
Connecting Constrained Constructor Patterns
and Matching Logic

Xiaohong Chen1, Dorel Lucanu2, and Grigore Ros,u1

1 University of Illinois at Urbana-Champaign, USA
2 Alexandru Ioan Cuza University of Ias, i, Romania
{xc3,grosu}@illinois.edu dlucanu@info.uaic.ro

Abstract. Constrained constructor patterns are pairs of a constructor
term pattern and a quantifier-free first-order logic constraint, built from
conjunction and disjunction. They are used to express state predicates
for reachability logic defined over rewrite theories. Matching logic has
been recently proposed as a unifying foundation for programming lan-
guages, specification and verification. It has been shown to capture sev-
eral logical systems and/or models that are important for programming
languages, including first-order logic with fixpoints and order-sorted al-
gebra. In this paper, we investigate the relationship between constrained
constructor patterns and matching logic. The comparison result brings
us a mutual benefit for the two approaches. Matching logic can borrow
computationally efficient proofs for some equivalences, and the language
of the constrained constructor patterns can get a more logical flavor and
more expressiveness.

1 Introduction

The subject of this paper is inspired by a comment given by José Meseguer in a
private message: “I strongly conjecture that there is a deep connection between
matching logic and the constrained constructor patterns. It would be great to
better understand the details of such a connection.”

Constrained constructor patterns are the bricks of the rewrite-theory-generic
reachability logic framework [11], by which we mean that the reachability logic
framework as considered in [11] is parametric in the underlying rewriting theory.
The order-sorted specifications (Σ,E ∪B), used as support for rewrite theories,
consist of an order-sorted signature Σ, a set of particular equations B used to
reason modulo B, and a set of equations E that can be turned into a set of rewrite

rules
−→
E convergent modulo B, assuming that the theory (Σ,E∪B) is sufficiently

complete [9]. In this paper, we work under the assumptions that ensure all the
properties mentioned below (now we implicitly assume them). The definition of
constrained constructor patterns is based on the strong relationship between the
initial (Σ,E ∪B)-algebra TΣ/E∪B and its canonical constructor (Ω,EΩ ∪BΩ)-
algebra CΩ/EΩ ,BΩ . This relationship is briefly explained as follows:

1. TΣ/E∪B is isomorphic to the canonical term-algebra CΣ/E,B , consisting of

B-equivalence classes of
−→
E -irreducible-modulo-B Σ-terms;

2. Ω ⊆ Σ is the subsignature of constructors;
3. CΣ/E,B |Ω = CΩ/EΩ ,BΩ .

A constrained constructor pattern predicate is a pair u|ϕ, where u is a construc-
tor term pattern and ϕ is a quantifier-free first-order logic (FOL) formula. The
set of constrained constructor patterns includes the constrained constructor pat-
tern predicates and is closed under conjunction and disjunction. The semantics
defined by u|ϕ is given by the subset of states Ju|ϕK ⊆ CΩ/EΩ ,BΩ matching u,
i.e., for each a ∈ Ju|ϕK there is a valuation ρ such that ϕ holds (written ρ � ϕ)
and a = uρ.

There are several additional operations over constrained constructor patterns
required to express reachability properties and to support their verification in a
computational efficient way. These include (parameterized) subsumption, over-
approximation of the complements, and parameterized intersections. The defi-
nitions of these operations exploits the cases when the matching and unification
modulo E ∪B can be efficiently solved, using, e.g., the theory of variants [4,7].

Matching Logic (ML) [10,3,2] is a variant of first-order logic (FOL) with
fixpoints that makes no distinction between functions and predicates. It uses
instead symbols and application to uniformly build patterns that can represent
static structures and logical constraints at the same time. Semantically, ML pat-
terns are interpreted as the sets of elements that match them. The functional
interpretation is obtained by adding axioms like ∃y.sx = y that forces the pat-
tern sx to be evaluated to a singleton. The conjunction and disjunction are
interpreted as the intersection, respectively union. For instance, the ML pattern
∃x:Nat . sx∧(x = 2∨x = 5), when interpreted over the natural numbers, denotes
the set {3, 6} since sx is matched by the successor of x, constants 2 and 5 are
matched by the numbers 2 and 5, respectively, and x = n is a “predicate”: it
matches either the entire carrier set when x and n are matched by the same
elements, or otherwise the empty set.

The main contribution of the paper is an insightful comparison of con-
strained constructor patterns and matching logic. Since order-sorted algebras
can be captured in matching logic [2], we were tempted to think that this com-
parison is a natural one, because a constrained constructor pattern u|ϕ can be
seen as a special ML pattern u∧ϕ. When we started to formalize this intuition,
we realized a few interesting challenges that we need to address:

– How to capture the logical reasoning modulo equations in B in ML?
– How to formalize the canonical model containing only constructor terms?
– What properties does the ML model corresponding to an OSA canonical

model have?
– Which are the most suitable ML patterns that capture constrained construc-

tor pattern operations?
– How to express the equivalence between a constrained constructor pattern

and its ML encoding?

In order to better understand the relationship between the two approaches, we
consider a running example, the QLOCK mutual exclusion protocol [5,11], and

2

show how to define it in ML. This example gives us a better view of the specificity
of ML axioms and how the OSA canonical model is reflected in ML. In this paper,
we only consider the static structure of QLOCK. Since the ML axiomatization
includes the complete specifications of natural numbers, (finite) list and (finite)
multisets, and it specifies their carrier sets using least fixpoints, we can derive
from the specifications an induction proof principle for them.

Structure of the paper. We define constrained constructor patterns and in-
troduce the QLOCK example in Section 2. In Section 3, we introduce matching
logic (ML) in details, as it was recently proposed. In Section 4 we discuss the
axiomatization of free constructors and the encoding of OSA in ML, and a com-
plete specification of the QLOCK configurations. In Section 5, we show the ML
encoding of the constrained constructor patterns and their operations, which is
our main contribution. We conclude in Section 6.

2 Constrained Constructor Patterns

We assume the readers are familiar with order-sorted equational and first-order
logics (see, e.g., [8]). Here we briefly recall the definitions of constructor pattern
predicates [11].

