
EnforceMOP: A Runtime Property Enforcement System for
Multithreaded Programs

Qingzhou Luo, Grigore Roşu
Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{qluo2, grosu}@illinois.edu

ABSTRACT

Multithreaded programs are hard to develop and test. In or-
der for programs to avoid unexpected concurrent behaviors
at runtime, for example data-races, synchronization mecha-
nisms are typically used to enforce a safe subset of thread
interleavings. Also, to test multithreaded programs, devel-
opers need to enforce the precise thread schedules that they
want to test. These tasks are nontrivial and error prone.

This paper presents EnforceMOP, a framework for spec-
ifying and enforcing complex properties in multithreaded
Java programs. A property is enforced at runtime by block-
ing the threads whose next actions would violate it. This
way the remaining threads, whose execution is safe, can
make global progress until the system eventually reaches a
global state in which the blocked threads can be safely un-
blocked and allowed to execute. Users of EnforceMOP can
specify the properties to be enforced using the expressive
MOP multi-formalism notation, and can provide code to be
executed at deadlock (when no thread is safe to continue).

EnforceMOP was used in two different kinds of applica-
tions. First, to enforce general properties in multithreaded
programs, as a formal, semantic alternative to the exist-
ing rigid and sometimes expensive syntactic synchronization
mechanisms. Second, to enforce testing desirable schedules
in unit testing of multithreaded programs, as an alternative
to the existing limited and often adhoc techniques. Results
show that EnforceMOP is able to effectively express and en-
force complex properties and schedules in both scenarios.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Verification, Reliability, Experimentation

Keywords

Enforcement, Testing, Concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 2013 ACM 978-1-4503-2159-4/13/07 ...$15.00.

1. INTRODUCTION
Multithreaded programs utilize multiple threads to ac-

complish jobs faster than sequential programs. However,
multithreaded programs are afflicted with concurrency bugs.
These bugs are caused by the inherent non-determinism in
thread scheduling, so it is hard to detect and fix them. Al-
though there is a large amount of work tackling this problem,
ranging from static/dynamic analysis [12, 23, 24], to test-
ing [18,22,30,35,41–43], and to state space exploration [26,
37], these have their own limitations: testing and analysis
approaches suffer from false positives and negatives, and ex-
ploration does not scale and depends on program inputs.

On the other hand, runtime verification [9,27,44] combines
formal methods and testing to check critical properties of a
program dynamically. The key idea is that software system
properties, often defined using temporal formalisms, can be
used to generate program monitors. Any property violation
is reported or resolved immediately rather than waiting for a
bug to manifest. Runtime verification has been proven to be
a promising technique to increase software reliability, with
a large number of runtime verification techniques and tools
developed, including Tracematch [1], PQL [36], PTQL [25],
MOP [15] and Hawk/Eraser [19], among many others.

While runtime verification can effectively detect property
violations, and sometimes even recover from such violations,
unfortunately it provides no guarantee that properties are
never violated. This is particularly problematic in multi-
threaded systems, where non-deterministic thread schedul-
ing may hide potentially critical errors. For example, con-
sider a concurrent database where one thread is in charge
of authorizing users, and each user is assigned a thread for
fetching data. The underlying property is that any user
should be authorized before getting data, so for any given
user the corresponding thread should wait until the first
thread finishes authorizing. Runtime verification approaches
can monitor the program execution and report violations of
this property for each user, but cannot prove correctness:
a successful run gives no guarantee that other runs, under
different thread schedules, will also be successful.

The conventional approach is to employ language-specific
synchronization mechanisms or adhoc sleep commands to
enforce such properties when developing or testing multi-
threaded programs. For instance, Java provides a syn-

chronized keyword, a Thread.sleep() method, and sev-
eral other classes in the java.util.concurrent package.
However, there are certain limitations when using these con-
structs to enforce arbitrary properties in multithreaded pro-
grams: (1) it is non-trivial and error-prone to use these

http://mir.cs.illinois.edu/~qluo2
http://fsl.cs.uiuc.edu/index.php/Grigore_Rosu

constructs when the property to be enforced is complex,
as shown later in this paper; and (2) all these constructs
are mingled with the original program, so it is not modular
and overall hard to identify and reason about the underlying
properties that the developers are attempting to enforce.

In this paper we present EnforceMOP, a novel framework
for enforcing complex properties in multithreaded programs.
The properties are enforced at runtime and do not require
to modify the source code, so they can be modularly main-
tained. We show that EnforceMOP can be used effectively
both in developing and in testing multithreaded programs.

This paper makes the following specific contributions:
Technique: We propose a technique to enforce arbitrar-

ily complex safety properties in multithreaded programs.
The properties can be expressed using various formalisms.

Implementation: EnforceMOP is implemented in Java
on top of JavaMOP [16], a state-of-the-art runtime verifi-
cation framework. Following the philosophy of JavaMOP,
EnforceMOP is implemented in a logic-independent way.

Evaluation: We evaluated the effectiveness of Enforce-
MOP in two aspects. First, as a framework to enforce gen-
eral properties when developing multithreaded programs,
specifically to enforce correct behaviors of such programs.
Second, as a testing framework to enforce thread schedules
when unit testing multithreaded programs, specifically to
enforce schedules in 185 existing multithreaded unit tests,
and compared it with several existing testing frameworks.

Section 2 describes the usage of EnforceMOP on two real
examples. Sections 3 describe the underlying techniques and
implementation of EnforceMOP. Section 4 shows several ap-
plications of EnforceMOP and evaluates its effectiveness as
a tool to specify schedules in unit testing multithreaded pro-
grams. We then discuss limitations and future work in Sec-
tion 5, followed by related work and conclusion.

2. MOTIVATION
EnforceMOP can be used (1) to enforce general properties

and (2) to enforce specific testing schedules in multithreaded
systems. Here we discuss two real world examples, one in
each category, and show how EnforceMOP is used in each.

2.1 Enforcing General Properties
As stated in JavaDoc, an ArrayList is not allowed to be

iterated and structurally modified at the same time [40].

The iterators returned by this class’s iterator and listItera-
tor methods are fail-fast: if the list is structurally modified
at any time after the iterator is created, ...the iterator will
throw a ConcurrentModificationException.

However, it is very easy for developers to violate this.
Moreover, it can be difficult to find and fix this error in mul-
tithreaded programs, because: (1) when using ArrayList,
programmers are unaware of how it will be used in other
threads; (2) the non-deterministic behavior of multithreaded
programs makes it harder to reproduce and debug the prob-
lem. For example, as shown in a bug report in JFreeChart [38],
one thread is iterating an ArrayList while another thread
is attempting to call add() on the same ArrayList concur-
rently. As a result, a ConcurrentModificationException is
non-deterministically thrown.

