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A language-agnostic program verifier takes three inputs: a program, its formal specification, and the formal

semantics of the programming language in which the program is written. It then uses a language-agnostic

verification algorithm to prove the program correct with respect to its specification, using directly the formal

language semantics. Such a complex verifier can easily have bugs. This paper proposes a method to certify the

correctness of each successful verification run by generating a proof certificate for it. The proof certificate

can be checked by a small proof checker. The preliminary experiments apply the method to generate proof

certificates for the verification of an imperative language, a functional language, and an assembly language,

showing that the proposed method is language-agnostic.
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1 INTRODUCTION
A deductive program verifier proves the correctness of a program with respect to a formal specifi-

cation. Traditional program verifiers are based on a Hoare-style program logic [Hoare 1969] that is

specific to the programming language in question, or on a translation into an intermediate verifica-

tion language such as Boogie [Barnett et al. 2006]. A language-agnostic verifier takes a different
approach. It takes as input both a program with its formal specification and the formal semantics

of the programming language in which the program is written, and then uses a language-agnostic

verification algorithm to prove the program correct with respect to its specification, using directly

the language semantics. Therefore, a language-agnostic verifier supports formal verification of any

programming languages, provided that their formal semantics are defined [Ştefănescu et al. 2016].

Language-agnostic verification has been implemented in the K framework (https://kframework.

org). K is a formal language semantics framework that allows language designers to define the

formal syntax and semantics of their programming languages. From the formal definition of a

programming language, K automatically generates many language tools, including a parser, an

interpreter, a symbolic execution tool, a deductive verifier, and a program equivalence checker

[Ştefănescu et al. 2016; Kasampalis et al. 2021]. In practice, K has been used to formalize many
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Fig. 1. K Framework Vision

real-world programming languages and virtual machines, including C [Ellison and Rosu 2012],

Java [Bogdănaş and Roşu 2015], JavaScript [Park et al. 2015], Python [Guth 2013], Ethereum

virtual machine (EVM) [Hildenbrandt et al. 2018], x86-64 [Dasgupta et al. 2019], and LLVM [Li and

Gunter 2020]. K automatically generates implementations and tools for those languages, including

deductive verifiers, some of which have become commercial products [Guth et al. 2016; Luo et al.

2014]. Figure 1 presents the vision of K.
Along with the wide application of K in formalizing and verifying real-world languages and

systems arises the concern on the correctness of K itself. Indeed, the current implementation of

K has over 550,000 lines of unverified code in Haskell, Java, and C++. Internally, K implements

complex data structures, algorithms, translations, and optimizations to guarantee the efficiency of

the language implementations and tools that it generates. How do we know that a program that is

verified by K is indeed correct? What is in the trust base of the current implementation of K when

it comes to program verification, and how can we reduce that trust base?

In this paper, we propose a technique to certify the correctness ofK’s language-agnostic one-path
deductive program verifier. For each successful verification run, we generate a proof certificate in

matching logic, which is the logical foundation of K [Chen and Roşu 2019a]. Such a proof certificate

includes the entire formal programming language semantics as a set of matching logic axioms and

the intended program property as a matching logic formula (called a pattern; see Section 3.4). The

proof certificate also includes all the detailed proof steps for the program property using a sound

matching logic proof system, which has an existing 240-line formalization in Metamath [K Team

2022b]. Specifically, we generate proof certificates for reachability judgments of the following form

Γ𝐿 ⊢ 𝜑pre ⇒reach 𝜑post , where (1)

• Γ𝐿 is the set of matching logic axioms (called a theory) generated by K, which defines the

formal semantics of a given programming language 𝐿;

• ⊢ denotes the matching logic proof system shown in Figure 4;
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• 𝜑pre ⇒reach 𝜑post is the matching logic formula/pattern that specifies the program property.

𝜑pre and𝜑post capture the initial and target computation configurations and⇒reach denotes the

(one-path) reachability relation. Intuitively, 𝜑pre ⇒reach 𝜑post states that for any configuration

that satisfies 𝜑pre , either there is a finite execution trace that reaches a program configuration

satisfying 𝜑post , or the execution is infinite.

K uses a language-agnostic verification algorithm (Algorithm 1) to prove one-path reachability

claims. The input of the algorithm consists of the formal semantics Γ𝐿 , the program property

𝜑pre ⇒reach 𝜑post , and some optional user-provided invariants or reachability lemmas. At a high

level, the algorithm is based on symbolic execution and coinduction. It symbolically executes 𝜑pre
using the formal semantics until it identifies a repetitive behavior (such as a loop that has been

unfolded and whose body has been fully executed once). At that time, the algorithm discharges

the (repetitive) proof obligation by coinduction. The soundness of such coinductive reasoning is

shown in [Roşu et al. 2013] and the algorithm has been been integrated in K.
Our main technical contribution is a set of proof generation procedures (Section 4) that generate

the detailed proof steps for reachability judgments such as Equation (1). These proof steps are

directly based on the 15-rule matching logic proof system (Figure 4) and are encoded in Metamath

[Megill and Wheeler 2019]. Therefore, our proof certificates can be automatically checked by a

Metamath verifier. If the proof certificate for one verification run passes the checking, we know

that the language-agnostic verifier of K is correct on that verification run. This way, we establish

the correctness of the K deductive verifier on a case-by-case basis via proof generation and proof

checking. As a result, the internal verification algorithm of K—which accounts for about 120,000

lines of Haskell code—is removed from the trusted code base. The detailed matching logic proof

steps in the proof certificates explicitly justify each individual verification run of K.
We finished a prototype implementation of our proof generation procedures and evaluated it

on two benchmark sets. The first benchmark set contains arithmetic programs written in three

programming languages. With this benchmark we demonstrate that our method is for language-
agnostic verification, working directly with the formal semantics of programming languages. The

second benchmark set is a selection of C verification examples from the SV-COMP competition

[SV-COMP 2021]. The experimental results show promising performance in both generating and

checking the proof certificates. For example, for the verification of the sum program that calculates

the sum from 1 to 𝑛, it takes 105 seconds to generate a proof certificate of 37 megabytes, which

is checked within a few seconds on a regular laptop (see Section 6). Our implementation can be

found at [Lin et al. 2022].