Definition 1. An order-sorted signature Σ = (S,≤, F) contains a sort set S,
a partial ordering ≤ ⊆ S × S called subsorting, and a function (family) set
F = {Fs1...sn,s}s1,...,sn,s∈S. We allow subsort overloading, i.e., f ∈ Fs1...sn,s ∩
Fs′1...s′n,s′ with s1 ≤ s′1, . . . , sn ≤ s′n, s ≤ s′. An order-sorted algebra A =
({As}s∈S , {fA}f∈F) contains (1) a nonempty carrier set As for every s ∈ S; we
require As ⊆ As′ whenever s ≤ s′; and (2) a function interpretation f : Ms1 ×
· · · ×Msn → Ms for every f ∈ Fs1...sn,s. Note that overloaded functions must
coincide on the overlapped parts.

A function f ∈ Fs1...sn,s is denoted as f : s1×· · ·×sn → s. Let X = {Xs}s∈S be
an S-indexed set of sorted variables denoted x:s, y:s. We use TΣ(X) to denote
the Σ-term algebra on X, whose elements are (ground and non-ground) terms.
We use TΣ = TΣ(∅) to denote the Σ-algebra of ground terms.

An (equational) order-sorted theory (Σ,B ∪ E) consists of an order-sorted
signature Σ and a union set B ∪ E of (possibly conditional) Σ-equations (ex-
plained below). We assume that F = Ω ∪ ∆, where Ω contains constructors
and ∆ contains defined functions. We assume that B contains a special class
of axioms that usually express properties like associativity, commutativity, and
identity of functions in Σ. Let BΩ∪EΩ be the axioms (equations) that only con-
tain constructors in Ω. Then, (B\BΩ)∪(E\EΩ) is the set of axioms (equations)
that specify defined functions in ∆.

Given (Σ,B∪E), its initial model is isomorphic to the canonical term algebra
CΣ/E,B that contains (BΩ ∪ EΩ)-equivalence classes of ground Ω-terms. For a
ground Σ-term t that may contain defined functions, we let canf (t) = [u]BΩ∪EΩ

3

denote its canonical form in CΣ/E,B , i.e., u =B∪E t and u ∈ TΩ . Let ρ : X → TΩ
be a valuation. We define its extension ρ : TΣ → TΩ in the usual way.

Given s∈S, an s-sorted constrained constructor pattern is an expression u|ϕ,
where u ∈ TΩ(X) has sort s and ϕ is a quantifier-freeΣ-formula; see [11, pp. 204].
The set of constrained constructor pattern predicates PatPred(Ω,Σ), is the small-
est set that includes ⊥ and constrained constructor patterns, and is closed under
disjunction and conjunction. The semantics of a constrained constructor pattern
predicate A is the set JAKC of canonical terms that satisfies it:

J⊥KC = ∅ JA ∨BKC = JAKC ∪ JBKC JA ∧BKC = JAKC ∩ JBKC
Ju|ϕKC = {canf (uρ) | ρ : X → TΩ , CΣ/E,B |= ϕρ}

2.1 A Running Example: QLOCK

QLOCK is a mutual exclusion protocol [5] that allows an unbounded number of
(numbered) processes that are in one of the three states: “normal” (doing their
own things), “waiting” for a resource, and “critical” when using the resource.
A QLOCK state is a tuple 〈n|w|c|q〉 where n,w, c are multisets of identities of
the processes that are in “normal”, “waiting”, and “critical” states, respectively,
and q is the waiting queue, i.e., an associative list. In this paper, we are only
interested in understanding how constrained constructor patterns express state
predicates, so we only consider the static structure of QLOCK states, whose
OSA specification [11] is given below:

S = {Nat ,List ,MSet ,NeMSet ,Conf ,State,Pred}
≤ = {Nat < List ,Nat < NeMSet < MSet} ∪=S

ΣΩ (constructors):
0 : → Nat , s : Nat → Nat
nil : → List , ; : List × List → List
empty : → MSet , : MSet ×MSet → MSet ,

: NeMSet ×NeMSet → NeMSet
| | | : MSet ×MSet ×MSet × List → Conf
〈 〉 : Conf → State
tt : → Pred ,ff : → Pred

Σ(QLOCK) = ΣΩ ∪ {dupl : MSet → Pred , dupl : NeMSet → Pred}
BΩ :

associativity for list concatenation ; with the identity nil
associativity/commutativity for multiset union ; with the identity empty

EΩ = ∅
E = {dupl(s u u) = tt}, where s is any multiset (could be empty).

The corresponding canonical model, denoted QLK, is given as:

QLKNat = {0, s 0, s2 0, . . .}
QLKList = QLKNat ∪ {nil} ∪ {n1; . . . ;nk | ni ∈ QLKNat , 1 ≤ i ≤ k, k ≥ 2}
QLKNeMSet = Nat ∪ {[n1, . . . , nk] | ni ∈ QLKNat , 1 ≤ i ≤ k, k ≥ 2}
QLKMSet = QLKNeMSet ∪ {empty}

4

QLKConf = {x1|x2|x3|y | x1, x2, x3 ∈ QLKMSet , y ∈ QLKList}
QLKState = {〈x〉 | x ∈ QLKConf }
QLKPred = {tt ,ff }

An example of a constrained constructor pattern predicate is 〈n|w|c|q〉|dupl(nw c) 6=
tt , since no process can be waiting and critical at the same time.

3 Matching Logic

We give a compact introduction to matching logic (ML) syntax and semantics,
and the important mathematical instruments that can be defined as theories
and/or notations. For full details, we refer readers to [10,3,2].

3.1 Matching Logic Syntax and Semantics

ML is an unsorted logic whose formulas, called patterns, are constructed from
constant symbols, two sets of variables (explained below), propositional con-
structs ⊥ and →, a binary application function, the FOL-style existential quan-
tifier ∃, and the least fixpoint operator µ. In models, patterns are interpreted
as the sets of elements that match them. Important mathematical instruments
and structures, as well as various logical systems can be captured in ML.

