context of not seeing an updateMap event since the creation of the Collection.

The first step of the algorithm is to generate a Buchi automaton from an LTL
formula via a translation through two way alternating automata, as presented
in [53]. Briefly a two way alternating automata is a six-tuple A = (Q, ⌃, �, I, F, R)

where Q is the set of states, is ⌃ the alphabet (in this case P
f

(events), to allow
eventual support for simultaneous events), � = Q! P

f

(P
f

(Q⇥ ⌃⇥Q)) is the
transition function, I ✓ P

f

(Q) is the initial condition. F ✓ Q is the set of final
states (for finite traces to satisfy the formula) and R ✓ Q is the set of states that
must be repeated (for infinite traces to satisfy the formula). Each tuple as an output
of � can be thought of as a transition in two directions. The set of states from
Q as the first element in the tuple is a conjunction of states that must reach the
acceptance condition with an index in the input stepping one event into the past.
The set of states from Q as the third element in the tuple is a conjunction of states
that much reach the acceptance condition with an index in the input stepping one
event into the future. The second element from ⌃ is the set of events which hold
that triggers the transition. It is possible for the set of events which holds and the
current state to trigger multiple tuples. The resulting top level set is the disjunction

127

PhD Thesis, University of Illinois, August 2012

18

1. For J1, J2 2 22Q�2��2Q
we define J1�J2 = {(

 �
X1 [

 �
X 2, �1 \�2,

�!
X 1 [

�!
X 2) |

(
 �
X 1, �1,

�!
X 1) 2 J1 and (

 �
X 2, �2,

�!
X 2) 2 J2},

2. For a PLTL formula � in negative normal form we define � inductively by:

– �1 � �2 = �1 [�2,
– �1 � �2 = {X1 [X2 | X1 2 �1 and X2 2 �2}, and
– � = {{�}} if � is a temporal formula.

It is actually not completely immediate to deal smoothly with the special
cases raised when checking a past modality at the beginning of a word, or a
future modality at the end of a finite word. We solve this problem using a special
state END, which is reached in an accepting run when the current position � is
outside the word u (�(x) = END� �(x) = 0 or �(x) = |u| + 1).

Definition 17 (� to A�). For any PLTL formula � in negative normal form
on the set AP, let A� = (Q, �, �, I, F, R) be the 2AA defined by:

– Q = sub(�) [{END} where sub(�) are the temporal subformulae of �,
– � = 2AP,
– I = �,
– F = {END},
– R is the set of the subformulae in sub(�) that are not of the form �1 U �2,
– � is defined below (� extends � to B+(Q)):

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

�(?) = ;
�(�) = {(;, �, ;)}
�(p) = {(;, �p, ;)} where �p = {a 2 � | p 2 a}

�(¬ p) = {(;, �¬ p, ;)} where �¬ p = �\�p

�(X �) =
�
(;, �, e) | e 2 �

�

�(�X �) =
�
(;, �, e) | e 2 �

�
[{(;, �, {END})}

�(Y �) =
�
(e, �, ;) | e 2 �

�

�(�Y �) =
�
(e, �, ;) | e 2 �

�
[{({END}, �, ;)}

�(�1 U �2) = �(�2) [(�(�1)� {(;, �, {�1 U �2})})

�(�1
�U �2) = �(�2) � (�(�1) [{(;, �, {�1

�U �2}), (;, �, {END})})
�(�1 S �2) = �(�2) [(�(�1)� {({�1 S �2}, �, ;)})

�(�1
�S �2) = �(�2) � (�(�1) [{({�1

�S �2}, �, ;), ({END}, �, ;)})
�(END) = ;8

<

:

�(�) = �(�) if � is a temporal formula
�(�1 � �2) = �(�1) [�(�2)
�(�1 � �2) = �(�1)��(�2)

Theorem 18 (PLTL to progressing 2VWAA). For any PLTL formula in
negative normal form � with n temporal subformulae, the automaton A� is a
progressing 2VWAA with at most n + 1 states and L(A�) = L(�).

Proof. Let us define �1 � �2 if �1 = END or if �1 is a subformula of �2. It is
easy to see with this partial order that A� is very-weak.

9

We also use the translation from alternating automata to generalized Buchi automata
presented in [14], which follows.

we chose E((q, k)) in � such that (q, k+1) /2 E((q, k)). This is a contradiction,
and hence �� cannot contain such a branch. �t

It is quite easy to see that G1
A is still too big to be used in an e�cient

implementation. It contains many useless states, and keeping only the accessible
states would not be enough since the initial states are too numerous already. We
introduced G1

A merely to prove more easily that our construction is correct.
The intuition how to get a smaller GBA from a 2VWAA is as follows: by

removing useless parts of runs of a 2VWAA we obtain minimal runs, such that
removing any subtree of the forest makes the run invalid. Ideally, we would like
to construct a GBA G2

A which is the restriction of G1
A to transitions of the form

(�(��1(i � 1)), �(��1(i)), �(��1(i + 1)), ui) obtained from minimal runs.
For this, we start from a small set of initial states, and we compute the states

and transitions accessible from these states. We need to store both the current
set of states Y and the previous one X . Since A is two-way, it may happen that
the set X is not big enough to fulfil all requirements imposed by Y . In this case,
we have to backtrack and enlarge X .

Definition 23 (A to G2
A). For any progressing 2VWAA A = (Q, �, �, I, F, R),

let G2
A = (Q��, �, T ��, I ��, F ��, T ��) be the GBA computed by:

Initialization: I �� = {F}⇥ I, � = {F}⇥ I, T �� = ;.
Then, we apply the following saturation procedure for each state (X, Y) 2 �
until we reach a fixed point:

for each (X �, �, Z) 2
�
q�Y

�(q)

if X � ✓ X

(a)

����
if (Y, Z) /2 � then add (Y, Z) to �
if (X, Y, Z, �) /2 T �� then add (X, Y, Z, �) to T ��

else

(b)

������

for each (F, X, Y, �) 2 T �� with (F, X) 2 I ��

if (F, X [X �) /2 � then add (F, X [X �) to �
add (F, X [X �) to I ��

(c)

������

for each (V, W, X, �), (W, X, Y,�) 2 T ��

if (W, X [X �) /2 � then add (W, X [X �) to �
if (V, W, X [X �, �) /2 T �� then add (V, W, X [X �, �) to T ��

Finally, we set Q�� = {X 2 2Q | �Y 2 2Q, (X, Y) 2 � or (Y, X) 2 �}
F �� = (2Q ⇥ 2F) \ (Q�� ⇥Q��), and T �� = {T ��

q | q 2 Q\R} where

T ��
q = {(

 �
X, X,

�!
X, �) 2 T �� | q /2 X or

�(�Y , �,
�!
Y) 2 �(q) with

 �
Y ✓ �X ,

�!
Y ✓ �!X , � � � and q /2 �!Y }

Proposition 24. For any progressing 2VWAA A, L(G2
A) ✓ L(G1

A).

Proof. It is easy to notice that any state or transition of G2
A appears in G1

A:
Q�� ✓ Q� and T �� ✓ T �. Hence any accepting run of G2

A on a word u is also an
accepting run of G1

A on the same word. �t

12

DCS/UIUC Award NNL08AA23C

Disclosure subject to restrictions on the Title Page of this document.

Figure 5.11: Conversion from LTL to Two Way Alternating Automaton

128

PhD Thesis, University of Illinois, August 2012

18

1. For J1, J2 2 22Q�2��2Q
we define J1�J2 = {(

 �
X1 [

 �
X 2, �1 \�2,

�!
X 1 [

�!
X 2) |

(
 �
X 1, �1,

�!
X 1) 2 J1 and (

 �
X 2, �2,

�!
X 2) 2 J2},

2. For a PLTL formula � in negative normal form we define � inductively by:

– �1 � �2 = �1 [�2,
– �1 � �2 = {X1 [X2 | X1 2 �1 and X2 2 �2}, and
– � = {{�}} if � is a temporal formula.

It is actually not completely immediate to deal smoothly with the special
cases raised when checking a past modality at the beginning of a word, or a
future modality at the end of a finite word. We solve this problem using a special
state END, which is reached in an accepting run when the current position � is
outside the word u (�(x) = END� �(x) = 0 or �(x) = |u| + 1).

Definition 17 (� to A�). For any PLTL formula � in negative normal form
on the set AP, let A� = (Q, �, �, I, F, R) be the 2AA defined by:

– Q = sub(�) [{END} where sub(�) are the temporal subformulae of �,
– � = 2AP,
– I = �,
– F = {END},
– R is the set of the subformulae in sub(�) that are not of the form �1 U �2,
– � is defined below (� extends � to B+(Q)):

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

�(?) = ;
�(�) = {(;, �, ;)}
�(p) = {(;, �p, ;)} where �p = {a 2 � | p 2 a}

�(¬ p) = {(;, �¬ p, ;)} where �¬ p = �\�p

�(X �) =
�
(;, �, e) | e 2 �

�

�(�X �) =
�
(;, �, e) | e 2 �

�
[{(;, �, {END})}

�(Y �) =
�
(e, �, ;) | e 2 �

�

�(�Y �) =
�
(e, �, ;) | e 2 �

�
[{({END}, �, ;)}

�(�1 U �2) = �(�2) [(�(�1)� {(;, �, {�1 U �2})})

�(�1
�U �2) = �(�2) � (�(�1) [{(;, �, {�1

�U �2}), (;, �, {END})})
�(�1 S �2) = �(�2) [(�(�1)� {({�1 S �2}, �, ;)})

�(�1
�S �2) = �(�2) � (�(�1) [{({�1

�S �2}, �, ;), ({END}, �, ;)})
�(END) = ;8

<

:

�(�) = �(�) if � is a temporal formula
�(�1 � �2) = �(�1) [�(�2)
�(�1 � �2) = �(�1)��(�2)

Theorem 18 (PLTL to progressing 2VWAA). For any PLTL formula in
negative normal form � with n temporal subformulae, the automaton A� is a
progressing 2VWAA with at most n + 1 states and L(A�) = L(�).

Proof. Let us define �1 � �2 if �1 = END or if �1 is a subformula of �2. It is
easy to see with this partial order that A� is very-weak.

9

We also use the translation from alternating automata to generalized Buchi automata
presented in [14], which follows.

we chose E((q, k)) in � such that (q, k+1) /2 E((q, k)). This is a contradiction,
and hence �� cannot contain such a branch. �t

It is quite easy to see that G1
A is still too big to be used in an e�cient

implementation. It contains many useless states, and keeping only the accessible
states would not be enough since the initial states are too numerous already. We
introduced G1

A merely to prove more easily that our construction is correct.
The intuition how to get a smaller GBA from a 2VWAA is as follows: by

removing useless parts of runs of a 2VWAA we obtain minimal runs, such that
removing any subtree of the forest makes the run invalid. Ideally, we would like
to construct a GBA G2

A which is the restriction of G1
A to transitions of the form

(�(��1(i � 1)), �(��1(i)), �(��1(i + 1)), ui) obtained from minimal runs.
For this, we start from a small set of initial states, and we compute the states

and transitions accessible from these states. We need to store both the current
set of states Y and the previous one X . Since A is two-way, it may happen that
the set X is not big enough to fulfil all requirements imposed by Y . In this case,
we have to backtrack and enlarge X .

Definition 23 (A to G2
A). For any progressing 2VWAA A = (Q, �, �, I, F, R),

let G2
A = (Q��, �, T ��, I ��, F ��, T ��) be the GBA computed by:

Initialization: I �� = {F}⇥ I, � = {F}⇥ I, T �� = ;.
Then, we apply the following saturation procedure for each state (X, Y) 2 �
until we reach a fixed point:

for each (X �, �, Z) 2
�
q�Y

�(q)

if X � ✓ X

(a)

����
if (Y, Z) /2 � then add (Y, Z) to �
if (X, Y, Z, �) /2 T �� then add (X, Y, Z, �) to T ��

else

(b)

������

for each (F, X, Y, �) 2 T �� with (F, X) 2 I ��

if (F, X [X �) /2 � then add (F, X [X �) to �
add (F, X [X �) to I ��

(c)

������

for each (V, W, X, �), (W, X, Y,�) 2 T ��

if (W, X [X �) /2 � then add (W, X [X �) to �
if (V, W, X [X �, �) /2 T �� then add (V, W, X [X �, �) to T ��

Finally, we set Q�� = {X 2 2Q | �Y 2 2Q, (X, Y) 2 � or (Y, X) 2 �}
F �� = (2Q ⇥ 2F) \ (Q�� ⇥Q��), and T �� = {T ��

q | q 2 Q\R} where

T ��
q = {(

 �
X, X,

�!
X, �) 2 T �� | q /2 X or

�(�Y , �,
�!
Y) 2 �(q) with

 �
Y ✓ �X ,

�!
Y ✓ �!X , � � � and q /2 �!Y }

Proposition 24. For any progressing 2VWAA A, L(G2
A) ✓ L(G1

A).

Proof. It is easy to notice that any state or transition of G2
A appears in G1

A:
Q�� ✓ Q� and T �� ✓ T �. Hence any accepting run of G2

A on a word u is also an
accepting run of G1

A on the same word. �t

12

DCS/UIUC Award NNL08AA23C

Disclosure subject to restrictions on the Title Page of this document.Figure 5.12: Conversion from Two Way Alternating Automaton to Generalized
Buchi Automaton

of the conjunctions of states arising from the tuples themselves. This is a more
compact representation than the standard format, that allows for more efficient
algorithm implementations. The algorithm assumes that the LTL formula is in
negative normal form. Our implementation translates to negative normal form and
performs several simplifications modulo associativity.

For the sake of completeness Figs. 5.11 and 5.12 show the algorithms for
conversion from LTL to two way alternating automata and from two way alternating
automata to generalized Buchi automata, respectively. Both of these are taken
from [53], but we have the only publicly available implementations. The conversion
from generalized Buchi automata to Buchi automata is well known and thus omitted.
We use the procedure presented in [42] to convert the Buchi automaton into an
FSM suitable for monitoring. Due to the limitations of [42], we only support
violations. If one wishes to monitor validation, one may simply monitor for the
violation of the negation of the original formula, however, as LTL is invertable. Fig.
5.13 shows the output FSM generated from the formula for UNSAFEMAPITER.

As mentioned in Section 5.2, the property enable sets for LTL formulae are

129

PhD Thesis, University of Illinois, August 2012

n0[
createIter -> n0
default n0
updateMap -> n0
useIter -> violation
createColl -> n1

]
n1[
createIter -> n1
default n1
updateMap -> n0
useIter -> n1
createColl -> n1

]
violation[

]

Figure 5.13: LTL Example Output

computed by using the algorithm in Fig. 5.3 after a formula has been converted
to an FSM.

5.5 Chapter Conclusion

This chapter presented the finite state plugins of the MOP framework. The primary
goal of these plugins is to increase the efficiency of Runtime Verification. By
minimizing the multi-category finite state machines resulting from each plugin, we
ensure that a minimum of memory is needed for monitoring finite state properties.
The algorithm for computing enable/coenable sets from finite state machines
is necessary for the effective use of the optimizations presented in Chapter 3.
Likewise, the algorithm for parallel PTLTL assignments improves the circuit
size and theoretical number of cycles necessary to make a state transition in the
BusMOP system presented in Chapter 4. Lastly, the implementation of an LTL
plugin with past increases the expresssivity of Runtime Verification, as it is the first
such monitoring algorithm in existence. All of the experiments in Section 3.4.2
of Chapter 3.

130

PhD Thesis, University of Illinois, August 2012

Chapter 6

Context-Free Grammars

6.1 Chapter Introduction

Context-free grammars (CFG) are nearly as widely adopted by the average pro-
grammer as are regular expressions. Numerous context-free parser generators such
as Bison [21] exist and are widely used. CFGs offer a level of expressibility greater
than that of finite-monitor logics, and allow for the specification of properties that
involve proper nesting and a notion of counting.1

Runtime Verification (RV) is a relatively new formal analysis approach in
which specifications of requirements are given together with the code to check, as
in traditional formal verification, but the code is checked against its requirements
at runtime, as in testing. A large number of Runtime Verification approaches and
systems, including TemporalRover [44], JPaX [59], JavaMaC [82], Hawk/Eagle
[41], Tracematches [6,10], J-Lo [23], PQL [89], PTQL [54], MOP [32,33], Pal [29],
RuleR [17], etc., have been developed recently. In a Runtime Verification system,
monitoring code is generated from the specified properties and integrated with
the system one wishes to monitor. Therefore, a Runtime Verification approach
consists of at least three interrelated aspects: (1) a specification formalism, used to
state properties to monitor, (2) a monitor synthesis algorithm, and (3) a program
instrumentor. The chosen specification formalism determines the expressivity of
the Runtime Verification approach and/or system.

Monitoring safety properties is arbitrarily complex [109]. Recent developments
in Runtime Verification, however, show that regular and temporal-logic-based for-
mal specifications can be efficiently monitored against large programs. As shown
by a series of experiments in the context of Tracematches [10] and JavaMOP [33],
parametric regular and temporal logic specifications can be monitored against large

1Work on monitoring context-free grammars was performed with Dongyun Jin, Chen Feng,
and Grigore Roşu. It was first published in [91] with an extended version in [92]. The current
GLR-based algorithm used in MOP was adapted by Dennis Griffith.

131

PhD Thesis, University of Illinois, August 2012

programs with little runtime overhead, on the order of 12% or lower. However,
both regular expressions and temporal logics reduce to ordinary finite automata
when monitored, so they have inherently limited expressivity. More specifically,
most Runtime Verification approaches and systems consider only flat execution
traces, or execution traces without any structure. Consequently, users of such Run-
time Verification systems are prevented from specifying and checking structured
properties, those properties referring to the program structure such as properties
with requirements on the contents of the program call stack. Examples of such
structured safety properties include “a resource should be released in the same
method which acquired it” or “a resource cannot be accessed if the unsafe method
foo is in the current call stack”.

6.1.1 Example

An important and desirable category of properties that cannot be expressed using
regular patterns is one in which pairs of events need to match each other, potentially
in a nested way. For example, suppose that one prefers to use one’s own locking
mechanism for thread synchronization. As usual, for multiple reasons including the
allowance of re-entrant synchronized methods (in particular to support recursion),
locks are allowed to be acquired and released multiple times by any given thread.
However, the lock is effectively released, so that other threads can acquire it, only
when the lock releases match the lock acquires. One may want to impose an even
stronger locking safety policy: the lock releases should match the lock acquires
within the boundaries of each method call. This property is vacuously satisfied
when locks are acquired and released in a structured manner using synchronized
blocks or methods, like in Java 4+, but it may be easily violated when one imple-

+ +
++

+
+ + ++

+
++

First�violation:
No�release�before�end

Second�violation:
Unmatched�release+ =�acquire

=�releaseRelevant�trace
starts�here

Figure 6.1: Example trace for structured acquire and release of locks.

132

PhD Thesis, University of Illinois, August 2012

ments one’s own locking mechanism or uses the semaphores available in Java 5.
For example, Fig. 6.1 shows an execution violating this basic safety policy twice
(each deeper level symbolizes a nested method invocation). First, the policy is
violated when one returns from the last (nested) method invocation because one
does not release the acquired lock. Second, the policy is also violated immediately
after the return from the last method invocation because the lock is released twice
by its caller, but acquired only once.

Supposing that the system is instrumented to emit events begin and end when
methods of interest are started and terminated, and that the events acquire and
release are triggered when the lock of interest is acquired and released, respectively,
then here is an initial, straightforward way to express this safety policy as a context-
free grammar:

S ! ✏ | S begin S end | S acquire S release

Because of the production S ! ✏, the pattern is able to terminate (✏ is the empty
trace). This pattern will match any trace with begin events in balance with end

events because these two events occur only in the production S ! S begin S end,2

where they are matched. The S at the beginning of the production allows an
unbounded number of these balanced groupings in a row, e.g., begin begin end end

begin end is a valid trace with two balanced groupings in a row. The production
S ! S acquire S release is similar to that with begin and end events, allowing
balanced groupings of acquire and release events. Because all the productions
have the same recursive symbol, S, it is possible for begin/end pairs to nest within
acquire/release pairs, and vice versa. Thus a valid trace would be begin acquire

begin end release end begin acquire acquire release release end.
This pattern is simple and works, however, it has a deficiency in that it must

monitor every begin of every method in a given program, even those which do not
perform any thread synchronization. Next, we present a more efficient grammar
that ignores begin events that happen before the first acquire event in a trace.3 The
next grammar looks complicated, but we must stress that it is only complicated to
improve monitoring efficiency.

2 Note that S ! a | b is shorthand for S ! a, S ! b.
3Events that occur before the first event in a valid trace are ignored by the monitoring algorithm.

Events which begin a valid trace are known as creation events [33].

133

PhD Thesis, University of Illinois, August 2012

S ! ✏ | S acquire M release A

M ! ✏ | M begin M end | M acquire M release

A ! ✏ | A begin | A end

perthread SafeLock(Lock l) {
event acquire before(Lock l) :

call(* Lock.acquire()) && target(l) {}
event release after(Lock l) :

call(* Lock.release()) && target(l) {}
event begin before() :

execution(* *.*(..)) && !within(Lock) {}
event end after() :

execution(* *.*(..)) && !within(Lock) {}

lr_lazy : S -> epsilon | S acquire M release A,
M -> epsilon | M begin M end

| M acquire M release,
A -> epsilon | A begin | A end

@fail {
System.out.println("Unsafe lock operation found!");

}
}

Figure 6.2: JavaMOP specification for the SAFELOCK safety property using the
CFG plugin.

Again, the productions begin with recursive references to S to allow for rep-
etition of balanced groupings. This time, however, the S productions only allow
for acquire and release, not begin and end. This ensures that only begins and
ends occurring after the first acquire are monitored. The non-terminal M stands
for “matched” sub-traces, i.e., traces in which all the pairs begin/end and ac-

quire/release are properly matched, and A stands for sequences of (not necessarily
matched) begin and end events. The A productions are necessary because failures
would be reported for end events at the end of a trace due to the lack of a matching
begin that occurred before the acquire creation event. The A productions also
allow for more begin events after the last release because we do not want method
calls after the last release to cause the invocation of the failure handler.

Any (finished or unfinished) execution trace that is not a prefix of a word in
the language of S in the context-free grammar (CFG) above is an execution that

134

PhD Thesis, University of Illinois, August 2012

violates the safety policy. The CFG Runtime Verification technique presented in
this chapter and implemented as a logic-plugin in JavaMOP is able to monitor
safety properties expressed as CFGs like above. Monitoring-Oriented Programming
(MOP) and JavaMOP (the Java implementation of MOP) are discussed in Chapters
2 and Chapter 3.

Fig. 6.2 shows this SAFELOCK property expressed as a JavaMOP specification,
using the CFG logic plugin. The modifier perthread tells JavaMOP to consider
events from separate threads as separate traces. This is particularly important as
we do not wish begins and ends of separate threads to cause the pattern to fail.
SAFELOCK denotes the name of the specification, while the list after SAFELOCK

is the list of parameters to the specification (see below). SAFELOCK is parametric
in the Lock because we do not wish the releases and acquires of separate Locks
to interfere. The keyword event introduces an event; the event is first given a
name, and then its trigger is defined using an AspectJ [79] advice (before the
colon) and a pointcut (after the colon). Of particular note, however, is !within(Lock),
used so that we do not monitor the begins and ends of the acquire and release

methods, which would cause the pattern to fail. JavaMOP’s generic approach to
parametric specifications is described in [35] and [31]. Because of this generic
approach, the logical formalisms in which properties are expressed need not be
aware of the parameters; parameters are added automatically and generically by
the JavaMOP framework.

The keyword lr lazy introduces the CFG pattern. Three other possible keywords
could be used: lr, lalr, and lalr lazy.4 The two lazy keywords mean that when an
event is encountered that causes a pattern match failure, the failure handler is
invoked, but the event itself is not kept in the monitor state so that more failures
can be found. If the error causing event were kept, as in the non-lazy keywords,
each following event would cause an error, regardless of whether it should. The
lazy method is how most programming language parsers work, allowing multiple
syntax errors to be caught in one parse. lr and lalr determine which table generation
algorithm is used (see Section 6.2 for more information on the two table generation
algorithms). The first nonterminal in the pattern is assumed to be the start symbol
of the grammar (see Section 6.2.1). Lastly, @fail introduces a pattern failure
handler. The code within the braces following @fail runs whenever the pattern
fails to match because an invalid event for a given point in a trace is seen. As an

4The current GLR plugin accepts only “cfg” as a keyword, we plan to again allow a “lazy”
option, however. This discussion is maintained for completeness.