We can easily state the property of safe iteration in Java-
MOP [15, 16], as shown in Figure 1 (ignore the gray ar-
eas for now, which are parts of the EnforceMOP exten-
sion). Monitoring-oriented programming (MOP) is a generic

1 enforce SafeList Iteration(Collection c, Iterator i) {

2 creation event create after(Collection c) returning(Iterator i) :
3 call(Iterator Iterable+.iterator()) && target(c) {}
4

5 event modify before(Collection c) :
6 (
7 call(∗ Collection+.add∗(..)) ||
8 call(∗ Collection+.clear(..)) ||
9 call(∗ Collection+.offer∗(..)) ||

10 call(∗ Collection+.pop(..)) ||
11 call(∗ Collection+.push(..)) ||
12 call(∗ Collection+.remove∗(..)) ||
13 call(∗ Collection+.retain∗(..))
14) && target(c) {}
15

16 event next before(Iterator i) :
17 call(∗ Iterator.next(..)) && target(i) {}
18

19 event hasnextfalse after(Iterator i) returning(boolean b) :
20 call(∗ Iterator+.hasNext()) && target(i) && condition(!b) {}
21

22 fsm :
23 na [
24 create −> init
25]
26 init [
27 next −> unsafe
28 hasnextfalse −> safe
29]
30 unsafe [
31 next −> unsafe
32 hasnextfalse −> safe
33]
34 safe [
35 modify −> safe
36 hasnextfalse −> safe
37 next −> safe
38]
39

40 @nonfail {}

41

42 @deadlock { System.out.println(”Deadlock detected!”); }

43 }

Figure 1: Safe List Iteration Specification

multi-formalism monitoring framework, which takes an im-
plementation and a set of specifications as input, and checks
whether the implementation violates the specifications at
run time. JavaMOP is the Java instance of MOP, currently
using AspectJ [33] for event specification and instrumenta-
tion. As shown in Figure 1, a JavaMOP specification con-
sists of four parts. The first is the specification header, with
modifiers and parameters. Each parameters instance yields
a monitor instance. Here, the Collection and Iterator pa-
rameters indicate that a different monitor will be generated
for each combination of instances of these two parameters.
Monitors corresponding to different parameter instances will
not interfere with each other. More details can be found in
[15, 16]. The second part describes all the relevant events,
which serve as an abstraction of the running program. Those
events drive the monitor from one state to another state.

The third part is the actual property, starting with the
logic plugin in which it is stated. In Figure 1 we use the
finite state machine (FSM) plugin to state the property de-
picted in Figure 2. A monitor begins with the Init state
after an iterator is created for an ArrayList instance. Now
if next() is called on the iterator then the monitor enters
the Unsafe state. Any transitions not defined in the FSM
will cause the monitor to enter a default fail state, indicat-
ing ArrayList was modified while an iteration is in progress.
Method hasNext() returns false when the iterator has fin-
ished its job (we assume hasNext() is always called before

Figure 2: Safe List Iteration FSM

next(), which is common practice), generating event has-

NextFalse that makes the monitor enter its Safe state, indi-
cating that modifications to the ArrayList are now allowed.

EnforceMOP has been purposely designed to require min-
imal learning effort from existing JavaMOP users. It should
take less than one minute to change an existing JavaMOP
specification into an EnforceMOP specification that enforces
rather than monitors the former in multi-threaded systems.
First, one needs to use the new enforce modifier (grayed
in Figure 1). Second, one has to specify the desired state
or group of states which the monitor should not be allowed
to leave. Third, one may optionally use the new @deadlock

handler to provide code to be executed in case of deadlock.
We discuss the latter two in more detail below.

EnforceMOP enforces monitors to remain in certain states
by controlling thread schedules. JavaMOP already allows
users to associate code to monitor states, to be executed
when the monitor reaches those states. Using the same no-
tation, EnforceMOP enforces the monitor to never leave the
specified states. Each logic plugin provides and documents
its own monitor state names. The FSM plugin allows users
to define and name groups of states, and provides a prede-
fined group of states named nonfail including all the states
except fail. In our example, we state that we want En-
forceMOP to never allow the monitors to leave their nonfail
group of states. If a monitor attempts to execute a transition
not shown in Figure 2, for example execute event modify in
state unsafe, the thread scheduling code generated by En-
forceMOP will block the unsafe thread and thus guarantee
safe iteration behaviors. For example, when one thread is
iterating over the list so the monitor is in the unsafe state,
any other thread attempting to modify the same list will get
blocked until the end of the iteration is reached; then they
are unblocked and allowed to perform their modifications.

Since EnforceMOP blocks threads during execution, it
may directly or indirectly cause program deadlock. For ex-
ample, when the specified property is impossible to enforce
(that is, any thread schedule yields an execution that vio-
lates the property), all threads will eventually block, result-
ing in a deadlock. The @deadlock handler tells the monitor
what to do when a deadlock occurs. Here we chose to output
an error message when a deadlock happens, but in general
one can execute any code (shutdown the system, restart a
certain thread, etc).

2.2 Enforcing Specific Testing Schedules
When writing a unit test for a multithreaded program, it

is vital to have the ability to specify and enforce a desired

1 @Test
2 public void testPutWithTake() throws InterruptedException {
3 final SynchronousQueue q = new SynchronousQueue();
4 Thread t = new Thread(new CheckedRunnable() {
5 public void realRun() throws InterruptedException {
6 int added = 0;
7 try {
8 while (true) {
9 q.put(added);

10 ++added;
11 }
12 } catch (InterruptedException success) {
13 assertEquals(”PutWithTake”, 1, added);
14 }
15 }}, ”putThread”);
16 t.start();

17 Thread.sleep(SHORT DELAY MS);

18 assertEquals(”PutWithTake”,0, q.take());

19 Thread.sleep(SHORT DELAY MS);

20 t.interrupt();
21 t.join();
22 }

Figure 3: Original SynchronousQueue Test in TCK

thread schedule when running that test. Consider the real-
life multithreaded test in Figure 3, borrowed from the TCK
unit tests of SynchronousQueue in java.util.concurrent.
SynchronousQueue is a special kind of queue where the thread
executing put blocks when the queue is full and the thread
executing take blocks when the queue is empty. Thread
putThread is calling put inside a loop to fill the queue. When
the queue is full, putThread blocks. The desired thread
schedule is: the main thread first waits for putThread to
block, then takes one element and checks it (line 18), then
waits for putThread to block again, and then interrupts it.
This schedule is achieved in the TCK unit test using sleep

statements, which as discussed in [30] and in Section 4.2 are
non-modular, unreliable and slow.

EnforceMOP is an ideal vehicle to enforce specific testing
schedules for multithreaded unit tests. The idea is to sepa-

rate the functionality of the unit test from the desired sched-
ule, and to implement the former as an unrestricted program
(e.g., by removing the grayed sleep statements in Figure 3)
and to enforce the latter with EnforceMOP. Figure 4 shows
the EnforceMOP specification of the schedule meant in Fig-
ure 3. The event beforeput is generated right before calling
method put, and events beforeinterrupt and beforetake

right before calling methods interrupt and take, respec-
tively. EnforceMOP defines a new pointcut, threadBlocked,
telling the thread that is executing the event to wait until the
specified thread is blocked. In this example, when the main
thread is about to call the method take or interrupt, it
waits until putThread gets blocked. We used the Extended
Regular Expression (ERE) plugin (+ means one or more
repetitions) to specify the actual schedule (line 19). Thus,
the main thread blocks before it calls the method take until
event beforeput occurs at least once and putThread blocks,
then it unblocks and checks the assertion, and then it blocks
again before it calls the interrupt until beforeput occurs
and putThread blocks. The desired schedule is thus specified
modularly, reliably and, as seen in Section 4.2, efficiently.