Definition 2. We assume two countably infinite sets of variables EV and SV ,
where EV is the set of element variables denoted x, y, . . . and SV is the set
of set variables denoted X,Y, Given an (at most) countable set of constant
symbols Σ, the set of Σ-patterns, written Pattern, is inductively generated by
the following grammar for every σ ∈ Σ, x ∈ EV , and X ∈ SV :

ϕ ::= σ | x | X | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ

where in µX.ϕ we require that ϕ is positive in X, i.e., X is not nested in an odd
number of times on the left-hand side of an implication ϕ1 → ϕ2. This syntactic
requirement is to make sure that ϕ is monotone with respect to the set X, and
thus the least fixpoint denoted by µX.ϕ exists.

Both ∃ and µ are binders, and we assume the standard notions of free
variables, α-equivalence, and capture-avoiding substitution. Specifically, we use
FV (ϕ) to denote the set of (element and set) variables that occur free in ϕ. We
regard α-equivalent patterns as syntactically identical. We write ϕ[ψ/x] (resp.
ϕ[ψ/X]) for the result of substituting ψ for x (resp. X) in ϕ, where bound
variables are implicitly renamed to prevent variable capturing. We define the
following logical constructs as syntactic sugar:

¬ϕ ≡ ϕ→ ⊥ ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

> ≡ ¬⊥ ∀x. ϕ ≡ ¬∃x.¬ϕ νX.ϕ ≡ ¬µX.¬ϕ[¬X/X]

5

We assume the standard precedence between logical constructs and that ap-
plication ϕ1 ϕ2 binds the tightest. We abbreviate the sequential application
(· · · ((ϕ1 ϕ2) ϕ3) · · · ϕn) as ϕ1 ϕ2 ϕ3 · · · ϕn.

ML has a pattern matching semantics where patterns are interpreted in mod-
els as the sets of elements that match them.

Definition 3. Given a symbol set Σ, a Σ-model (M, • , {σM}σ∈Σ) contains:

– M : a nonempty carrier set;
– • : M×M → P(M) as the interpretation of application, where P(M) is the

powerset of M ;
– σM ⊆M : a subset of M as the interpretation of σ ∈ Σ.

By abuse of notation, we write M for the above model.

For notational simplicity, we extend • from over elements to over sets, point-
wisely, as follows:

• : P(M)× P(M)→ P(M) A •B =
⋃

a∈A,b∈B

a • b for A,B ⊆M

Note that ∅ •A = A • ∅ = ∅ for any A ⊆M .

Definition 4. Given a symbol set Σ and a Σ-model M , an M -valuation ρ : (EV∪
SV) → (M ∪ P(M)) is a function that maps element variables to elements of
M and set variables to subsets of M , i.e., ρ(x) ∈ M and ρ(X) ⊆ M for every
x ∈ EV and X ∈ SV . We extend ρ from over variables to over patterns, denoted
ρ̄ : Pattern→ P(M), as follows:

ρ̄(x) = {ρ(x)} ρ̄(X) = ρ(X) ρ̄(σ) = σM ρ̄(⊥) = ∅ ρ̄(ϕ1 ϕ2) = ρ̄(ϕ1) • ρ̄(ϕ2)

ρ̄(ϕ1 → ϕ2) = M\ (ρ̄(ϕ1)\ρ̄(ϕ2)) ρ̄(∃x. ϕ) =
⋃
a∈M

ρ[a/x](ϕ) ρ̄(µX.ϕ) = µFρX,ϕ

where FρX,ϕ : P(M) → P(M) is a monotone function defined as FρX,ϕ(A) =

ρ[A/X](ϕ) for A ⊆M , and µFρX,ϕ denotes its unique least fixpoint given by the
Knaster-Tarski fixpoint theorem [12].

Definition 5. Given M and ϕ, we say M satisfies ϕ, written M � ϕ, iff ρ̄(ϕ) =
M for all ρ. Given Γ ⊆ Pattern, we say M satisfies Γ , written M � Γ , iff
ρ̄(ϕ) = M for all ρ and ϕ ∈ Γ . We call Γ a theory and patterns in Γ axioms.

3.2 Important Mathematical Instruments

Several mathematical instruments of practical importance, such as definedness,
totality, equality, membership, set containment, functions and partial functions,
constructors, and sorts can all be defined using patterns. We give a compact
summary of their definitions in ML and introduce proper notations for them.

6

Definedness Symbol and Axiom. ML patterns are interpreted as subsets of
M . This is different from the classic FOL, whose formulas evaluate to either true
or false. However, it is easy to restore the classic two-value semantics in ML, by
using M , the entire carrier set, to represent the logical true, and ∅, the empty set,
to represent the logical false. Since M is nonempty, no confusion is possible. We
call ϕ a predicate in M if ρ̄(ϕ) ∈ {∅,M} for all ρ. In the following, we define a set
of predicate patterns that represent the important mathematical instruments.
These patterns are constructed from a special symbol called definedness.

Definition 6. Let d e be a symbol, which we call the definedness symbol. We
write dϕe instead of d e ϕ. Let (Definedness) be the axiom ∀x. dxe. We define
the following important notations:

totality bϕc ≡¬ d¬ϕe equality ϕ1 =ϕ2≡ bϕ1↔ϕ2c
membership x∈ϕ≡ dx∧ϕe inclusion ϕ1⊆ϕ2≡ bϕ1→ϕ2c

We also define their negations:

ϕ1 6= ϕ2 ≡ ¬(ϕ1 = ϕ2) x 6∈ ϕ ≡ ¬(x ∈ ϕ) ϕ1 6⊆ ϕ2 ≡ ¬(ϕ1 ⊆ ϕ2)

In the following, when we say that we consider a theory Γ that contains
certain axioms, we implicitly assume that the symbol set contains all symbols
that occur in those axioms.

Sorts. ML is an unsorted logic and has no built-in support for sorts or many-
sorted functions. However, we can define sorts as constant symbols and use
patterns to axiomatize their properties. Specifically, for every sort s, we define
a corresponding constant symbol also denoted s that represents its sort name.
For technical convenience, we include the following axiom

(Sort Name) ∃x. s = x

to specify that s is matched by exactly one element, which is the name of the
sort s. To get the carrier set of s, we define a symbol J K, which we call the
inhabitant symbol, and we write JϕK instead of J Kϕ. The intuition is that JsK is
matched by exactly the elements that have sort s, i.e., it represents the carrier
set of s. We also include a symbol Sort that is matched by all sort names, by
including an axiom s ∈ Sort .