135

PhD Thesis, University of Illinois, August 2012

alternative, JavaMOP allows @match handlers. This gives extra power to our CFG
plugin because context-free languages are not closed under complementation.

The code generated automatically from the JavaMOP specification in Fig. 6.2,
following the technique described in the rest of the chapter, has more than 700 lines
of (human unreadable) AspectJ code. We ran this property against a hand-crafted
program, which generated the sequence of events seen in Fig. 6.1. Both pattern
failures were successfully caught in a single run because the CFG plugin does not
add failure inducing events to the monitor state when lr lazy is used. If the keyword
lr is used instead of lr lazy, only the first failure is caught by the generated monitor.

6.1.2 Chapter Contributions

Several approaches have been proposed to monitor context-free properties. For
example, Program Query Language (PQL) [89] is based on a description language
that encompasses the intersection of context-free languages. Hawk/Eagle [41]
uses a fix-point logic and RuleR [17] uses a rule based logic that can specify
context-free properties. These approaches propose what we feel are rather complex
solutions for monitoring parametric context-free patterns. They generate inefficient
monitoring code in many cases, thus preventing practical parametric context-free
property monitoring with these systems. The inefficiency of PQL in comparison
to JavaMOP with context-free patterns is discussed in Section 6.3. This chapter
shows that monitoring (the LR(1) and LALR(1) subsets of) parametric context-free
patterns is practical.5 We generate non-parametric monitors instead of parsers
for the defined context-free pattern. Parameters are handled separately, using the
algorithm in [31, 35]. This way, we provide an efficient system for monitoring
parametric context-free properties. Our algorithm is totally different from the
monitoring algorithm used by the PQL system [89], which mixes the handling of
parameters and monitoring of context-free patterns.

When monitoring pattern languages, such as extended regular expressions
(ERE) or CFG, we wish to report a match anytime a trace at a given point in
program execution matches the pattern. For example, if we have a pattern that is
looking for writes to a closed file, we might use the ERE close write write*. We
wish to report a match on every write, so that we can locate all of the trouble spots
in the program. We call this matching every good prefix of the trace because close

5The GLR plugin currently used by MOP can monitor any context-free grammar, and is almost
as efficient as the plugin used for the results in this Chapter.

136

PhD Thesis, University of Illinois, August 2012

write is a prefix of close write write which is a prefix of close write write write, and
we wish for a match to be reported on each of these prefix traces. We provide two
methods to deal with the problem of monitoring good prefixes. One is to modify
the LR(1) parsing algorithm with a stack copying process. The second method,
called guaranteed acceptance, was discovered after our work in [91].

We also performed an extensive evaluation of the CFG monitoring algorithm
using the DaCapo [22] benchmark suite and properties used previously to evaluate
Runtime Verification systems [26, 33]. The properties are expressed as CFGs in
this evaluation rather than regular expressions for use in JavaMOP. Even when
monitored using the CFG plugin, however, these regular pattern based specifica-
tions still use constant space. We thus performed an evaluation of three strictly
context-free properties – which use theoretically unbounded space – to show that,
even with such properties, the overhead is reasonable, and to show the usefulness
of context-free properties. The results of this analysis compare favorably with
PQL and Tracematches, two state-of-the-art runtime monitoring systems. One of
these properties (IMPROVEDLEAKINGSYNC) is expressible in neither PQL nor
Tracematches, for reasons explained in Section 6.3. Another of the properties
(SAFEFILEWRITER), while expressible in PQL, is not expressible in Tracematches
because Tracematches has limited ability to express structured properties, rather
than the full generality of the LR(1) languages.

Over both the adapted regular properties and the new strictly context-free
properties, the overhead of JavaMOP with CFGs is, on average, over 8 times less
than Tracematches on properties that Tracematches is able to express, and over 12
times less than PQL on properties that can be expressed in PQL. On all but 9 of the
45 benchmark/property pairs that generated events,6 the overhead is less than 5%
in JavaMOP with CFGs.

Contributions exclusive to [92], include three more versions of the original
LR(1)-based cfg plugin. LALR(1) was added and a version of both LR(1) and
LALR(1) that stay in an error state when an error token is encountered (using
la/lalr instead of lr/lalr lazy). The GLR mode added by Dennis Griffith, however,
is described in [93]. Also presented in this chapter is the concept of guaranteed
acceptance (see Section 6.2.2). Lastly, from [93], we include the formalization of
(co)enable set computation from CFGs.

6Overall there are 66 benchmark/property pairs, but 21 of them generate no events, and are
removed to more fairly represent the overhead of runtime monitoring.

137

PhD Thesis, University of Illinois, August 2012

6.1.3 Chapter Outline

The remainder of the chapter is as follows: Section 6.2 explains our CFG monitor
synthesis technique in JavaMOP, including considerations for suffix matching
and enable set computation; Section 6.3 explains our experimental setup and
the results of our experiments; Section 6.4 illustrates related work; Section 6.5
concludes the chapter.

6.2 Context-Free Patterns in JavaMOP

We support the LR(1) subset of context-free grammars (CFGs), as well as LALR(1)
which is a subset of LR(1). LR(1) is so named because it parses input Left to
right and produces a Right-most derivation. The 1 denotes that one token of look-
ahead is used. The LA in LALR stands for look-ahead, because, under certain
conditions,states in the LR(1) table with different look-aheads may be merged in
the LALR(1) table (see Section 6.2.2).

LR(1) can only recognize a subset of the deterministic context-free languages,
which are themselves a strict subset of the context-free languages (CFLs) [4, 66].
LR(1), however, is an expressive subset, able to define the syntaxes of most modern
programming languages. We chose LR rather than LL because LR recognizes a
larger number of grammars without translation. We base our implementation on
the Knuth algorithm [83] for LR(1) parser table generation as presented in [4].
While the “action” and “goto” tables generated are normal LR(1) “action” and
“goto” tables, the algorithm used to parse has been modified to work in the context
of monitoring, explained in detail below. We added a plugin, which generates
LALR(1) using the algorithm presented in [4], because LALR(1) generates smaller
tables in some cases. The LALR(1) tables are, at worst, identical to the LR(1)
tables; they are never larger. The downside of LALR(1), however, is that it is a strict
subset of LR(1). Comparisons between the table size of LR(1) and LALR(1) for the
properties we tested can be found in Section 6.3, and an explanation of the LALR(1)
optimization can be found in Section 6.2.2. Sections 5.1–5.2.3 cover standard issues
related to LR parsing from a monitoring context, while the remainder of Section
6.2 covers new issues specific to adapting LR parsing to monitoring.

138

PhD Thesis, University of Illinois, August 2012

6.2.1 Preliminaries

A CFG G is defined as a tuple of the form, G = (NT, ⌃, P, S). ⌃, the alphabet
of the CFG, is often referred to as the set of terminals. A very special terminal,
$, represents the end of the input. NT is the set of nonterminals. P is the set of
productions, which define what strings nonterminals derive. NT [⌃ is often called
the set of symbols. Productions have the form A! �, where A 2 NT and � is a
string that either consists of symbols, or is the empty string, ✏, i.e. � 2 (⌃ [NT)

⇤.
We use the conventional alternation operator, “|”: a production of the form A!
�0|�1 can be equivalently represented as two productions A! �0 and A! �1. S

is the start symbol – that non-terminal from which all strings in the language are
derived. For example, G = ({A}, {a, b}, P0, A) where P0 = {A ! aAb|✏} is a
simple CFG for the language {a

n

b

n|n 2 N}. The non-terminal A can derive aAb

an indeterminate amount of times before deriving ✏, allowing a

n

b

n for any n 2 N.
Two important sets are defined for every non-terminal in a grammar: the first

and follow sets. These are used in “action” table construction. The first set will
be used to decide which terminals in the given grammar define monitor creation
events (we shall be more specific about this below). The follow set will be useful in
illustrating the fundamental challenge of monitoring CFGs. The first set of a non-
terminal A, denoted first(A), is the set of all terminals t such that the sub-strings
which reduce to A may possibly begin with t. The follow set, denoted follow(A), is
the set of terminals which follow the strings which reduce to A. These terminals
signify a reduction by A.

A reduction is the step whereby a right hand side of a production, �, is replaced
by the left hand side non-terminal in the production. For example, if we have
the string aaabbb, and we are using our example grammar, G , we can perform a
reduction with � = ✏ resulting in aaaAbbb. We can then perform another reduction
with � = aAb resulting in aaAbb, eventually we reach aAb, which reduces to A

(and because A is the start symbol, aaabbb must be in L(G), where L(G) represents
the language derived by G).

6.2.2 CFG Monitoring Algorithms

We developed the CFG monitoring algorithms based on existing parsing algorithms.
Action and goto tables are generated from the given CFG pattern and used to
advance the monitor at runtime according to the observed events. Moreover, the
CFG monitor is unaware of relevant parameters since they are handled by the

139

PhD Thesis, University of Illinois, August 2012

Figure 6.3: LALR(1) Tables for SAFELOCK

underlying MOP framework. This greatly simplifies the monitoring algorithm. We
next introduce the monitor algorithms in more detail.

CFG Simplification

The CFG plugin first applies some standard simplifications to the given gram-
mar [66]. The first step of simplification is the removal of non-generating non-
terminals (A is non-generating if 8s 2 ⌃

⇤, s cannot be reduced to A in one or
more reductions). The next step in the simplification process is the removal of
nonterminals which are unreachable from the start symbol (A is unreachable from
the start symbol if there is no string � that contains A and reduces to the start
symbol in any number of steps). The last step removes ✏-productions from the
grammar. After ✏-productions have been removed from G, resulting in G

0, L(G

0
) =

L(G)� ✏.7 A monitor matching the empty event trace has little utility, so we feel
this is a fair compromise.

7 The remaining productions are restructured to account for the removal of ✏-productions without
changing the recognized language, other than as mentioned.

140

PhD Thesis, University of Illinois, August 2012

1 globals action table, goto table
2 initialize stack.push(initial state)
3 procedure monitor(event, stack)
4 locals state, state’, stack’, A
5 state stack.top()
6 while (true) {
7 switch (action table[state,event].action type) {
8 case shift :
9 state’ action table[state, event].next state
10 if (state’ = error) {
11 pattern failure
12 break while
13 }
14 stack.push(state’)
15 if (action table[state’, $].action type = reduce) {
16 stack’ stack.copy()
17 monitor($, stack’)
18 }
19 break while
20 case reduce :
21 stack.pop(action table[state, event].pop)
22 A action table[state, event].non terminal
23 state’ stack.top()
24 stack.push(goto table[state’, A])
25 break switch
26 case accept :
27 pattern match
28 break while
29 }
30 }

Figure 6.4: CFG Monitoring Algorithm with Stack Copying.

Tables and Monitoring

After simplification, the tables are generated for a deterministic push-down automa-
ton (DPDA), that is, a deterministic finite automaton with a stack, which is to be
used as a monitor. The algorithm first adds a production to introduce $. If the start
symbol of the original grammar was S, it adds a production S

0 ! S$. The next step
is generating the canonical LR(1) (or LALR(1)) collection. The collection consists
of collection items; each item represents a state in the automaton. A collection item
is a set of productions with a marker, *, for the current position in the right hand side,
augmented with a look-ahead. For example, a possible collection item for the sim-
ple HasNext pattern S ! next next is [{S

0 ! ⇤ S $, $}, {S ! ⇤ next next , $}],
another is [{S ! next ⇤ next , $}]. In both of these collection items, the look-
ahead is $. The collection item is first created for the start production, S

0 ! S$.
All productions for S are added to the state with * at the beginning of the right
hand side, as can be seen in our example collection item. If there is a production
for S such that the first symbol is a nonterminal, A, all the productions of A will
also be added, with * at the beginning. This process is transitively closed. The
next collection items are generated by advancing * in the production, and then

141

PhD Thesis, University of Illinois, August 2012

taking the transitive closure for any nonterminals immediately following *. Once
the collection is created, the tables are generated by treating each item as a state.
The productions in the item are considered for each alphabet symbol (including
$). If the marker appears in front of said terminal, a shift action is generated. The
algorithm decides which collection item to shift to by looking for the collection
item where there is a production with the same right hand side as the production
that caused the shift action, but with * advanced one position. For example, the
next collection from [{S ! next ⇤ next , $}] would be [{S ! next next ⇤, $}].
Shift actions can never be generated for $; the algorithm disallows it. The handling
of shift actions by the parsing algorithm can be seen below. If, however, there is a
production in the item such as [{S ! next next ⇤, $}], where the marker appears
at the end, and the terminal in question is the look-ahead, a reduction action is
generated. More explanation of this algorithm can be found in [4].

When a new event arrives, the monitoring algorithm must decide how to modify
the stack. The tables are given in a generic intermediate form, which is converted
by the Java shell into two Java arrays.

Pseudo-code for our monitoring algorithm is given in Fig. 6.4. The significance
of lines 15–18 is explained Section 6.2.2. An entry in action table specifies, via
the action type, the type of action: shift, reduce, or accept. Each type of action also
requires additional information in order for the algorithm to process said action.
An entry in goto table simply identifies the next state for the DPDA. Fig. 6.3 shows
a parse table as it would be used by the algorithm. This is the LALR(1) table for
the first SAFELOCK grammar given in Section 6.1. We show the LALR(1) table
because the LR(1) table has 50 states, and the tables can be used interchangeably
by the algorithm.

The shift action entry contains the next state for the DPDA in the next state
field (in parentheses in the shift actions in Fig. 6.3). A shift action simply pushes
the next state on the stack, if the next state is not the error state (lines 10–14).
If, however, the table indicates that the next state is the error state, the algorithm
reports a pattern fail and breaks without touching the stack (lines 11–12). This
allows the algorithm to continue to find more pattern failures. After a successful
shift action, the while loop is broken, allowing execution of the monitored program
to continue until the next relevant event (line 19).

The reduce action is more complicated. The field non terminal describes which
non-terminal (A) the production A ! � reduces to (the first field in the reduce
actions Fig. 6.3), while the field pop denotes how many states to pop from the stack

142

PhD Thesis, University of Illinois, August 2012

(|�|) (the second field in the reduce actions in Fig. 6.3). The reduction proceeds by
popping the specified number of states from the stack and consulting goto table to
decide the next state (lines 20–25). The state used for indexing goto table is not the
current state, but rather the state at the top of the stack after the specified number
of states has been popped (line 21). An indeterminate number of reductions can
happen in a row, but there must be shift at the end of the reduction sequence before
the algorithm can terminate for a given event. The reductions happen before the
shift to simulate the look-ahead of one token specified by the 1 in LR(1).

The accept action, which directs the DPDA to signal a pattern match, has no
special fields, as no more information is necessary (lines 26–28).

The LALR(1) Optimization

LALR(1) table generation is a standard modification of the LR(1) table generation
algorithm [4]. LALR(1) tables are constructed the same way as LR(1) tables, save
that states corresponding to collection items with the same core are merged as they
are discovered. The core of a collection item is that item with the look-aheads
removed. This means that LALR(1) tables can be no larger than LR(1) tables, but
may be considerably smaller.

However, this process may result in reduce-reduce conflicts (states where a
reduction to two or more different nonterminals with the same look-ahead may
occur) that do not exist when the LR(1) construction method is used. Shift-reduce
conflicts (states where a shift with a given token, a, and a reduction with a as the
look-ahead are possible) cannot be introduced because they require that there be
two productions in a given collection item such that one has the position marker in
front of a terminal t (meaning that t should be shifted), while another production
has the marker at the end of the production, with t as the look-ahead (meaning
that we should reduce to the left hand side when t is seen). Obviously the conflict
must occur before merging, because if the shift inducing production were in a
state s0, while the reduce inducing production where in s1, s0 and s1 would have
different cores, and not be merged. To see how reduce-reduce actions may be
introduced, consider the two collection items: [{A ! a, $}, {B ! a, a}] and
[{A ! a, a}, {B ! a, $}] Before merger, no conflict exists. Looking at the
first collection item, there is no conflict between the two productions because it
says to reduce to A only when the look-ahead is $, and B only when the look-
ahead is a. The collection item after merger, however, is: [{A ! a, $}, {B !

143

PhD Thesis, University of Illinois, August 2012

a, a}, {A! a, a}, {B ! a, $}], which contains two reduce-reduce conflicts (one
on look-ahead a, the other on $). The only way to check if such a conflict is
introduced by the LALR(1) merger is to generate LR(1) tables to see if there is still
a reduce-reduce conflict.

Handling the End of Trace

The (LA)LR(1) algorithm assumes that the string of terminals to be evaluated
is completely known ahead of time. Thus, it knows where the end of the string
(denoted as $) is. This is important because some reductions happen with the $
symbol as the look-ahead, and the accept action can only be recognized when the
next input is $. To be consistent with our notion of monitoring, it must be possible
to consider the trace prefix at a given point in a run of a program as an entire trace.
The algorithm must then assume $ after every event.

Our implementation of the algorithm attempts to reduce with $ as the look-
ahead after every valid shift (lines 15–18). The problem with reducing with $ as
the look-ahead where possible is that all state of the current trace evaluation is lost.
This means that the monitor could only accept the minimal trace that matches the
CFG pattern if no special care were taken.

Since our notion of monitoring reports pattern matches for every current trace
that matches the pattern,8 one possible option is to copy the stack before we perform
any reductions with $ as the look-ahead.

This copying ensures that the stack is intact for the next, and subsequent events,
allowing for multiple pattern matches. For example, consider the language denoted
by the regular expression ab

⇤. While we would suggest using the ERE plugin
for such a language, it is a clear example to illustrate the effect of copying. With
no copying the algorithm would accept for only a. Because it popped during the
pattern match phase, if it sees a b it will report failure. With copying it will report
success for a, and then success again on the input of b, and for any subsequent
input of b. An important optimization to copying is to only copy the stack if there
is a reduction with $ as the look-ahead, rather than blindly for every shift operation.
This optimization will not help ab

⇤, but it will help for many other languages. In
fact, for {a

n

b

n|n 2 N}, only one copy is necessary no matter how long the input.
Any grammar accepting unbounded repetition at the end of the pattern (like ab

⇤),
will require copying on each input of the repeated character.

8This is irrespective of suffix matching which actually generates multiple monitors.

144

PhD Thesis, University of Illinois, August 2012

G(✏) = {;}
G(t) = {{t}}

G(A) =

S
A!�

G(�)

G(�1�2) = {S [T | S 2 G(�1), T 2 G(�2)}
P(�) = {S [T | A! �1��2, S 2 P(A), T 2 G(�1)}

enable

E
G(e) = P(e)

Figure 6.5: CFG enable

E
G Defining Equations

Our experience with stack copying led us to an important observation: when
there is a reduction with $ as the look-ahead, acceptance is guaranteed. That is to
say, there is never a situation in which there is a reduction with $ as the look-ahead
that results in a parse failure. This is a consequence of the parse table generation
algorithm, and Section 6.2.5 covers the correctness of this notion, which we refer
to as guaranteed acceptance. Using guaranteed acceptance to accept whenever a
reduction with $ as the look-ahead is possible is another alternative for matching all
good prefixes of a pattern. Guaranteed acceptance is always correct. We maintain
the discussion on stack copying because the proof of the stack copying algorithm
is easier to understand, and because it is an interesting, though less practical,
alternative to guaranteed acceptance.

6.2.3 (Co) Enable Set Generation

To find the enables sets of a CFG we find the least fixed point of the equations
in Fig. 6.5. Here, informally, G(A) is the set of events generated by the CFG,
if the symbol A were used as the start symbol of the CFG. The rule G(�1�2) =

{S [T | S 2 G(�1), T 2 G(�2)} generalizes this notion to entire strings of
symbols. P is the enable sets function generalized to strings that include both
non-terminals and terminals. For example, the prefixes of abTB for B would be
{{a, b} [S | S 2 G(T)}. For a rule, A ! �1B�2, P(B) needs to cope with the
fact that A has its own enables set of possible prefixes. Thus its definition unions
possible prefixes of A with the sets of symbols that are generated by �1. The rest
of MOP only needs to know sets of prefixes for events, thus enable

E
G is just the

restriction of P to events. To find coenable sets, we use these same equations after
reversing the right-hand side of productions.

145

PhD Thesis, University of Illinois, August 2012

6.2.4 CFG-plugin Implementation

The CFG plugin allows the user to specify a number of events and a CFG specifying
allowable event traces. The events become the terminals of the CFG, i.e., ⌃. The
translation steps from specification to working Java code gradually transform the
specification into AspectJ join points (the events) and aspects (the synthesized
monitors), which are then woven into the original application using any off-the-
shelf AspectJ compiler.

As described in Section 3.4 of Chapter 6, several features are needed for
monitors to support optimized suffix matching.

The first is identification of monitor creation events.9 As already mentioned,
monitor creation events are events which, when encountered as the first event in a
trace, would not lead to an immediate failure. For CFGs this would imply an event
that can begin a sub-string which reduces to the start symbol. This is the same
as the definition of first set as given earlier. Thus, the monitor creation events for
the CFG plugin are those events which are in first(S), where S is the start symbol
for the grammar.

Additionally, it is necessary to define a hash encoding for CFG based monitors
because our suffix matching algorithm uses a HashSet to find monitors with
potentially equivalent states quickly. We decided that two simple defining aspects
of CFG based monitors are stack depth and the current state of the monitor (the
top of the stack). We chose to xor them together (a broadly used operation for
combining two binary quantities into one quantity representative of the two in
the same number of bits) because the hashCode method must return an integer.
Lastly, we need an equality method (to resolve collisions) defining when two CFG
based monitors have actually equivalent states. Two CFG monitors can only be
equal iff they have the same stack contents. It will be fairly rare for two proper
CFG monitors to be equivalent, as they do not have finite state like the other logic
plugins of MOP. Thus, it is important for failed equality testing to be fast. Because
of this, we check to see if two monitors have the same stack depth before beginning
element-wise comparisons.

6.2.5 Proofs of Correctness

We next prove the correctness of the proposed CFG monitoring algorithms.
9Though, as mentioned, this is also necessary for total matching.

146

PhD Thesis, University of Illinois, August 2012

1 globals stack, ip, action table, goto table
2 initialize stack.push(initial state), ip 0
3 procedure parse()
4 locals state, state’, a, A
5 while (true) {
6 state stack.top()
7 a get token at(ip)
8 switch (at[state, a].action type) {
9 case shift :

10 state’ action table[state, a].next state
11 if (state’ = error) {
12 report error
13 advance ip
14 continue while
15 }
16 stack.push(state’)
17 advance ip
18 continue while
19 case reduce :
20 stack.pop(action table[state, a].pop)
21 A action table[state, a].non nonterminal
22 state’ stack.top()
23 stack.push(goto table[state’, A])
24 continue while
25 case accept :
26 accept
27 return
28 }
29 }

Figure 6.6: ASU Algorithm.

First, we prove the online monitoring algorithm for CFG using stack copying
correct. We achieve this by showing that our algorithm detects pattern failures
and pattern matches of the observed trace in the same way as the ASU parsing
algorithm [4], as given in Fig. 6.6.

Theorem: For every finite prefix of a (possibly infinite) program trace10 and
a CFG pattern, the MOP algorithm will notify a failure of the pattern if the ASU
algorithm would notify a parse failure due to a bad token, and pattern match if
ASU would notify success, given that prefix as total input.

Proof: First, we construct a new parsing algorithm, as shown in Fig. 6.7. This
new algorithm can be proved equivalent to the one in Fig. 6.6 as follows. The
major difference between these two algorithms is that the pointer (ip) increment is
moved to the outer loop in Fig. 6.7. This change does not affect the behavior of
the algorithm:

1. For a shift action, both algorithms carry out the same operation except that
Fig. 6.6 increases the pointer and continues to the next action, while Fig.
6.7 breaks the inner loop, increases the pointer in the outer loop, and then

10Each prefix is an E-trace at a given point in a program as per Definition 1 in Chapter 3.