As discussed later in this paper, it is not easy to use exist-
ing multithreaded testing frameworks to specify this partic-
ular schedule, because it involves a loop. EnforceMOP can
support repeating events in a thread schedule using the bare
capabilities of the its logic plugins, e.g., the ERE +.

1 enforce SynchronousQueueTest testPutWithTake() {

2

3 String putThread = ””;
4

5 event beforeinterrupt before() :

6 call(∗ Thread+.interrupt()) && threadBlocked(putThread){}

7

8 event beforetake before() :

9 call(∗ SynchronousQueue+.take()) && threadBlocked(putThread){}

10

11 event beforeput before() :
12 call(∗ SynchronousQueue+.put(..)) {
13 if (putThread.equals(””)) {
14 putThread = Thread.currentThread().getName();
15 }
16 }
17

18

19 ere : beforeput+ beforetake beforeput+ beforeinterrupt
20

21 @nonfail {}

22

23 @deadlock {System.out.println(”Deadlock detected!”);}

24 }

Figure 4: EnforceMOP Schedule for Test in Figure 3

EnforceMOP has been implemented independent of speci-
fication formalisms to support enforcing arbitrarily complex
properties. Those properties can be application-independent
(such as the safe list iteration property above) or application-
specific (such as the specific schedule in the multithreaded
unit test above). Different property specification formalisms
have different expressiveness, and the flexibility to use any
of them helps users specify a wide variety of properties pre-
cisely and elegantly. For example, we show that FSM can-
not express some useful properties which are expressible
with other formalisms. Additionally, EnforceMOP supports
parametric specifications, so different (enforcing) monitor
instances are created for different parameter instances.

EnforceMOP can be thought of as a semantic-based syn-
chronization approach, complementary to the traditional syn-
tax -based synchronization approach: the semantics is em-
bodied in the formal specification for each property. En-
forceMOP allows developers to declaratively and modularly
state the actual properties they want to enforce in their pro-
grams, and thus by avoiding over-synchronization it has the
potential to be more efficient than traditional synchroniza-
tion mechanisms, as empirically shown later in this paper.

3. APPROACH AND IMPLEMENTATION
Here we give an overview of EnforceMOP, with particular

emphasis on how it smoothly integrates with JavaMOP. The
key challenge of this integration was to design the enforce-
ment mechanisms in a formalism-independent way. Figure 5
recalls the overall architecture of JavaMOP. It consists of a
Java-specific client and language-independent logic plugins.
The logic plugin manager makes available to the client var-
ious logic plugins (discussed shortly), by taking as input a
formula written in a specific logic and outputting language-
independent monitoring pseudocode. This pseudocode is
then used to generate Java and AspectJ code, which is fi-
nally woven into the original program to monitor.

3.1 Logic Plugins and Enforcement Categories
Each EnforceMOP specification requires a property over

the specified events, formalized using one of the available
logic plugins. Some formalisms are more convenient or more

Figure 5: JavaMOP Overall Architecture

efficient than others in some situations. EnforceMOP cur-
rently supports for enforcement all the logic formalisms sup-
ported by JavaMOP for monitoring. We briefly recall them:

Finite State Machine (FSM): A finite state machine con-
sisting of a set of states and a set of state transitions.
Each transition is triggered by an event.

Extended Regular Expression (ERE): A regular expres-
sion extended with complement; each letter is an event.

Linear Temporal Logic (LTL): A future time linear tem-
poral logic formula describing good or bad prefixes.

Past Time Linear Temporal Logic (PTLTL): A linear
temporal logic formula with temporal operators refer-
ring to the past states of the execution trace.

Context Free Grammar (CFG): A context free gram-
mar defined in BNF, where each terminal is an event.

String Rewriting System (SRS): Turing-complete string
rewriting formalism, where each alphabet is an event.

Once a specific logic formalism is chosen, the next step is
to choose in which way the property is enforced. For exam-
ple, one can specify the correct behaviors of the system, and
enforce the monitor to always obey the specification; alter-
natively, one can specify the adverse behaviors of a system,
and enforce the monitor to never satisfy the specification.
To accommodate all the existing logic plugins, EnforceMOP
provides a set of pre-defined categories (a category can be
viewed as a set of monitor states) to be enforced. As shown
in Table 1, different logic formalisms have different corre-
sponding categories. We describe each pre-defined category:

fail : When the monitor encounters an event not accepted
in the current state (in FSM), or the current trace does
not match any prefix of the given pattern (in ERE and
CFG). In SRS, fail can be defined by the user.

nonfail : The opposite of fail, when the incoming event is
accepted by the current state, or the current trace
matches one prefix of the given pattern.

Table 1: Predefined Categories for each Logic Plugin

Logic Support Categories
FSM fail/nonfail
ERE fail/nonfail/match/nonmatch

LTL violation

PTLTL violation/validation
CFG fail/nonfail/match/nonmatch

SRS fail/nonfail/succeed

succeed : In SRS, succeed is defined by the user to trigger
when certain patterns are matched.

match: Corresponds to a situation wherein the trace matches
the entire specified pattern.

nonmatch: Corresponds to a situation wherein the trace
does not match the entire specified pattern.

violation : Occurs when the trace is not a prefix of any trace
that satisfies the given formula in LTL and PTLTL.

validation : Corresponds to a situation wherein the trace
satisfies the given formula in PTLTL.

Some plugins allow users to define their own categories,
which can then be enforced using EnforceMOP. For example,
FSM allows to define an alias of a group of states. Enforce-
MOP can then enforce the monitor to stay in one of those.

3.2 The Property Enforcing Algorithm
The key challenge in the design and development of En-

forceMOP was to engineer its enforcement mechanism to
work in a logic-formalism-independent way, to allow its users
to choose any of the specification formalisms above for their
properties and to enforce any of their categories. The prob-
lem is that different logic formalisms have different underly-
ing representations of their monitors; for example, FSM uses
lists of arrays to represent states and transitions, while CFG
uses stacks to represent push down automata. However, all
monitors share a common interface: take any given event
and trigger a corresponding (logic-specific) transition.

The key idea of our monitor-independent enforcing algo-
rithm is quite simple: use the common interface with a clone

of the original monitor to decide whether to allow the current
event to be executed on the original monitor, or to block the
current thread. The algorithm is presented in Figure 6. The
new event is sent to the cloned monitor, to check using its
logic-specific semantics, which is irrelevant to EnforceMOP,
whether the property we want to enforce would be violated
if we let the event go through. If yes, then we block the
current thread. If not, then it is safe for the original mon-
itor to execute this event, so we let the event go through.
We invoke the blocked thread and repeat the process above
whenever a new event is generated in any other thread. Since
a monitor is shared between different threads, its status may
be changed by events executed in other threads. Whenever
we find out that executing the pending event on the cloned
monitor will not violate the property we want to enforce, we
will unblock the thread and resume its execution.