We can specify properties about sorts by patterns. E.g., the following axiom

(Nonempty Inhabitant) JsK 6= ⊥

specifies that the carrier set of s is nonempty. The following axiom

(Subsort) Js1K ⊆ Js2K

specifies that the carrier set of s1 is a subset of that of s2, i.e., s1 is a subsort of
s2. We define sorted negation ¬sϕ ≡ (¬ϕ)∧JsK, which is matched by all elements

7

of sort s that do not match ϕ. We define sorted quantification that restricts the
ranges of x, x1, . . . , xn in the quantification:

∀x:s. ϕ ≡ ∀x. x ∈ JsK→ ϕ ∀x1, . . . , xn:s. ϕ ≡ ∀x1:s. . . .∀xn:s. ϕ

∃x:s. ϕ ≡ ∀x. x ∈ JsK ∧ ϕ ∃x1, . . . , xn:s. ϕ ≡ ∃x1:s. . . .∃xn:s. ϕ

We can specify sorting restrictions of symbols. For example:

(Sorted Symbol) σ Js1K · · · JsnK ⊆ JsK

requires σ x1 · · · xn to have sort s, given that x1, . . . , xn have sorts s1, . . . , sn,
respectively. For notational simplicity, we write σ ∈ Σs1...sn,s to mean that we
assume the axiom (Sorted Symbol) for σ.

Functions and Partial Functions. ML symbols are interpreted as relations,
when they are applied to arguments. Indeed, σ x1 · · · xn is a pattern that can
be matched zero, one, or more elements. In practice, we often want to specify
that σ is a function (or partial function), in the sense that σ x1 · · · xn can be
matched by exactly one (or at most one) element. That can be specified by the
following axioms, respectively:

(Function) ∀x1:s1. . . .∀xn:sn.∃y:s. σ(x1, . . . , xn) = y

(Partial Function) ∀x1:s1. . . .∀xn:sn.∃y:s. σ(x1, . . . , xn) ⊆ y
Recall that y is an element variable, so it is matched by exactly one element.
For notational simplicity, we use the function notation σ : s1 × · · · × sn → s
to mean that we assume the axiom (Function) for σ. Similarly, we use the
partial function notation σ : s1×· · ·×sn ⇀ s to mean that we assume the axiom
(Partial Function) for σ.

Constructors. Constructors are extensively used in building programs and
data, as well as semantic structures to define and reason about languages and
programs. They can be characterized in the “no junk, no confusion” spirit [6].3

Specifically, let Term be a sort of terms and Σ be a set of constructors denoted
c. We associate an arity nc ≥ 0 with every c. Consider the following axioms:

(Function, for all c) c : Term × · · · × Term︸ ︷︷ ︸
nc times

→ Term

(No Junk)
∨
c∈C
∃x1, . . . , xnc :Term. c x1 · · · xnc

(No Confusion I, for all c 6= c′)

∀x1, . . . , xnc :Term.∀y1, . . . , ync′ :Term.¬
(
c x1 · · · xnc ∧ c′ y1 · · · ync′

)
3 This answers a question asked by Jacques Carette on the mathoverflow site (https:
//mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion) ten
years ago: Are there logics in which these requirements (“no junk, no confusion”)
can be internalized?

8

https://mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion
https://mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion

(No Confusion II, for all c)

∀x1, . . . , xnc :Term.∀y1, . . . , ync :Term.

(c x1 · · · xnc ∧ c y1 · · · ync)→ c (x1 ∧ y1) · · · (xnc ∧ ync)

(Inductive Domain) µT .
∨
c∈C

c T · · · T︸ ︷︷ ︸
ni times

Intuitively, (No Confusion I) says different constructs build different things;
(No Confusion II) says constructors are injective; and (Inductive Domain)
says the carrier set of Term is the smallest set that is closed under all construc-
tors. We refer to the first two axioms as (No Confusion). Technically, (No
Junk) is not necessary as it is implied by (Inductive Domain).

4 Encoding Order-Sorted Algebras

As seen in Section 3.2, the subset relation between the carrier sets of sorts
can be captured in ML by patterns. Therefore, OSA and subsorting can be
naturally captured in ML; see [2] for details. Specifically, to capture OSA, we
define for every sorts s ∈ S a corresponding sort, also denoted s, in ML. For
every s ≤ s′, we include a subsorting axiom JsK ⊆ Js′K. We define for every OSA
function f ∈ Fs1...sn,s a corresponding symbol, also denoted f , and include the
(Function) axiom, i.e., f : s1 × · · · × sn → s. This is summarized in Figure 1.

LetΣ = (S,≤, F) be an order-sorted signature andΣML be the corresponding
ML signature. LetA = ({As}s∈S , {fA}f∈F) be an OSA. We define its derived ML
ΣML-model, denoted AML, as in [2], which includes the standard interpretations
of the definedness and inhabitant symbols, sorts, functions, and elements in A.

Theorem 1 (See [2]). For every formula ϕ, we have AML |= ϕML iff A |= ϕ.

4.1 QLOCK Example in ML

We have shown the OSA specification of QLOCK’s static structures in Sec-
tion 2.1 and the ML encoding of OSA in Section 4. Putting them together, we
get an ML specification for QLOCK, which we show below in full details.

Notations
– x: a syntactic sugar for x1, . . . , xn
– ∀x:s: a syntactic sugar for ∀x1:s1. . . .∀xn:sn, where we assume x̄ and s̄ have

the same length n.

ML Signature Σ(QLOCK)ML contains the following symbols (we remind read-
ers of the mathematical instruments defined in Section 3.2):
– a definedness symbol d e;
– an inhabitant symbol J K;
– a symbol S for sort names;
– a symbol for each sort: Nat , List , MSet , NeMSet , Conf , State, Pred ;
– a symbol for each function: nil , conc, union, conf , state, dupl , 0, s;

9

Order-Sorted Algebra Matching Logic

Signature Σ = (S,≤, F) ΣML = {d e , J K,Sort} ∪ S ∪ F

Axioms

OSA metalanguage ML axioms

s ∈ S
s ∈ Sort
∃y. s = y
JsK 6= ⊥

s ≤ s′ JsK ⊆ Js′K
f ∈ Fs1...sn,s f : s1 × · · · × sn → s
x:s (sorted variable) x ∈ JsK

Terms
t tML

f(t1, . . . , tn) f t1 · · · tn

Sentences
ϕ ϕML

{x1, . . . , xn} = variables in ϕ x1 ∈ Js1K ∧ · · · ∧ xn ∈ JsnK→ (ϕ = >)

Model
A M ≡ AML

fA : As1 × · · ·Asn → As

fA(a1, . . . , an)
fM a1 · · · an = {fA(a1, . . . , an)}

Fig. 1. Given an order-sorted signature Σ = (S,≤, F) and a Σ-OSA A, we derive a
ML signature ΣML and a corresponding ΣML-model M ≡ AML.