147

PhD Thesis, University of Illinois, August 2012

1 globals stack, ip, action table, goto table
2 initialize stack.push(initial state), ip 0
3 procedure parse()
4 locals state, state’, a, A
5 while (true) {
6 a get token at(ip)
7 while (true) {
8 state stack.top()
9 switch (at[state, a].action type) {

10 case shift :
11 state’ action table[state, a].next state
12 if (state’ = error) {
13 report error
14 break while
15 }
16 stack.push(state’)
17 break while
18 case reduce :
19 stack.pop(action table[state, a].pop)
20 A action table[state, a].non nonterminal
21 state’ stack.top()
22 stack.push(goto table[state’, A])
23 continue while
24 case accept :
25 accept
26 return
27 }
28 }
29 advance ip
30 }

Figure 6.7: Modified ASU Algorithm.

continues to the next action. Both are equivalent.

2. For reduction, Fig. 6.7 chooses to stay in the inner loop, which is identical
to Fig. 6.6, and continues the loop without increasing the pointer.

3. For acceptance (pattern match in monitors), both algorithms are identical.

Now we can prove the correctness of the monitoring algorithm in Fig. 6.4 by
comparing it with the modified parsing algorithm in Fig. 6.7.

The major difference distinguishing the monitoring algorithm from ASU is
that the former has to wait for the next event extracted from the execution of the
monitored program while the latter can actively retrieve the next token, which is
handled in the outer loop in Fig. 6.7. Therefore, we only need to prove that the
monitor procedure in Fig. 6.4 produces the same result as the inner loop in Fig.
6.7, given the same state and event to process.

It is straightforward to compare both pieces of code: the only difference
between them is the stack copying (lines 14–17) in Fig. 6.4. It is needed because
we wish to continue parsing after an accept, and because we can never actually
see $ as an event. We copy the stack after a shift and check for actions with $ as

148

PhD Thesis, University of Illinois, August 2012

1 globals action table, goto table
2 initialize stack.push(initial state)
3 procedure monitor(event, stack)
4 locals state, state’, stack’, A
5 state stack.top()
6 while (true) {
7 switch (action table[state,event].action type) {
8 case shift :
9 state’ action table[state, event].next state
10 if (state’ = error) {
11 pattern failure
12 break while
13 }
14 stack.push(state’)
15 if (action table[state’, $].action type = reduce) {
16 pattern match
17 }
18 break while
19 case reduce :
20 stack.pop(action table[state, event].pop)
21 A action table[state, event].non terminal
22 state’ stack.top()
23 stack.push(goto table[state’, A])
24 break switch
25 }

Figure 6.8: CFG Monitoring Algorithm with Guaranteed Acceptance.

the input. The only actions possible on this recursive call are reduce and accept
because $ can never be shifted.11 Due to this, the recursion is always bounded at
depth one. This is the major difference between the MOP and ASU algorithms.
Because $ can never be an event, we must speculatively guess the end of input after
every symbol seen. The recursive call must happen iff there is a valid reduction
with $ as the look-ahead. Because the algorithm repeats until a shift action, error,
or accept happens, we ensure that, if the recursive call happens, it must happen
after the processing of each input.12 Cloning the stack allows us to reduce and
accept, while still maintaining the original stack to continue monitoring events as
if the end of input had not been seen. Thus, this change is equivalent to the ASU
algorithm in terms of language recognition because both possibilities (the arrival
or non-arrival of $) are explored. That is, the MOP algorithm will report accept for
a given prefix if ASU would, given that prefix as its total input, and it, additionally,
retains enough state to continue parsing future (longer) traces. Violation is handled
identically in both algorithms. ⌅

11This is a property of the CFG parsing table generation algorithm, which we use without proof.
It is obvious, however, because $ is not a part of the original grammar.

12Accept need not be considered because it can only happen when the input is $, which only
occurs during a recursive call.

149

PhD Thesis, University of Illinois, August 2012

We next prove the correctness of our online monitoring algorithm for CFG
using the notion of guaranteed acceptance. It is achieved by showing that a
reduction with $ as the look-ahead must result in accept with $ as look-ahead13 in
one or more reductions. Fig. 6.8 shows the algorithm modified to take advantage
of guaranteed acceptance. Note that there is no longer an accept case because
accept is discovered in the shift case, on lines 15–16.

Theorem: If the action table entry for a given state specifies reduction with $

as look-ahead, the stack copying processes must lead to an acceptance. That is
to say, in one or more reductions with $ as the look-ahead, an accept action must
occur with $ as the look-ahead.

Proof: From the canonical LR(1) construction algorithm [4], we know that a
given non-terminal B can only be reduced to with look-ahead terminal a, if there
exists some production C ! �0Ba�1 or a sequence of productions C ! �0B0a�1,
B0 ! �2B1, B1 ! �3B2, ... B

n

! �

n+2B. Note that the sequence may contain
cycles of one or more production, such as a production C ! bC, but there must be
a finite amount of “cycle reductions” because there is a finite amount of input, and
the CFG simplification we perform removes non-generating nonterminals.14

In the algorithm, $ is treated as a special terminal that exists in only one
production, the start production S

0 ! S$, where S is the original start symbol of
the grammar. This production is added by the algorithm and is the only existence
of $ in the grammar. Intuitively, when the contents of the parse stack correspond to
S, the algorithm accepts. This means that if we can reach a stack containing only
state corresponding to S through one or more reductions with $ as the look-ahead,
we can accept. The original ASU algorithm and our version of the algorithm with
stack copying perform all of these reductions.

As a result of the two facts above, a reduction with $ as look-ahead, for non-
terminal A, can only occur in the table if there is some sequence of productions
S ! A0$, A0 ! �0A1, A1 ! �1A2, ... A

n

! �

n

A, or the production S ! A$.
If we have S ! A$, then we can obviously accept on the reduction to A because
this will result in a stack with only contents corresponding to A (A = S from
above), which is the accept condition, or there will be some finite number of
cycles with non-terminal A that eventually leads to a stack containing only contents
corresponding to A because there must be a finite amount of cycle reductions. If,

13Note that this is the only look-ahead ever possible for accept.
14It is clear that only non-generating nonterminals could have infinite cycles, because the table

generation algorithm works bottom up, and chooses shift over reduce on conflict.

150

PhD Thesis, University of Illinois, August 2012

however, we have the sequence of productions, we can still accept because there is
a sequence of reductions from A to S ! A0$ given by the sequence of productions.
Again, even if the sequence contains cycles, eventually acceptance must be reached
because there must be a finite amount of cycle reductions. ⌅

6.3 Evaluation

We evaluated the JavaMOP CFG plugin and compared its performance to PQL and
Tracematches on the DaCapo benchmark suite [22]. We used the LR(1) tables,
with the lazy algorithm, and suffix matching. We feel this gives a worst case,
while giving the most fair comparison to Tracematches, which uses suffix matching
semantics. LR(1) tables are of greater or equal size, so they cannot be faster than
the LALR(1) tables. The lazy mode has the potential to be slower because it
continues to modify the stack after a failure, while the normal mode does not.
Suffix matching is obviously slower than total trace matching because it creates
one total match monitor for every suffix of the trace.

6.3.1 Experimental Settings

Our experiments were carried out on a machine with 1.5GB RAM and Pentium 4
2.66GHz processor. The operating system used was Ubuntu Linux 7.10. JavaMOP
1.0 was used, so the memory numbers in particular are not as good as they are
in the current version of JavaMOP (3.0), as they predate both the enable set and
coenable set optimizations. We used the DaCapo benchmark version 2006-10;
it contains eleven open source programs [22]: antlr, bloat, chart, eclipse, fop,
hsqldb, jython, luindex, lusearch, pmd, and xalan. The provided default input was
used together with the -converge option to execute the benchmark multiple times
until the execution time falls within a coefficient of variation of 3%. The average
execution time of six iterations after convergence are then used to compute the
runtime overhead. Therefore, Fig. 6.9 percentages should be read “±3” (meaning
negative numbers are possible).

6.3.2 Properties

The following general properties borrowed from [26] were checked in the evalua-
tion:

151

PhD Thesis, University of Illinois, August 2012

• HASHMAP: An object’s hash code should not be changed when the object is
a key in a HASHMAP;

• HASNEXT: For a given iterator, the hasNext() method should be called
between all calls to next();

• SAFEITERATOR: Do not update a Collection when using the Iterator interface
to iterate its elements.

We also defined three new properties to showcase the power of the CFG plugin;
they are all properly context-free:

• IMPROVEDLEAKINGSYNC: The original LeakingSync specified in [26]
only allows synchronized accesses to synchronized collections. This causes
spurious failures because the synchronized methods call the unsynchronized
versions. Our improved version allows calls to the unsynchronized methods
so long as they happen within synchronized calls.

• SAFEFILEINPUTSTREAM: SAFEFILEINPUTSTREAM is a modification of
our SAFELOCK property from Fig. 6.2. It ensures that a FileInputStream is
closed in the same method in which it is created.

• SAFEFILEWRITER: SAFEFILEWRITER ensures that all writes to a FileWriter

happen between creation and close of the FileWriter, and that the creation
and close events are matched pairs.

More properties have been checked in our experiments; we chose the first three
regular-language-based properties (HASHMAP, HASNEXT, and SAFEITERATOR)
to include in this chapter because they generate a comparatively larger runtime
overhead. We excluded those with little overhead in JavaMOP. For every property,
we provide overhead percentages for JavaMOP, as well as PQL and Tracematches
where possible. We run the JavaMOP monitors in suffix matching mode; the
decentralized indexing of monitors was used in all the experiments (see [33]).
We chose the AspectJ compiler 1.5.3 (AJC) in the evaluation to compile the
JavaMOP generated monitoring AspectJ code. Guaranteed acceptance and stack
copying have the same performance on each of these patterns because none of the
properties is able to generate more than one pattern match from a given parameter
instance, meaning that the number of stack copies is very minimal. Additionally,
the properties have been written in a method that ensures minimal stack size (such

152

PhD Thesis, University of Illinois, August 2012

as using left recursion instead of right recursion). For Tracematches we used the
most recent published version from [121].

HASHMAP HASNEXT SAFEITERATOR

MOP PQL TM MOP PQL TM MOP PQL TM

antlr 3 6 0 1 2 3 2 82 0
bloat 14 9 -2 1112 5929 2452 627 8694 11258
chart -1 1 -1 -1 3 0 2 50 11

eclipse 0 1 1 0 2 -1 -2 1 2
fop 3 2 0 0 2 -1 -1 24 5

hsqldb 0 3 15 0 6 15 0 78 17
jython 0 23 15 0 0 13 0 12 16

luindex 1 8 1 -2 93 2 3 181 9
lusearch 1 1 8 -1 59 9 4 132 34

pmd -1 0 3 191 1870 52 178 1334 175
xalan 0 5 1 0 0 2 1 53 10

IMPROVEDLEAKINGSYNC SAFEFILEINPUTSTREAM SAFEFILEWRITER

MOP PQL TM MOP PQL TM MOP PQL TM

antlr 1 N/E N/E 3 113 -1 2 22 N/E
bloat 13 N/E N/E 1 128 0 27 97 N/E
chart 4 N/E N/E 0 29 1 0 37 N/E

eclipse 1 N/E N/E -2 3 0 -2 1 N/E
fop 1 N/E N/E -2 58 -1 -2 47 N/E

hsqldb 1 N/E N/E 1 280 21 2 95 N/E
jython 41 N/E N/E 0 937 12 1 crashes N/E

luindex 1 N/E N/E -1 233 6 0 33 N/E
lusearch 2 N/E N/E -1 137 7 0 49 N/E

pmd 36 N/E N/E -1 547 1 -2 658 N/E
xalan 3 N/E N/E -1 90 3 -2 164 N/E

Figure 6.9: Average percent runtime overhead for JavaMOP CFG (MOP), PQL,
and Tracematches (TM) (convergence within 3%); N/E means “not expressible”.

6.3.3 Results

Fig. 6.9 shows the percent overheads of JavaMOP using the CFG plugin, PQL,
and Tracematches. N/E refers to specifications that were not expressible. Negative
numbers can be attributed both to the 3% noise in the measurements and instruction
cache layout changes due to the weaving process. Tracematches is unable to sup-
port IMPROVEDLEAKINGSYNC because the property is truly context-free. PQL is
also unable to support it because it requires events corresponding to the beginning
and end of synchronized method calls, and PQL can only trigger events on the end
of method calls. Tracematches cannot support SAFEFILEWRITER because it is a

153

PhD Thesis, University of Illinois, August 2012

Property HASHMAP HASNEXT SAFEITERATOR

antlr 0 0 1990
bloat 361519 143103032 75944328
chart 8773 6819 569345

eclipse 20888 3252 32759
fop 17265 281 49959

hsqldb 0 0 0
jython 443 106 177554

luindex 9615 28140 82162
lusearch 416 0 405428

pmd 11354 33294563 25476563
xalan 124155 0 1009649

IMPROVEDLEAKINGSYNC SAFEFILEINPUTSTREAM SAFEFILEWRITER

antlr 8472 0 0
bloat 5587905 259 385
chart 634260 0 0

eclipse 74630 930 0
fop 182407 12 0

hsqldb 0 0 0
jython 23969673 544 0

luindex 1559386 1114 0
lusearch 1291992 0 0

pmd 26291289 10 32
xalan 5146036 13604 0

Figure 6.10: Number of events handled by JavaMOP

154

PhD Thesis, University of Illinois, August 2012

pure context-free specification. However, Tracematches can support SAFEFILEIN-
PUTSTREAM because it has the ability to access call stack depth via the cflowdepth

pointcut term, which is provided only by the ABC compiler for AspectJ.
Over one run of the entire DaCapo benchmark suite, more than 355 million

events (Fig. 6.10) were triggered. Tracematches has the same number of events
throughout the tests because it uses the same instrumentation technique as JavaMOP.
We had no good method to obtain the number of events generated in PQL; we
assume it was less because PQL performs a static optimization which removes
unnecessary optimization points. It is interesting to note that in the cases of
HasNext with antlr, lusearch, and xalan that there are no events, despite the fact
that these three benchmarks have events for SAFEITERATOR. The reason for this
is that the SAFEITERATOR instruments Collection.remove, so it is possible for
SAFEITERATOR to have events in programs with no actual Iterators.

The average overhead of JavaMOP over 45 program/property pairs that actually
generate events is 50%. There are two considerations here, however: (1) we chose
specifically those properties that generated the largest overheads (HASNEXT and
SAFEITERATOR in bloat), (2) when the two largest overheads are removed, the
average over the remaining 43 pairs drops to a very reasonable 12%. Further,
the average JavaMOP overhead for properties expressible in PQL that generated
events was 61% over 36 pairs, while PQL’s overhead on these same properties was
583%. Similarly, for Tracematches expressible properties that generated events,
JavaMOP’s overhead was 64% over 33 pairs, while Tracematches was 414%. Trace-
matches, PQL, and JavaMOP all feature the same two pairs which have extremely
large overhead compared to the median (HASNEXT and SAFEITERATOR in bloat).
When these two pairs are removed from the three averages, the average overhead
for JavaMOP with respect to PQL expressible properties is 12%, while PQL still
weighs in at 199%. Tracematches is comparable to JavaMOP, with JavaMOP and
Tracematches both at 12%. Since Tracematches does not support the full generality
of (deterministic) context-free grammars, we view comparable performance to
Tracematches as favorable to our approach, especially given that, in the overall
data set, our average overhead is over 8 times lower than Tracematches’ overhead.

The largest overheads seen, across all three systems, are for SAFEITERATOR

and HASNEXT in bloat. This is due to bloat’s extensive use of iterators. Bloat

is a bytecode optimizer, which uses iterators to process bytecode. PQL and
Tracematches perform worse on SAFEITERATOR than they do on HasNext, while
our performance is the opposite. The reason for this is that HasNext creates a

155

PhD Thesis, University of Illinois, August 2012

Property Original HASHMAP HASNEXT SAFEITERATOR

antlr 2.3 / 10.1 2.0 / 10.6 1.8 / 10.6 2.0 / 10.8
bloat 5.6 / 8.9 6.9 / 8.9 5.9 / 8.7 541.0 / 10.6
chart 20.1 / 11.3 20.8 / 11.4 17.0 / 11.3 20.7 / 11.5

eclipse 27.0 / 22.1 30.7 / 22.2 27.4 / 22.1 28.6 / 22.3
fop 12.3 / 9.1 13.2 / 9.2 10.9 / 9.0 10.2 / 9.1

hsqldb 80.8 / 7.6 80.2 / 7.6 76.4 / 7.5 77.5 / 7.6
jython 3.9 / 19.0 4.1 / 19.0 3.8 / 19.0 3.9 / 19.1

luindex 4.2 / 6.9 4.0 / 7.0 4.6 / 6.9 4.7 / 7.1
lusearch 5.2 / 6.2 5.2 / 6.3 5.7 / 6.2 5.3 / 6.3

pmd 22.0 / 8.6 22.3 / 8.7 24.0 / 8.6 888.1 / 8.9
xalan 21.7 / 10.2 23.8 / 10.5 26.2 / 10.2 29.1 / 10.3

Property Original IMPROVEDLEAKINGSYNC SAFEFILEINPUTSTREAM SAFEFILEWRITER

antlr 2.3 / 10.1 2.1 / 10.7 2.4 / 10.7 2.2 / 10.7
bloat 5.6 / 8.9 7.9 / 10.0 5.0 / 8.9 5.6 / 8.9
chart 20.1 / 11.3 17.0 / 11.3 17.8 / 11.3 16.4 / 11.3

eclipse 27.0 / 22.1 28.9 / 22.1 30.7 / 22.1 27.1 / 22.1
fop 12.3 / 9.1 14.6 / 9.2 11.9 / 9.0 12.0 / 9.0

hsqldb 80.8 / 7.6 87.2 / 7.5 78.2 / 7.5 79.3 / 7.5
jython 3.9 / 19.0 4.0 / 19.2 4.0 / 19.1 3.6 / 19.1

luindex 4.2 / 6.9 5.6 / 7.0 4.2 / 6.9 4.6 / 6.9
lusearch 5.2 / 6.2 5.8 / 6.4 5.6 / 6.3 5.7 / 6.3

pmd 22.0 / 8.6 22.2 / 8.8 24.2 / 8.6 22.9 / 8.6
xalan 21.7 / 10.2 24.4 / 10.3 22.0 / 10.3 26.5 / 10.2

Figure 6.11: Maximum memory usage in MB (Maximum Heap Memory Usage) /
(Maximum Non-Heap Memory Usage).

156

PhD Thesis, University of Illinois, August 2012

far larger number of monitors in JavaMOP because it creates a monitor for every
call to next, while SAFEITERATOR only creates monitors on a call to create.
The pattern for SAFEITERATOR, however, is more complex. This shows that
JavaMOP has, relatively speaking, more overhead in generating and handling the
monitor set for suffix matching than it does in matching the pattern, while PQL
and Tracematches overheads are more affected by the complexity of the pattern.
Note that JavaMOP with CFGs far outperforms both PQL and Tracematches on
these 2 program/property pairs.

SAFEFILEINPUTSTREAM is an interesting case: it is required to match the
begin and end of methods. Instrumenting the begin and end of every method
would be atrociously slow, however. We perform a static analysis which finds
those methods in which FileInputStream’s are actually used. Then, we instrument
only those methods for begin and end. Because Tracematches, also, is pointcut
based, we are able to perform the same optimization for Tracematches, so the
numbers shown are with the optimization enabled. PQL is not pointcut based so
the optimization cannot be applied; however, the PQL property does not match
begins and ends of methods (recall: PQL can only match the ends), so this is not
an issue. In PQL we specify SAFEFILEINPUTSTREAM by using an interesting
PQL-specific feature called within. The idea of within is that a property matches
only within a given method or methods matching a particular pattern (in the case of
SAFEFILEINPUTSTREAM we use the pattern . which specifies all methods of all
classes). Additionally, PQL will only instrument the same methods that JavaMOP
and Tracematches instrument because within only instruments methods which can
generate relevant events.

The memory overhead is reasonable in our experiments: overall, it is 33%
on average with a 4% median (see Fig. 6.11 for a pair-wise breakdown). There
are two extreme cases of memory overhead caused by JavaMOP monitors: bloat-

SAFEITERATOR and pmd-SAFEITERATOR. Our investigation shows that both
programs, bloat and pmd, make intensive use of vectors, and create numerous
iterators to do computation over the vectors throughout the execution. Note that
every creation of the iterator leads to the creation of a monitor instance for SAFEIT-
ERATOR using our technique. Hence, a huge number of monitor instances were
created in these two benchmarks. While the iterator object is usually used in a
small scope and then released, the vectors are not released until the end of the
execution, preventing the removal of the created monitor instances. In other words,
all the monitor instances created during the execution of bloat and pmd were kept

157

PhD Thesis, University of Illinois, August 2012

HASHMAP HASNEXT SAFEITERATOR

LR(1) states 6 5 15
LALR(1) states 6 5 15

IMPROVEDLEAKINGSYNC SAFEFILEINPUTSTREAM SAFEFILEWRITER

LR(1) states 19 20 18
LALR(1) states 15 8 11

Figure 6.12: Comparison of LR(1) and LALR(1) tables.

alive until the execution ended, resulting in the observed massive memory usage.
On the contrary, we can see that a large number of monitors were also created
for bloat-HASNEXT and pmd-HASNEXT but with much less memory overhead.
HASNEXT has one monitor created for every iterator object, and when the iterator
is released, the corresponding monitor will also be removed. Since most iterators
were released shortly after creation, only a few monitors existed at the same time
during the execution resulting in much lower memory overhead. Compared with
the results of Tracematches [10], we believe there is still some room for improve-
ment with regard to memory usage in our approach. The memory overhead of our
approach does not cause unnecessary loss of performance during the evaluation,
indicating that it is not a bottleneck for the efficiency of monitoring.

Fig. 6.12 shows a comparison of parse table size between LR(1) and LALR(1)
in terms of number of states. No reduce-reduce conflicts were introduced in
any of our properties, and the space savings can be significant. Although, in
either case, the tables are small enough that the size difference has no effect on
runtime. It is interesting to note that the three regular language properties see no
savings from LALR(1).

Our experiments with guaranteed acceptance found no benefit to the patterns
we tested because, as mentioned, each pattern can only accept once per parameter
instance, and the stack depth is kept to a minimum by using careful grammar
design. Not all properties, however, can or should be written in such a way that
only one acceptance can be generated per parameter instance. In extreme cases,
such as patterns that feature unbounded repetition at the end of the pattern, such as
a

⇤, guaranteed acceptance can provide a lower asymptotic complexity. Consider the
grammar S ! ✏|aS which monitors a

⇤. For each a that arrives, with guaranteed
acceptance a constant time15 step of adding a to the stack and accepting occurs.

15It is constant except when the stack size must be grown.

158

PhD Thesis, University of Illinois, August 2012

With stack copying, the stack must be copied on each arrival of a. This copying,
however, will take time linear in the amount of times a has been previously seen.
Thus, with guaranteed acceptance, the monitoring time is linear in the number of a

events in the program run while stack copying is quadratic.

6.4 Chapter Related Work

Work related to context-free grammars in MOP can be divided into two main
categories: context-free or more powerful logics in runtime monitoring, and context-
free grammars in testing and verification.

6.4.1 Runtime Monitoring

Many approaches have been proposed to monitor program execution against for-
mally specified properties. Interested readers can refer to [33] for an extensive dis-
cussion on existing runtime monitoring approaches. Briefly, all runtime monitoring
approaches except MOP [30, 32, 33] have their specification formalisms hardwired
and only two of them share the same logic (LTL). A thorough discussion of the
MOP framework can be found in Chapter 2. This observation strengthens our belief
underlying MOP — there probably is no silver-bullet specification formalism for
all purposes. Also, most approaches focus on detecting either violations (pattern
failures in CFG) or validations (pattern matches in CFG) of the desired property
and support only fixed types of monitors, e.g., online monitors that run together
with the monitored program or offline monitors that check the logged execution
trace after program termination.

Specifically, there are four orthogonal attributes of a runtime monitoring system:
logic, scope, running mode, and handlers. The logic specifies which formalism is
used to specify the property. The scope determines where to check the property; it
can be class invariant, global, interface, etc. The running mode denotes where the
monitoring code runs; it can be inline (weaved into the code), online (operating
at the same time as the program), outline (receiving events from the program
remotely, e.g., over a socket), or offline (checking logged event traces).16 The
handlers specify what actions to perform under exceptional conditions; there can be
violation and validation handlers. It is worth noting that for many logics, violation

16Offline implies outline, and inline implies online.