3.3 Deadlock Detection
When enforcing a property, it could be possible that all the

threads get blocked by EnforceMOP, so the program dead-
locks. This happens when the program reaches a state in
which any event to be executed by any thread would violate
the property. Since property violations can mean anything
depending upon the application and the property, our ap-
proach is to provide the mechanism and let the user decide

1 // Inputs
2 Set<Category> violationCategories;
3 Event event;
4 Monitor origMonitor;
5

6 void enforceProperty() {
7 do {
8 clonedMonitor = origMonitor.clone();
9 clonedMonitor.execute(event);

10 if (clonedMonitor.status ∈ violationCategories) {
11 clonedMonitor = null; // for garbage collection
12 wait;
13 }
14 else {
15 clonedMonitor = null; // for garbage collection
16 break;
17 }
18 } while (true);
19 origMonitor.execute(event);
20 notify all waiting monitors;
21 }

Figure 6: Algorithm for Enforcing Properties

how to use it, that is, how to proceed at deadlock. Specif-
ically, EnforceMOP provides an on-the-fly deadlock detec-
tion mechanism which works as follows. Every newly started
thread is recorded in a global map. A separate deadlock de-
tection thread checks this map periodically. When all the
threads in the map are blocked, a deadlock occurred. The
@deadlock handler serves like any other JavaMOP handlers,
so users can take arbitrary actions when a deadlock happens;
for example, restart the system or print error messages.

3.4 Implementation
We implemented EnforceMOP in Java as an extension

of JavaMOP. JavaMOP takes a property file as input and
generates an AspectJ file that contains monitor, recovery
and instrumentation code, which is then compiled and wo-
ven into the original program using any AspectJ compiler.
We added enforce as a new keyword modifier to JavaMOP
properties, in a way that any existing JavaMOP property
can be turned into an EnforceMOP by only adding the en-

force modifier. To generate code to enforce a property, we
extended the code generator in JavaMOP with a new class,
EnforceMonitor, which is responsible for generating all the
code to enforce a property when the enforce modifier is used.

As already noted in previous work on specifying thread
schedules [30,43], it is crucial to have the ability to trigger an
event when a specific thread gets blocked. For that reason,
we added a new pointcut to EnforceMOP, threadBlocked.
It takes a thread name as argument and triggers an event
in the monitor only when that specific thread is blocked.
We implemented this by using the threadStart pointcut of
JavaMOP to add any thread to a global thread map when
it starts. Then threadBlocked is easily implemented by
polling the state of that specific thread in the map.

4. APPLICATIONS AND EVALUATION
We envision EnforceMOP to be used: (1) as a framework

to enforce general complex safety properties at runtime; and
(2) as a testing framework to enforce specific schedules when
unit testing multithreaded applications. We next evaluate
the effectiveness of EnforceMOP in these two aspects. We
first present a number of applications using EnforceMOP to
enforce general properties, then we use it to enforce specific
testing thread schedules and compare it with several other
multithreaded testing frameworks.

4.1 Enforcing General Properties

4.1.1 Safe Iteration

As shown in Figures 1 and 2, EnforceMOP can be used to
guarantee safe iteration of a collection in multithreaded pro-
grams. Motivated by a real bug in JFreeChart [38], we used
EnforceMOP to specify and enforce correct behaviors of it-
erating a collection in multithreaded programs. In the test
case attached with the bug report, two threads are created
and one of them adds a new element to the collection while
the other iterates through the collection. These two actions
are repeated many times, so in the original program the
ConcurrentModificationException is thrown almost every
time when the test case executes. After we applied the prop-
erty in Figure 1 using EnforceMOP, the exception never gets
thrown after 100 times of execution of the same test case.

4.1.2 Mutual Exclusion

Another bug in JFreeChart [39] is caused by concurrent
execution between any modification method and hashCode

on the same ArrayList. The root cause of this bug is sim-
ilar to the previous one: JDK’s hashCode method iterates
through all the elements of the list in order to compute the
hash value of the whole list. So a ConcurrentModifica-

tionException will be thrown if hashCode and any other
modification method are called at the same time. How-
ever, since the iteration of the list is encapsulated in hash-

Code, what users actually want is the mutual exclusion only

between the execution of hashCode and the execution of
other modification methods. This cannot be easily done
using Java synchronization mechanisms. Suppose we only
want the execution of hashCode and any other modifica-
tion method to be mutually exclusive, but any other pairs
of methods to be allowed to execute concurrently. If we
blindly use the synchronized keyword on all these then all
the methods become mutually exclusive of each other, thus
over-synchronizing the program and harming performance
(for example, two threads could safely execute hashCode

concurrently).
One can try to use a ReadWriteLock from j.u.c instead,

for example to use ReadLock in hashCode and WriteLock

in all modification methods. However, concurrent execution
between any two modification methods would still be pro-
hibited, thus reducing the potential for parallelism1 . Mutual
exclusion is a common property desired in multithreaded
programs, but without careful consideration it is very easy
to over-synchronize and thus hurt the performance.

Figure 7 shows how to enforce mutual exclusion for this
specific case using EnforceMOP with the CFG plugin. The
property is parametric in the list, so operations on differ-
ent list instances will not interfere with each other. Since
we want to enforce mutual exclusion between method calls,
we use both before and after pointcuts to describe events.
There are four types of events in this property: beforehash-
code and afterhashcode indicate the start and end of the
execution of hashCode, and beforemodify and aftermodify

represent the start and end of all the modification methods
on ArrayList. The property is defined using a CFG, which
allows us to pair the start and the end events of the exe-

1The concurrent use of ArrayList is known to be problem-
atic; one should instead use concurrent data-structures from
j.u.c. We use it here only to show how to enforce mutual
exclusion between groups of methods with EnforceMOP.

1 enforce SafeListCFG(List l) {

2

3 event beforehashcode before(List l) :
4 call(∗ Object+.hashCode(..)) && target(l) {}
5

6 event afterhashcode after(List l) :
7 call(∗ Object+.hashCode(..)) && target(l) {}
8

9 event beforemodify before(List l) :
10 (
11 call(∗ List+.add∗(..)) ||
12 call(∗ List+.remove(..)) ||
13 call(∗ List+.retain∗(..)) ||
14 call(∗ List+.clear(..)) ||
15 call(∗ List+.set∗(..))
16) && target(l) {}
17

18 event aftermodify after(List l) :
19 (
20 call(∗ List+.add∗(..)) ||
21 call(∗ List+.remove(..)) ||
22 call(∗ List+.retain∗(..)) ||
23 call(∗ List+.clear(..)) ||
24 call(∗ List+.set∗(..))
25) && target(l) {}
26

27 cfg :
28 S −> A S | B S | epsilon,
29 A −> A beforehashcode A afterhashcode | epsilon,
30 B −> B beforemodify B aftermodify | epsilon
31

32 @nonfail {}

33

34 @deadlock { System.out.println(”Deadlock detected!”); }

35 }

Figure 7: Mutual Exclusion between HashCode and
List Modification Methods using CFG

cution of hashCode or of modification methods. While the
execution of hashCode is in progress (event afterhashcode
has not been encountered), the execution of any modification
methods is not allowed (event beforemodify is not allowed).