ML Axioms ΓQLOCK includes the (Definedness) axiom (see Definition 6)
and the following axioms:

ML axioms for sort names
– the sort symbols are functional constants:

∃y. y = Nat ∃y. y = List ∃y. y = MSet ∃y. y = NeMSet

∃y. y = Conf ∃y. y = State ∃y. y = Pred
– S is the set of sorts:

S = Nat ∨ List ∨MSet ∨NeMSet ∨ Conf ∨ State ∨ Pred
– for each sort s ∈ S, its carrier set is non-empty:

∀s:S. JsK 6= ⊥

ML axioms for the natural numbers
– the constructors are functional:

∃y:Nat . y = 0 ∀x:Nat .∃y:Nat . y = sx
– “no confusion” axioms:

∀x:Nat .¬(0 ∧ sx) ∀x, y:Nat . sx ∧ s y → s(x ∧ y)
– the domain of Nat is the smallest set that is closed under 0 and s:

JNatK = µX. 0 ∨ s(X)
There is no need to add the “no junk” axiom JNatK = 0 ∨ s JNatK as it is a
consequence of the above axiom.

Remark. Note that we use the sorted quantification in the above functional
axioms. In other words, we only specify that s is a function when it is within

10

the domain of Nat . Its behavior outside the domain of Nat is unspecified. This
way, we allow maximal flexibility in terms of modeling, because each model (i.e.,
implementation) of the specification Γ can decide the behavior of s outside Nat .
An “order-sorted-like”model will make sx return ⊥, the empty set, whenever x
is not in Nat , while an “error-algebra-like” model will make sx return error , a
distinguished error element, to denote the “type error”. Note that if we do not
use the sorted quantification, but use the unsorted version, ∀x. ∃y. y = sx, then
we explicitly exclude the order-sorted model, which is not what we want.

Remark. We point out that the sorted quantification axioms do not restrict s
to be only applicable within Nat . The pattern sx when x is outside the domain
of Nat is still a well-formed pattern, whose semantics is not specified by the
theory of natural numbers, but can be specified by other theories. For example,
the theory of real numbers may re-use s and overload it as the increment-by-one
function on reals. The theory of bounded arithmetic may re-use and overload s as
the successor “function”, which is actually a partial function and is undefined on
the maximum value. The theory of transition systems may re-use and overload s
as the successor “function”, which is actually the underlying transition relation,
and sx yields the set of all next states of the state x. In the last two cases, s is
no longer a function because it is not true that sx always returns one element.
Therefore, if we use not the sorted quantification axiom but the unsorted one,
we cannot re-use s in the theories of bounded arithmetic or transition systems,
without introducing inconsistency. Thus, by using sorted quantification for s
in the theory of natural numbers, we do not restrict but actually encourage
the re-use and overloading of s in other theories. On the other hand, ML is
expressive enough if one wants to allow a restricted use of a symbol. For instance,
if we want to restrict the use of s only to Nat , then we can add the axiom
∀x. dsxe → x ∈ JNatK.

ML axioms for Boolean values Pred

– the constructors are functional:

∃y:Pred . y = tt ∃y:Pred . y = ff

– “no confusion” axiom: ¬(tt ∧ ff)

– the domain of Pred consists only of ff and tt :

JPredK = ff ∨ tt

ML axioms for associative lists (over natural numbers)

– the constructors are functional:

∀x,y:List .∃z:List . z = conc x y ∃x:List . x = nil

– the associativity axiom:

∀x,y,z:List . conc(conc x y) z = conc x (conc y z)

– the unity axioms:

∀x:List . conc xnil = x ∀x:List . conc nil x = x

11

– the domain of List is the smallest set that includes JNatK and closed under
conc and nil :

JListK = µX. JNatK ∨ nil ∨ concXX
There is no need to add the subsort axiom JNatK ⊆ JListK to Γ since it is a
consequence of the above axiom.

ML axioms for multisets (over natural numbers)
– the constructors are functional:

∃y:MSet . y = empty ∀x,y:MSet .∃z:MSet . z = union x y

∀x,y:NeMSet .∃z:NeMSet . z = union x y
– the associativity axiom:

∀x,y,z:MSet . union(union x y) z = union x (union y z)
– the unity and commutativity axioms:

∀x:MSet . union x empty = x ∀x, y:MSet . union x y = union y x
– the domain axiom:

JNeMSetK = µX. JNatK ∨ union XX JMSetK = empty ∨ JNeMSetK
The axioms JNatK ⊆ JNeMSetK and JNeMSetK ⊆ JMSetK, corresponding to
subsorting relations Nat < NeMSet and respectively NeMSet < MSet , are
not needed, as they are consequences of the above.

ML axioms for configurations
– the constructors are functional:

∀x1,x2,x3:MSet .∀y:List .∃z:Conf . conf x1 x2 x3 y = z
– “no confusion” axiom:
∀x1,x2,x3,x′1,x′2,x′3:MSet .∀y,y′:List .

conf x1 x2 x3 y ∧ conf x′1 x
′
2 x

′
3 y

′ → conf (x1 ∧ x′1)(x2 ∧ x′2)(x3 ∧ x′3)(y ∧ y′)
– the domain of Conf is the set that is closed under conf :

JConf K = conf JMSetK JMSetK JMSetK JListK

ML axioms for states
– the constructors are functional:

∀x:Conf .∃y:State. state x = y
– “no confusion” axiom:

∀x,x′:Conf . state x ∧ state x′ → state x ∧ x′
– the domain of State is the set that is closed under state:

JStateK = state JConf K
The specification of the carrier set for the sorts Nat , List , MSet , and NeMSet
as least fix points allows to formalize in ML of their induction proof principles.
In what follows, ϕ(x) says that the pattern ϕ depends on the variable x.