It should be noted that in this work we only consider proving one execution path correct, known

as one-path reachability reasoning [Roşu et al. 2013]. Both Algorithm 1 and the proof system in

Figure 3 are for proving one-path reachability claims. In this context, the verification is successful

if there exists one execution path that satisfies the claim. While one-path reachability reasoning is

sufficient for deterministic programs, for concurrent and nondeterministic programs we want to

prove that all execution paths are correct, which requires all-path reachability reasoning [Ştefănescu
et al. 2014]; see also Section 4.1. K supports both one-path and all-path reachability reasoning but

our current work does not support proof generation for all-path reachability reasoning yet; future

directions are discussed in Section 7.2.

To summarize, we generate machine-checkable proof certificates for a language-agnostic one-

path deductive program verifier inK. For each successful verification, we generate a proof certificate
that includes the entire formal semantics as axioms and the program property being verified as a

matching logic formula/pattern. The proof certificate also includes the detailed proof steps that

formally derive the property from the formal semantics using the soundmatching logic proof system.
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This way, the internal implementation of K’s verification algorithm is justified on a case-by-case

basis via machine-checkable proof certificates.

We organize the rest of the paper as follows. In Section 2, we discuss the related work. In Section 3,

we give an overview of our approach and introduce the basics of K and matching logic. We show

how to generate proof certificates in Section 4. We discuss our implementation in Section 5 and

show the experimental results in Section 6. We discuss the future directions in Section 7 and

conclude in Section 8.

2 RELATEDWORK
The Two Approaches. There has been a lot of effort in providing formal guarantees for programming

language tools such as compilers or deductive verifiers. At a high level, we may identify two

approaches. One approach is to formalize and prove the correctness of the entire tool. For example,

CompCert C [Leroy 2020] is a C compiler that has been formally verified to be exempt from

miscompilation issues. The other approach is to generate proof certificates on a case-by-case

basis for each run of the tool. For example, [Pnueli et al. 1998] presents the translation validation

technique to check the result of each compilation against the source program and [Parthasarathy

et al. 2021] presents an approach where successful runs of the Boogie verifier are validated using

Isabelle proofs. Our work belongs to the second approach, where proof certificates are generated

for each verification task carried out using K.
The first approach tends to yield proofs that are more technically involved and does not work

well on an existing tool implementation, and is often conducted on a new implementation that aims

at being correct-by-construction from the beginning. However, once it is done, it gives the highest

formal guarantee for the correctness of the entire tool, once and for all. Besides CompCert C that

we mentioned above, there is also CakeML [Kumar et al. 2014], which is an implementation of

Standard ML [Harper et al. 1986] that is formally verified in HOL4 [Slind and Norrish 2008]. In this

approach, the proof certificates are often written and proved in an interactive theorem prover such

as Coq [Coq Team 2021b] and Isabelle [Isabelle Team 2021], because they provide the expressive

power needed to state the correctness claims, which are often higher-order, in the sense that they

are quantified over all possible programs and/or inputs.

The other “case-by-case” approach generates simpler proof certificates and works better on an

existing tool implementation, compared to the above “once-and-for-all” approach. In this approach,

the proof certificates only relate the input and output of the language tool in question, without

needing to depend on the actual implementation of the tool. For example, the technique of translation

validation [Pnueli et al. 1998] checks the correctness of each compilation of an optimized compiler,

producing a verifying compiler, in contrast to a verified compiler such as CompCert C. Recently,

the idea was applied to not only compilers but also interpreters and deductive verifiers. For

example, [Chen et al. 2021a] generates proof certificates for a language-agnostic interpreter, where

each (concrete) execution of a program is certified by a machine-checkable mathematical proof.

[Parthasarathy et al. 2021] generates proof certificates for the intermediate verification language

(IVL) Boogie, where each transformation from programs to their verification conditions is certified.

[Garchery 2021] generates proof certificates for the Why3 verifier [Filliâtre and Paskevich 2013],

which is also equipped with an IVL to generate verification conditions. [Wils and Jacobs 2021]

generates proof certificates for the VeriFast verifier for C [Jacobs et al. 2011], where each successful

verification run is certified with respect to CompCert’s Clight big step semantics [Blazy and Leroy

2009]. There have also been works that generate proofs for the decision procedures in SMT solvers

to certify their correctness [Barrett et al. 2015; Necula and Lee 2000; Stump et al. 2013].

Both the once-and-for-all and case-by-case approaches provide the same (high) level of correct-

ness guarantee when it comes to one successful run of the tool. Our work follows the case-by-case
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approach, where proof certificates are generated for each successful verification run of the language-

agnostic deductive program verifier of K. Since our proof generation method is parametric in the

formal semantics of programming languages, it is language-agnostic.

Trust Base and Proof Checkers. There is an intrinsic distinction betweenmechanically proving/check-

ing/verifying the correctness of a tool and trusting that it is correct. Formal verification transfers the
trust on the system in question to that on the verifier, which in some cases can be more complex than

the system being verified. The system can itself be a verifier, which can then be verified/certified

further, following the once-and-for-all or case-by-case approaches above. Most state-of-the-art

verified/verifying tools, including ours, involve a large number of nontrivial logical transformations

and/or encodings of a formal system into another. In the end, they produce proof certificates that

can be automatically checked by a proof checker, which belongs to the trust base. The simpler and

smaller the proof checker is, the higher trustworthiness we achieve.

Most existing works use a proof assistant such as Coq [Coq Team 2021b] or Isabelle [Isabelle

Team 2021] to encode and check the final proof certificates. While proof assistants are commonly

used in specifying and reasoning about computer systems, they are complex artifacts. For example,

Coq has 200,000 lines of OCaml, and the safety-critical kernel still has 18,000 lines [Coq Team

2021a]. It means that if Coq is used as the final proof checker, there is at least 18,000 lines of OCaml

code to be trusted. It is difficult for us to find the statistics for other proof assistants and/or theorem

provers but we expect they are similar.

Metamath [Megill and Wheeler 2019], on the other hand, is a tiny language that can express

theorems in abstract mathematics, accompanied by proofs that can be checked by a program, called

a Metamath verifier. Internally, the Metamath verifier behaves like an automaton with a stack.