159

PhD Thesis, University of Illinois, August 2012

Approach Logic Scope Mode Handler

JPaX [59] LTL class offline violation
TemporalRover [44] MiTL class inline violation

JavaMaC [82] PastLTL class outline violation
Hawk [41] Eagle global inline violation
RuleR [17] RuleR global inline violation

Tracematches [10] Reg. Exp. global inline validation
J-Lo [23] LTL global inline violation
Pal [29] modified Blast global inline validation

PQL [89] PQL global inline validation
PTQL [54] SQL global outline validation

Figure 6.13: A Selection of Monitoring Systems

and validation are not complementary to each other, i.e., the violation of a formula
does not always imply the validation of the negation of the formula.

Most runtime monitoring approaches can be framed in terms of these attributes,
as illustrated in Fig. 6.13. For example, JPaX can be regarded as an approach
that uses linear temporal logic (LTL) to specify class-scoped properties, whose
monitors work in offline mode and only detect violation. In general, JavaMOP has
proven to be the most efficient of the runtime monitoring systems despite being
generic in logical formalism.

Of the systems mentioned in Fig. 6.13, only PQL [89], Hawk/Eagle [41], and
RuleR [17] can handle arbitrary context-free properties. Hawk/Eagle adopts a
fix-point logic and uses term rewriting during the monitoring, making it rather
inefficient. It also has problems with large programs because it does not garbage
collect the objects used in monitoring. In addition, Hawk/Eagle is not publicly
available.17 Because of this and the fact that Hawk/Eagle has not been run on
DaCapo [22] with the same properties, we cannot compare our CFG plugin with
Hawk/Eagle. RulerR is a simplification of Eagle that is rule based rather than
µ-calculus based, but it still has the ability to specify context-free properties. The
current implementation is not built for efficiency or ease of expression with regards
to context-free properties. In addition to PQL, we decided to perform comparisons
with Tracematches [10], as it is able to monitor a very limited set of context-
free properties using compiler-specific support provided by their special AspectJ
compiler, ABC [9], and because it is a very efficient system. Pal [29] is able

17 [10] makes an argument for the inefficiency of Hawk/Eagle. Since Hawk/Eagle is not publicly
available (only its rewrite based algorithm is public [41]), the authors of Hawk/Eagle kindly agreed
to monitor some of the simple properties from [26]. We have confirmed the inefficiency claims
of [10] with the authors of Hawk/Eagle.

160

PhD Thesis, University of Illinois, August 2012

to monitor properties that take calls and returns into account, giving a limited
context-free ability for this one case. Pal is implemented for C, rather than Java,
and the implementation is not publicly available.

6.4.2 Context-free Grammars in Testing and Verification

Context-free grammars have seen use in several areas of testing and verification
not immediately related to runtime monitoring.

Attributed context-free grammars were used as a means to generated test input
and output pairs by [46]. The generated test inputs and outputs could be used both
the test the specification from which the test grammar was designed, as well as the
final implementation of a specification, using automatic test drivers. Their test case
generator was capable of generating test cases from the grammar both randomly
and systematically. The attributes of the context-free test generation grammars
allow a user to attach context sensitive information to parts of the grammar, and
allow for refinement of test case generation in order to avoid redundant test cases.
Earlier attempts of test case generation via grammars [56, 68, 104] were employed
to generate test input only for compilers and parsers rather than programs and their
specifications (though, [45] used grammars to generate test cases in much the same
way, it could not generate outputs, and it generated far too many similar test cases).
In [90] context-free grammars were used to generate test data for VLSI (very large
scale integration) circuits. [114] applied the concept of test case generation using
context-free grammars to Java virtual machine implementations.

All of these approaches differ quite a bit from runtime monitoring. The over-
head of these approaches is not nearly so important because they are used to
generate test cases in an offline manner, rather than running at the same time as a
program that is under testing or a production system, situations for which runtime
monitoring is intended. Additionally, runtime monitoring attempts to monitor
behavior of a system rather than to generate test cases.

[71] used context-free grammars for an entirely different purpose that is more
related to runtime monitoring than is test case generation. They created an interface
specification language that uses context-free grammars to provide stub code for
model checking. The grammar specifies the sequence of method invocations
allowed by the component. The stubs are called by the code under model checking,
providing a means of modular model checking. The grammar generated stubs
execute during the model checking process to ensure that the non-stub portions

161

PhD Thesis, University of Illinois, August 2012

of code always follow the specification of method calls given by the grammar. In
this way it is similar to runtime monitoring with context-free grammars, as the
grammar is used to specify intended behavior, and flag errors when the behavior is
not followed at runtime. Our work differs primarily in that it is designed to enforce
behavior in a running system rather than to abstract a component, and in that it is
parametric, whereas the interface grammars are not.

6.5 Chapter Conclusion

We implemented a CFG logic plugin for JavaMOP using a modified LR(1) parsing
algorithm. We also implemented an optimization of table generation, which uses
the LALR(1) state merging technique, leading to smaller tables, but may result in
extra reduce-reduce conflicts. Our first modification to the algorithm is based on
the novel idea of copying the stack in order to “predict” a possible reduction with
$ (end of string) as a look-ahead without destroying the state of the monitor. An
important optimization and simplification possibility is guaranteed acceptance,
wherein the algorithm accepts when a reduction with $ as look-ahead is possible;
this saves the copying operation, which can take arbitrarily long to perform, since
the stack is unbounded. We showed, empirically, that our algorithm is efficient and
faster than the state-of-the-art for monitoring CFG properties.

162

PhD Thesis, University of Illinois, August 2012

Chapter 7

String Rewriting Systems

7.1 Chapter Introduction

This chapter presents efficient monitoring for parametric string rewriting systems
(SRS). String rewriting systems are Turing-complete, allowing the formal specifi-
cation of any conceivable safety property. Unfortunately, (co)enable sets for SRS
cannot be computed (the problem reduces to the halting problem).1

Runtime Verification (RV) is a formal analysis approach in which specifications
of requirements are given together with the code to check, as in traditional formal
verification, but the code is checked against its requirements at runtime, as in
testing. A large number of runtime verification techniques and systems, including
TemporalRover [44], JPaX [59], JavaMaC [82], Hawk/Eagle [41], Tracematches
[6, 10], J-Lo [23], PQL [89], PTQL [54], MOP [32, 33], Pal [29], RuleR [17],
etc., have been developed recently, and the overall approach has gained enough
traction to spawn its own conference [14]. In a Runtime Verification system,
monitoring code is generated from the specified properties and integrated with the
system to monitor. Therefore, a Runtime Verification approach consists of at least
three interrelated aspects: (1) a specification formalism, used to state properties to
monitor, (2) a monitor synthesis algorithm, and (3) a means to instrument programs.
The chosen specification formalism determines the expressivity of the Runtime
Verification approach and/or system.

Monitoring safety properties is arbitrarily complex [109]. Early developments
in Runtime Verification, showed that parametric regular and temporal-logic-based
formal specifications can be efficiently monitored against large programs. A
parametric monitor associates monitor states with different object instantiations for
the given parameters. This allows for specification of properties about the relation-
ships of objects, e.g., a relationship between a Collection object and its associated

1Work on monitoring string-rewriting systems was performed with Grigore Roşu. It was
originally presented in [94].

163

PhD Thesis, University of Illinois, August 2012

Iterator objects in Java.2 As shown by experiments with Tracematches [10] and
the most recent experiments using JavaMOP [76], parametric regular and temporal
logic specifications can be monitored against large programs with little runtime
overhead, on the order of 15% or lower.

However, both regular expressions and temporal logics are monitored using
finite automata, so they have inherently limited expressivity. More specifically,
most Runtime Verification approaches and systems consider only flat execution
traces, or execution traces without any structure. Consequently, users of such
Runtime Verification systems are prevented from specifying and checking struc-
tured properties, those properties referring to the program structure such as prop-
erties with requirements on the contents of the program call stack. PQL [89],
Hawk/Eagle [41], and RuleR [17] provide more expressive logics, but these are
relatively inefficient [6, 10, 33]. More recently, JavaMOP was extended to support
efficient context-free monitors with runtime overheads very similar to the earlier
finite-state logics [92]. While this work allows for checking many structured prop-
erties, it does not have the full power to specify any possible safety property. In
this chapter, we introduce an algorithm for monitoring parametric deterministic
string rewriting systems, to serve as an efficient Runtime Verification technique for
specifying and monitoring arbitrarily complex properties; indeed, string rewrite
systems are known to be as expressive as Turing machines [28]. We also provide
an implementation of our algorithm as an MOP logic plugin [32, 33], so it can
be used as integral part of the JavaMOP Runtime Verification system. By abuse
of vocabulary, we will refer to deterministic string rewriting systems as string
rewriting systems and abbreviate them SRSs.

7.1.1 Examples

Safety properties that require more expressivity than a context-free language are
generally more intimately related to the specifics of the program under verifi-
cation/test than those that may be monitored using context-free or finite logics.
Conversely, less specific properties, such as correct API usage, tend to be finite
state [86]. As a relatively simple, and admittedly contrived, example of a non
context-free property, consider the Java class, RandomEquality defined in Fig.
7.1. The idea of this class is to provide a random string of numbers from the set

2 Typestates [118] a popular concept in software engineering and software analysis, can be
monitored with parametric monitors that have only one parameter.

164

PhD Thesis, University of Illinois, August 2012

public class RandomEquality {
int numberOfNumbers;

public RandomEquality(int numberOfNumbers){
this.numberOfNumbers = numberOfNumbers;

}

public int nextNumber() {
return genNextNumber(numberOfNumbers--);

}

public boolean hasNextNumber(){
return numberOfNumbers > 0;

}

private int genNextNumber(int currentNumber){
//some logic that may or may not be correct

}
}

Figure 7.1: A Java class that provides random number sequences of any length that
maintain equality

{0, 1, 2} of a given length defined by the parameter passed to the constructor that
maintains equality, that is, that the number of 2’s is equal to the number of 1’s is
equal to the number of 0’s.

The JavaMOP specification presented in Fig. 7.2, which uses the new srs logic
plugin, is able to catch any failures of this class to provide equality. JavaMOP
specifications begin with a declaration of the name of the specification and parame-
ters. Here the property is named EQUALITYCHECK, and one parameter re of type
RandomEquality. The parameters allow us to associate separate monitor states
with each object instantiation of the parameters. In this case, with one parameter,
there will be one monitor state associated with each object instance of RandomE-
quality in the program under test. This is important because we would not want
calls to different object instances of the RandomEquality class to interfere with
each other as such would assuredly lead to false positives and negatives.

The next part of a JavaMOP specification is the declaration of events. Here
we are able to generate four different events: done, e0, e1, and e2. The events
are defined using a superset [93] of AspectJ [79] advice with embedded pointcuts.
Here, the event done is defined to occur when the hasNextNumber() method

165

PhD Thesis, University of Illinois, August 2012

is called and returns false, signaling the end of the randomly generated number
string.3 The events e0, e1, and e2 all correspond to calls of nextNumber() where
the proper number in {0, 1, 2} is returned.

3Note that this requires properly calling hasNextNumber() before calling hasNextNumber().
This can be ensured in JavaMOP using a different, finite state, property.

166

PhD Thesis, University of Illinois, August 2012

EqualityCheck(RandomEquality re) {

event done after(RandomEquality re)

returning(boolean b) :

call(* RandomEquality.hasNextNumber())

&& target(re) && condition(!b) {}

event e0 after(RandomEquality re)

returning(int i) :

call(* RandomEquality.nextNumber())

&& target(re) && condition(i == 0) {}

event e1 after(RandomEquality re)

returning(int i) :

call(* RandomEquality.nextNumber())

&& target(re) && condition(i == 1) {}

event e2 after(RandomEquality re)

returning(int i) :

call(* RandomEquality.nextNumber())

&& target(re) && condition(i == 2) {}

srs :

e1 e0 -> e0 e1 . e2 e0 -> e0 e2 . e2 e1 -> e1 e2 .

e0 e1 -> E .

E e1 -> e1 E . E e0 -> e0 E .

E e2 -> #epsilon . e2 E -> #epsilon .

ˆ done -> #succeed .

e0 done -> #fail .

e1 done -> #fail .

e2 done -> #fail .

@succeed {

System.out.println(

p.toString() + " worked perfectly!"); }

@fail {

System.out.println(

p.toString() + " failed!"); }

}

Figure 7.2: A JavaMOP specification that finds equality failures in the RandomE-
quality class

After the event definitions, we list the formalized property. The keyword srs

tells JavaMOP that the following property will be a deterministic string rewriting
system. Rules in our SRS formalism take the form “l! r .”, meaning that the string
of events on the left hand side of the arrow rewrites to that on the right side. The

167

PhD Thesis, University of Illinois, August 2012

three rules on the first line of this SRS sort the events: all e0 come before all e1
which come before all e2. The rule e0 e1! E denotes that we have found a pair
of e0 and e1, which must be matched by an e2.

Note that the SRS rules can be applied in any order when a new event is received,
so it is user’s responsibility to write confluent SRSs or to use the deterministic
order of rule application explained in Section 7.2.1. The two rules on the third line
move all instances of E to the right, so that they will eventually become adjacent
to any instances of e2. The two rules on line four correspond to when such a
situation occurs. When E is adjacent to e2 we have found a triple, and we can
safely remove the symbol E from the string by rewriting it to #epsilon, which is a
keyword specific to the SRS formalism in JavaMOP. The next rule is the success
case, which occurs when done is at the beginning of the string (denoting that all
0’s, 1’s, and 2’s have been equal). The symbol ˆ corresponds to the beginning of
the string. Similarly, $ corresponds to the end, but is not used here. #succeed is a
special keyword that stops the rewriting process with the monitor signaling that a
success was found. Like #succeed, #fail is a keyword that stops the monitor with
a failure returned.

The next three lines are the failure cases; each rewrites to #fail. They occur
when the number of 0’s, 1’s, and 2’s was not equal, because the string will always
be empty when a done occurs if they were properly balanced. The failure cases
rely on the incremental nature of the string rewriting process. If taken as a normal
SRS with complete strings as input, this would not be confluent. That means, the
choice of what order to apply rules would result in different normal forms (See
Section 7.2.1). Because the normal form is computed between the arrival of each
event, e0, e1, or e2 can only occur before done in the string if an unequal number
occurred. The string rewriting process is explained fully in Sections 7.2.2–7.2.4.

The last part of a JavaMOP specification is the handler section. Handlers are
arbitrary Java code that is executed when the monitor raises a particular condition.
Here the keywords @succeed and @fail denote that the code within the subsequent
braces is run when the string rewrites to #succeed or #fail, respectively. In this
example, the handlers simply print out informative messages when such situations
occur. In general, handler code may be used for anything, such as running a specific
algorithm or recovering from the error denoted by the failure of the safety property
in question.

Aside from specifying properties which cannot be expressed by context-free
grammars, string rewriting systems can be useful for expressing context-free and

168

PhD Thesis, University of Illinois, August 2012

finite properties in a natural, and often times more compact, form. Below are two
properties from earlier papers [92, 93] written as SRSs.

The first property, called HASNEXT, is a property of the Java Iterator interface
stating that hasNext() should always be called and return true before next is called.
Below it is specified as a regular expression:

(hasnexttrue next)⇤ next

The corresponding SRS is as follows:

hasnexttrue next ! #epsilon
hasnexttrue hasnexttrue ! hasnexttrue

ˆnext ! #fail

While this SRS is certainly larger than the original ERE, it may be easier to under-
stand by some users because it directly captures the semantics of the property by
simply enumerating all the cases that one has to worry about. The rule hasnexttrue
hasnexttrue! hasnexttrue conveys the notion that multiple calls to the has-
Next() method are idempotent. hasnexttrue next rewrites to #epsilon because it
is a safe operation. If next is seen at the beginning of the string a failure is raised
as hasnexttrue was not properly called. Because our algorithm is incremental and
deterministically rewrites from left to right it is not strictly necessary to match the
beginning of the string, but it is more clear conceptually.

The second property is a properly context-free property called SAFELOCK

which corresponds to the proper nesting of acquiring and releasing locks. Proper
nesting, in this case, means that corresponding calls to acquire() and release()
occur within the same method body. Here begin and end denote the beginning
and end of a method body.

S ! ✏ | S acquire M release A

M ! ✏ | M begin M end | M acquire M release
A ! ✏ | A begin | A end

The property is fairly complex, and a complete explanation can be found in [92].

169

PhD Thesis, University of Illinois, August 2012

The SRS for the property follows:

begin end ! #epsilon
acquire release ! #epsilon

begin release ! #fail
acquire end ! #fail

In this case, the SRS is quite a bit less complex than the context-free grammar spec-
ifying the same safety property. Again, it conveys interesting semantic information.
From the SRS it is clear that a begin followed immediately by a release() results
in an error because we require all release() to occur in the same method call as
the corresponding acquire(). Similarly, an acquire() follow by a end results in an
error because the lock is not correctly released within the method body. begin end
and acquire release rewrite to #epsilon because they are properly nested when
they occur adjacently.

7.1.2 Chapter Contributions

There are two main contributions to this chapter:

• An efficient, optimized string rewriting algorithm. It builds upon a modifica-
tion of the Aho-Corasick algorithm [3]. The original algorithm was designed
for quickly finding strings in text. Our modified algorithm keeps track of
substitution boundaries so that a rewrite step can be performed in time linear
to the length of the right hand side of the matched rule.4 To our knowledge,
this is the first time it has been applied to string rewriting. An optimization
has also been devised, which checks for early termination of rewriting.

• An implementation and extensive evaluation of the above algorithm as an
MOP logic plugin for Runtime Verification. This way, it can serve as a
specification formalism for parametric safety properties in instances of the
MOP framework, such as JavaMOP. We show that its performance in practi-
cal Runtime Verification of large systems is acceptable when compared to
other means to specify the same properties. Additionally, we show that it
outperforms one of the state-of-the-art rewrite engines, Maude [39], which
implicitly supports string rewriting as rewriting modulo associativity.

4The right hand side must be copied, so that the rule is still viable the next time it matches.

170

PhD Thesis, University of Illinois, August 2012

7.1.3 Chapter Outline

Section 7.2 presents our string rewriting algorithm, with its use and construction
of pattern match automata and and optimization that allows for early termination.
Section 7.3 presents our experimental results. Section 7.4 presents related work in
the field of Runtime Verification, and Section 7.5 concludes.

7.2 Monitoring SRS Specifications

In this section, we present some basic notation for string rewriting systems and our
string rewriting algorithm which was implemented as a logic plugin in the MOP
framework.

7.2.1 Preliminaries

We refer the reader to [28] for an in-depth presentation of string rewrite systems.
For an alphabet ⌃, a string rewriting system (SRS) is a binary relation, R, on ⌃,
that is, a subset of ⌃

⇤ ⇥ ⌃

⇤. The set {l 2 ⌃

⇤ | (l, r) 2 R} is called the domain
of R, denoted dom(R), while similarly the set {r 2 ⌃

⇤ | (l, r) 2 R} is called the
range, denoted range(R). We refer here to any element (l, r) 2 R as a rule in R,
any l 2 dom(R) as a left hand side (LHS) of a rule in R, and any r 2 range(R) as
a right hand side (RHS) of a rule in R. In our SRS specifications in this chapter
and in JavaMOP, rules (l, r) 2 R are written using the earlier shown syntax “l! r”.

The single-step reduction relation on ⌃

⇤ that is induced by R is defined as: for
any u, v 2 ⌃

⇤, u !
R

v if and only if there exists (l, r) 2 R such that for some
x, y 2 ⌃

⇤, u = x l y and v = x r y. The reduction relation on ⌃

⇤ induced by R

is the reflexive, transitive closure of!
R

and is denoted by!⇤
R

. If for x, y 2 ⌃

⇤,
x !⇤

R

y and y is irreducible, y is a normal form for x. R is confluent if there is
only one such y for any given x, regardless of the order in which rules are applied.

In our SRSs in MOP, the symbols s 2 ⌃ correspond to either events of our
property or symbols that appear in the RHS of rules in R. We call our string
rewriting systems deterministic because the same normal form will always be
chosen in the presence of a non-confluent R. Specifically, rules are applied left-to-
right, with the smallest rule matching first in the case of overlap (e.g., for LHSs a

a and a a b, the rule with a a as its LHS will always be applied first, starving the
other rule). In the case of a conflict that is not resolved by the above, the order of

171

PhD Thesis, University of Illinois, August 2012

rules in the SRS specification is used to determine which rule to apply (e.g., if two
rules have the same LHS, the one specified first will always be applied).

7.2.2 String Rewriting Algorithm Overview

There are two major parts to our SRS algorithm:

1. Finding matches of the LHSs of rules; and

2. Performing replacements with RHSs of rules.

To make replacements as efficiently as possible, the string of events/symbols that
we rewrite is a linked listed of the SpliceList class, which was specially created for
our purposes to allow constant time replacement of a section of the list with another
list (splicing). The SpliceList class has a special type of Iterator defined for it,
called the SLIterator, that does not follow the normal Iterator interface in Java.

Rather than only having next() and hasNext() methods, the SLIterator has
next(int i), which moves the SLIterator forward i times and returns true if it
is successful (i.e., does not reach the end of the SpliceList), and get(), which
returns the current element that the SLIterator points to. SLIterator also has
a method, splice(SLIterator second, SpliceList replacement), which takes
another SLIterator to the same SpliceList and replaces the sequence denoted by
those two SLIterators, inclusively, by a specified sequence replacement. It is
because of the inclusive nature of the splice method that the SLIterator must have
a method to retrieve its current element without advancing. The splice method
makes it imperative for our string matching algorithm to maintain SLIterators to
the beginning and end of the current LHS under consideration.

In Section 7.2.3 we discuss how this matching occurs using a modification of
the Aho-Corasick string searching algorithm [3] that, unlike the base algorithm,
keeps track of the beginning of a match, so that rewrites can be performed in
constant time (after copying the RHS in time proportional to its length). To make
this chapter self-contained, we give all the necessary information regarding the
Aho-Corasick algorithm, rather than only this modification, but the modification
is clearly delineated. To our knowledge, this is the first time any variation on the
Aho-Corasick algorithm has been used in string rewriting, and no implementa-
tions of SRSs exist, that we could find. In Section 7.2.4, we present an in-depth
explanation of how the pattern matching fits into the string rewriting algorithm

172

PhD Thesis, University of Illinois, August 2012

acquire / 0

begin, acquire / 1

end / 0

be
gin

, e
nd

, a
cq

uir
e,

re
lea

se
/ 2

begin, end, acquire, release / 2

release / 0

end, release / 0

release / 0

begin, acquire / 1

begin, end, acquire, release
/ 2

begin / 0

begin, end, acquire, release / 2

end / 0

1 : 1

0 : 0

3 : 1

2 : 2
(begin end! #epsilon)

5 : 2
(acquire end! #fail)

4 : 2
(acquire release! #epsilon)

6 : 2
(begin release! #fail)

Figure 7.3: Pattern match automaton for the SAFELOCK property (see Sec-
tion 7.1.1)

and how we optimize string rewriting to avoid considering sequences that cannot
match any LHS.

7.2.3 Pattern Match Automata

The pattern match automata used by our string rewriting process, as mentioned, is
a modification of the Aho-Corasick algorithm for finding strings in text [3]. The
Aho-Corasick algorithm, which was originally not designed for string rewriting,
is able to find all matches in a string in one linear pass, rather than performing
separate passes for each rule LHS as would a naive matching algorithm. Our
modification of the algorithm allows us to correctly adjust the SLIterator to the
beginning of our current match, facilitating quick rewrites.

Using Pattern Match Automata

Fig. 7.3 shows the pattern match automaton for the SAFELOCK property. Each
node has at least its state number and state depth, listed as a pair number:depth. The
depth is used in two places in the automata generation algorithm, and simply states
how many symbols (events) have been processed since the start state in one of the
LHSs of the rewrite rules in our SRS. This will be explained in more detail below.
Additionally, states which correspond to matching the left hand side of a given rule
also display that rule, e.g., in state 6, the begin release! #fail rule is matched.

173

PhD Thesis, University of Illinois, August 2012

Each edge is marked by the list of symbols that cause that transition, as well as a
number following a “/”. That number, which we refer to as the action, is the number
of times to increment the first SLIterator except in the self-transitions of state 0.
When a self-transition in state 0 occurs, the first Iterator must be incremented once.
When a forward transition with “/ 0” is encountered, a transition to the next state is
made, and the next input is considered. If the transition is suffixed with something
other than 0, the transition must be a backward transition, and the same symbol that
is currently under consideration must be evaluated in the next state. This is why we
handle self-transitions in state 0 as a special case, if it were suffixed with “/ 1” and
handled as a backward transition, the same symbol would be considered infinitely.