ML axioms that define dupl

We here give the complete specification of dupl :

12

∀x:MSet .∃y:Pred . dupl x = y

∀s.∃s′, u. s =NeMSet union s′(union uu)→ dupl s = tt

∀s.∀s′, u. s 6=MSet union s′(union uu)→ dupl s = ff

Proposition 1. QLKML |= ΓQLOCK.

Proof. By construction.

In the following, we show that inductive reasoning is available in QLKML for
natural numbers, (finite) lists, and (finite) multisets. We write ϕ(x) to mean a
pattern ϕ with a distinguished variable x and write ϕ(t) to mean ϕ[t/x].

Proposition 2 (Peano Induction).

ΓQLOCK |= ϕ(0) ∧ (∀y:Nat . ϕ(y)→ ϕ(s y))→ ∀x:Nat . ϕ(x)

Proof. See [2].

Since the specifications for lists and multisets do not include “no confusion”
axioms (due to the associativity, commutativity and identity axioms), their in-
duction principles are given only for the ML model generated from the canonical
OSA. This is sufficient for the purpose of this paper, because our goal is to show a
faithful ML representation of constrained constructor patterns, whose semantics
are given in the canonical model.

Proposition 3 (List and Multiset Induction).

QLKML |= ϕ(nil) ∧
∀x:Nat .ϕ(x) ∧ (∀`1,`2:List .ϕ(`1)∧ϕ(`2)→ϕ(conc `1 `2)))→ ∀`:List . ϕ(`)

QLKML |= ∀x:Nat .ϕ(x) ∧ (∀m1,m2:NeMSet .ϕ(m1)∧ϕ(m2)→ϕ(union m1m2))→
∀m:NeMSet . ϕ(m)

QLKML |= ϕ(empty) ∧ ∀x:Nat . ϕ(x) ∧
(∀m1,m2:MSet . ϕ(m1) ∧ ϕ(m2)→ ϕ(union m1m2))→
∀m:MSet . ϕ(m)

Proof. By the inductive principle of the canonical model QLK and Theorem 1.

5 Encoding Constrained Constructor Patterns in ML

Let (Σ,B ∪ E) be an order-sorted theory with (Ω,BΩ ∪ EΩ) being its sub-
theory of constructors. Recall that CΣ/E,B denotes the canonical constructor

term algebra. Let (ΣML, ΓΣ,E,B) be the ML translation of (Σ,E ∪ B) with
ΓΣ,E,B = BML ∪ EML, as discussed in Section 4.

Definition 7. For a constrained constructor pattern u|ϕ, its ML translation is
the pattern uML ∧ ϕML. The ML translations of constrained constructor pattern
predicates are defined in the expected way, where ⊥ translates to ⊥, conjunction
translates to conjunction, and disjunction translates to disjunction.

13

The canonical model CΣ/E,B has a corresponding (ΣML, ΓΣ,E,B)-model CML
Σ/E,B

by Theorem 1. For ρ : X → TΩ and a FOL formula ϕ, we have CΣ/B,E |= ϕρ iff

CML
Σ/E,B |= (ϕρ)ML by the same theorem. This allows us to define the semantics of

a constrained constructor pattern Ju|ϕK as the interpretation of the ML pattern
∃x:s. uML ∧ ϕML in CML

Σ/E,B , where x:s = FV (u ∧ ϕ).
Next we explain in ML terms some of the constrained constructor pattern

operations discussed in [11]. We regard a substitution σ , {x1 7→ t1, . . . , xn →
tn} as the ML pattern σML , x1 = t1 ∧ · · · ∧ xn = tn.

Constrained Constructor Pattern Subsumption. In [11], the following
question is asked: When is the constrained constructor pattern u|ψ an instance
of a finite family {(vi|ψi) | i ∈ I}, i.e., Ju|ϕK ⊆

⋃
i∈IJvi|ψiK? Perhaps, at this level

of abstraction, the above question is unclear, because we do not know yet what
exactly it means by “when”. Let us elaborate it. The constrained constructor
patterns are evaluated in the canonical model CΣ/E,B , so the above question
asks when there is a computationally efficient way to decide whether4

CΣ/E,B |= Ju|ϕK ⊆
⋃
i∈I

Jvi|ψiK

The answer is given by EΩ∪BΩ-matching. Let match(u, {vi | i ∈ I}) denote the
set of pairs (i, β) with β a substitution such that u =EΩ∪BΩ viβ, i.e., β matches
vi on u modulo EΩ ∪BΩ . Assuming that u|ψ and {(vi|ψi) | i ∈ I} do not share
variables, the constrained constructor pattern subsumption is formally defined
as follows:

Definition 8 ([11]). A family of constrained constructor patterns {(vi|ψi) | i ∈
I} subsumes u|ϕ, denoted u|ϕ v {(vi|ψi) | i ∈ I}, iff

CΣ/B,E |= ϕ→
∨

(i,β)∈match(u,{vi|i∈I})

ψiβ

Defined in this way, the constrained constructor pattern subsumption is compu-
tationally cheap in some cases; see [11]. One such case for example is when E = ∅
and Ω consists of associativity or associativity-commutativity and the terms are
not too large. Note that u|ϕ v {(vi|ψi) | i ∈ I} implies Ju|ϕK ⊆

⋃
i∈IJvi|ψiK,

but the inverse implication is not always true. The following counterexample
is from [11], where a simple “inductive” instantiation of variable m by 0 and
s(k) can yield a proof by subsumption for the above set inclusion. Formally,
let 〈 , 〉 denote the pairing of natural numbers. Then we have J〈n,m〉|>K ⊆
J〈x, 0〉|> ∨ 〈y, s(z)〉|>K, but 〈n,m〉|> 6v 〈x, 0〉|> ∨ 〈y, s(z)〉|>.

Let us discuss the ML counterpart of the subsumption. The ML pattern that
corresponds to Ju|ϕK ⊆

⋃
i∈IJ(vi|ψi)K, is the following:

(
∃x:s. uML ∧ ϕML

)
⊆

(∨
i∈I
∃yi:si. vML

i ∧ ψML
i

)
4 This is an informal notation because Ju|ϕK ⊆

⋃
i∈IJvi|ψiK is not exactly a formula.