Although the SRS plugin is the most expressive formalism
available with EnforceMOP (it is Turing-complete), we often
found it in our experiments that SRS is quite convenient to
specify even simpler properties. For example, we can replace
the CFG in Figure 7 with the following equivalent SRS:

srs :

beforemodify aftermodify -> #epsilon .

beforehashcode afterhashcode -> #epsilon .

beforemodify afterhashcode -> #fail .

beforehashcode aftermodify -> #fail .

beforemodify beforehashcode -> #fail .

beforehashcode beforemodify -> #fail .

The SRS rules apply on the trace as it is being generated
to keep it in a canonical form. In our case, consecutive event
pairs beforehashcode and afterhashcode, and beforemodify

and aftermodify, will dissolve (#epsilon is the empty string),
and the other four event pairs will force the monitor to fail.
In Figure 7 we enforce the monitor to never enter its fail

state (line 32), so whenever a thread wants to call a modifi-
cation method while a hashCode method call is in progress,
EnforceMOP will block that thread. Note that we only make
hashCode and the group of the modification methods mutu-
ally exclusive, but no more than that. For example, the
sequences beforehashcode beforehashcode afterhashcode

afterhashcode and beforemodify beforemodify aftermodify

aftermodify are both accepted. This allows maximum par-

1 enforce SafeAppendSRS(Category c) {

2

3 event beforeappend before(Category c) :
4 call(∗ Category+.append(..)) && target(c) {}
5

6 event afterappend after(Category c) :
7 call(∗ Category+.append(..)) && target(c) {}
8

9 event beforemodify before(Category c) :
10 (
11 call(∗ Category+.addAppender(..)) ||
12 call(∗ Category+.removeAppender(..)) ||
13 call(∗ Category+.removeAllAppenders(..))
14) && target(c) {}
15

16 event aftermodify after(Category c) :
17 (
18 call(∗ Category+.addAppender(..)) ||
19 call(∗ Category+.removeAppender(..)) ||
20 call(∗ Category+.removeAllAppenders(..))
21) && target(c) {}
22

23 srs :
24 beforemodify aftermodify −> #epsilon .
25 beforeappend afterappend −> #epsilon .
26 beforemodify afterappend −> #fail .
27 beforeappend aftermodify −> #fail .
28 beforemodify beforeappend −> #fail .
29 beforeappend beforemodify −> #fail .
30 beforemodify beforemodify −> #fail .
31

32 @nonfail {}

33

34 @deadlock { System.out.println(”Deadlock detected!”); }

35 }

Figure 8: Mutual Exclusion Property between
Method Pairs in Log4J using SRS

allelism in the program. Note that this property cannot be
expressed with FSM because the numbers of method start
and end events should match, and FSM does not have the
expressiveness to count the number of occurrences of events.
But it can be elegantly specified with CFG or SRS, showing
the advantage of supporting multiple logic formalisms.

4.1.3 Read Write Lock

Here we address a performance problem in Log4J [7] caused
by over-synchronization. The class Category is supposed to
be thread safe, so the synchronized keyword is used in many
of its methods (append, addAppender and removeAppender).
Each Category object has a list of appenders; the method
append calls methods on all the elements in the list but it
does not modify the list itself. The synchronized keyword
guarantees the mutual exclusion between any methods, but
it is not needed when two threads are both executing append.
In the bug report [7] one developer mentioned “...observing

plenty of threads waiting on this synchronization...”.
We completely removed the usage of synchronized and

used EnforceMOP instead to specify precisely the desired
synchronization between those method pairs. The property
is written using SRS and is shown in Figure 8. We first
group the methods into two sets: methods that will not mod-
ify the list (append) and methods that will modify the list
(addAppender, removeAppender and removeAllAppenders).
Then we define events to mark the start and end of those
methods. The property is similar to the previous one, except
one more rule: beforemodify beforemodify -> #fail. This
prevents two modification methods (e.g., addAppender and
removeAppender) from happening in parallel, to avoid incon-
sistency. We disallow the parallel execution of any modifica-

Table 2: Test execution time (ms) for different syn-
chronization mechanisms

No Sync Original (Over-Sync) EnforceMOP ReadWriteLock

44.4 500.8 49.7 221.3

tion method and append, but we do allow parallel execution
between append methods. This increases parallelism and
matches the intention of the developer.

We wrote a test case to reproduce the performance prob-
lem in [7] caused by over-synchronization. We created 50
threads, half of them calling method append and another
half calling methods addAppender and removeAppender in
parallel. We collected running time with the following con-
figurations: the original over-synchronized code with the use
of synchronized; EnforceMOP enforcing proper synchro-
nization as shown in Figure 8; a ReadWriteLock implemen-
tation proposed by the developer in the bug report and the
original code with all synchronized keywords completely re-
moved as a base line to show the performance overhead. For
each configuration we run the test case 10 times and get the
average running time. Results are shown in Table 2.

From the results we can see that EnforceMOP performs
much better than the original over-synchronized version,
since it increases the maximal parallelism of the applica-
tion. EnforceMOP also outperforms ReadWriteLock. Since
the parallelism allowed by EnforceMOP is the same as with
ReadWriteLock , we think the reason for our better perfor-
mance is due to the fact that ReadWriteLock in Java involves
calling a lot of library code and maintaining the lock status
(since it’s reentrant), while JavaMOP is highly optimized.

4.1.4 Dining Philosophers

Five philosophers sit next to each other around a round
table. There are five forks placed between each pair of adja-
cent philosophers. Each philosopher needs to pick up the two
forks around him to eat and they are allowed to eat at the
same time. Each fork can only be used by one philosopher
at any time. A deadlock happens when each philosopher
picks up a different fork at the same time, and all of them
are attempting to pick the other to start eating.

To implement the dining philosophers problem, locks are
typically used to enforce the property that one fork can only
be taken by one philosopher at any time. Instead, we first
use EnforceMOP to enforce this property, so no synchroniza-
tion code is needed in the program at all. Then we enforce
the property stating that at most four philosophers can eat
at the same time, which guarantee deadlock freedom.

Synchronization Free Implementation: The sketch
of our code is shown in Figure 9. Each philosopher is rep-
resented by a Runnable object and runs concurrently. A
philosopher stars eating after he grabs his left fork first and
then his right fork next. Then he also releases his left fork
first and his right fork second. There is no synchronization
or lock used in the source code, so the correctness property
of dining philosophers—no folk can be taken by two philoso-
phers at the same time—is not guaranteed.

We use EnforceMOP to enforce the property of exclusive
use of forks shown in Figure 10. This property is parametrized
by a Fork instance. Event acquire corresponds to the start
of method call acquire on a Fork instance and event release
to the end of method call release. This property guaran-
tees that when a fork is being used, it cannot be used again

1 public class Phil implements Runnable {
2

3 public Fork leftFork, rightFork;
4

5 public void getLeftFork() { leftFork.acquire(); }
6 public void releaseLeftFork() { leftFork.release(); }
7 ...
8

9 public void run() {
10 getLeftFork();
11 getRightFork();
12 eat();
13 releaseLeftFork();
14 releaseRightFork();
15 }
16 }

Figure 9: Source code of dining philosophers with-
out synchronization

until released. Any other thread attempting to call acquire
on a Fork instance at state busy will be blocked. Thus En-
forceMOP yields a correct and elegant implementation of
the dining philosophers problem without any explicit syn-
chronization mechanism.