Axioms and theorems are associated with unique labels and a proof is a sequence of such labels.

To check a proof, one maintains a stack that is empty initially, scans the proof, and pushes/pops

the axioms and/or the hypotheses/conclusions of theorems accordingly. If in the end the stack

contains exactly one statement that is identical to the theorem being proved, the proof is checked.

In particular, it does not need to do any complex inference such as pattern matching or unification,

making proof checking very simple. As a result, Metamath has dozens of independently-developed

verifiers. [Megill and Wheeler 2019] lists 19 of them, some of which are very small: 550 lines of

C#, 400 lines of Haskell, 380 lines of Lua, and 350 lines of Python. As a proof-of-concept, we also

implemented a Metamath verifier in 740 lines of Rust [Wang 2022], which supports both regular

and compressed proofs, and used it in our experiments (see Section 6).

In our work, we use Metamath to encode the proof certificates. Also, we build on an existing

formalization of matching logic and its proof system (Figure 4) in 240 lines of Metamath code [K

Team 2022b]. As for what counts as the actual proof checker in our approach, there can be different

opinions, depending on whether Metamath is regarded as a programming language, or as another

calculus whose inference system is implemented in a mainstream language, on top of which the

proof system of matching logic is formalized. If Metamath is considered as a programming language,

our proof checker has 240 lines. Otherwise, our proof checker consists of the 240-line Metamath

definition plus an implementation of Metamath (550 lines of C#, 400 lines of Haskell, etc.), which in

total has fewer than 1000 lines.

In our (maybe biased) view, there is no reason to not regardMetamath as a programming language

like C# and Haskell. Metamath is much simpler than (almost) all programming languages. The fact

that Metamath has many independent implementations using different programming languages

makes it depend less on any particular programming language and its runtime environment, such

as compilers and underlying operating systems. Metamath is also bootstrapping, in the sense that

the executable of its own verifier (as a piece of machine code run on x86-64 Linux) is formally
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defined in Metamath itself [Carneiro 2020, Section 6]. What is the highest possible correctness

guarantee that we can expect from a proof checker? [Carneiro 2020] proposes five possible levels

to which we can prove the correctness of the checker, from the level of a logical rendering of the

code to that of the logic gates that make up the computer and even the fabrication process relative

to some electrical or physical model (although one may not want to do so because the result will be

too specific to that particular computer or digital setup). It is clearly out of the scope of this paper

to address all the above questions. The meta-point we want to make here is that proof checking

systems such as Metamath have perhaps not received the attention they deserve from the formal

verification and theorem proving community.

Finally, we should clarify that the proof checker is not the only code that needs to be trusted

with the current implementation of our approach. While we do eliminate the need to trust the

verification algorithm, which accounts for about 120,000 lines of Haskell code, we still need to trust

that the K frontend is generating the correct logical encoding of the reachability claims from the

user input. We shall discuss the trust base of K and how our work helps reduce it in Section 7.1 in

more detail.

3 OVERVIEW AND PRELIMINARIES
We give an overview of our approach and present the preliminaries on K, the language-agnostic
verification algorithm for proving one-path reachability claims, and matching logic, which is the

logical foundation of K.

3.1 Overview
There are four main steps to generate proof certificates for formal verification in K.

(1) Given the formal semantics of a programming language 𝐿 defined in K, we use an existing K
tool called kompile (see Figure 6) to compile the semantics into a matching logic theory Γ𝐿 ,
where the semantic rules for 𝐿 become axioms in Γ𝐿 .

(2) Given the program property being verified and all the necessary invariants as a set of

reachability claims as follows (see Section 3.3):

𝑅 = {𝜑1 ⇒reach 𝜓1, . . . , 𝜑𝑛 ⇒reach 𝜓𝑛}
we run the K verifier to verify all claims in 𝑅. Since the K verifier is language-agnostic, it

uses directly the formal language semantics Γ𝐿 to verify the claims. The main verification

algorithm, as shown in Algorithm 1, carries out symbolic execution and coinductive reasoning

to handle repetitive behaviors of the program.

(3) If the verification is successful, K outputs a proof hint that includes all the necessary informa-

tion for generating the proof certificate, such as the symbolic execution steps that have been

carried out. To generate the proof hint, we instrument theK verifier to obtain its intermediate

states during verification and then output the information in a YAML-like syntax.

(4) From the proof hint, we generate concrete proof steps using the matching logic proof system

(Figure 4) for all the reachability claims/judgments in 𝑅:

Γ𝐿 ⊢ 𝜑1 ⇒reach 𝜓1 . . . Γ𝐿 ⊢ 𝜑𝑛 ⇒reach 𝜓𝑛

We encode the entire proofs in Metamath [Megill and Wheeler 2019] which can be automati-

cally checked by any Metamath verifier.

Ourmain technical contribution is (4). These reachability claims are proved by the language-agnostic

verification algorithm of K (Algorithm 1), which implements one-path reachability reasoning [Roşu

et al. 2013] in Figure 3, which is a special case of matching logic reasoning [Chen and Roşu 2019a],

using the matching logic proof system in Figure 4. Therefore, our technical contribution is twofold:
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(a) we generate reachability logic proofs for successful runs of Algorithm 1; and (b) we prove all the

reachability logic proof rules using the matching logic proof system. The proofs in (a) are different

for each verification runs, while the proofs in (b) are fixed, because reachability logic has a fixed

set of proof rules. In other words, (b) is a direct but nontrivial mechanization of the theoretical

results in [Chen and Roşu 2019a, Section VIII] (see Remark 1). For (a), we further decompose it

into three parts: generating proofs for for symbolic execution, for pattern subsumption (i.e., logical

implications), and for coinduction. These will be discussed in Section 4. Combining (a) and (b), we

reduce Algorithm 1 to rigorous matching logic proofs using the matching logic proof system.