Fig. 7.4 shows the pseudocode for pattern matching using a given pattern
match automaton. The only global variable for the algorithm is the given Pattern-
MatchAutomaton, pma. The algorithm begins by initializing the first and second
SLIterators to the beginning of the argument SpliceList l, using the head() method.
The local currentState is initialized to the initial machine state, here represented
as 0.5 The while loop beginning on line 10 will only exit when the end of l is
reached, denoted by the break statements on lines 20 and 25. We know that the
end of l is reached on lines 20 and 25 when the next(int i) method returns false.
We never need to check if first.next returns false because it may never advance
past second due to the construction of the PatternMatchAutomaton. Lines 17–22
cover the self transition to state 0 mentioned earlier, while lines 23–27 represent
a normal forward transition. 23–27 are a forward transition because the action
of the transition is 0. As mentioned earlier, the only difference between the 0
self-transition and a forward transition is that in the self-transition the first SLIter-
ator need be incremented (line 18). Lines 28–30 handle a backward transition in
the PatternMatchAutomaton. As expected, with a backward transition the first
SLIterator is incremented a number of times specified by the action of transition
and second is not incremented so that the same symbol will be considered in the
next iteration of the loop. One interesting property of this algorithm is that if one
pattern is a prefix of another, such as the patterns “a a ! c” and “a a b ! d”,
both matches will be reported. This is undesirable behavior for rewriting because
“aa” will be rewritten to c immediately and “a a b” should no longer be matchable.
This will be accounted for in Section 7.2.4.

As an example of how the pattern match algorithm functions, suppose that the
5It is actually a class that may contain a matched rule, as we can see in Fig. 7.3.

174

PhD Thesis, University of Illinois, August 2012

1 globals PatternMatchAutomaton pma
2 locals SLIterator first, second
3 State currentState, nextState
4 Symbol symbol
5 Transition transition
6 procedure match(SpliceList l)
7 first l.head()
8 second l.head()
9 currentState 0
10 while (true){
11 if (currentState.hasMatch()){
12 //signal match
13 }
14 symbol second.get()
15 transition pma.get(currentState, symbol)
16 nextState transition.state
17 if (nextState = 0){
18 first.next(1)
19 if (¬second.next(1)){
20 break
21 }
22 }
23 else if (transition.action = 0){
24 if (¬second.next(1)){
25 break
26 }
27 }
28 else {
29 first.next(transition.action)
30 }
31 currentState nextState
32 }

Figure 7.4: Pattern Match Algorithm

175

PhD Thesis, University of Illinois, August 2012

current state symbol next state first index

0 begin 1 0
1 begin 0 1
0 begin 1 1
1 acquire 0 2
0 acquire 3 2
3 begin 0 3
0 begin 1 3
1 end 2 3

Figure 7.5: A run of the pattern match algorithm on begin begin acquire begin
end

0 : 01 : 1 3 : 1

2 : 2 6 : 2 4 : 2 5 : 2

begin / 0

acquire / 0

end / 0
release / 0

acquire / 0
end / 0

Figure 7.6: Forward Transitions for SAFELOCK (matched rules omitted)

following series of events have been seen at a given point in a program: begin
begin acquire begin end. At this point, the SAFELOCK property will experience
its first match of a rule LHS. Fig. 7.5 shows the state transitions as each symbol is
considered, as well as the position of the first SLIterator. An important thing to
note is that every time we transition back to state 0, the first SLIterator index is
incremented by 1 (specified by the back transitions), and the symbol is evaluated
again in state 0. In general, back transitions need not be to state 0, as we shall see.
At the end of the input, the algorithm is in state 2, which matches the rule begin
end! #epsilon. The first SLIterator correctly points to index 3, which is the
last begin event. The second SLIterator always points at the current input, which
is end. These SLIterators can then be used to quickly replace begin end with
#epsilon, as we will see in Section 7.2.4.

Generating Pattern Match Automata

There are two main phases to the creation of pattern match automata. In the first
phase the forward transitions of the automaton are created. In the second phase,

176

PhD Thesis, University of Illinois, August 2012

all of the backward transitions and the self-transition that (almost) always exists
in state 0 are added. During the computation of the backward transitions, the
actions for the backward transition are also computed and added to the backward
transitions. As mentioned, only backward transitions ever have non-0 actions, since
they correspond to places in the automaton where there is a switch from matching
one potential set of LHSs of rules to another. For instance, in Fig. 7.5, between
the third begin and the first acquire, there is a switch from potentially matching
{begin end, begin release} to {acquire end, acquire release}, which requires no
longer considering the begin event for match purposes, thus the action of 1.

To create the forward transitions for an automaton, we add one path that
corresponds directly to the left hand side of each rule in our string rewriting system.
We add these paths one at a time, and reuse as many states as possible. Each
forward transition is assigned the action 0. Fig. 7.6 shows the forward transitions
for the pattern match automaton originally presented in Fig. 7.3. For each LHS,
we begin at state 0 and add a transition for the first symbol. Because all patterns
SAFELOCK begin with either begin or acquire, we have only two transitions, one
labeled with begin and one labeled with acquire. We continue to transitively add
transitions based on the remainder of each LHS. For the two rule LHSs beginning
with begin, one ends with end and the other ends with release, so there are two
transitions out of state 1 labeled accordingly. As each new state is added to the
machine during the forward transition phase, the depth of the state is recorded.
The depth is simply the number of symbols from state 0. For instance, state 6 is at
depth 2, since two symbols, begin followed by end, lead to state 6. The largest
depth always corresponds to the longest rule LHS.

In the second phase, the self-transition on state 0 is added first, if needed. The
self-transition is only necessary if there is not a forward transition out of state 0 for
every symbol used in the SRS or specified by the JavaMOP front end.6

After potentially adding the self-transition in state 0, the backward transitions
are added to the pattern match automaton. Backward transitions are only added
from a given state for symbols that do not have forward transitions out of that state.
All backward transitions from a given state, s, will go to the same place, so we
define fail(s) = s

0, where s

0 is the destination of a backward transition out of s.
To find the destination for the backward transitions out of a state in pattern match
automaton pma with depth d, we consider each state r of depth d� 1 and perform

6JavaMOP allows one to define events that do not appear in the specified property; these will
correspond to symbols that are never rewritten by the specified SRS.

177

PhD Thesis, University of Illinois, August 2012

the following actions, transitions are added in depth first order [3]:

1. If pma.get(r, a) is a backward transition for all symbols a, do nothing.

2. Otherwise, for each symbol a such that pma.get(r, a) = s, do the following:

(a) Let s

0
= fail(r).

(b) Compute s

0 fail(s0) until such point as
pma.get(s0, a).action = 0. Because state 0 must have either a forward
transition or a self-transition for every symbol, such an s

0 must exist.

(c) For all a

0 such that pma.get(s, a0) has no forward transition, assign
pma.get(s, a0).state = s

0, pma.get(s,a0).action = s.depth - s’.depth.

The procedure above is essentially the same as [3]. The part in bold is specific
to our algorithm for string rewriting. The action is assigned as such because the
depth of a given state represents the number of symbols processed since state 0
in the automaton, thus the difference in the depths tell us the number of symbols
that we need to skip with the first SLIterator in Fig. 7.4. While the pattern match
automaton for SAFELOCK has backward transitions that only go to state 0, as
mentioned, this is not always the case in general. When the suffix of one LHS
overlaps with the prefix of another, backward transitions that do not go back to
state 0 are generated. An example of this can be seen in Fig. 7.7, where the SRS in
question is b a a! #epsilon, a a c! #epsilon. Because b a a and a a c have a
suffix/prefix overlap, the backward transitions from state 3 at depth 3 go to state 5
at depth 2, resulting in an action of only 1. For example, consider input b a a c.
When we switch from matching b a a to matching a a c, which occurs between
states 3 and 5, we wish to only “forget” the b at the beginning, an action of 1.

7.2.4 Rewriting using Pattern Match Automata

The rewriting algorithm we use to monitor SRS’s is presented in Fig. 7.8. Not
pictured in Fig. 7.8, is the action of the monitor itself. As any monitoring algorithm
in the MOP framework, events arrive one at a time. As each event occurs, we add
it—as a symbol representing that event—to a SpliceList that contains the results
of rewriting previous sequences of events. Additionally, if any rules make use of
the ˆ symbol, it will be added to the beginning of the SpliceList and treated as a

178

PhD Thesis, University of Illinois, August 2012

c, b / 1

a / 0

a, c, b / 1

a, c, b / 3

a, b / 1 a / 0

c / 0

a / 0

c / 0

c, b / 1

b / 0

a / 0

c, b / 1

1 : 1

0 : 0

3 : 3
(b a a! #epsilon)

2 : 2

5 : 2

4 : 1 6 : 3
(a a c! #epsilon)

Figure 7.7: A pattern match automaton with overlap

179

PhD Thesis, University of Illinois, August 2012

1 globals PatternMatchAutomaton pma
2 locals SLIterator first, second, last

3 State currentState, nextState
4 Symbol symbol
5 Transition transition
6 boolean changed pastLast

7 procedure match(SpliceList l)
8 do {
9 first l.head()
10 second l.head()
11 currentState 0
12 changed false

13 pastLast false

14 while (true){
15 if (currentState.hasMatch()){
16 if (currentState.match = #succeed){
17 // raise succeed

18 }
19 if (currentState.match = #fail){
20 // raise fail

21 }
22 first.splice(second, currentState.match)
23 nextState 0
24 changed true

25 pastLast false

26 last second

27 second first.copy()

28 }
29 symbol second.get()
30 transition pma.get(currentState, symbol)
31 nextState transition.state
32 if (nextState = 0){
33 first.next(1)
34 if (¬second.next(1)){
35 break
36 }
37 }
38 else if (transition.action = 0){
39 if (¬second.next(1)){
40 break
41 }
42 }
43 else {
44 first.next(transition.action)
45 }
46 if (¬changed){
47 if (second = last){
48 pastLast true

49 }
50 if (pastLast and nextState = 0){
51 return

52 }
53 }
54 currentState nextState
55 }
56 } while (changed)

Figure 7.8: Rewriting Algorithm

180

PhD Thesis, University of Illinois, August 2012

normal symbol by the rewriting algorithm. As for uses of $, the current event must
be added before $.7

After an event is added to the SpliceList, the algorithm in Fig. 7.8 is evaluated
to completion before another event can be accepted. The algorithm is similar to
the pattern match procedure of Fig. 7.4. The changes are in bold. There are three
main changes: the inclusion of a loop that ensures that a normal form is reached,
the actual rewriting step itself, and a section that recognizes early termination.

The first new control structure to notice is the do...while loop from line 8 to
56. This loop ensures that rewriting continues until there is a pass through the
loop in which nothing changes, i.e., the string is in normal form. The new boolean
variable, changed, controls this loop. It is set to false at the beginning of an
iteration of the do...while loop, and to true on line 24, which is only executed when
a rewrite occurs.

Lines 15–28 perform the actual rewriting step. The element match of a State
contains the right hand side of the rule matched in that State. If the match is
one of the two special keywords #succeed or #fail, a success or fail handler is
executed, as appropriate, and rewriting terminates. If either handler is executed, the
monitor is considered dead unless it is reset (see [93]). If match is something else,
the splice method is called on line 22. The splice method is a special method of
SLIterator that replaces a range specified by the this and an argument SLIterator
with the argument sequence. Here the range is specified by first and second, and
currentState.match is passed as the replacement. Note that if the right hand side of
the rule is #epsilon, it is represented as an empty sequence, which splice is able
to handle. The splice method also correctly sets first and second to point to the
beginning and end of the spliced in match sequence, or the next symbol if match
was #epsilon. On line 26, we set last to second, so that last points to the end of
the last replacement, this will be used to determine early termination. Then, on line
27, second is set as a copy of first. This ensures that segments of string which are
transitively rewritten will be rewritten immediately. Because splice changes the
SpliceList, it is important to set currentState back to state 0 because any matching
will occur in the newly rewritten segment of the SpliceList.

In the last new addition to the match algorithm, from lines 46 to 53, we test
for early termination of the algorithm. The idea here is to exit early if we enter
a segment of the SpliceList that we know for certain cannot be rewritten. This

7Because of this there is a very small performance hit for using $ in a rule, but ˆ is essentially
free.

181

PhD Thesis, University of Illinois, August 2012

event initial l l in normal form

begin begin begin
end begin end #epsilon
begin begin begin
acquire begin acquire begin acquire
release begin acquire release begin
acquire begin acquire begin acquire
end begin acquire end #fail

Figure 7.9: An SRS monitoring run for SAFELOCK

happens when we reach a point that is past the end of the last SLIterator, which
was set in a previous iteration, no rewrites have occurred in the current iteration,
and currentState returns to 0. The first two requirements are fairly straight-forward:
if a change occurs, new matches are possible, and if we are in a segment of
the SpliceList before the last rewrite, we are still investigating symbols that are
potentially new. However, if there is no rewrite in the current iteration and we are
past the last change from the previous iteration, we are seeing symbols that were
seen in the previous iteration with no change. The last condition, that we must
return to State 0, is more subtle. The reason for this is that there could have been
a rewrite in the last iteration that inserted a segment that appears in the middle of a
left hand side of one of the rules. A simpler way to look at this requirement is that
if pma is not in state 0 it is actively matching something. This condition for early
termination can lead to an unbounded amount of saving, as the SpliceList can be
of an unbounded length.

Fig. 7.9 shows a monitor run as non-parametric events for SAFELOCK arrive.
The non-parametric events are dispatched to the correct monitor instance by the
indexing of JavaMOP (or whatever projection method is used in future language
instances of MOP). The first column shows the arriving event, the second column
shows the state of the SpliceList l before any rewriting, and the last column shows
the normal form for l after the rewriting algorithm of Fig. 7.8 has run. After the
last event a failure has occurred, and the fail handler will execute.

182

PhD Thesis, University of Illinois, August 2012

Benchmark Original (ms) HASNEXT SAFESYNCCOL SAFESYNCMAP UNSAFEITER UNSAFEMAPITER

ERE SRS ERE SRS ERE SRS ERE SRS ERE SRS

avrora 2317⇤ 194 227 35⇤ 103⇤ 28 120⇤ 253⇤ 288⇤ 41 134⇤
batik 773 0 6 5 11 9 -1 5 3 1 2

eclipse 11749 -1 -2 -2 -4 -1 -3 -2 -2 -2 -2
fop 251 922 2091 26 24 21 20 34 57 28 42
h2 3860 9 15 6 2 0 4 15 22 8 24

jython 1400 3 4 3 3 4 2 16 18 3 3
luindex 478 2 -1 2 0 0 4 1 2 0 -5

lusearch 581 1 3 -1 1 3 3 46 46 2 0
pmd 1441 27 117 139 137 10 17 72 148 177 199

sunflow 1222 5 8 0 -1 6 -3 -4 4 0 3
tomcat 1068 2 4 3 3 3 1 2 2 2 2

tradebeans 4618 2 1 -1 -3 -1 2 4 -2 -2 -1
tradesoap 3213 1 -1 1 -1 0 -2 1 0 0 0

xalan 359 5 1 5 1 6 3 90 172 7 8

Figure 7.10: Comparison of JavaMOP with extended regular expressions (ERE)
and with the same properties expressed as string rewriting systems (SRS): average
percent overhead (convergence within 3% except those marked with *)

7.3 Evaluation

Our SRS implementation is evaluated in two contexts: first we show how it
compares, within the context of JavaMOP, to finite-state logics on the DaCapo
benchmark suite [22]. Then we give a comparison of our underlying SRS rewrite
engine against the Maude [39] term rewriting engine, modulo associativity. The
goal of the first evaluation is to show that SRS monitoring is efficient enough to
be used in large programs, being not much less efficient than finite-state logics
(extended regular expressions in this case). The goal of the second experiment is
to show that our SRS implementation is more efficient than the state-of-the-art.8

All experiments were performed on a machine with a 3.82GHz Intel R� CoreTM

i7 970 hexcore with Hyper-Threading (12 hardware threads) and 24 GB of ram.
Ubuntu 11.10 64 bit was used as the operating system and version 9.12 of DaCapo
was used as the benchmark suite, with default inputs and the -converge option
to gain convergence within 3%. OpenJDK version 1.6.0 23 as the Java virtual
machine. All compiled JavaMOP specs were weaved into DaCapo using ajc 1.6.11.
Maude 2.6 was used for comparison with Maude.

The following properties were used in the DaCapo experiments. The SRS
versions of them (shown below) are new, while the extended regular expression
versions were borrowed from [24, 26, 31, 92].

8Note that Maude is more general than our SRS engine, but there is a price for that generality,
and general term rewriting makes little sense in the context of MOP event traces.

183

PhD Thesis, University of Illinois, August 2012

• HASNEXT: Do not use the next element in an Iterator without checking for
the existence of it (see Section 7.1.1);

• SAFESYNCCOL: If a Collection is synchronized, then its iterator also should
be accessed synchronously:

sync asyncCreateIter ! #fail
sync syncCreateIter accessIter ! #fail

• SAFESYNCMAP: If a Collection is synchronized, then its iterators on values
and keys also should be accessed in a synchronized manner:

sync createSet asyncCreateIter ! #fail
sync createSet syncCreateIter accessIter ! #fail

• UNSAFEITER: Do not update a Collection when using the Iterator interface
to iterate its elements:

update use ! #fail
use use ! use

update update ! update

createIterator ! #epsilon

• UNSAFEMAPITER: Do not update a Map when using the Iterator interface
to iterate its values or its keys:

update use ! #fail
use use ! use

update update ! update

createIterator ! #epsilon
createCollection ! #epsilon

For the comparison with Maude, strings of equal numbers of 2’s, 1’s, and 0’s,
with the 2’s preceding the 1’s preceding the 0’s were generated, and the following
rewrite system applied. Note, that the language of strings that reduce to #epsilon
with this rewrite system is non-context free. It is very similar to EQUALITYCHECK

from Section 7.1.1.

184

PhD Thesis, University of Illinois, August 2012

N Maude Time (ms) SRS Time (ms)

100 42 33
1000 37038 236
5000 DNF 7112
10000 DNF 26132

Figure 7.11: Comparison of maude versus SRS rewrite. DNF: did not finish in one
hour

1 0 ! 0 1 2 0 ! 0 2

2 1 ! 1 2 0 1 ! 3

1 3 ! 3 1 3 0 ! 0 3

3 2 ! #epsilon 2 3 ! #epsilon

Fig. 7.10 shows a comparison of finite-state properties specified in JavaMOP us-
ing ERE and SRS. The first column shows the individual DaCapo [22] benchmarks,
and the second column shows runtime of the original uninstrumented benchmarks
in milliseconds. All other columns are percent overhead. Each benchmark-property
pair converged to within 3% except the instances of avrora marked with *. The
results presented for avrora that did not converge are the average of twenty runs
with outliers removed, but they are still not as trustworthy as the converging results.
This lack of convergence is a problem on highly multithreaded machines. We
can see that even the uninstrumented, original run, fails to converge. Negative
overheads are the result of noise in the experimental settings and changes in code
layout due to instrumentation resulting in slightly more efficient programs.

Overall, the average overhead on the DaCapo benchmark suite was 58% for
SRS, while it was 33% for ERE. When fop-HASNEXT—which has, by far, the
worst overhead of any trial—is removed from both, the overhead drops to 29%
and 20%, respectively. It must be noted, that the properties we use are specifi-
cally selected for generating large overheads; they are very intensive properties
that generate many events (see [76]). The overhead numbers are slightly larger
than reported in previous papers because we have moved to a multi-threaded, and
quite simply faster, machine. The monitors in JavaMOP must be synchronized,
which results in higher overhead for programs that actually make use of multiple
threads. Any monitoring system must do the same thing if the monitors are for
cross-thread properties (like all of those properties used here). In most of the

185

PhD Thesis, University of Illinois, August 2012

benchmark/property pairs, the performance of ERE and SRS are very compara-
ble. For pmd-HASNEXT and avrora-SAFESYNCMAP, SRS shows more than
three times the overhead of ERE, but for all other trials SRS is never more than
three times worse.

Fig. 7.11 shows the comparison of Maude to our SRS engine with the rewrite
system discussed above. N refers to the number of each digit, i.e., N=100 has 300
characters in it: 100 each of 2, 1, and 0. As we can see from the results, our SRS
engine runs in 78% of the time of maude at N=100. At N=1000, our SRS engine
runs in .006% of the time of Maude. With larger inputs, Maude fails to complete
in an hour, while our SRS engine takes less than 30 seconds on every tested input.

7.4 Chapter Related Work

Many approaches have been proposed to monitor program execution against for-
mally specified properties (see the summary of related work in the Introduction
to this thesis). Briefly, all runtime monitoring approaches except MOP have their
specification formalisms hardwired, and few of them share the same logic.

There are four orthogonal attributes of a runtime monitoring system: logic,
scope, running mode, and handlers. The logic specifies which formalism is used
to specify the property. The scope determines where to check the property; it can
be class invariant, global, interface, etc. The running mode denotes where the
monitoring code runs; it can be inline (weaved into the code), online (operating at
the same time as the program), outline (receiving events from the program remotely,
e.g., over a socket), or offline (checking logged event traces). The handlers specify
what actions to perform under exceptional conditions; such conditions include
violation and/or validation of the property. It is worth noting that for some logics,
violation and validation are not complementary to each other, i.e., the violation
of a formula does not always imply the validation of the negation of the formula.
MOP allows for handlers for any number of user defined exceptional situations
(called handler categories).

Most runtime monitoring approaches can be framed in terms of these attributes,
as illustrated in Fig. 7.12, which shows an (incomplete) summary of runtime
monitoring systems. For example, JPaX can be regarded as an approach that uses
linear temporal logic (LTL) to specify class-scoped properties, whose monitors
work in offline mode and only detect violation. In general, JavaMOP (the Java

186

PhD Thesis, University of Illinois, August 2012

Approach Logic Scope Mode Handler

JPaX [59] LTL class offline violation
TemporalRover [44] MiTL class inline violation

JavaMaC [82] PastLTL class outline violation
Hawk [41] Eagle global inline violation
RuleR [17] RuleR global inline violation

Tracematches [10] Reg. Exp. global inline validation
J-Lo [23] LTL global inline violation
Pal [29] modified Blast global inline validation

PQL [89] PQL global inline validation
PTQL [54] SQL global outline validation

Figure 7.12: A Selection of Monitoring Systems

instance of MOP) has proven to be the most efficient of the runtime monitoring
systems despite being generic in logical formalism.

Of the systems mentioned in Fig. 7.12, only PQL [89], Hawk/Eagle [41],
and RuleR [17] provide logical formalisms with greater than finite-state power.
Hawk/Eagle adopts a Turing-complete fix-point logic, but it has problems with
large programs because it does not garbage collect the objects used in monitoring.
In addition, Hawk/Eagle is not publicly available.9 Because of this and the fact
that Hawk/Eagle has not been run on DaCapo [22] with the same properties, we
cannot compare JavaMOP with our new string rewriting systems plugin with
Hawk/Eagle. RulerR is a rule-based monitoring system which has the ability to
also specify Turing complete properties. The current implementation of RuleR
is not built for efficiency, and is, additionally, not publicly available. PQL is not
Turing-complete, and performance comparisons with PQL using an older, less
efficient, version of JavaMOP can be found in [92]. String rewriting was used in
the context of monitoring for detection of malware in [19]. This was, in many
ways, the inspiration for adding string rewriting to MOP. However, the string
rewriting patterns allowed in that work were regular (i.e., can capture only regular
languages), while our goal is to provide a true Turing-complete logical formalism
for parametric monitoring.

MOP [32, 33] is an extensible Runtime Verification framework that provides
efficient, logic-independent support for parametric specifications. JavaMOP is an
instance of MOP for the Java programming language. It allows the developer to

9 [10] makes an argument for the inefficiency of Hawk/Eagle. Since Hawk/Eagle is not publicly
available (only its rewrite based algorithm is public [41]), the authors of Hawk/Eagle kindly agreed
to monitor some of the simple properties from [26]. We have confirmed the inefficiency claims
of [10] with the authors of Hawk/Eagle.

187

PhD Thesis, University of Illinois, August 2012

specify desired properties using formal specification languages, along with code
to execute when properties are matched or fail to match. Monitoring code is then
automatically generated from the specified properties and integrated together with
the user-provided code into the original system.