Figure 10: Exclusive use of Forks Property in FSM

Deadlock Free Property: The above property only
guarantees the correct usage of forks. Deadlock is possi-
ble when each philosopher takes his left fork at the same
time. We use EnforceMOP to enforce a property to avoid
deadlock in our implementation, as shown in Figure 11. The
idea behind it is that we only allow at most four philosophers
to attempt to eat at the same time, so at least one philoso-
pher would be able to grab both forks and eat. Then he
will release both forks and other philosophers will be able
to eat. Event useLeftFork marks the start of method call
getLeftFork, and event releaseLeftFork marks the end
of method call releaseRightFork. Each state serves as a
counter of how many philosophers are attempting to eat.
At state Four any philosopher attempting to grab forks will
be blocked until a previous philosopher releases all his forks.
Unlike the previous property in Figure 10, this deadlock
avoidance property is not parametric. It serves as a central
coordinator to coordinate philosophers. With this property
and the previous property in Figure 10, we are able to en-
force the correct behavior of dining philosophers and avoid
deadlocks at the same time, without using any synchroniza-
tion in the source code.

4.1.5 Fair Thread Scheduler

In multithreaded programs fairness is a property of a
thread scheduler which ensures every thread gets its turn
to execute eventually. In practice the lack of fairness may
cause thread starvation bugs [8,29].

Here we show how EnforceMOP can be used to ensure a
simple thread scheduling fairness property. Consider a pro-
gram executing two threads, where each thread executes a

Figure 11: Deadlock Avoidance Property in FSM

1 enforce FairScheduler(Task t) {

2

3 event workone before(Task t) :
4 call(∗ Task+.doWork(..)) && threadName(”t1”) && target(t) {}
5

6 event worktwo before(Task t) :
7 call(∗ Task+.doWork(..)) && threadName(”t2”) && target(t) {}
8

9 event afterwork after(Task t) :
10 call(∗ Task+.doWork(..)) && target(t) {}
11

12 fsm :
13 Init [workone −> ExecOne
14 worktwo −> ExecTwo]
15 ExecOne [afterwork −> OneDone]
16 ExecTwo [afterwork −> TwoDone]
17 OneDone [worktwo −> Finish]
18 TwoDone [workone −> Finish]
19 Finish [afterwork −> Init]
20

21 @nonfail {}

22

23 @deadlock { System.out.println(”Deadlock detected!”); }

24 }

Figure 12: Fair Scheduler Property

loop with the same number of iterations. In each loop iter-
ation a method doWork is called. Inside the doWork method
each thread sleeps a random interval of time (this is meant
to simulate real scenarios where workload is unknown). If
we run the program without controlling the schedules, it is
possible that one thread progresses much faster than the
other. At extreme, one thread may not even get scheduled
to start running before another terminates. We can use En-
forceMOP to specify and enforce a simple thread scheduling
fairness property that is less restrictive than deterministic
alternate execution, but still avoids starvation: as soon as
one thread finishes an iteration of its loop, it gets blocked
waiting for the other thread to also finish an iteration of its
loop; once both threads complete their loop iteration, one of
the threads will be (non-deterministically) allowed to start
its next loop iteration, and so on. We can specify this prop-

Figure 13: Fair Scheduler FSM

erty in EnforceMOP using an FSM, as shown in Figures 12
and 13. When one thread finishes executing one iteration
of doWork (in state OneDone or TwoDone), it waits the other
thread to finish its execution of doWork. After both threads
finish, the monitor switches to its Init state.

Although this example is purposely simplistic, it shows
that EnforceMOP can be used to specify and enforce fair
thread scheduling policies. For instance, in a website where
each user is served by a thread, it is important to guarantee
no user would wait for a long time. With EnforceMOP it is
possible to enforce such properties in a modular way, without
introducing any adhoc synchronization code in the system.

4.2 Enforcing Specific Testing Schedules
Multithreaded programs exhibit different behaviors under

different thread schedules. Thus it is vital to have the ability
to control thread schedules when performing unit testing.
EnforceMOP can also be used as a testing framework to
control thread schedules for each unit test. In that case, each
property file is associated with some unit test, and serves
as a thread schedule specification. In this section we first
present our experience with using EnforceMOP as a testing
framework to specify schedules in multithreaded unit tests.
Then we compare EnforceMOP with several other testing
frameworks for multithreaded programs.

4.2.1 Experience

To evaluate the effectiveness of using EnforceMOP as a
testing framework, we took existing multithreaded unit tests
and translated them to use EnforceMOP. Most of those tests
used sleep or other adhoc synchronization mechanisms to
control thread schedules. We first removed all the sched-
ule control statements in those tests, and then wrote one
property file for each testing schedule. We took the sub-
ject programs used in previous work [30,43], and in total we
translated 185 tests, as shown in Table 3.

When using EnforceMOP to specify thread schedules for
a given unit test, the event sequences are already known and
fixed. So in most cases there’s no need to use complex logic
formalisms; it is sufficient to only simply state the events to
be executed in order. Indeed, we have used ERE in most
of the cases, since the event sequences in a schedule is triv-
ially an ERE expression. In some other cases, we have used
PTLTL to specify schedules. PTLTL can be used to check
whether a condition about past holds when a new event oc-
curs, so it is suitable for enforcing the order of events.

Although most unit tests are quite simple, there are still
cases where one event may occur many times. EnforceMOP
is able to deal with repeating events. For example, mak-
ing use of the * and + ERE constructs, properties can be
expressed where an event can occur multiple times. More
details on how EnforceMOP handles repeating events are
mentioned in the comparison with IMUnit in Section 4.2.2.

4.2.2 Comparison with IMUnit

IMUnit [30] is a framework used to specify and control
thread schedules in multithreaded unit tests. An event in
IMUnit is fired explicitly by inserting a method call in the
test code. A schedule in IMUnit is given as an annotation
within a unit test, and it consists of several orderings be-
tween events. For example, a -> b specifies event b should
only happen when event a has already happened. We com-
pare EnforceMOP with IMUnit in the following aspects.

Expressiveness: IMUnit is also built upon JavaMOP,
but its underlying schedule logic is a fragment of PTLTL
which does not support repeating events. Consider the same
example in Figure 3. With IMUnit we can insert events
around the put method call, but since the method call is
made inside a loop we cannot specify in the test schedule
the exact number of occurrences of an event. As already
shown in Figure 4 with the help of operator + in ERE, En-
forceMOP is able to express such schedules. The paper [30]
mentioned that there were a few more tests where IMUnit
was not able to express the schedules because of repeating
events. We have successfully used EnforceMOP to specify
and enforce the desired test schedules for all those cases. In
fact, in our previous examples for specifying general proper-
ties, many events are repeating events and can happen any-
where in the program. Unlike IMUnit, EnforceMOP does
not use the exact code location to specify an event; instead,
it uses pointcuts to match for events. This way, Enforce-
MOP supports repeating events as long as the chosen logic
plugin supports them.