Our proof certificates for K are encoded in Metamath [Megill and Wheeler 2019], which is a

formal language to specify axioms and proof rules and construct machine-checkable proofs. This

way, our proof certificates can be directly checked by any third-party Metamath verifier [Levien and

Wheeler 2019; Megill and Wheeler 2019; O’Rear and Carneiro 2019]. On the other hand, Metamath

is only the format we use to encode proof certificates and is not necessary to understand the main

proof generation procedures in Section 4. All the theorems and lemmas in this paper have been

fully formalized/encoded in Metamath and their detailed proof steps have been completely worked

out and proof-checked. Readers can find the complete encoding and derivations of reachability

logic proof rules and all the lemmas in [Lin et al. 2022].

In the following, we present the preliminaries on:

(1) The K formal semantics framework where formal language semantics can be defined and

language tools can be automatically generated;

(2) One-path reachability logic [Ştefănescu et al. 2014; Roşu et al. 2013], which powers the

language-agnostic deductive verifier in K;
(3) Matching logic [Chen and Roşu 2019a; Roşu 2017], which is a simple logic that serves as the

logical foundation of K and subsumes one-path reachability logic.

3.2 K Framework
At a high level, K can be understood as a language for defining programming languages. From the

K definition of a programming language 𝐿, all language tools of 𝐿 are automatically generated by K.
In other words, language tools are implemented generically once and for all and then instantiated

by a language definition. A typical K definition of a programming language consists of three main

components:

(1) the concrete syntax of the programming language as a BNF grammar;

(2) the computation configurations of the programming language; and

(3) the operational semantics, defined as a set of rewrite rules.

3.2.1 An Example. Figure 2 shows an example K definition of the folklore language IMP, which

is a basic imperative language with a C-style syntax. There are two modules. Module IMP-SYNTAX

in the left column defines the concrete syntax of IMP while module IMP in the right column

defines the computation configurations—or simply called configurations—and the rewrite rules. In

IMP-SYNTAX, the grammar defines two syntactic categories: Exp for arithmetic expressions and Stmt

for statements, using the conventional BNF grammar. Production rules are separated by “|” or “>”.

The latter means that the previous rule has higher priority than the next rule. As an example, the

following rule

syntax Exp ::= Exp "+" Exp [left, strict]

in Figure 2 line 6 defines the syntax of the addition of two arithmetic expressions. K allows to

associate attributes with a production rule. The attribute [left] means left-associativity, so 𝑒1 + 𝑒2
+ 𝑒3 will be parsed as (𝑒1 + 𝑒2) + 𝑒3. The attribute [strict] refers to strict evaluation (a.k.a. eager
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1 module IMP-SYNTAX

2 imports DOMAINS

3 syntax Exp F
4 Int

5 | Id

6 | Exp "+" Exp [left, strict]

7 | Exp "-" Exp [left, strict]

8 | "(" Exp ")" [bracket]

9

10 syntax Stmt F
11 Id "=" Exp ";" [strict(2)]

12 | "if" "(" Exp ")" Stmt Stmt

13 [strict(1)]

14 | "while" "(" Exp ")" Stmt

15 | "{" Stmt "}" [bracket]

16 | "{" "}"

17 > Stmt Stmt [left, strict(1)]

18 endmodule

19 module IMP

20 imports IMP-SYNTAX

21 syntax KResult F Int

22 configuration ⟨ $PGM:Stmt, ·Map ⟩
23 // Variable lookup and assignment

24 rule ⟨𝐶 [𝑋 ], 𝑀 ⟩ ⇒ ⟨𝐶 [𝑀 (𝑋 )], 𝑀 ⟩
25 rule ⟨𝐶 [𝑋 = 𝐼 ], 𝑀 ⟩
26 ⇒ ⟨𝐶 [{}], 𝑀 [𝑋 ↦→ 𝐼 ] ⟩
27 // Arithmetic expression

28 rule 𝐼1 + 𝐼2 ⇒ 𝐼1 +Int 𝐼2
29 rule 𝐼1 - 𝐼2 ⇒ 𝐼1 −Int 𝐼2
30 // Control flow

31 rule {} 𝑆:Stmt ⇒ 𝑆

32 rule if (𝐼) 𝑆 _ ⇒ 𝑆 requires 𝐼 ≠ 0

33 rule if (0) _ 𝑆 ⇒ 𝑆

34 rule while (𝐵) 𝑆

35 ⇒ if (𝐵) { 𝑆 while(𝐵) 𝑆 } {}

36 endmodule

Fig. 2. Complete K Semantics of IMP (source file imp.k). Here, 𝑋 is a variable of sort Id, 𝐼 , 𝐼1, 𝐼2 are variables
of sort Int, and𝑀 is a variable of sort Map. 𝐶 denotes evaluation contexts, defined by the strictness attributes.

evaluation or call-by-value). It tells K that to evaluate 𝑒1 + 𝑒2 it must first evaluate both arguments

𝑒1 and 𝑒2 into values, say 𝑣1 and 𝑣2, and then evaluate 𝑣1 + 𝑣2 to 𝑣1 +Int 𝑣2 using the rewrite rule in

line 28; here +Int is the built-in arithmetic operation that adds two integers. The strictness attribute

[strict(1)] for the if-then-else statement in line 13 states that only the first argument (i.e., the

condition) should be evaluated. Both then- and else-branches should be frozen and kept unchanged.

In module IMP, we define the computation configurations of IMP and its semantic rules. A

configuration is a data structure that gathers all the semantic information that is needed for the

execution of a program. If we think of K as an abstract machine that can execute programs of a

programming language 𝐿, then configurations capture the states of that abstract machine. For IMP,

a configuration is simply a pair of an IMP program that is to be executed and a (program) state,

which is a mapping from program identifiers/variables to their values, as defined in line 22. Line 22

also specifies the initial configuration ⟨ $PGM:Stmt, ·Map ⟩, which consists of $PGM:Stmt—a special

variable that is bound to the program passed to K for execution—and the empty map ·Map.