MOP is a highly extensible and configurable Runtime Verification framework.
The user is allowed to extend the MOP framework with his/her own logics via
logic plugins which encapsulate the monitor synthesis algorithms. This extensi-
bility of MOP is supported by an especially designed layered architecture [32],
which separates monitor generation and monitor integration. By standardizing the
protocols between layers, modules can be added and reused easily and indepen-
dently. MOP also provides efficient and logic-independent support for parametric
parameters [31], which is useful for specifying properties related to groups of
objects. This extension allows associating parameters with MOP specifications and
generating efficient monitoring code from parametric specifications with monitor
synthesis algorithms for non-parametric specifications. MOP’s generic support for
parametric patterns simplified our SRS plugin’s implementation.

The JavaMOP instance provides two interfaces: a web-based interface and a
command-line interface, providing the developer with different means to manage
and process JavaMOP specifications. AspectJ [79] is employed for monitor integra-
tion: JavaMOP translates outputs of logic plugins into AspectJ code, which is then
merged within the original program by an AspectJ compiler. Seven logic-plugins
are currently provided with JavaMOP: finite state machines, extended regular ex-
pressions, context-free grammars, past time linear temporal logic, linear temporal
logic with past and future operators, past time linear temporal logic with calls and
returns, and, now, string rewriting systems. Descriptions of the first six plugin-ins
can be found in [93].

7.5 Chapter Conclusion

We provided the first means to efficiently monitor parametric Turing-complete
specifications using string rewriting systems. By using a modified version of the
Aho-Corasick string matching algorithm and a means to terminate the rewriting
process early, the resultant string rewriting algorithm is quite practical, as shown in
our extensive evaluation.10 The average overhead on the DaCapo benchmark suite

10Special thanks to Dongyun Jin for help with DaCapo experimental settings.

188

PhD Thesis, University of Illinois, August 2012

was 58% for SRS, while it was 33% for ERE. When the largest benchmark/property
pair is removed from both, the overhead drops to 29% and 20%, respectively. A
less extensive comparison of our core string rewriting algorithm with the term
rewrite engine Maude, which provides implicit support for string rewriting through
its rewriting modulo associativity, suggests that our approach can lead to new string
rewriting engines that outperform the state-of-the-art.

189

PhD Thesis, University of Illinois, August 2012

Chapter 8

Predictive Analysis

8.1 Chapter Introduction

This chapter presents work on the RV-Predict system, which is a thorough re-
engineering of the earlier jPredictor system [37]. While it is a complete system,
there is still room for improvements in efficiency. The RV-Predict system has been
an effort of the company Runtime Verification, Inc., co-founded in 2010 by Grigore
Roşu and this author.1

The current trend in processor design is forcing an ever increasing importance
on the proper design of concurrent software systems to maintain the improved
performance trends users expect as a result of Moore’s law. Concurrent systems in
general and multithreaded systems in particular may exhibit different behaviors
when executed at different times. This inherent non-determinism makes mul-
tithreaded programs difficult to analyze, test and debug. Predictive analysis is
able to detect, correctly, concurrency errors from observing execution traces of
multithreaded programs. By “correct” or “sound” prediction of errors we mean
that there are no false alarms. The program is automatically instrumented to emit
runtime events, and a causal model built from the observed traces. The particular
execution that is observed need not hit the error; yet, errors in other executions can
be correctly predicted together with counter-examples leading to them.

There are several other approaches also aiming at detecting potential concur-
rency errors by examining particular execution traces. Some of these approaches
aim at verifying general purpose properties [110, 112], including temporal ones,
and are inspired from debugging distributed systems based on Lamport’s happens-
before causality [84]. Other approaches work with particular properties, such as
data-races and/or atomicity. [108] introduces a first lock-set based algorithm to

1All work in this chapter is an extension of the earlier work on jPredictor by Traian Şerbănuţă,
Feng Chen, and Grigore Roşu. The work here was performed in association with Dennis Griffith,
Michael Ilseman, and Grigore Roşu.

190

PhD Thesis, University of Illinois, August 2012

detect data-races dynamically, followed by many variants aiming at improving
its accuracy. For example, an ownership model was used in [124] to achieve a
more precise race detection at the object level. [97] combines the lock-set and
the happen-before techniques. The lock-set technique has also been used to de-
tect atomicity violations at runtime, e.g., the reduction based algorithms in [51]
and [125]. [125] also proposes a block-based algorithm for dynamic checking of
atomicity built on a simplified happen-before relation, as well as a graph-based
algorithm to improve the efficiency and precision of runtime atomicity analysis.

Previous efforts tend to focus on either soundness or coverage: those based
on happens-before try to be sound, but have limited coverage over interleavings,
thus missing errors; lock-set based approaches have better coverage but suffer from
false alarms. RV-Predict aims at improving coverage without giving up soundness
or genericity of properties. It combines sliced causality [34], a happen-before
causality drastically—but soundly—sliced by removing irrelevant causalities using
semantic information about the program obtained with an apriori static analysis,
with lock-atomicity. Our predictive runtime analysis technique can be understood
as a hybrid of testing and model checking. Testing because one runs the system and
observes its runtime behavior in order to detect errors, and model checking because
the special causality with lock-atomicity extracted from the running program can
be regarded as an abstract model of the program, which can further be investigated
exhaustively by the observer in order to detect potential errors.

8.1.1 Chapter Contributions

This chapter primarily showcases engineering improvements to the jPredictor
system that make it efficient and effective.2 Before these engineering changes,
jPredictor simply did not work for realistic programs. jPredictor had no memory
buffering for traces read from disk, and multiple trace reversals were necessary.
Traces were completely uncompressed, and lastly, working sets aside from the
traces were contained within memory only. This last fact causes jPredictor literally
to crash for significant programs, as it runs out of memory. RV-Predict backs all
working sets with a hashing database; it can never run out of memory, only disk
space. Additionally, it uses a pipelined approach with memory buffering that results
in only accessing each event on disk once, whereas jPredictor performed each stage

2The only remaining code from jPredictor is the calculation of termination-sensitive control
dependence, however.

191

PhD Thesis, University of Illinois, August 2012

in serial fashion. RV-Predict still is not perfect, however. While it is multiple orders
of magnitude more efficient than jPredictor, and can work on examples for which
jPredictor does not, it still has problems with very large programs. Obviously,
running out of disk space is always an issue. It also runs into heavy garbage
collection churn for traces with particularly large causal model spaces. Ultimately,
we still feel that RV-Predict is a large step in the right direction.

Two theoretical contributions are also presented: by loop peeling instrumen-
tation we are able to find the same races as jPredictor, while vastly reducing the
size of traces, and we also present the first algorithm that is actually capable of
traversing the search space induced by the causal model for generic properties
specified using JavaMOP. While [37] makes the theoretical claim to supporting
generic property checking, no algorithm is given, and in fact, jPredictor had no
implementation. Our algorithm induces the minimum number of interleavings
possible to correctly predict violations of properties. Incidentally, a specialized
version of this algorithm is included for race detection that, while still having
the theoretical n

2 upper bound of comparisons required by the jPredictor race
detector, in practice, has several orders of magnitude fewer comparisons, as it
avoids examining causally impossible pairs of reads/writes.

8.2 RV-Predict Overview

To understand RV-Predict, it is instructive to begin with a high level overview
of the system, so that the various necessities of the system may be understood.
Fig. 8.1 shows the pipeline for the RV-Predict system. The stages in stages in
Fig. 8.1 can be broken down into three phases, described in the next three sections:
generating event logs (Section 8.3, building a causal model (Section 8.4), and
property checking (Section 8.5). The first two phases consist of two stages each,
the last phase has only one stage. While the first two stages of the event generation
phase happen in serial, the last stages operate as a true pipeline in our current
implementation. Events from the slicing stage are immediately sent to the vector
clocking stage, which are immediately sent to the property checking stage. This
differs from jPredictor were each stage is completely finished before the next
begins and results in only reading each event from the logged trace once. This
is a very important optimization, because it reduces the number of disk accesses
proportionate to the number of pipelined stages by the length of the trace. Now we

192

PhD Thesis, University of Illinois, August 2012

Original Program

Static Analysis and Optimization

Logging (JVM)

G
en

er
at

in
g

Ev
en

t T
ra

ce
Bu

ild
in

g
a

C
au

sa
l M

od
el

Pr
op

er
ty

 C
he

ck
in

g

Trace Slicer

Property Checker

Vector Clocker

Instrumented Program

Event Trace

Control Dependence Info
and Meta-Data

Prediction Violations
and Location Information

Property

Figure 8.1: RV-Predict Pipeline

will give a brief overview of the stages involved.
The first stage in the pipeline, which is part of generating the event log, is to

statically analyze the program to determine termination sensitive control depen-
dence [36] and to apply instrumentation in the program. It is discussed fully in
Section 8.3.1. The static analyzer is also where static optimizations to reduce the
amount of logging at runtime occur. By reducing the amount of logging, it not only
reduces the run time of the logged program, but also reduces the amount of time
necessary for the rest of the pipeline due to far shorter traces. The property to be
predicted is used to guide the instrumentation process because each property may
need to instrument different events.

The second stage of the pipeline, which is also part of generating an event log,
runs the instrumented program to collect a log. It is discussed in more detail in
Section 8.3.2. A very important aspect of the logging phase is compression of
the trace. Runs of an initial, compression-less, version of RV-Predict found that
majority of time was spent writing the log to disk. By using fast compression, we
drastically cut down on the amount of data written to disk. Another very important
aspect is reverse logging because, as will be explained below, the next stage is
trace slicing, which must operate in reverse program order. In jPredictor, logging
occurred in program order, then the entire trace was read backward using random
disk I/O. This is an incredible inefficiency in the system, that we hoped to reduce

193

PhD Thesis, University of Illinois, August 2012

s0: i=0;
s1: if(flag){ s1: while(i<3){ s1: while(!flag){
s2: ... s2: ... s2: ...

}else{
s3: ... s3: ++i; s3: ...

} } }
s4: ... s4: ... s4 ...

Figure 8.2: Control Scope Examples

using memory buffering. The only way that could be achieved was through either
reversing the whole trace on disk, or performing reverse logging. Reverse logging
is obviously preferable to reversing the whole trace, given that the length of a trace
is only bounded by disk space.

The next stage is the trace slicer, part of building a causal model. As mentioned,
the trace slicer operates in reverse, streaming through a log that was written out in
reverse program order. The job of the trace slicer is to determine events of interest,
as well as the events on which they depend. Section 8.4.1 explains this fully, but
briefly, events of interest depend on the property in question. For race detection this
involves every read and write of potentially shared variables. For generic properties,
this means user defined events. For instance, for the SAFEENUM property first
shown in Fig. 1.2 in Chapter 1, such an event would be the createE event. Slicing
must operate in reverse because it cannot be know a priori which instructions
events of interest are dependent on. In reverse it is straight-forward to tell which
instructions contributed to a given event.

After trace slicing, is the vector clocking stage, also part of building a causal
model, described fully in Section 8.4.2. The vector clocking stage is able to
construct a causal model in order to find possible violations of properties that did
not occur at runtime, but could occur in practice, given the dependences in the
program. Traditional vector clock algorithms operate in a forward pass, but we
developed a reverse algorithm so that there would be no need to reverse the trace
after slicing. In the original jPredictor, the slices produced by the slicer had to be
reversed for the vector clocking stage.

The last stage, the only one in the property checking phase, is dependent on
the property to be checked, and is described in Section 8.5. It performs state
exploration based on the causal model, while winnowing down the state space as
much as possible.

194

PhD Thesis, University of Illinois, August 2012

8.3 Generating Event Logs

Generating event logs for RV-Predict is a two step process. In the first step various
static analysis/optimizations are performed, and instrumentation is inserted into
the program. In the second step, the program is run. The instrumentation in the
program automatically generates event the event stream as the program runs.

The static analysis stage of RV-Predict is used to compute termination-sensitive
control dependence [36], various meta data about the program (such as line num-
bers) used for error detection and reporting, instrumenting the program, and opti-
mizing the code for logging purposes.

During the logging stage, the instrumented program is run on any Java virtual
machine (JVM). The instrumentation automatically reverses and compresses the
output trace as it is generated.

8.3.1 Static Analysis

All static analysis and program transformation is performed using the Soot java
optimization framework [123]. Currently, the first step in static analysis is the
generation of a loop-peeled program. Loop peeling is a process whereby one or
more iterations of a loop are removed as straight line code. The purpose of this
transformation is to limit the amount of logging within loops, that is we remove one
(or more) iterations, and only instrument within the removed iterations. Rather than
emit events for one million iterations of a given loop, for example, we may emit
events for only the first five iterations. While this can cause us to miss potential
violations, it vastly improves speed. For many types of properties, for example
data races, the vast majority can be found in simply the first iteration of a loop.
Currently, the loop peeler only removes the first iteration, but as future work we
plan to make it fully tunable. The next section presents the loop peeling algorithm
in full detail.

The next step of static analysis generates the termination-sensitive control
dependence and some meta-data (in particular instruction line numbers). Terminal-
sensitive control dependence finds what are known as control scopes. A statements
s2 is in the control scope of a statement s1 if the execution of s2 depends somehow
on a choice at s1. This becomes relevant during trace slicing, as we shall see,
because if s2 is in the control scope of s1, any value that informs the decision at
s1 can introduce synchronization before s2. For instance, if s1 checks the value

195

PhD Thesis, University of Illinois, August 2012

of a flag variable set by another thread, s2 cannot be executed unless that flag
is set appropriately. This idea will be explained in more detail in Section 8.4.1.
Fig. 8.2 shows three different examples of control scopes. In the first code snippet,
s2 and s3 are in the control scope of s1, but s4 is not because s4 executes regardless
of the choice at s1. In the second, s4 is not in the control scope of s1 because
our termination analysis determines that the loop must always terminate. In the
last example, however, s4 is in the control scope of s1 because the loop is not
guaranteed to terminate. Its termination depends on the value of a variable that is
presumably set in another thread.

The last step of static analysis is to add the actual instrumentation that will
log events as the program runs. This is described in Section 8.3.2 because it is
intimately related to the logging phase of RV-Predict.

Loop Peeling

Fig. 8.3 shows a pseudocode description of the algorithm used for loop peeling.
It omits several small details,3 but the main gist of the algorithm is represented
faithfully. Currently, it only peels one iteration, but we wish to make this a tun-
able feature as future work, perhaps even allowing random jumping between
instrumented and uninstrumented iterations. Note that it is specific to the Java
programming language, but could be applied to other languages with little modifi-
cation; lines 1–2 of main simply iterate over each Method in the program. On line
5 we call the built-in loop finder in Soot [123] on a given Method, then on line 6 we
loop through each loop found by the LoopFinder, calling the handleLoop function.

The handleLoop function is tasked with cloning the statements in a loop in
order to provide the peeled iteration, patching references within the peeled loop,
and cloning any Methods that are called within a loop body. Cloned Methods are
marked so that no instrumentation will be added to them. This is a very important
step because not only does having instrumentation inside of Methods called by
uninstrumented code lose much of our benefit of loop peeling, but it can also result
in traces that the trace slicer does not understand, e.g., the beginning of a Method

that is never called. As is explained in the next section, we emit one event for a
Method call, and then another event at the beginning of the called Method so that

3As two examples of details: we must ensure that we do not copy the back jumps of loops since
we only wish to peel one iteration, not create two loops, and in order to properly clone methods,
because of the inability to rename constructors in Soot, we add a parameter to all method clones
that is typed with a class that we generate at instrumentation time.

196

PhD Thesis, University of Illinois, August 2012

Algorithm LoopPeeler(Program P)

function main(Program P)

1 for all Class c 2 P do
2

... for all Method m 2 c do
3

...
... LoopFinder lf = loopFinderFor(m)

4

...
... for all Loop l 2 lf do

5

...
...

... handleLoop(l)

6

...
... endfor

7

... endfor
8 endfor
function handleLoop(Loop l)

Locals : ListhStatementi loopClone,
MaphStatement! Statementi statementToClone

1 for all Statement s 2 l do
2

... Statement clone = s.clone()

3

... loopClone.append(clone)
4

... statementToClone.put(s, clone)
5

... if s is a CallStatement

6

...
... Method m = s.getCalledMethod()

7

...
... Method clonedM = createUninstrumentableClone(m)

8

...
... s.setCalledMethod(cloneM)

9

... endif
10

... s.addTag(NoInstrumentTag)

11

... patchReferences(loopClone, statementToClone)
12

... m.insertBefore(l.firstStatement(), loopClone)
13 endfor
function createUninstrumentableClone(Method m)

Local Method ret
1 ret.setParameterList(m.getParameterList().clone())

2 ret.addTag(NoInstrumentTag)

3 for all Statement s 2 m do
4

... Statementclone = s.clone()

5

... if s is a CallStatement

6

...
... Method cloneM = createUninstrumentableClone(m)

7

...
... clone.setCalledMethod(cloneM)

8

... endif
9

... ret.insertAtEnd(clone)
10 endfor
11 return ret
function patchReferences(statements, statementToClone)
1 for all Statement s 2 statements do
2

... if sis a BranchStatement

3

...
... s.setTarget(statementToClone.get(s.getTarget()))

4

... endif
5 endfor

Figure 8.3: Loop Peeling algorithm

197

PhD Thesis, University of Illinois, August 2012

the trace slicer may patch the value used within the Method to the argument passed
to the Method, if that value were a parameter. This is necessary to achieve the
correct dependence information; without it, additional false positives may result
because the dependence chains would not be fully realized (see Section 8.4.1).
As we can see on line 1 of handleLoop, the Method loops over each Statement

in the loop. On line 2 we create a clone of each Statement, we do this because
we wish to alter the original statements distinctly from the clones. On line 3, we
add each cloned Statement to a list of Statements that will be inserted before
the loop on line 12, providing our peeled iteration. On line 4, we add a mapping
from each Statement s to its clone, this allows us to correctly patch jumps in the
peeled loop because jumps are targeted to specific Statements, which we can see
in the call to patchReferences on line 11. Lines 5-9 handle the case where s is
a call to a Method. If s is a call to a Method, we need to clone that Method, as
mentioned, so that the clone can be uninstrumented. Because it is the clone that
will be uninstrumented, we call the cloned Method from the original Statement s,
rather than the Statement clone (line 9). On line 10 we add a NoInstrumentTag to
s, so that the instrumentor will not add instrumentation for that Statement, in the
case that it normally would (see Section 8.3.2).

The createUninstrumentableClone function simply creates a new Method, ret,
iterates over all the Statements in m (line 3), and adds clones of those Statementss
to ret (line 4). It must, however, clone the parameter list from m as can be seen on
line 1, add the NoInstrumentTag to the Method as seen on line 2, and recursively
clone any Method called by the Method to be cloned, as can be seen on lines 5–6.
Adding the NoInstrumentTag to the Method rather than the Statements it contains
makes the instrumentation phase faster, as it can simply skip a whole Method, if
it is tagged.

The last function, patchReferences, loops over every Statement in the list of
Statements it is passed, and replaces the target Statement of any BranchStatement

with its clone, which is specified in the statementToClone map that is passed as an
argument. The patching functionality must happen as a separate pass, as shown, so
that all Statements in the loop have clones.

8.3.2 Logging

Here we present some of the engineering choices used for the logging code, as
well as the different events that are logged. For compression we use a Java imple-

198

PhD Thesis, University of Illinois, August 2012

mentation of Ziv-Lempel (LZ) encoding [129], without the subsequent Huffman
encoding [70] used by the Deflate algorithm (zlib). Our original attempt used the
Deflate algorithm [43], but we found the faster compression time of LZ resulted in
an overall faster logging experience. While some compression is necessary to keep
RV-Predict from being completely I/O bound, the extra compression of Deflate
did not justify the increased compression/decompression times, especially in cases
where solid state drives are used instead of rotational hard drives.

All events are serialized using Google’s protocol buffers [103]. Protocol Buffers
are a way of encoding structured data in an efficient yet extensible format, and
Google uses protocol buffers for almost all of its internal RPC protocols and file
formats. It is much more efficient and easier to use than alternatives such as XML
or Java’s serialization.

In order to reverse the traces as logging occurs, we keep a buffer of events
in reverse. The entire buffer is serialized at once into separate files. Currently,
the buffer is 100,000 events, which we have determined produces good run times.
Many more events results in high memory pressure and slower logging, many fewer
results in larger compression overhead and less compression of the trace. When
the slicing stage reads in the trace, it reads the files in reverse order. For future
work we intend to move the separate traces files into entries in the database that we
use to back the working sets for the slicer, vector clock, and property checker.

While logging for race detection, we also run the Racer [25] algorithm for
data race detection to locate potential data races. We then use these potential
data races to determine which variables we should perform data race detection.
Racer produces numerous false positives; the RV-Predict race detection algorithm
narrows these down to the actual occurring races.

Next, we list and explain the different events that are logged for RV-Predict:

• Lock and Unlock: These vents correspond to the beginning and end of
synchronized blocks in Java. In Soot, these are represented as the enter-

monitor and exitmonitor instructions when the occur in method bodies. We
also emit lock and unlock events at the beginning and end of synchronized
methods. These are necessary only for race detection, where they are used
for computing lock sets (see Section 8.5.1).

• Branch: We must log branches and jumps to correctly compute dependences
induced by termination-sensitive control dependence. If a statement of inter-
est is control dependent on a branch b, then it is dependent on all definitions

199

PhD Thesis, University of Illinois, August 2012

that contribute to the boolean value that determines the direction of b.

• CallStatement: We must log the calls of methods so that we can correctly
relate the parameter values within a method with the argument passed to the
method, as mentioned in Section 8.3.1.

• Constructor: This corresponds to the end of constructors. We must log
constructors separately because the end of a constructor is a synchronization
point in Java. There can be no intereleavings such that a modification of an
object o by a normal method occurs before the end of the constructor that
constructed o.4 For instance, there can be no race between a modification in
a normal method and a modification within o’s constructor.

• Method: This corresponds to the begging of a method call, in the callee
context. This allows for patching the parameters with the arguments, as
mentioned in Section 8.3.1.

• Accesses: We must log reads and writes to access so that we can properly
link values through data dependence. This is one of the most expensive
parts of logging, and is one of the biggest reasons that the loop peeling
optimization works so well.

• ImpureCallStatement: We log impure calls separately from normal calls.
Impure calls are calls to external methods that we do not know, a priori, to not
modify their arguments. For impure methods we assume that modifications
to all arguments occur.

• Wait, Notify, Start, Join, etc: Java has a number of defined synchronization
constructs such as wait, notify, start, and join. Each is given its own event
because they must be handled separately.

• MOP Events: We have a special logging class for MOP events that properly
keeps track of the parameters to the events, so that they may be properly seri-
alized for the JavaMOP monitoring used when predicting generic properties.

• Finalizer: This corresponds to the beginning of finalizers. We must log
finalizers separately, because Java guarantees synchronization with finalizers.
There can be no interleavings such that modifications to an object o occur

4 Unless the object is leaked to another thread by the constructor.

200

PhD Thesis, University of Illinois, August 2012

outside of a finalizer happen after initiation of the finalizer. For instance,
there can be no race between a modification in a normal method and a
modification within o’s finalizer.

8.4 Building a Causal Model

Here we describe our technique for extracting from an execution trace of a multi-
threaded system the sliced causality relation corresponding to some property of
interest '. Our technique is offline, in the sense that it takes as input an already
generated execution trace (see Fig. 8.1); that is because causal slicing must traverse
the trace backwards. Our technique consists of two steps: (1) all the irrelevant
events (those which are neither property events nor events on which property events
are dependent) are removed from the original trace, obtaining the (')-sliced trace;
and (2) a vector clock (VC) based algorithm is applied on the sliced trace to capture
the sliced causality partial order.

8.4.1 Extracting Slices

Our goal here is to take a trace ⇠ and a property ', and to generate a trace ⇠

'

obtained from ⇠ filtering out all its events which are irrelevant for '. When slicing
the execution trace, one must nevertheless keep all the property events. When
slicing for race detection, we create a separate slice for each shared variable
that is determined by the Racer algorithm to have a potential race, that is the
property events for each slice are only the reads and writes to a specific variable
(see Section 8.5.1). For generic properties we take the user defined events as the
property events. While it would be possible to create separate slices for each
parameter instance, we prefer to create one slice with all the property events, and
to allow the monitor produced by JavaMOP to do its own parametric slicing (see
Section 8.5.2). While one could conceivably predict multiple properties at once,
and create a separate slice for each property, we currently only allow predicting
one property at a time, we will add that ability as future work, however.