Performance: The performance of IMUnit was evalu-
ated by comparing the time to run all tests with the time to
run all the original sleep base tests. Since most of the sleep
bases tests are over estimating the time needed for sleep op-
erations, IMUnit tests were able to provide over 3x speed up
over the original tests. We repeated the same set of experi-
ments here. We used EnforceMOP to translate all the sleep
based tests IMUnit used in experiments and calculated the
speedup of using EnforceMOP to enforce schedules versus
the original tests. The results are shown in Table 4. We are
able to achieve same or better speed up with EnforceMOP.

4.2.3 Comparison with MultithreadedTC

MultithreadedTC [43] is another unit testing framework,
used to specify schedules in multithreaded tests using ticks.
In multithreadedTC each test has to be written as a class,
and each method in the class contains the code to be exe-
cuted by a thread in a test. The test schedule is specified
in terms of number of ticks with respect to a global logical
clock. The method waitForTick takes a number as an ar-
gument, and it will block the current thread until the global
clock reaches that number. The global clock will advance
when all the threads are blocked.

Although MultithreadedTC is successfully applied on a
number of tests [43], it requires users to change the original
test a lot. EnforceMOP does not require users to change the
original code at all, the schedule specification file (property)
is in a separate file, so it is possible to have multiple sched-
ules applied on a same test. Moreover, the schedule in Mul-
tithreadedTC is implicitly embedded using ticks. It may be
non-trivial to infer a schedule from a MultithreadedTC test
for a complicated test case. In terms of functionality, block-
ing events in MultithreadedTC are also implicit. Threads
blocked by MultithreadedTC will be unblocked when all the
threads are blocked. This makes it very hard to specify the
scenario where one thread waits for another thread to get
blocked using MultithreadedTC, while it is easy to do in
EnforceMOP (and also in IMUnit).

4.2.4 Comparison with ConAn

ConAn [35] is a framework used to generate test driver
code and schedules based on user provided scripts. Similar
to MultithreadedTC, ConAn also employs ticks to specify

Table 3: Subject Programs Statistics

Subject Tests

Collections [2] 11
Hadoop [4] 1
JBoss-Cache [32] 20
Lucene [5] 2
Mina [6] 1
Pool [3] 2
Sysunit [17] 10
JSR-166 TCK [31] 138
∑

185

Table 4: Test execution time (s)
Subject Original EnforceMOP Speedup

Collections 2.22 0.26 8.54
Hadoop 1.39 0.38 3.66
JBoss-Cache 73.07 38.89 1.88
Lucene 10.78 2.87 3.76
Mina 0.24 0.14 1.71
Pool 1.48 0.076 19.47
Sysunit 14.47 0.30 48.23
JSR-166 TCK 16.67 6.48 2.57

GeometricMean 5.56

logical time in thread schedules. A test in ConAn consists
of a set of #tick blocks. Inside each #tick block there are
a number of #thread blocks. Each #thread block contains
the code that will be executed by a thread, and ConAn will
generate tests based on that.

Since ConAn is also based on ticks, it also suffers from un-
derstandability when the schedule to be specified becomes
complicated. Moreover, ConAn does not support blocking
events. Ticks in ConAn advance automatically after a fixed
amount of time, making it unable to express certain sched-
ules EnforceMOP and other frameworks are able to express.

5. DISCUSSION
EnforceMOP is implemented by executing the incoming

event one step ahead using a cloned monitor. Depending
upon the chosen logic formalism to express properties, it
may be possible that “one step lookahead” is not enough
and could cause a deadlock, even though the property is
enforceable. Consider the ERE property get* put. When
event put happens in one thread, EnforceMOP has no way
to know whether event get will happen in the future or not
(because code reachability is an undecidable problem). Ex-
ecuting event put as soon as it occurs will not violate the
property, but if event get happens afterward then the mon-
itor will deadlock because event sequence put get violates
the property. This deadlock can be avoided if EnforceMOP
blocked the thread executing event put until all the occur-
rences of event get have happened. To achieve this, an
exploration capability of EnforceMOP would be desirable.
Whenever an event arrives and either blocking the current
thread or not will not violate any property, record the cur-
rent program location as a choice point and make a choice
about whether to block current thread. After the current ex-
ecution finishes, re-execute the program from the beginning
until reaching the previous choice point, and make a differ-
ent choice. This way all the possible event sequences will be
enumerated so it can be checked which event sequences will
obey all the properties without causing deadlocks.

In our experience of using EnforceMOP so far, we have
not seen many cases where exploration would be needed.
Consequently, we leave it as future work to be investigated
if we see more scenarios where exploration would be useful.

6. RELATED WORK
Most existing work on runtime verification [1,15,16,19,25,

28,34,36] have hardwired specification languages. For exam-
ple, Java-MaC [34] uses a customized language for interval
temporal logic and PaX [28] only supports LTL. Moreover,
all existing runtime verification frameworks monitor rather
than enforce properties. JavaMOP [15, 16] is a paramet-
ric runtime verification framework which supports multiple
logic formalisms. EnforceMOP is extending JavaMOP with
the ability to enforce properties in multithreaded programs.

Many approaches have been proposed to test and ver-
ify multithreaded programs, such as static/dynamic anal-
ysis [12,23,24], testing [18,22,30,35,41–43], and state space

exploration [13, 26, 37]. EnforceMOP does not aim to
find bugs; rather, it is used as a testing framework to spec-
ify schedules in multithreaded unit tests. ConAn [35] uses
a scripting language for specifying method sequences and
test schedules to generate test driver code for multithreaded
programs. MultithreadedTC [43] employed ticks to specify
thread schedules. Our earlier work IMUnit [30] proposed a
language with event annotations to specify schedules in mul-
tithreaded unit tests. EnforceMOP supports all the features
of the above frameworks, as described in Section 4.2. More-
over, with the underlying power of various logic formalisms,
EnforceMOP can enforce complex schedules precisely and
concisely.

Our approach follows the same line of research on au-
tomated enforcement of synchronization constraints [10,11,
14, 20]. Compared with previous approaches, EnforceMOP
works on a popular programming language (Java) and sup-
ports arbitrary events defined by users. Moreover, paramet-
ric events and various formalisms give EnforceMOP more
flexibility to define and enforce synchronization properties.

A data-centric synchronization approach to avoiding cer-
tain concurrency errors is proposed in [21, 45]. Their idea
is to group fields into atomic sets and automatically enforce
the atomicity when accessing those fields at runtime. En-
forceMOP follows the same idea of semantic synchroniza-
tion, but, with its various logic formalisms, EnforceMOP is
able to express more complex properties than atomicity.

7. CONCLUSION
Multithreaded programs are hard to develop and test. In

this paper we presented EnforceMOP, a novel framework
for specifying and enforcing complex properties in multi-
threaded programs. We implemented EnforceMOP on top of
JavaMOP, so it supports parametric properties and various
logic formalisms with different expressiveness. EnforceMOP
is used in two kinds of applications. First, as a mechanism
to enforce general properties which are not bound to any
program locations or thread schedules. Second, as a frame-
work to enforce specific thread schedules in unit tests and
compared with several other testing frameworks. Results
showed that EnforceMOP is able to enforce both general
properties and specific schedules effectively and efficiently.