The semantic rules in module IMP define a transition system over IMP configurations. For example,

line 24 defines the variable-lookup rule

rule ⟨𝐶 [𝑋 ], 𝑀 ⟩ ⇒ ⟨𝐶 [𝑀 (𝑋 )], 𝑀 ⟩

Intuitively, for any configuration where a program identifier 𝑋 appears within some evaluation

context 𝐶 and the map is𝑀 , rewrite 𝑋 to its value𝑀 (𝑋 ) and keep both the context 𝐶 and the map

𝑀 unchanged. In K, evaluation contexts are defined by strictness attributes. In other words, if 𝑋 is

the piece of code to be executed according to the evaluation order determined by the strictness

attributes, then apply the above variable-lookup to get its value𝑀 (𝑋 ). Similarly, in lines 25–26, we

have the variable-assignment rule

rule ⟨𝐶 [𝑋 = 𝐼 ], 𝑀 ⟩ ⇒ ⟨𝐶 [{}], 𝑀 [𝑋 ↦→ 𝐼 ] ⟩
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It says that if the assignment statement 𝑋 = 𝐼 appears within 𝐶 , rewrite it to the empty statement

{} and update the map𝑀 by assigning 𝑋 to 𝐼 .

When the map𝑀 is not relevant, we can omit it from the semantic rules. For example, in line 32

we have the if-statement rule

if (𝐼) 𝑆 _ ⇒ 𝑆 requires 𝐼 ≠ 0

K will automatically infer and complete the configuration and evaluation context, producing the

following equivalent semantic rule:

⟨𝐶 [if (𝐼) 𝑆], 𝑀 ⟩ ⇒ ⟨𝐶 [𝑆], 𝑀 ⟩ requires 𝐼 ≠ 0

3.2.2 K Process Overview. We now explain the process that K follows to generate the language

tools from a language definition. At a high level, the K process can be divided into the frontend
phase and the backend phase. In the frontend phase, a K language definition (such as imp.k in

Figure 2) is compiled into an intermediate representation called the Kore format by the tool kompile

(see Section 7.1 for more details). All the backend tools are then based on the Kore representation

of the language definition. In this paper, the following two backend tools are relevant:

• krun, which supports concrete and symbolic/abstract execution of programs;

• kprove, which supports formal verification of program claims.

We explain krun in the following and kprover in Section 3.3.

Since semantic rules in K are rewrite rules, program execution means rewriting. To execute a

program 𝑃 , the K interpreter krun firstly constructs an initial configuration for 𝑃 . Then it looks for

a semantic rule whose left-hand side is matched by the configuration and applies the rule. One

such match-and-apply cycle accounts for one step of program execution. This process is repeated

until no semantic rules are applicable, and then the execution terminates.

Example 1 (Concrete Execution). Consider the IMP program

SUM10 ≡ n = 10; s = 0; while (n) { s = s + n; n = n - 1; }

which computes the sum 1 + · · · + 10. To execute this program in K, we put it in a source file

sum-10.imp and pass it to krun. Following Figure 2 line 22, krun constructs the initial configuration

⟨ SUM10, ·Map ⟩, which contains the program and the empty map. Then, krun matches and applies the

semantic rules in Figure 2 until termination, generating the following execution path:

⟨ SUM10, ·Map ⟩ ⇒exec · · · ⇒exec ⟨ {}, {s ↦→ 55, n ↦→ 0} ⟩
The final configuration ⟨ {}, {s ↦→ 55, n ↦→ 0} ⟩ is the output of krun. As expected, SUM10 has been
fully executed and the value of s is 55.

Example 2 (Symbolic Execution). Consider the following program with a symbolic value 𝑛:

SUM(𝑛) ≡ n = 𝑛; s = 0; while (n) { s = s + n; n = n - 1; } (2)

By applying the semantic rules symbolically, K carries out symbolic execution. Unlike concrete
execution, symbolic execution creates branches. For example, after K encounters the while-loop, it

splits the execution into two branches, depending on whether 𝑛 is zero:

(⟨ {}, {s ↦→ 0, n ↦→ 0} ⟩ ∧ 𝑛 = 0) ∨ (⟨ UNROLLED, {s ↦→ 0, n ↦→ 𝑛} ⟩ ∧ 𝑛 ≠ 0) (3)

where 𝑛 = 0 and 𝑛 ≠ 0 are called path conditions, and UNROLLED is the unfolded loop:

UNROLLED ≡ s = s + n; n = n - 1; while (n) { s = s + n; n = n - 1; }
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T |= 𝜑 → 𝜑 ′ 𝐴 ⊢reach𝐶 𝜑 ′ ⇒ 𝜓 ′ T |= 𝜓 ′ → 𝜓
(Consequence)

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜓

𝜑 ⇒ 𝜓 ∈ 𝐴
(Axiom)

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜓

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜓 𝑥 ∉ FV(𝜓 )
(Abstraction)

𝐴 ⊢reach𝐶 (∃𝑥 . 𝜑) ⇒ 𝜓

(Reflexivity)

𝐴 ⊢reach∅ 𝜑 ⇒ 𝜑

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜑 ′ 𝐴 ∪𝐶 ⊢reach∅ 𝜑 ′ ⇒ 𝜓
(Transitivity)

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜓

𝐴 ⊢reach
𝐶∪{𝜑⇒𝜓 } 𝜑 ⇒ 𝜓

(Circularity)

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜓

𝐴 ⊢reach𝐶 𝜑 ⇒ 𝜓 𝐴 ⊢reach𝐶 𝜑 ′ ⇒ 𝜓
(Case Analysis)

𝐴 ⊢reach𝐶 𝜑 ∨ 𝜑 ′ ⇒ 𝜓

Fig. 3. One-Path Reachability Logic Proof System. We abbreviate⇒reach as⇒. In (Consequence), T denotes
the standard configuration model (see [Roşu et al. 2013]), relatively to which the logic is complete.

Unless we bound the variable 𝑛, symbolic execution as above does not terminate. Instead, K
generates a growing disjunction of branches with path conditions 𝑛 = 0, 𝑛 − 1 = 0, . . . , 𝑛 − 𝑘 =

0, 𝑛 − 𝑘 ≠ 0, where 𝑘 is the number of times the loop is unfolded.

3.3 Language-Agnostic Verification using One-Path Reachability Logic
Using the same formal language semantics for program execution,K supports sound and (relatively)

complete deductive verification, using a formal calculus called one-path reachability logic [Roşu et al.
2013]. A verification problem is specified by a one-path reachability formula 𝜑 ⇒reach 𝜓 , where

𝜑 and𝜓 are conjunctions of configurations and path conditions such as Equation (3). Intuitively,

𝜑 ⇒reach 𝜓 states that 𝜑 rewrites to 𝜓 on some execution path or it is divergent (i.e., it has an

infinite execution path). It is therefore reminiscent of the partial correctness interpretation of a

Hoare triple [Hoare 1969], except that reachability formulas are language-agnostic and reachability

logic reasoning (Figure 3) is based on (and is parametric in) the formal semantics.