Moreover, one must also keep any event e with e (@ctrl [@data)
+

e

0 for some
property event e

0. This can be easily achieved by traversing the original trace
backwards, starting with ⇠

'

empty and accumulating in ⇠

'

events that either are
property events or have events depending on them already in ⇠

'

. One important
aspect, as mentioned earlier, is patching values that are passed as arguments to

201

PhD Thesis, University of Illinois, August 2012

Thread t1:

x = 0

x = 1

y = 0

Thread t2:

y = 1;

if (x == 0) {

x = y

}

e 3 : read x e 2 : write x

T 1
T 2

e 6 : write y

e 4 : write x

e 1 write y

e 5 : read y

A. Example program B. Example Trace

Figure 8.4: Example for relevance dependence

methods. If a property event is dependent on a value that is a parameter to a method,
we must patch that value to the passed value in the calling context. For instance, if
a property event depends on the value in the variable x, which was an argument
to the current method, and in the calling context y was passed into the argument
position for x, we must add y to the tracked values as slicing continues in the
calling context. This process must be repeated transitively.

If one were to attempt slicing on a forward trace, one must assume that all
events e (@ctrl [@data)

+
e

0, only determining which ones may be removed from
the set of considered events at the end of the trace. This would be far too expensive,
both in terms of time and space. In fact, it would require so much space (on the
order of the length of the trace), that the sets of event would need by kept in disk
storage. One can employ any off-the-shelf analysis tool for data- and control-
dependence; e.g., RV-Predict uses termination-sensitive control dependence [36],
as described in Section 8.3.1. We do not present the slicing algorithm in full, as
we do with loop peeling and the property checking algorithm, because it is too
complex to fit nicely within the chapter, and because program slicing is a well
known topic. While our slicing is different than static program slicing such as
in [67], we feel it is sufficiently close to allow for an informal description.

To understand the process (intuitively), consider the example in Fig. 8.4, threads
T1 and T2 are executed as shown by the solid arrows (A), yielding the event
sequence “e1, e2, e3, e4, e5, e6” (B). Suppose the property to check refers only to
y; the property events are then e1, e5, and e6. Events e2 and e3 are immediately
marked as relevant, since e2 @data e3 @ctrl e5. If only closure under control- and
data-dependence were used to compute the relevant events, then e4 would appear to
be irrelevant, so one may conclude that “e2, e6, e1, e3, e5” is a sound permutation;

202

PhD Thesis, University of Illinois, August 2012

there is, obviously, no execution that can produce that trace, so one reported a false
alarm if that trace violated the original property on y. Consequently, e4 is also a
relevant event and e3 @rlvn e4.

Unfortunately, one backwards traversal of the trace does not suffice to correctly
calculate all the relevant events. Reconsider Fig. 8.4. When the backward traversal
first reaches e4, it is unclear whether e4 is relevant or not, because we have not
seen e3 and e2 yet. Thus a second scan of the trace is needed to include e4. Once
e4 is included in ⇠

'

, it may induce other relevance dependencies, requiring more
traversals of the trace to include them. This process would cease only when no new
relevant events are detected and thus resulting sliced trace stabilizes. If one misses
relevant events like e4 then one may “slice the trace too much” and, consequently,
one may produce false alarms. Because at each trace traversal some event is added
to ⇠

'

, the worse-case complexity of the sound trace slicing procedure is square in
the number of events. Since execution traces can be huge, on the order of billions
of events, any trace slicing algorithms that is worse than linear may easily become
prohibitive. For that reason, RV-Predict traverses the trace only once during slicing,
thus achieving an approximation of the complete slice that can, in theory, lead to
false alarms. However, experiments in [37] show that this approximation is actually
very precise in practice, finding no false alarms, and we have not found any false
alarms in any of our experiments since.

8.4.2 Vector Clocking

Vector clocks [84] are routinely used to capture causal partial orders in distributed
and concurrent systems. A VC-based algorithm was presented in [112] to encode
a conventional multithreaded-system “happen-before” causal partial order on the
unsliced trace. We next adapt that algorithm to work on our sliced trace and thus
to capture the sliced causality. Recall that a vector clock (VC) is a function from
threads to integers, VC : T ! Int. We say that VC � VC 0 iff 8t 2 T, VC(t) �
VC 0

(t). Traditional vector clocking algorithms operate on forward traces, and
concern themselves with the max of multiple VC. Because our vector clocking
stage operates in reverse, we are concerned instead with the min . The min function
on VCs is defined as: min(VC1, ..., VC

n

)(t) = min(VC1(t), ..., VC
n

(t)) (similar to
how max is defined in [112]).

Before we explain our VC algorithm, let us introduce our event and trace
notation. An event is a mapping of attributes into corresponding values. One event

203

PhD Thesis, University of Illinois, August 2012

can be, e.g., e1 : (counter = 8, thread = t1, stmt = L11, type = write, target =

a, state = 1), which is a write on location a with value 1, produced at statement
L11 by thread t1. One can include more information into an event by adding new
attribute-value pairs. We use key(e) to refer to the value of attribute key of event
e. To distinguish different occurrences of events with the same attribute values,
we add a designated attribute to every event, counter, collecting the number of
previous events with the same attribute-value pairs (other than the counter). The
trace for the vector clocking step is the '-sliced trace ⇠

'

obtained in Section 8.4.1.
Recall that the trace arrives one at a time, directly from the slicing stage, rather
than read from disk during the slicing stage, as in jPredictor.

Intuitively, vector clocks are used to track and transmit the causal partial
ordering information in a concurrent computation, and are typically associated
with elements participating in such computations, such as threads, processes,
shared variables, messages, signals, etc. If VC and VC0 are vector clocks such
that VC(t) � VC’(t) for some thread t, then we can say that VC’ has newer
information about t than VC. In our VC technique, every thread t keeps a vector
clock, VC

t

, maintaining information about all the threads obtained both locally
and from thread communications (reads/writes of shared variables). Every shared
variable is associated with two vector clocks, one for writes (VCw

x

) used to enforce
the order among writes of x, and one for all accesses (VCa

x

) used to accumulate
information about all accesses of x. They are then used together to keep the order
between writes and reads of x, iff x is significant to the property in question. Every
property event e found in the analysis is associated a VC attribute, which represents
the computed causal partial order. We next show how to update these VCs when
an event e is encountered during the analysis, the third case can overlap the first
two; if so, the third case will be handled first. For the sake of simplicity, we do not
include rules for wait, notify, and constructors/finalizers here,5 but this should give
a firm grasp of the algorithm:

1. type(e) = write, target(e) = x, thread(e) = t (the variable x is written
in thread t) and x is a shared variable. In this case, the write vector clock
VCw

x

is updated to reflect the newly obtained information; since a write is
also an access, the access VC of x is also updated; we also want to capture
that t committed a causally irreversible action, by updating its VC as well:
VC

t

(t) VC
t

(t)� 1, VC
t

 VCa

x

 VCw

x

 min(VCa

x

, VC
t

).

5These constructs require separate, special sets of vector clocks.

204

PhD Thesis, University of Illinois, August 2012

2. type(e) = read, target(e) = x, thread(e) = t (the variable x is read in t),
and x is a shared variable. Then the thread updates its information with the
write information of x (we do not want to causally order reads of shared
variables!), and x updates its access information with that of the thread:
VC

t

(t) VC
t

(t)� 1. VC
t

 min(VCw

x

, VC
t

), VCa

x

 min(VCx

a

, VC
t

).

3. e is a property event and thread(e) = t. Then VC
t

(t) is decreased to capture
the intra-thread total ordering: VC

t

(t) VC
t

(t)� 1.

4. type(e) = start, target(e) = t1, thread(e) = t2. Here t1 is the thread started
by the start event, while t2 is the thread in which start is called. Calling
start implies that any event in the new thread must occur after the call to
start, thus we have VC(t2)t2 VC(t2)t2 � 1, VC

t1 min(VC
t1 , VC

t2)

(keep in mind that start will actually be the last event for t1, since traces are
reverse program order).

5. type(e) = join, target(e) = t1, thread(e) = t2. Here t1 is the thread started
by the start event, while t2 is the thread in which start is called. Calling join
implies that any event in the calling thread, t2 must occur after events in
the joined thread, t1, thus we have VC(t2)t2 VC(t2)t2 � 1, VC

t1 VC
t2

(keep in mind that join will actually be the first event for t1, since traces are
reverse program order).

8.5 Property Checking

Currently, as mentioned, there are two separate prediction algorithms in RV-Predict.
We have a generic algorithm for predicting properties specified using JavaMOP,
and we have a specialized algorithm that is more efficient for data races. We
will start with the algorithm for data races because it is simpler, and thus easier
to understand, while the generic algorithm is a generalization of that algorithm.
Understanding the data race detection algorithm eases the understanding of the
generic prediction algorithm. An important point with both algorithms is that the
deal with only property events. For race detection this means all reads/writes to
the shared variable of interest, for generic properties this means the user defined
JavaMOP events. Because of this, even though the algorithm for generic prediction
is more complicated, it generally takes less time, as the traces are far shorter. The

205

PhD Thesis, University of Illinois, August 2012

Algorithm DataRaceDetection(Trace ⌧, ListhThreadIteratori threads)
Global : SethRaceSearchStatei RST
Initialization : 8 t1, t2 2 threads s.t. t1 6= t2

RST RST [{createRaceSearchState(t1, t2)}
function main

1 for RaceSearchState rst 2 RST do
2

... if rst.t1.VC > rst.t2.VC
3

...
... RST.add(createRaceSearchState(decrement(rst.t1), rst.t2))

4

... elseif rst.t1.VC < rst.t2.VC
5

...
... RST.add(createRaceSearchState(rst.t1, decrement(rst.t2)))

6

... else
7

...
... if rst.t1.event is a WriteEvent || rst.t2.event is a WriteEvent

8

...
...

... if rst.t1.lockSet 6= rst.t2.lockSet
9

...
...

...
... reportRace()

10

...
...

... endif
11

...
... endif

12

...
... RST.add(createRaceSearchState(rst.t1, decrement(rst.t2)))

13

...
... RST.add(createRaceSearchState(decrement(rst.t1), rst.t2))

15

... endif
16 endfor

Figure 8.5: Data Race Detection algorithm

other events added due to control/data dependence were only for the purposes of
assigning vector clocks to events in the vector clocking stage.

8.5.1 Data Race Detection

The basic idea of race detection is simple: check for accesses to the same variable
with incomparable VCs. However, it is easy to note that this has quadratic worst
case complexity, because each access must be compared against every other access.
Clearly, when billions of accesses may occur in a trace, this is unacceptable. Not
only would this be unbearable slow, but it would be impossible to even fit the
accesses in memory to perform the comparisons.

To alleviate this, as well as to make it more easy to deal with streaming to
and from the disk when memory is overfull, we use the idea of a window of
comparisons, ignoring pairs of events that trivially cannot have incomparable
vector clocks. If at some point we note the second access, a

T1
2 in thread T1 must

occur after the fifth access, a

T2
5 , in thread T2 we know that we do not need to check

the a

T1
2 against any further accesses in thread T2 because all accesses in a given

thread must be totally ordered (and the traces are backwards).

206

PhD Thesis, University of Illinois, August 2012

To implement this we use a Set.6 of RaceSearchStates Fig. 8.5 shows a
simplified pseudocode description for our algorithm, which is inspired by the idea
of continuations in functional programming. Each search state abstracts the notion
of checking accesses in two threads. Each RaceSearchState keeps an iterator to
the list of accesses representing one of its two given threads (ThreadIterator); by
this stage of the RV-Predict pipeline the only remaining events are accesses, as
the vector clocking stage filters out non-property events as it adds vector clocks.
The algorithm begins by keeping search states for each pair of threads passed to
the algorithm in the set RST, as can be seen in the initialization line. Each state
is advanced by considering the accesses pointed to by each of its iterators. If the
vector clocks of the two accesses in question are ordered, only one of the iterators
is advanced, for example, if the access in thread t of the search state must take
place before the access in thread t

0, the iterator pointing to the access from thread
t

0 is decremented (keep in mind the traces are in reverse program order), as can be
seen on lines 2–6. On the other hand, if the iterators are incomparable, two new
search states are added to the set. One state where one iterator is decremented, and
one where the other iterator is decremented, as can be seen on lines 11–13.

8.5.2 Generic Property Checking

As mentioned the race detection algorithm can be extrapolated to generic property
prediction. There are a few caveats: the iterators of the search states point to
streams of monitoring events like those described in Section 8.3.2 rather than
accesses to shared variables, and each search state keeps an iterator to every thread
in the program in a list. Each search state, additionally, keeps a reference to a
monitor provided by JavaMOP. The provided monitors cannot provide the “good-
prefix” matching allowed by JavaMOP because our algorithm works in reverse.
We instead only report violations based on the last state of the monitor when the
end (beginning) of the trace is reached. For all logics but SRS, JavaMOP is able
to easily create a monitor for prediction by reversing the finite state machine or
context-free grammar, similar to how we compute coenable sets using enable set
algorithms (see Chapter 3). For future work, we intend to add a forward prediction
pass that will actually reverse the trace, when good prefix matching is required.
For SRS, the user must provide an SRS that will work for backward traces.

Fig. 8.6 shows pseudocode for the generic property prediction algorithm. It is
6We must use a set to avoid duplicate search states, or the algorithm can quickly explode.

207

PhD Thesis, University of Illinois, August 2012

Algorithm GenericPropertyPrediction(Trace ⌧, ListhThreadIteratori threads)
Global : SethSearchStatei ST
Initialization : ST {createSearchState(sort(threads), initialMonitor)}
function main

Local : int i

1 for SearchState st 2 ST do
2

... if st.threadIterators.get(0).VC > st.threadIterators.get(1).VC
3

...
... ListhThreadIteratori nextThreads = st.threadIterators.clone()

4

...
... Monitor nextMonitor = st.monitor.clone()

5

...
... nextMonitor.process(st.threadIterators.get(0).event)

6

...
... ST.add(createSearchState(bubbleRight(nextThreads, 0), nextMonitor))

7

... else
8

...
... for i = 2 to threads.size()� 1 do

9

...
...

... if st.threadIterators.get(0).VC > st.threadIterators.get(i).VC
10

...
...

...
... break

11

...
...

... endif
12

...
... endfor

13

...
... createPermutedStates(st, i)

14

... endif
15 endfor
function createPermutedStates(SearchState st, int i)

Local : int j

1 for j = 0 to i� 1 do
2

... ListhThreadIteratori nextThreads = st.threadIterators.clone()

3

... Monitor nextMonitor = st.monitor.clone()

4

... nextMonitor.process(st.threadIterators.get(j).event)
5

... ST.add(createSearchState(bubbleRight(nextThreads, j), nextMonitor))
6 endfor
function bubbleRight(ListhThreadIteratori threads, int i)

Locals : int j, ThreadIterator it
1 it = threads.remove(i)

2 decrement(it)
3 for j = i + 1 to threads.size()� 1 do
4

... if it.VC 6< threads.get(j).VC
5

...
... break

6

... endif
7 endfor
8 threads.insertBefore(j, it)
9 return threads

Figure 8.6: Generic Property Checking algorithm

208

PhD Thesis, University of Illinois, August 2012

important to maintain the ordering, monotonically decreasing by vector clock, in
the thread iterator list. By keeping the threads sorted by vector clock, we drastically
reduce the number of necessary comparisons. Due to the need to keep the thread
iterator list sorted, it is implemented as a linked list. We will use the terminology
right to mean further in the list, and thus incomparable or lesser VCs than the
current position in the list.

We initialize the algorithm with one SearchState in the set ST. The create-

SearchState function simply creates a new SearchState with the passed list of
ThreadIterators and Monitor. In the initialization we begin with the initialMonitor.

The main function is the driver of the algorithm, it loops over all the Search-

States in ST on line 1. For each SearchState it compares the first two elements of
the list of ThreadIterators. Because the list is soft monotonically decreasing, there
are only two possibilities: the first VC in the list will be greater than the second,
or it will be incomparable. The short case, from lines 2–6, the second is less than
the first. In that case, we send the event pointed to by st.threadIterators.get(0) to a
clone of the Monitor in st, that will be put into the new SearchState that we are
generating, on line 6. We also call the bubbleRight function with a clone of the
ThreadIterators of st, which we pass to the creation of the next SearchState. The
bubbleRight function, which will be explained in more detail below, is responsible
for decrementing the ThreadIterator pointed to by the passed integer, and pushing it
to the right in the list as long as its VC is less than the VC of the next ThreadIterator

to the right, which may occur due to the decrementing. This is a valid operation:
we may decrement the ThreadIterator at the current position without violating the
causal model. The bubbleRight function also ensures that we maintain our sorting.

The second case, lines 7–14, is complicated enough to require its own function
for ease of understanding: createPermutedStates. This case occurs when the
VC of st.threadIterators.get(0) is incomparable to that of st.threadIterators.get(1).
Because incomparability is transitive with monotonically decreasing sorting, it is
possible that several of the next right ThreadIterator’s will he incomparable. The
loop on lines 8–12 finds the range of incomparable VCs.

The createPermutedStates function, creates SearchStates for an entire range
of ThreadIterators with incomparable VCs by generating one Search state where
each of the ThreadIterators is decremented. This represents the idea that any of
these threads could be chosen to go next when predicting thread interleavings
because they are all incomparable. As with the greater than case, we must allow
the bubbleRight function to handle the decrementing and inserting, in case decre-

209

PhD Thesis, University of Illinois, August 2012

menting the given ThreadIterator results in a ThreadIterator that is less than its
neighbor to the right.

Finally, as mentioned, the bubbleRight function decrements the ThreadIterator

pointed to by the passed integer i, and pushes it to the right in the passed list of
ThreadIterators. On line 1, it first removes the ThreadIterator, it, which i points to,
from the list, so that we do not have two copies in the list. One line 2, it decrements
the it. The loop from lines 3 to 7 finds the first spot where it is safe to insert it
without upsetting the sort. On line 8, it is inserted in the proper place found by the
loop, and on line 9 the list of ThreadIterators is returned.

This algorithm is exponential, but it minimizes repeated work due to the sorting
and set collapsing. Unfortunately, any algorithm to search the state space will be
exponential, but on the positive: the trace slices generated for generic properties
tend to be short, particularly with the loop peeling optimization.

8.6 Experiments

Fig. 8.7 summarizes the differences in real time and disk usage between the original
jPredictor system first presented in [37] and RV-Predict for prediction stages only7

for race prediction as measured on a system with two quad core Xeon E5430
processors running at 2.66GHz and 16 GB of 667 MHz DDR2 memory running
Redhat Linux. On very small examples jPredictor occasionally outperforms RV-
Predict, but on anything substantial RV-Predict is a vast improvement. Account,
elevator, and tsp are actual programs used to benchmark parallel systems. Huge,
medium, small, and the mixed locks examples are microbenchmarks that we
designed to test particularly difficult aspects of race detection, such as millions of
accesses to the same shared variable in huge.

While the results above are compelling, showing that RV-Predict is a vast
improvement over jPredictor, we wish to show that RV-Predict is usable on larger
programs. We also wish to know exactly which parts of RV-Predict are currently
responsible for the most overhead.

For our experiments on the different causes of overhead we we used an Alien-
ware m14x laptop with an Intel R� CoreTM i7-2670QM with a peak frequency
of 2985.87 MHz. It has 8GB of 1600 MHz DDR3 ram, and a Samsung R� 830
Series 256GB SSD. Unfortunately, while the 830 series is a SATA-III drive, the

7These numbers are from an earlier version of RV-Predict that did not have loop peeling.

210

PhD Thesis, University of Illinois, August 2012

jPredictor RV-Predict

Name Input Real Time Disk Usage Real Time Disk Usage

account - 0:02.07 236K 0:04.31 360K
elevator - 5:55.29 63M 1:20.31 864K
tsp map4 2 5:30.87 16M 1:33.44 744K
tsp map5 2 10:10.19 17M 2:20.95 868K
tsp map10 2 8:25:04.00 442M 29:27.13 2.8M
huge - crash crash 0:42.22 13M
medium - crash crash 0:06.12 840K
small - crash crash 0:05.99 292K
mixedlockshuge - 8:13:40.00 250M 0:13.95 2.9M
mixedlocksbig - 5:44.89 25M 0:07.03 496K
mixedlocksmedium - 0:08.92 2.7M 0:07.25 308K
mixedlockssmall - 0:05.46 1.5M 0:05.67 296K

Figure 8.7: jPredictor Vs. RV-Predict

Benchmark Total Time Soot (SA) Static
Analysis

Program
Run

Soot
(Prediction)

Prediction

account⇥5 24.68 2.354 10.779 0.41 9.863 1.274
simple 22.972 2.343 10.193 0.29 9.591 0.554

elevator 1 65.906 2.298 11.416 16.13 9.651 26.411
2 59.18 2.345 11.652 15.167 9.574 20.442
3 57.503 2.298 11.265 13.235 9.344 21.361
4 59.534 2.367 11.534 14.2 9.415 22.018
5 55.749 2.287 11.347 14.137 9.682 18.296

Figure 8.8: RV-Predict Stage Statistics (time in seconds)

Alienware BIOS limits the serial-ATA bus to SATA-II speed for stability reasons
with some laptops.

Fig. 8.8 shows results for the different stages of the pipeline on three bench-
marks: the elevator benchmark from our previous test, a version of the account
benchmark from the previous test that uses 5⇥ more accounts, as well as a bench-
mark we call simple, which creates two threads that access a shared memory
location, causing a data race. The numbers for account and simple are stable, so
we show only one run. For elevator we show the results from five trials because it
takes random amounts of time to run due to using random scheduling of elevator
threads.8 The stages Soot (SA) and Soot (Prediction) are the times it takes to
load Soot and the class scene for static analysis and prediction, respectively. The

8The elevator schedule is so random, in fact, that it will deadlock occasionally.

211

PhD Thesis, University of Illinois, August 2012

scene is the term Soot uses to refer to all the classes loaded into Soot. For our
experiments this includes the programs themselves, as well as some of the libraries
used. One point of interest is that the amount of time to load Soot tends to be
consistent throughout the experiments, as is the time for static analysis. While
elevator is quite a bit larger than account or simple, the change in static analysis
time is rather low, denoting that quite a bit of the time is constant overhead. For
future work we will test other Java compiler frameworks to see if we can improve
upon static analysis and compiler framework load time. Also interesting is that,
while prediction time is definitely proportional to the run time of the instrumented
program (Program Run column), it is not always completely consistent. For in-
stance, trail 3 of elevator has a longer prediction time than trial 2, which had a
shorter program run. Part of this can attributed to random noise, but there is also a
good chance that the shorter run actually induced a larger causal model space.

For larger programs we focused on three of the benchmarks in JavaGrande,
and only looked at the time for the Prediction stage. For JGFLUFactorization-
BenchSizeA with 4 threads, which does concurrent LU Factorization of matrices,
four of the six race candidates take less than 10 seconds, while the other two,
lufact.TournamentBarrier.isDone and lufact.TournamentBarrier.maxBusyIter take
1286 and 3434 seconds, respectively. The entire prediction phase takes 4783
seconds; that is one hour and 19 minutes. This points to an inefficiency in the
prediction phase that we need to amend, but it may simply be impossible due to the
exponential nature of causal model exploration. We intend to improve performance
for particularly large causal models as future work. What is especially interesting
is that lufact.TournamentBarrier.maxBusyIter takes 3434 seconds with a trace only
2.1 million events long. However, for JGFSeriesBenchSizeA with 4 threads we
manage to predict for each variable in 400 seconds despite a logged trace length
of 100 million events. Overall, JGFSeriesBenchSizeA took 1846 seconds for
prediction. This tells us that the length of a trace is not a good predictor for the
complexity of the causal model. Our last benchmark, JGFSORBenchSizeA, took
only 117 seconds to predict despite traces of 5 million events.