14

where x:s = FV (u|ϕ), and yi:si = FV (vi|ψi). Since the two patterns do not
share variables by assumption, the above is a well-formed ML pattern (we remind
that ϕ ⊆ ϕ′ is the sugar-syntax of the ML pattern bϕ→ ϕ′c).

The ML translation of the definition for u|ϕ v {(vi|ψi) | i ∈ I} is

CML
Σ/B,E |= ϕML →

∨
(i,β)∈match(u,{vi|i∈I})

(
ψML
i ∧ βML

)
where βML is the pattern describing the substitution β. We can prove now that
the two ML patterns are equivalent:

Theorem 2. The following holds:

CML
Σ/E,B |=

(
∃x:s. uML ∧ ϕML

)
⊆

(∨
i∈I
∃yi:si. vML

i ∧ ψML
i

)
↔ϕML →

∨
(i,β)∈match(u,{vi|i∈I})

(ψML
i ∧ βML)

Explanation. The key property is that of the match result (i, β), which satisfies
that u =EΩ∪BΩ viβ. In other words, β is the logical constraint that states that
u can be matched by vi. Thus, the reasoning is as follows. Intuitively, the LHS
holds when uML ∧ ϕML is ⊥, i.e., ϕML is ⊥, or when uML can be matched by vML

i

for some i. This yields the RHS, which states that if ϕML holds, then there exists
i such that u is matched by the constraint term pattern vi|ψi. The matching
part is equivalent to the logical constraint β given by the matching function
match, and ψi is the logical constraint in the original constraint term pattern.
Both need to be satisfied, and thus we have ψML

i ∧ βML on the RHS.

Regarding the counterexample, we show that

CML
Σ/E,B |= ∃m,n:Nat . 〈n,m〉 ⊆ ∃x,y,z:Nat . 〈x, 0〉 ∨ 〈y, s(z)〉 (∗)

is proved in ML. Consider ϕ(m) , ∀n,x,y,z:Nat . 〈n,m〉 ⊆ 〈x, 0〉 ∨ 〈y, s(z)〉 and
applying the induction principle for natural numbers, given by Proposition 2,
we obtain

CML
Σ/E,B |= ∀m:Nat .∃n:Nat . 〈n,m〉 ⊆ ∃x,y,z:Nat . 〈x, 0〉 ∨ 〈y, s(z)〉

which implies (∗).

Over-Approximating Complements. In [11] it is showed that the comple-
ment of a constrained constructor pattern cannot be computed using negation,
i.e, Ju|>K\Ju|ϕK = Ju|¬ϕK does not always hold, but the inclusion Ju|>K\Ju|ϕK ⊆
Ju|¬ϕK holds. Therefore an over-approximation of the difference is defined as:

Ju|ϕK \\ Ju|ψK , Ju|ϕK ∩ Ju|¬ψK (= Ju|ϕ ∧ ¬ψK)

Since ML has negation, the difference Ju|>K \ Ju|ϕK is the same with the inter-
pretation in CML

Σ/E,B of the ML pattern

∃x:s. uML ∧ ¬(∃x:s. (uML ∧ ϕML))

15

The constructor pattern predicate Ju|>K is the same with the interpretation
in CML

Σ/E,B of the pattern ∃x:s. uML, where x:s is the set of variables occurring

in u, and constructor predicate Ju|¬ϕK is the same with the interpretation of
∃x:s. (uML ∧ ¬ϕML).

The counterexample for equality as in [11] is u , (x, y, z), as a multiset over
{a, b, c}, ϕ , x 6= y. Using ML we may explain why Ju|>K \ Ju|ϕK = Ju|¬ϕK
does not hold in a more generic way. We use the notation from the QLOCK
example. Apparently, the interpretations of ∃x,y,z:MSet . (union x y z) ∧ x 6= y
and ∃x,y,z:MSet . (union x y z) ∧ x = y are disjoint because a 6= b and a = b
are contradictory. This is not true because Γ includes the axioms ACU for the
multisets; let us denote these axioms by φ. Then the two patterns are equivalent
to ∃x,y,z:MSet . (union x y z)∧x 6= y∧φ and ∃x,y,z:MSet . (union x y z)∧x = y∧φ,
respectively. Obviously, x 6= y ∧ φ and x = y ∧ φ are not contradictory and the
two patterns could match common elements.

The difference Ju|ϕK \ Ju|ψK is the same as the interpretation of the pattern

∃x:s. (uML ∧ ϕML) ∧ ¬(∃x:s. (uML ∧ ψML))

and Ju|ϕK \\ Ju|ψK is the same as the interpretation of

∃x:s. (uML ∧ ϕML) ∧ ∃x:s. (uML ∧ ¬ψML),

which is equivalent to ∃x:s. (uML∧ϕML∧¬ψML). We can prove that Ju|ϕK\\Ju|ψK
is indeed an over-approximation of the difference:

Proposition 4. The following holds:

CML
Σ/E,B |= ∃x:s. (uML ∧ϕML)∧¬(∃x:s. (uML ∧ψML)) ⊆ ∃x:s. (uML ∧ϕML ∧¬ψML)

Parameterized Intersections. The intersection of two constrained construc-
tor patterns that share a set of variables Y is defined as

(u|ϕ) ∧Y (v|ψ) ,
∨

α∈Unif EΩ∪BΩ
(u,v)

(u|ϕ ∧ ψα)

where Unif EΩ∪BΩ (u, v) is a complete set of EΩ∪BΩ-unifiers (the parameterized
intersection is defined only when such a set exists). We have

J(u|ϕ) ∧Y (v|ψ)K =
⋃

ρ∈[Y→TΩ]

Ju|ϕK ∩ Jv|ψK

For the case when E = B = ∅, it is shown in [1] that

ΓΣ |= u ∧ v ↔ u ∧ σML

where σ is the most general unifier of u and v. We obtain as a consequence that
(u ∧ ϕ) ∧ (v ∧ ψ) is equivalent to u ∧ σML ∧ ϕ ∧ ψ, which is the ML translation
of the corresponding constrained constructor pattern (u|ϕ) ∧Y (v|ψ). We claim
that this result can be generalized:

16

Theorem 3. If {σ1, . . . , σk} is a complete set of BΩ ∪ EΩ-unifiers for u1 and
u2, then CML

Σ/E,B |= (u1 ∧ u2)↔ (ui ∧ (σML
1 ∨ · · · ∨ σML

k)), for i = 1, 2.