To prove reachability formulas,K uses two proof techniques: symbolic execution and coinductive

circular reasoning. When symbolic execution does not terminate (e.g. for SUM), coinduction is used

to generalize and prove certain repetitive patterns in the (potentially infinite) rewriting trace. These

two proof techniques are embodied in reachability logic using a sound and relatively complete

proof system, shown in Figure 3. The proof system has 7 language-agnostic proof rules that derive

reachability judgments of the form 𝐴 ⊢reach
𝐶

𝜑 ⇒reach 𝜓 where 𝐴 (axioms) and 𝐶 (circularities) are
two sets of reachability formulas. In the beginning,𝐴 includes all the semantic rules and𝐶 is empty.

As the proof proceeds, the current formula being proved can be added to 𝐶 using (Circularity) and

then flushed into 𝐴 by (Transitivity) after at least one execution step.

For example, the program SUM in Equation (2) and its loop invariant can be specified by

𝐴 ⊢reach∅ ⟨ SUM(𝑛), ·Map ⟩ ⇒reach ⟨ {}, {s ↦→ Σ𝑛𝑖=1𝑖, n ↦→ 0} ⟩ (4)

𝐴 ⊢reach∅ ⟨ LOOP, {s ↦→ 𝑠, n ↦→ 𝑛} ⟩ ⇒reach ⟨ {}, {s ↦→ 𝑠 + Σ𝑛𝑖=1𝑖, n ↦→ 0} ⟩ (5)

where𝐴 is the set of all the semantic rules of IMP and LOOP ≡ while (n) { s = s + n; n = n - 1; }.

To prove Equation (4), we first perform symbolic execution on its left-hand side using the proof

rules (Axiom), (Transitivity), and (Case Analysis) in Figure 3. Then, the proof goal is reduced to

𝐴 ⊢reach∅ ⟨ LOOP, {s ↦→ 0, n ↦→ 𝑛} ⟩ ⇒reach ⟨ {}, {s ↦→ Σ𝑛𝑖=1𝑖, n ↦→ 0} ⟩
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which can be proved by the loop invariant.

To prove the loop invariant eq. (5), we first add it to𝐶 using (Circularity) so we can use it later as an

axiom. Then, we symbolically execute the left-hand side, which results in a split into two execution
branches, depending on whether 𝑛 = 0 or not. If 𝑛 = 0, the loop condition fails and the symbolic

execution will terminate. We only need to calculate the (symbolic) terminating configuration and

prove that it satisfies the right-hand side of the reachability formula. If 𝑛 ≠ 0, we symbolically

execute the loop body once and obtain ⟨ LOOP, {s ↦→ 𝑠 + 𝑛, n ↦→ 𝑛 − 1} ⟩ ∧ 𝑛 ≠ 0, where LOOP shows

up again. Since we have made at least one execution, the (Transitivity) proof rule flushes the loop

variant from𝐶 to 𝐴 as an axiom, which can then be used to prove the unfolded loop, where 𝑠 and 𝑛

are instantiated by 𝑠′ = 𝑠 +𝑛 and 𝑛′ = 𝑛− 1, respectively. Then, we only need to prove the following

implication (called subsumption) using an SMT solver:

⟨ {}, {s ↦→ 𝑠′ + Σ𝑛
′
𝑖=1𝑖, n ↦→ 0} ⟩ ∧ 𝑛′ ≠ 0 → ⟨ {}, {s ↦→ 𝑠 + Σ𝑛𝑖=1𝑖, n ↦→ 0} ⟩

Thus, we conclude the verification. All the above reasoning has been fully automated in K except

the proposal of the loop invariant, which is provided by the users.

To conclude,K uses reachability logic to verify reachability properties of programs, using directly

the formal semantics of the programming language. At a high level, reachability logic reasoning

consists of symbolic execution and coinductive circular reasoning, as formalized by the reachability

logic proof system in Figure 3.

3.4 Matching Logic: The Logical Foundation of K
Matching logic was proposed in [Roşu and Schulte 2009] as a means to specify and reason about

programs compactly and modularly. It was developed in a series of works [Chen and Roşu 2019a,

2020; Roşu 2017] and finalized in [Chen et al. 2021b]. Matching logic is the logical foundation of

K, in the sense that every language definition in K can be translated to a matching logic theory

and all reasoning performed by K can be reduced to matching logic formal reasoning. In particular,

reachability logic reasoning is a special case of matching logic reasoning [Chen and Roşu 2019a].

In this section, we introduce matching logic and show how program execution and deductive

verification (i.e., reachability formulas) can be specified in matching logic.

Matching Logic Syntax and Semantics. We fix two sets of variables 𝐸𝑉 and 𝑆𝑉 . 𝐸𝑉 is a set of element
variables, whose elements are denoted 𝑥 , 𝑦, . . . , while 𝑆𝑉 is a set of set variables, whose elements

are denoted 𝑋 , 𝑌 , . . .Matching logic formulas, called patterns, are inductively defined as follows:

Definition 3.1. A (matching logic) signature Σ is a set of (constant) symbols. The set of Σ-patterns,
or simply patterns, is inductively defined by the following grammar

𝜑,𝜓 ∈ PatternF 𝑥 ∈ 𝐸𝑉 | 𝑋 ∈ 𝑆𝑉 | 𝜎 ∈ Σ | 𝜑 𝜓 | ⊥ | 𝜑 → 𝜓 | ∃𝑥 . 𝜑 | 𝜇𝑋 . 𝜑
where the pattern 𝜑 𝜓 is called an application, and for the least fixpoint pattern 𝜇𝑋 . 𝜑 , we require

that𝜑 has no negative occurrences of𝑋 . Other propositional connectives⊤,¬,∨,∧ can be defined as

derived constructs as usual. Furthermore, we define ∀𝑥 . 𝜑 ≡ ¬∃𝑥 .¬𝜑 and 𝜈𝑋 . 𝜑 ≡ ¬𝜇𝑋 .¬𝜑 [¬𝑋/𝑋 ].