8.7 Chapter Related Work

There are several other approaches aimed at detecting potential concurrency errors
by examining particular execution traces. Some approaches attempt to verify

212

PhD Thesis, University of Illinois, August 2012

general purpose properties [110, 112], including temporal ones, and are inspired
from debugging distributed systems based on Lamport’s happens-before causality
[84]. Other approaches work with particular properties, such as data-races and/or
atomicity. [108] introduced the first lock-set based algorithm to detect data-races
dynamically, followed by many variants aiming at improving its accuracy. For
example, an ownership model was used in [124] to achieve a more precise race
detection at the object level. [97] combines lock-sets with happen-before. [52]
provides a race detector that is both efficient and precise by switching between what
they call epochs and vector clocks as necessary. However, their technique works
only for race detection, not generic properties. We intend to look into modifications
of their technique for generic property detection, as the performance gains would
greatly improve the performance of RV-Predict. Numerous other race-detection
techniques have been introduced, but we feel these are only tangentially related
to this work.

Previous efforts tend to focus on either soundness or coverage: those based
on happens-before try to be sound, but have limited coverage over interleavings,
thus missing errors; lock-set based approaches have better coverage but suffer from
false alarms. Our technique aims to improve coverage without giving up soundness
or genericity of properties. The only previous system to have the same features is
jPredictor [34, 37], on which RV-Predict is based. As mentioned, jPredictor does
not work on real sized programs due to the very limited working sets it can handle,
additionally, it offers no algorithm for generic property detection.

8.8 Chapter Conclusion

This chapter presents the RV-Predict predictive analysis system. It is able to predict
general purpose properties that may arise in thread interleavings that do not occur
at runtime, based simply on one execution of a program by building a causal model
and exploring the interleavings induced by that model. RV-Predict is based on
the ideas of jPredictor, but jPredictor simply did not work for realistic programs.
Additionally, jPredictor had only algorithms for race detection and atomicity
violations, while RV-Predict has an algorithm for generic property prediction that
avoids repeating work. There is a large amount of future work the make RV-
Predict into a reliable and efficient system. A suitable replacement for vector
clocks, where possible, such as in [52] is a primary goal. We also intend to reduce

213

PhD Thesis, University of Illinois, August 2012

the amount of instrumentation necessary to generate the causal model. There is
also a performance degradation for particularly large causal models that we need
to address. Overall, however, RV-Predict demonstrates the efficacy of Runtime
Verification in a predictive domain.

214

PhD Thesis, University of Illinois, August 2012

Chapter 9

Conclusion

With an ever increasing emphasis on software in our daily lives, improving the
reliability of software becomes an ever more important issue. Runtime Verification
is a quickly growing technique for providing many of the guarantees of formal
verification, which helps improve software reliability. However, unlike formal
verification, Runtime Verification achieves its goals in a manner that is scalable.
The purpose of the work in this thesis is to give rise to efficient, expressive, and
effective runtime verification. Every item in this thesis hopes to improve on or
more of these facets. All work in this thesis, save for RV-Predict, is implemented
in the Monitoring Oriented Programming (MOP) framework.

Chapter 2 introduces the MOP framework, discussing the relationships between
the two current instantiates of MOP, JavaMOP and BusMOP. It goes to show that
one general Runtime Verification framework is efficacious across two separate
domains: Java programs and hardware hardware/software systems.

Chapter 3 gives a more in depth exposition on JavaMOP in particular. It
showcases several techniques that are able to vastly improve the efficiency of
parametric monitoring. It also introduces suffix monitoring and various parameter
binding modes, that increase the expressivity of monitoring.

Chapter 4 goes into detail on BusMOP and the two differing environments in
which it has been applied: PCI Bus traffic monitoring, and System on a Chip (SoC)
design. The work on BusMOP shows that Runtime Verification is effective for
hardware and hardware/software systems. The two different contexts in which
it was applied lend further validity to the approach. BusMOP is an exemplar of
Runtime Verification efficiency, in general applying 0% overhead to the systems it
monitors. While it does only support finite state logics, it supports several, thus we
feel that it can still be considered expressive.

Chapter 5 introduces the various finite state logic plugins. Of particular impor-
tance is the finite state machine plugin introduced first. The techniques presented
for multicategory finite state machine minimization and enable (coenable) set gener-

215

PhD Thesis, University of Illinois, August 2012

ation both improve the performance of monitoring. Additionally, the technique for
parallel assignments for past time linear temporal logic increases the theoretical 1

efficiency of hardware monitors derived from said logic. Lastly, linear temporal
logic with past time and future time operators increases expressivity; before this
thesis there was no means to monitor such formulae.

Chapter 6 introduces the context-free grammar plugin of MOP. Before the
work described in that chapter, the only efficient parametric monitoring systems in
existence used finite state based logics. The techniques of stack cloning and guar-
anteed acceptance allow for maintaining the semantics of “good prefix” monitoring.
Additionally, a technique for deriving enable/coenable sets is presented, further
improving the efficiency of parametric context-free properties. The context-free
grammar plugin increases the expressivity of the MOP framework and JavaMOP
in particular, without sacrificing efficiency.

Chapter 7 introduces the first parametric string rewriting monitoring algorithm.
This provides the first efficient parametric monitoring algorithm for a Turing
complete logic. Unfortunately, enable and coenable sets cannot be defined for
string rewriting, as it is equivalent to solving the halting problem, but the results
show that the plugin is still quite efficient. The string rewriting algorithm itself is
the most efficient associative rewriting algorithm of which we are aware, beating
associative matching in the maude [39] system by orders of magnitude. Like the
context-free grammar plugin, this increases the expressivity of Runtime Verification
without sacrificing too much efficiency.

Chapter 8 presents the RV-Predict system, which is able to take monitors
created by JavaMOP and use them to predict violations properties that occur in
thread interleavings other than the one experienced during a test run, showing
Runtime Verification effective in yet another domain. It is also the first predictive
analysis system efficient enough to operate on real world programs.

As we can see, each one of these chapters touches upon at least one of the goals
of this thesis, resulting in efficient, expressive, and effective Runtime Verification.

1In general, bus speeds are low enough that even sequential assignments or finite state machines
will always be sufficiently performant, however the technique still does produce slightly smaller
monitoring circuits.

216

PhD Thesis, University of Illinois, August 2012

References

[1] SPECjvm 2008. http://www.spec.org/jvm2008/.

[2] Aeronautical Radio Inc. ARINC 653 Specification, 2003. http://www.
arinc.com/.

[3] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques,
and Tools. 1986. pages 215–246.

[5] B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable sdram
memory controller. In Hardware/software Codesign and System Synthesis
(CODES+ISSS’07), pages 251–256, 2007.

[6] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to AspectJ. In Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA’05), pages 345–364,
2005.

[7] AspectC++. http://www.aspectc.org/.

[8] AspectJ. http://eclipse.org/aspectj/.

[9] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lho-
tak, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. ABC: an
extensible AspectJ compiler. In Aspect-Oriented System Design (AOSD’05),
pages 87–98, 2005.

[10] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors feasible.
In Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’07), pages 589–608, 2007.

[11] S. Bak, D. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha.
The system-level simplex architecture for improved real-time embedded
system safety. In Real-Time and Embedded Technology and Applications
Symposium (RTAS’09), pages 99–107, 2009.

217

PhD Thesis, University of Illinois, August 2012

http://www.spec.org/jvm2008/
http://www.arinc.com/
http://www.arinc.com/
http://www.aspectc.org/
http://eclipse.org/aspectj/

[12] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovannit-Vincentelli. Metropolis: An integrated electronic sys-
tem design environment. IEEE Transactions on Computers, 36(4):45–52,
2003.

[13] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS’04), pages 49–69, 2004.

[14] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace,
G. Rosu, O. Sokolsky, and N. Tillmann, editors. Runtime Verification
(RV’10), volume 6418 of LNCS, 2010.

[15] H. Barringer, B. Finkbeiner, Y. Gurevich, and H. Sipma, editors. Runtime
Verification (RV’05), volume 144 of ENTCS, 2005.

[16] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. In Verification, Model Checking, and Abstract Interpretation
(VMCAI’04), pages 44–57, 2004.

[17] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from EAGLE to RULER. Journal of Logic and Computation,
pages 111–125, 2008.

[18] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass-Java with
Assertions. In Runtime Verification (RV’01), pages 103–117, 2001.

[19] P. Beaucamps, I. Gnaedig, and J.-Y. Marion. Behavior abstraction in mal-
ware analysis. In Runtime Verification (RV’10), pages 168–182, 2010.

[20] P. Binns, M. Englehart, M. Jackson, and S. Vestal. Domain specific software
architectures for guidance, navigation and control. Journal of Software
Engineering and Knowledge Engineering, 6(2):201–227, 1996.

[21] Bison. http://www.gnu.org/software/bison/.

[22] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’06), pages
169–190, 2006.

[23] E. Bodden. J-LO, a tool for runtime-checking temporal assertions. Master’s
thesis, RWTH Aachen University, 2005.

218

PhD Thesis, University of Illinois, August 2012

http://www.gnu.org/software/bison/

[24] E. Bodden, F. Chen, and G. Roşu. Dependent advice: A general approach to
optimizing history-based aspects. In Aspect-Oriented Software Development
(AOSD’09), pages 3–14, 2009.

[25] E. Bodden and K. Havelund. Racer: effective race detection using aspectj.
In International Symposium on Software Testing and Analysis (ISSTA’08),
pages 155–166, 2008.

[26] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to
improve the performance of runtime monitoring. In European Conference
on Object-Oriented Programming (ECOOP’07), pages 525–549, 2007.

[27] E. Bodden, P. Lam, and L. Hendren. Clara: a framework for statically
evaluating finite-state runtime monitors. In Runtime Verification (RV’10),
pages 74–88, 2010.

[28] R. V. Book and F. Otto. String-rewriting systems. 1993.

[29] S. Chaudhuri and R. Alur. Instumenting C programs with nested word
monitors. In Model Checking Software (SPIN’07), pages 279–283, 2007.

[30] F. Chen, M. D’Amorim, and G. Roşu. A formal monitoring-based framework
for software development and analysis. In International Conference on
Formal Engineering Methods (ICFEM’04), pages 357–372, 2004.

[31] F. Chen, P. O. Meredith, D. Jin, and G. Roşu. Efficient formalism-
independent monitoring of parametric properties. In Automated Software
Engineering (ASE’09), pages 383–394, 2009.

[32] F. Chen and G. Roşu. Towards monitoring-oriented programming: A
paradigm combining specification and implementation. In Runtime Ver-
ification (RV’03), pages 108–127, 2003.

[33] F. Chen and G. Roşu. MOP: An efficient and generic runtime verification
framework. In Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’07), pages 569–588, 2007.

[34] F. Chen and G. Roşu. Parametric and sliced causality. In Computer Aided
Verification (CAV’07), pages 240–253, 2007.

[35] F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’09), pages
246–261, 2009.

[36] F. Chen and G. Roşu. Parametric and termination-sensitive control depen-
dence - extended abstract. In Static Analysis Symposium (SAS’06), pages
387–404, 2006.

219

PhD Thesis, University of Illinois, August 2012

[37] F. Chen, T. F. Şerbănuţă, and G. Roşu. jPredictor: a predictive runtime
analysis tool for Java. In International Conference on Software Engineering
(ICSE’08), pages 221–230, 2008.

[38] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell broadband engine archi-
tecture and its first implementation: A performance view. Technical report,
IBM Research, 2005.

[39] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott. All About Maude-A High-Performance Logical Framework: How
to Specify, Program, and Verify Systems in Rewriting Logic. 2007.

[40] P. Cumming. The TI OMAP platform approach to SoCs. In Surviving the
SoC revolution: A guide to platform-based design. 1999.

[41] M. d’Amorim and K. Havelund. Event-based runtime verification of Java
programs. ACM SIGSOFT Software Engineering Notes, 30(4):1–7, 2005.

[42] M. d’Amorim and G. Roşu. Efficient monitoring of omega-languages. In
Computer Aided Verification (CAV’05), pages 364–378, 2005.

[43] Deflate compressed data format specification version 1.3. http://tools.
ietf.org/html/rfc1951.

[44] D. Drusinsky. The Temporal Rover and the ATG Rover. In Model Checking
and Software Verification (SPIN’00), pages 323–330, 2000.

[45] A. G. Duncan. Test grammars: A method for generating program test data.
In Workshop on Software Testing and Test Documentation, pages 270–281,
1978.

[46] A. G. Duncan and J. S. Hutchison. Using attributed grammars to test designs
and implementations. In International Conference on Software Engineering
(ICSE’81), pages 170–178, 1981.

[47] Eagle Technology. PCI 703 Series User’s Manual. http://www.
eagledaq.com/display_product_36.htm.

[48] Iso/iec 14977:1996, information technology – syntactic metalanguage –
extended bnf.

[49] Eiffel Language. http://www.eiffel.com/.

[50] P. Feiler, B. Lewis, and S. Vestal. The SAE architecture analysis & design
language (AADL): A standard for engineering performance critical systems.
In Computer Aided Control Systems Design (CACSD’06), pages 1206–1211,
2006.

220

PhD Thesis, University of Illinois, August 2012

http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1951
http://www.eagledaq.com/display_product_36.htm
http://www.eagledaq.com/display_product_36.htm
http://www.eiffel.com/

[51] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In Principles of Programming Languages
(POPL’04), pages 256–267, 2004.

[52] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race
detection. Communications of the ACM, 53(11):93–101, 2010.

[53] P. Gastin and D. Oddoux. Ltl with past and two-way very-weak alternating
automata. In Mathematical Foundations of Computer Science (MFCS’03),
pages 439–448, 2003.

[54] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over pro-
gram traces. In Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’05), pages 385–402, 2005.

[55] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on chip:
Concepts, architectures, and implementations. IEEE Design and Test,
22(5):414–421, 2005.

[56] K. Hanford. Automatic generation of test cases. IBM Systems Journal,
9(4):242–257, 1970.

[57] K. Havelund, M. Nunez, G. Roşu, and B. Wolff, editors. Formal Approaches
to Testing and Runtime Verification (FATES/RV’06), volume 4264 of LNCS,
2006.

[58] K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer.
In Runtime Verification (RV’01), pages 97–114, 2001.

[59] K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer.
In Runtime Verification (RV’01), pages 200–217, 2001.

[60] K. Havelund and G. Roşu, editors. Runtime Verification (RV’02), volume 70
of ENTCS, 2002.

[61] K. Havelund and G. Roşu, editors. Runtime Verification (RV’04), volume
113 of ENTCS, 2004.

[62] K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties.
In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’02), pages 342–356, 2002.

[63] K. Havelund and G. Rosu. Efficient monitoring of safety properties. Journal
of Software Tools for Technology Transfer, 6(2):158–173, 2004.

[64] C. Hoare. Communicating Sequential Processes. 1985.

[65] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical report, 1971.

221

PhD Thesis, University of Illinois, August 2012

[66] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata
theory, languages, and computation, 2

nd edition. 2001.

[67] S. Horwitz and T. W. Reps. The use of program dependence graphs in
software engineering. In International Conference on Software Engineering
(ICSE’92), pages 392–411, 1992.

[68] B. Houssais. Verification of an algol 68 implementation. In Strathclyde
Algol 68 Conference, pages 117–128, 1977.

[69] K. Hoyme and K. Driscoll. Safebus(tm). IEEE Aerospace Electronics and
Systems Magazine, pages 34–39, 1993.

[70] D. Huffman. A method for the construction of minimum-redundancy codes.
Resonance, 11:91–99, 2006.

[71] G. Hughes and T. Bultan. Interface grammars for modular software model
checking. In International Symposium on Software Testing and Analysis
(ISSTA’07), pages 39–49, 2007.

[72] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the final
embedded system using the Ocarina AADL tool suite. ACM Transactions
on Embedded Computing Systems, 7(4):1–25, 2008.

[73] IBM. Processor Local Bus Specification, 2007. http:
//www-01.ibm.com/chips/techlib/techlib.nsf/
techdocs/3BBB27E5BCC165BA87256A2B0064FFB4.

[74] JavaMOP. http://javamop.com.

[75] JBoss. http://www.jboss.org.

[76] D. Jin, P. O. Meredith, D. Griffith, and G. Roşu. Garbage collection for
monitoring parametric properties. In Programming Language Design and
Implementation (PLDI’11), pages 415–424, 2011.

[77] M. Karaorman and P. Abercrombie. jcontractor: Introducing design-by-
contract to java using reflective bytecode instrumentation. Formal Methods
in System Design, 27(3):275–312, 2005.

[78] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated
development of embedded software. Proceedings of the IEEE, 91(1):145–
164, 2003.

[79] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. An overview of AspectJ. In European Conference on Object-Oriented
Programming (ECOOP’01), pages 327–353, 2001.

222

PhD Thesis, University of Illinois, August 2012

http://javamop.com
http://www.jboss.org

[80] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In European Conference
on Object-Oriented Programming (ECOOP’97), pages 220–242, 1997.

[81] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokol-
sky. Formally specified monitoring of temporal properties. In Europoean
Conference on Real-Time Systems (ECRTS’99), pages 114–122, 1999.

[82] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A
run-time assurance approach for Java programs. Journal of Formal Methods
in System Design, 24(2):129–155, 2004.

[83] D. E. Knuth. On the translation of languages from left to right. Information
and Control, 8(6):607–639, 1965.

[84] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[85] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML:
notations and tools supporting detailed design in Java. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’00), pages
105–106, 2000.

[86] C. Lee, D. Jin, P. O. Meredith, and G. Roşu. Towards categorizing and for-
malizing the JDK API. Technical Report http://hdl.handle.net/
2142/30006, Department of Computer Science, University of Illinois at
Urbana-Champaign, 2012.

[87] B. Lickly, I. Liu, S. Kim, H. Patel, S. Edwards, and E. Lee. Predictable
programming on a precision timed architecture. In Compilers, Architecture,
and Synthesis from Embedded Systems (CASES’08), pages 137–146, 2008.

[88] H. Lu and A. Forin. The design and implementation of P2V, an architecture
for zero-overhead online verification of software programs. Technical Report
MSR-TR-2007–99, Microsoft Research, 2007.

[89] M. Martin, V. B. Livshits, and M. S. Lam. Finding application errors and
security flaws using PQL: a program query language. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’07), pages
365–383, 2005.

[90] P. M. Maurer. Generating test data with enhanced context-free grammars.
IEEE Transactions on Software, 7(4):50–55, 1990.

[91] P. O. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring of
parametric context-free patterns. In Automated Software Engineering (ASE

’08), pages 148–157, 2008.

223

PhD Thesis, University of Illinois, August 2012

http://hdl.handle.net/2142/30006
http://hdl.handle.net/2142/30006

[92] P. O. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring of
parametric context-free patterns. Journal of Automated Software Engineer-
ing, pages 149–180, 2010.

[93] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of
the MOP runtime verification framework. Journal on Software Techniques
for Technology Transfer, pages 249–289, 2011.

[94] P. O. Meredith and G. Roşu. Efficient parametric runtime verification with
deterministic string rewriting. Technical Report http://www.ideals.
illinois.edu/handle/2142/30467, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, 2012.

[95] B. Meyer. Object-Oriented Software Construction, 2

nd edition. 2000.

[96] NXP Semiconductors. Philips Nexperia Digital Video Platform. http:
//www.nxp.com.

[97] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
Principles and Practice of Parallel Programming (PPoPP’03), pages 167–
178, 2003.

[98] PCI SIG. Conventional PCI 3.0, PCI-X 2.0 and PCI-E 2.0 Specifications.
http://www.pcisig.com.

[99] R. Pellizzoni, B. D. Buy, M. Caccamo, and L. Sha. Coscheduling of real-
time tasks and PCI bus transactions. Technical report, University of Illinois
at Urbana-Champaign, 2008.

[100] R. Pellizzoni, P. O. Meredith, M. Caccamo, and G. Roşu. Hardware runtime
monitoring for dependable cots-based real-time embedded systems. In
Real-Time System Symposium (RTSS’08), pages 481–491, 2008.

[101] R. Pellizzoni, P. O. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and L. Sha.
Handling mixed-criticality in soc-based real-time embedded systems. In
Embedded Software (Emsoft’09), pages 235–244, 2009.

[102] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science (FOCS’77), pages 46–57, 1977.

[103] Protocol buffers. http://code.google.com/p/protobuf/.

[104] P. Purdom. A sentence generator for testing parsers. BIT Numerical Mathe-
matics, 2:336–375, 1972.

[105] G. Roşu, F. Chen, and T. Ball. Synthesizing monitors for safety properties –
this time with calls and returns –. In Runtime Verification (RV’08), pages
51–68, 2008.

224

PhD Thesis, University of Illinois, August 2012

http://www.ideals.illinois.edu/handle/2142/30467
http://www.ideals.illinois.edu/handle/2142/30467
http://www.nxp.com
http://www.nxp.com
http://www.pcisig.com
http://code.google.com/p/protobuf/

[106] A.-E. Rugina, K. Kanoun, and M. Kaaniche. The ADAPT tool: From AADL
architectural models to stochastic petri nets through model transformation.
In European Dependable Computing Conference (EDCC’08), pages 85–90,
2008.

[107] A. Sangiovanni-Vincentelli. Quo vadis, SLD? reasoning about the trends and
challenges of system level design. Proceedings of the IEEE, 95(3):467–506,
2007.

[108] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
a dynamic data race detector for multithreaded programs. ACM Transactions
on Computer Systems, 15(4):391–411, 1997.

[109] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information System Security, 3(1):30–50, 2000.

[110] A. Sen and V. K. Garg. Detecting temporal logic predicates in distributed
programs using computation slicing. In On Principles of Distributed Systems
(OPODIS’03), pages 171–183, 2003.

[111] K. Sen and G. Roşu. Generating optimal monitors for extended regular
expressions. In Workshop on Runtime Verification (RV’03), pages 162–181,
2003.

[112] K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded
programs. In Foundations of Software Engineering (FSE’03), pages 337–
346, 2003.

[113] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Scheduling and mem-
ory requirements analysis with AADL. In Special Interest Group on Ada
(SIGAda’05), volume 25, pages 1–10, 2005.

[114] E. Sirer and B. Bershad. Using production grammars in software testing. In
Domain Specific Languages (DSL’00), pages 1–13, 1999.

[115] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande benchmark
suite. In High Performance Computing, Networking, Storage and Analysis
(SC’01), pages 8–8, 2001.

[116] O. Sokolsky, I. Lee, and D. Clarke. Schedulability analysis of AADL
models. In International Parallel and Distributed Processing Symposium
(IPDPS’06), pages 179–179, 2006.

[117] O. Sokolsky and M. Viswanathan, editors. Runtime Verification (RV’03),
volume 89 of ENTCS, 2003.

[118] R. E. Strom and S. Yemeni. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering,
12:157–171, 1986.

225

PhD Thesis, University of Illinois, August 2012

[119] H. Sun, M. Hauptman, and R. Lutz. Integrating product-line fault tree
analysis into AADL models. In High Assurance Systems Engineering
Symposium (HASE ’07), pages 15–22, 2007.

[120] K. Thompson. Regular expression search algorithm. Communications of
the ACM, 11(6):419–422, 1968.

[121] Tracematches Benchmarks. http://abc.comlab.ox.ac.uk/
tmahead.

[122] Uppsala University and Aalborg Univeristy. Uppaal a tool suite for verifica-
tion of real-time systems, 2009. http://www.uppaal.com.

[123] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co.
Soot - a Java optimization framework. In IBM Centre for Advanced Studies
Conference (CASCON’99), pages 125–135, 1999.

[124] C. von Praun and T. R. Gross. Object race detection. In Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA’01), pages
70–82, 2001.

[125] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of
atomicity errors in concurrent programs. In Principles and Practice of
Parallel Programming (PPoPP’06), pages 137–146, 2006.

[126] J. G. Webster. Cardiac Pacemakers. 1993.

[127] Xilinx, Inc. Virtex-4 ML455 PCI/PCI-X Development Kit User Guide,
2005. http://www.xilinx.com/support/documentation/
boards_and_kits/ug084.pdf.

[128] Xilinx, Inc. Virtex-5 User Guide, 2009. http://www.xilinx.com.

[129] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977.

226

PhD Thesis, University of Illinois, August 2012

http://abc.comlab.ox.ac.uk/tmahead
http://abc.comlab.ox.ac.uk/tmahead
http://www.uppaal.com
http://www.xilinx.com/support/documentation/boards_and_kits/ug084.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug084.pdf
http://www.xilinx.com

	Chapter 1 Introduction
	Chapter 2 Design of the MOP Framework
	Chapter 3 JavaMOP
	Chapter 4 BusMOP
	Chapter 5 Finite Logics
	Chapter 6 Context-Free Grammars
	Chapter 7 String Rewriting Systems
	Chapter 8 Predictive Analysis
	Chapter 9 Conclusion
	References