So, the parameterized intersection of two constrained constructor patterns is
encoded in ML by the conjunction of the corresponding ML patterns.

Parameterized Containments. Given the constrained constructor patterns
u|ϕ and {(vi|ψi) | i ∈ I} with the shared variables Z, their set containment is
defined as follows:

Ju|ϕK ⊆Z J
∨
i∈I

(vi|ψi)K iff ∀ρ ∈ [Z → TΩ] s.t. J(u|ϕ)ρK ⊆ J
∨
i∈I

(vi|ψi)ρK

The Z-parameterized subsumption of u|ϕ by {(vi|ψi) | i ∈ I}, denoted u|ϕ vZ∨
i∈I(vi|ψi), holds iff CΣ/E,B |= ϕ→

∨
(i,β)∈match(u,{vi|i∈I},Z)(ψiβ). The follow-

ing result holds: if u|ϕ vZ
∨
i∈I(vi|ψi) then Ju|ϕK ⊆Z J

∨
i∈I(vi|ψi)K.

Let us discuss the ML counterpart of the parameterized subsumption. The
ML pattern expressing Ju|ϕK ⊆

⋃
i∈IJ(vi|ψi)K is

∀z:s′.

(
∃x:s. uML ∧ ϕML ⊆

∨
i∈I
∃yi:si. vML

i ∧ ψML
i

)

where z:s′ is the set of shared variables freely occurring in both u|ϕ and {(vi|ψi) |
i ∈ I}, x:s is the set of variables different of z:s′ that freely occur in u|ϕ, and
yi:si is the set of variables different of z:s′ that freely occur in vi|ψi.

The ML translation of u|ϕ v {(vi|ψi) | i ∈ I} is

CML
Σ/B,E |= ϕML →

∨
(i,β)∈match(u,{vi|i∈I},Z)

(
ψML
i ∧ βML

)
where match(u, {vi | i ∈ I}, Z) is a set of substitutions β defined over var(vi)\Z,
and βML is the pattern describing the substitution β. We can prove now that the
two ML patterns are equivalent.

Theorem 4.

CML
Σ/E,B |=

(
∀z:s′.

(
∃x:s. uML ∧ ϕML ⊆

∨
i∈I
∃yi:si. vML

i ∧ ψML
i

))
↔ϕML →

∨
(i,β)∈match(u,{vi|i∈I},Z)

(ψML
i ∧ βML)

Explanation. The main idea is the same as Theorem 2 and to use the property
(i, β); that is, u =EΩ∪BΩ viβ for any shared variables zi ∈ Z, explaining the
quantifier ∀z:s′ that appear on top of the LHS.

17

6 Conclusion

The paper establishes the exact relationship between two approaches that for-
malize state predicates of distributed systems: constrained constructor patterns [11]
and matching logic [2]. The main conclusion from this comparison is that there
is a mutual benefit. Matching logic can benefit from borrowing the computa-
tionally efficient reasoning modulo E ∪ B. A first step is given in [1], but we
think that there is more potential that can be exploited. On the other hand, the
theory of constrained constructor patterns can get more expressiveness from its
formalization as a fragment of the matching logic.

References

1. Arusoaie, A., Lucanu, D.: Unification in matching logic. In: Formal Methods—The
Next 30 Years. Lecture Notes in Computer Science, vol. 11800, pp. 502–518. Porto,
Portugal (2019). https://doi.org/10.1007/978-3-030-30942-8 30

2. Chen, X., Roşu, G.: Applicative matching logic. Tech. Rep.
http://hdl.handle.net/2142/104616, University of Illinois at Urbana-Champaign
(2019)

3. Chen, X., Rosu, G.: Matching µ-logic. In: Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2019). pp. 1–13.
IEEE, Vancouver, Canada (2019). https://doi.org/10.1109/LICS.2019.8785675

4. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and opti-
mal variant termination. J. Log. Algebr. Program. 81(7-8), 898–928 (2012).
https://doi.org/10.1016/j.jlap.2012.01.002

5. Futatsugi, K.: Fostering proof scores in CafeOBJ. In: Proceedings of the 12th In-
ternational Conference on Formal Engineering Methods (ICFEM 2010). Lecture
Notes in Computer Science, vol. 6447, pp. 1–20. Springer, Shanghai, China (2010).
https://doi.org/10.1007/978-3-642-16901-4 1

6. Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the
specification, correctness, and implementation of abstract data types. Tech. Rep.
RC 6487, IBM Res. Rep. (1976), see also Current Trends in Programming Method-
ology, vol. 4: Data Structuring, R. T. Yeh, Ed. Englewood Cliffs, NJ: Prentice-Hall,
1978, pp. 80–149

7. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018). https://doi.org/10.1016/j.scico.2017.09.001

8. Meseguer, J.: Generalized rewrite theories, coherence completion,
and symbolic methods. J. Log. Algebr. Meth. Program. 110 (2020).
https://doi.org/10.1016/j.jlamp.2019.100483

9. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7),
721–781 (2012). https://doi.org/10.1016/j.jlap.2012.06.003

10. Roşu, G.: Matching logic. Logical Methods in Computer Science 13(4), 1–61 (2017)
11. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for

rewrite theories. In: Proceedings of the 27th International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR 2017). Lecture Notes
in Computer Science, vol. 10855, pp. 201–217. Springer, Namur, Belgium (2018).
https://doi.org/10.1007/978-3-319-94460-9 12

12. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

18

https://doi.org/10.1007/978-3-030-30942-8_30
https://doi.org/10.1109/LICS.2019.8785675
https://doi.org/10.1016/j.jlap.2012.01.002
https://doi.org/10.1007/978-3-642-16901-4_1
https://doi.org/10.1016/j.scico.2017.09.001
https://doi.org/10.1016/j.jlamp.2019.100483
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1007/978-3-319-94460-9_12

	Connecting Constrained Constructor Patterns and Matching Logic