Intuitively, a pattern is a set of elements that match it. For example, ⊥ is interpreted as the empty

set, ⊤ is interpreted as the total set (of any given model), and 𝜑 ∨𝜓 (resp. 𝜑 ∧𝜓 ) is interpreted as

the union (resp. intersection) of the interpretations of 𝜑 and𝜓 . Application is used to build terms

and structures. For example, 𝑓 (𝑎, 𝑏) can be expressed as ((𝑓 𝑎) 𝑏), where the symbol 𝑓 is applied

to 𝑎, and then applied to 𝑏, like in functional programming languages. In terms of semantics, an

application pattern, just like other patterns, is matched by a set of elements. The least fixpoint

pattern 𝜇𝑋 . 𝜑 is the smallest fixpoint (ordered by set inclusion) of 𝜑 with respect to 𝑋 . In other

words, it is the smallest solution of the equation 𝑋 = 𝜑 .
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FOL

Rules



(Propositional 1) 𝜑 → (𝜓 → 𝜑)
(Propositional 2) (𝜑 → (𝜓 → 𝜃 ))

→ ((𝜑 → 𝜓 ) → (𝜑 → 𝜃 ))
(Propositional 3) ((𝜑 → ⊥) → ⊥) → 𝜑

(Modus Ponens)

𝜑 𝜑 → 𝜓

𝜓

(∃-Quantifier) 𝜑 [𝑦/𝑥] → ∃𝑥 . 𝜑

(∃-Generalization)
𝜑 → 𝜓

𝑥 ∉ 𝐹𝑉 (𝜓 )
(∃𝑥 . 𝜑) → 𝜓

Fixpoint

Rules


(Prefixpoint) 𝜑 [(𝜇𝑋 . 𝜑)/𝑋 ] → 𝜇𝑋 . 𝜑

(Knaster-Tarski)

𝜑 [𝜓/𝑋 ] → 𝜓

(𝜇𝑋 . 𝜑) → 𝜓

Frame

Rules



(Propagation⊥) 𝐶 [⊥] → ⊥
(Propagation∨) 𝐶 [𝜑 ∨𝜓 ] → 𝐶 [𝜑] ∨𝐶 [𝜓 ]
(Propagation∃) 𝐶 [∃𝑥 . 𝜑] → ∃𝑥 .𝐶 [𝜑]

where 𝑥 ∉ 𝐹𝑉 (𝐶)

(Framing)

𝜑 → 𝜓

𝐶 [𝜑] → 𝐶 [𝜓 ]

Technical

Rules


(Existence) ∃𝑥 . 𝑥
(Singleton) ¬(𝐶1 [𝑥 ∧ 𝜑] ∧𝐶2 [𝑥 ∧ ¬𝜑])

(Substitution)

𝜑

𝜑 [𝜓/𝑋 ]

Fig. 4. Matching Logic Proof System (where𝐶,𝐶1,𝐶2 denote patterns that have a single placeholder variable□
that appears only within nested symbol applications (and not logical connectives).We denote𝐶 [𝜑] ≡ 𝐶 [𝜑/□]).

We denote the free variables in 𝜑 by FV(𝜑), and capture-free substitution by 𝜑 [𝜓/𝑥] and 𝜑 [𝜓/𝑋 ].

Example 3 (K Configurations). K configurations can be represented using matching logic patterns.

For example, the constrained configuration ⟨ SUM(𝑛), ·Map ⟩ ∧𝑛 ≥ 0 from Section 3.2 is a conjunction

of two patterns. The first pattern is a term ⟨ SUM(𝑛), ·Map ⟩, which is the symbol ⟨⟩ ∈ Σ applied to the

program SUM(𝑛) and the empty map ·Map. The second pattern is the logical constraint 𝑛 ≥ 0. The

resulting conjunction is therefore matched by all concrete configurations of the specified structure

where the symbolic value 𝑛 ≥ 0.

Matching Logic Proof System. Matching logic has a Hilbert-style proof system, shown in Figure 4.

The proof system defines the provability relation Γ ⊢ 𝜑 , which means that there exists a formal

proof of 𝜑 using the proof system. Γ is a set of patterns added as additional axioms, which we call a

matching logic theory. All matching logic proof rules fall into 4 categories: FOL reasoning, frame

reasoning, fixpoint reasoning, and some technical rules that are needed to certain completeness

results (such as [Chen and Roşu 2019a, Theorem 16]). For FOL reasoning, matching logic includes the

complete proof rules for FOL (see, e.g., [Shoenfield 1967]). The frame rules enable frame reasoning,
such as lifting a local implication ⊢ 𝜑 → 𝜓 to an application context ⊢ 𝐶 [𝜑] → 𝐶 [𝜓 ]. The fixpoint
rules support the standard fixpoint reasoning as in modal 𝜇-calculus [Kozen 1983].

Fixpoint reasoning is particularly important in our work. In matching logic, the least fixpoint

pattern 𝜇𝑋 . 𝜑 is interpreted as the smallest set𝑋 such that the equation𝑋 = 𝜑 holds (𝜑 may include

recursive occurrences of𝑋 ), and 𝜈𝑋 . 𝜑 is interpreted as the largest such set. Therefore, the following

standard fixpoint reasoning rules are sound [Chen and Roşu 2019b, Lemma 85]:

(𝜇-Fixpoint) 𝜇𝑋 . 𝜑 ↔ 𝜑 [(𝜇𝑋 . 𝜑)/𝑋 ]
𝜑 [𝜓/𝑋 ] → 𝜓

(KT)

𝜇𝑋 . 𝜑 → 𝜓

(𝜈-Fixpoint) 𝜈𝑋 . 𝜑 ↔ 𝜑 [(𝜈𝑋 . 𝜑)/𝑋 ]
𝜓 → 𝜑 [𝜓/𝑋 ]

(KT𝜈 )
𝜓 → 𝜈𝑋 . 𝜑

Intuitively, (𝜇-Fixpoint) and (𝜈-Fixpoint) state that 𝜇𝑋 . 𝜑 and 𝜈𝑋 . 𝜑 are indeed fixpoints. The (KT) and

(KT𝜈 ) proof rules are a direct logical incarnation of the Knaster-Tarski fixpoint theorem [Tarski

1955] in matching logic, making inductive/coinductive reasoning sound. The coinductive reasoning

used by the K deductive verifier (Section 3.3), for example, is a special case of fixpoint reasoning.