8. ACKNOWLEDGMENT
We thank Darko Marinov for extensive discussions about

this work. This work was supported in part by the NSF
grant CCF-1218605, the NSA grant H98230-10-C-0294, the
DARPA HACMS program as SRI subcontract 19-000222
and the Rockwell Collins contract 4504813093.

9. REFERENCES

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. J.
Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to AspectJ. In
OOPSLA, 2005.

[2] Apache Software Foundation. Apache Commons
Collections. http://commons.apache.org/
collections/.

[3] Apache Software Foundation. Apache Commons Pool.
http://commons.apache.org/pool/.

[4] Apache Software Foundation. Apache Hadoop.
http://hadoop.apache.org/.

[5] Apache Software Foundation. Apache Lucene. http://
lucene.apache.org/.

[6] Apache Software Foundation. Apache MINA. http://
mina.apache.org/.

[7] Apache Software Foundation. LOG4J-50213. https://
issues.apache.org/bugzilla/show_bug.cgi?

id=50213.

[8] Apache Software Foundation. TOMCAT-25841.
https://issues.apache.org/bugzilla/show_bug.

cgi?id=25841.

[9] H. Barringer, B. Finkbeiner, Y. Gurevich, and
H. Sipma, editors. RV 05, volume 144 of ENTCS,
2005.

[10] R. Behrends and R. E. K. Stirewalt. The universe
model: an approach for improving the modularity and
reliability of concurrent programs. In FSE, 2000.

[11] A. Betin-Can and T. Bultan. Verifiable concurrent
programming using concurrency controllers. In ASE,
2004.

[12] E. Bodden and K. Havelund. Racer: Effective race
detection using AspectJ. In ISSTA, 2008.

[13] J. Burnim, T. Elmas, G. Necula, and K. Sen.
CONCURRIT: Testing concurrent programs with
programmable state-space exploration. In HotPar,
2012.

[14] R. H. Campbell and A. N. Habermann. The
specification of process synchronization by path
expressions. In OS, 1974.

[15] F. Chen and G. Roşu. Java-MOP: A monitoring
oriented programming environment for Java. In
TACAS, 2005.

[16] F. Chen and G. Rosu. Mop: an efficient and generic
runtime verification framework. In OOPSLA, 2007.

[17] Codehaus. Sysunit. http://docs.codehaus.org/
display/SYSUNIT/Home.

[18] K. Coons, S. Burckhardt, and M. Musuvathi. Gambit:
Effective unit testing for concurrency libraries. In
PPoPP, 2010.

[19] M. d’Amorim and K. Havelund. Event-based runtime
verification of Java programs. ACM SIGSOFT SEN,
30:1–7, 2005.

[20] X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno.
Invariant-based specification, synthesis, and
verification of synchronization in concurrent programs.
In ICSE, 2002.

[21] J. Dolby, C. Hammer, D. Marino, F. Tip, M. Vaziri,
and J. Vitek. A data-centric approach to
synchronization. ACM TOPLAS, 34:4:1–4:48, 2012.

[22] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for Testing Multi-Threaded
Java Programs. CCPE, 2003.

[23] C. Flanagan and S. N. Freund. FastTrack: efficient
and precise dynamic race detection. In PLDI, 2009.

[24] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a
sound and complete dynamic atomicity checker for
multithreaded programs. In PLDI, 2008.

[25] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In OOPSLA, 2005.

[26] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. Journal on STTT,
2:366–381, 2000.

[27] K. Havelund and G. Roşu, editors. RV 01, RV 02, RV

04, volume 55, 70, 113 of ENTCS, 2001, 2002, 2004.

[28] K. Havelund and G. Rosu. An overview of the runtime
verification tool Java PathExplorer. FMSD, 2004.

[29] IBM. ECLIPSE-369251. https://bugs.eclipse.org/
bugs/show_bug.cgi?id=369251.

[30] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu,
and D. Marinov. Improved multithreaded unit testing.
In FSE, 2011.

[31] Java Community Process. JSR 166: Concurrency
utilities. http://g.oswego.edu/dl/
concurrency-interest/.

[32] JBoss Community. JBoss Cache. http://www.jboss.
org/jbosscache.

[33] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP, 2001.

[34] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-MaC: a run-time assurance tool
for Java programs. ENTCS, 55:218–235, 2001.

[35] B. Long, D. Hoffman, and P. Strooper. Tool Support
for Testing Concurrent Java Components. IEEE TSE,
29:555–566, 2003.

[36] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: a
program query language. In OOPSLA, 2005.

[37] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. In PLDI, 2007.

[38] Object Refinery. JFREECHART-1051. http://
sourceforge.net/p/jfreechart/bugs/1051/.

[39] Object Refinery. JFREECHART-187. http://
sourceforge.net/p/jfreechart/bugs/187/.

[40] Oracle. JavaDoc ArrayList. http://docs.oracle.
com/javase/6/docs/api/java/util/ArrayList.html.

[41] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing
atomicity violation bugs from their hiding places. In
ASPLOS, 2009.

[42] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon:
fault localization in concurrent programs. In ICSE,
2010.

[43] W. Pugh and N. Ayewah. Unit testing concurrent
software. In ASE, 2007.

[44] O. Sokolsky and M. Viswanathan, editors. RV 03,
volume 89 of ENTCS, 2003.

[45] M. Vaziri, F. Tip, and J. Dolby. Associating
synchronization constraints with data in an
object-oriented language. In POPL, 2006.

http://commons.apache.org/collections/
http://commons.apache.org/collections/
http://commons.apache.org/pool/
http://hadoop.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://mina.apache.org/
http://mina.apache.org/
https://issues.apache.org/bugzilla/show_bug.cgi?id=50213
https://issues.apache.org/bugzilla/show_bug.cgi?id=50213
https://issues.apache.org/bugzilla/show_bug.cgi?id=50213
https://issues.apache.org/bugzilla/show_bug.cgi?id=25841
https://issues.apache.org/bugzilla/show_bug.cgi?id=25841
http://docs.codehaus.org/display/SYSUNIT/Home
http://docs.codehaus.org/display/SYSUNIT/Home
https://bugs.eclipse.org/bugs/show_bug.cgi?id=369251
https://bugs.eclipse.org/bugs/show_bug.cgi?id=369251
http://g.oswego.edu/dl/concurrency-interest/
http://g.oswego.edu/dl/concurrency-interest/
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://sourceforge.net/p/jfreechart/bugs/1051/
http://sourceforge.net/p/jfreechart/bugs/1051/
http://sourceforge.net/p/jfreechart/bugs/187/
http://sourceforge.net/p/jfreechart/bugs/187/
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html

	Introduction
	Motivation
	Enforcing General Properties
	Enforcing Specific Testing Schedules

	Approach and Implementation
	Logic Plugins and Enforcement Categories
	The Property Enforcing Algorithm
	Deadlock Detection
	Implementation

	Applications and Evaluation
	Enforcing General Properties
	Safe Iteration
	Mutual Exclusion
	Read Write Lock
	Dining Philosophers
	Fair Thread Scheduler

	Enforcing Specific Testing Schedules
	Experience
	Comparison with IMUnit
	Comparison with MultithreadedTC
	Comparison with ConAn

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	References