Any coinductive proofs thatK carries out during verification can and should be reduced to the more
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basic matching logic proof rules such as (KT𝜈 ). This way, we reduce the complex and error-prone

verification algorithms into simpler, machine-checkable matching logic proofs.

K Definitions as Matching Logic Theories. The K definition of a programming language 𝐿 derives a

matching logic theory Γ𝐿 , where the syntax of 𝐿 is represented by matching logic symbols and the

semantics is captured by axioms translated from the semantics rules such as those in Figure 2. To

define semantic/rewrite rules, we first define the (one-step) transition relation. Let us introduce

a new symbol • ∈ Σ, called one-path next. Intuitively, for any configuration 𝛾 , the pattern •𝛾 is

matched by all configurations 𝛾 ′ such that 𝛾 ′ rewrites to 𝛾 in one step (i.e., 𝛾 ′ satisfies “next” 𝛾 ).
Then, one-step rewriting is defined using the following pattern:

𝜑 ⇒1

exec 𝜓 ≡ 𝜑 → •𝜓 // one-step rewriting

One-step rewriting states that for any 𝛾 matching 𝜑 , there exists 𝛾 ′ matching𝜓 , such that 𝛾 rewrites

to 𝛾 ′. Therefore, one-step rewriting captures one-step program execution. Then, we can define the

reflexive and/or transitive closures of one-step rewriting using fixpoints:

♢𝜑 ≡ 𝜇𝑋 . 𝜑 ∨ •𝑋 // “eventually”

𝜑 ⇒exec 𝜓 ≡ 𝜑 → ♢𝜓 // “rewriting”

𝜑 ⇒+
exec 𝜓 ≡ 𝜑 → •♢𝜓 // “rewriting (at least one step)”

Intuitively, ♢𝜑 is matched by all the configurations that can reach 𝜑 in finitely many steps. Hence

⇒exec means zero or more steps of rewriting, and ⇒+
exec means one or more steps of rewriting.

Example 4 (Concrete/Symbolic Execution). In the SUM example in Section 3.2, we explain both

concrete and symbolic execution. In matching logic, they are formalized as follows:

ΓIMP ⊢ ⟨ SUM10, ·Map ⟩ ⇒exec ⟨ {}, {s ↦→ 55, n ↦→ 0} ⟩
ΓIMP ⊢ ⟨ SUM(𝑛), ·Map ⟩ ⇒exec (⟨ {}, {s ↦→ 0, n ↦→ 0} ⟩ ∧ 𝑛 = 0) ∨

(⟨ UNROLLED, {s ↦→ 0, n ↦→ 𝑛} ⟩ ∧ 𝑛 ≠ 0)

where ΓIMP
is the formal definition of IMP in matching logic and 𝑛 is a free element variable.

Formal deductive verification is specified using reachability relations, which extends the rewriting

relations by allowing infinite execution paths:

♢𝑤𝜑 ≡ 𝜈𝑋 . 𝜑 ∨ •𝑋 // “weak-eventually”

𝜑 ⇒reach 𝜓 ≡ 𝜑 → ♢𝑤𝜓 // “reachability”

𝜑 ⇒+
reach 𝜓 ≡ 𝜑 → •♢𝑤𝜓 // “reachability (at least one step)”

where ♢𝑤𝜑 , calledweak-eventually, is matched by any configurations that match ♢𝜑 or are divergent

[Chen and Roşu 2019b, Proposition 115 (20)]. This encoding captures partial correctness.

Example 5 (Deductive Verification). The correctness of SUM in Equation (4) is formalized as:

ΓIMP ⊢ ⟨ SUM(𝑛), ·Map ⟩ ⇒reach ⟨ {}, {s ↦→ 𝑛(𝑛 + 1)/2, n ↦→ 0} ⟩

Reachability proof rules (Figure 3) can be derived using the matching logic proof system (Figure 4).

In other words, they are derived theorems in matching logic. More specifically, a reachability

judgment 𝐴 ⊢reach
𝐶

𝜑 ⇒ 𝜓 is encoded as the following pattern [Chen and Roşu 2019a, Section VIII]:∧
(𝜓1⇒𝜓2 ) ∈𝐴

□
(
∀FV(𝜓1,𝜓2).𝜓1 ⇒+

reach 𝜓2

)
︸                                              ︷︷                                              ︸

rules in 𝐴 always hold, and thus we use “□”

∧
∧

(𝜓1⇒𝜓2 ) ∈𝐶
◦□

(
∀FV(𝜓1,𝜓2).𝜓1 ⇒+

reach 𝜓2

)
︸                                                ︷︷                                                ︸
rules in𝐶 hold if any step is made, so we use “◦□”

→
(
𝜑 ⇒△

reach 𝜓
)
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1 procedure proveAllClaims(𝑅)

2 foreach 𝜑 ⇒reach 𝜑
′ ∈ 𝑅 do

3 if proveOneClaim(𝑅, 𝜑 ⇒reach 𝜑
′) = failure then return failure;

4 return success;

5 // a nondeterministic algorithm for proving one reachability claim
6 procedure proveOneClaim(𝑅, 𝜑 ⇒reach 𝜑

′)
7 if Γ𝐿 ⊢ 𝜑 → 𝜑 ′ then return success;
8 𝑄 ≔ successors(𝜑);

9 while 𝑄 ≠ ∅ do
10 𝜓front ≔ choose(𝑄); // a nondeterministic choice
11 if Γ𝐿 ⊢ 𝜓front → 𝜑 ′ then return success;
12 else 𝑄 ≔ successors𝑅(𝜓front);

13 return failure;
Algorithm 1: Algorithm for proving one-path reachability claims. The input 𝑅 is a set of

reachability claims that are to be proved altogether. proveAllClaims calls proveOneClaim on every

claim in 𝑅. proveOneClaim is presented as a nondeterministic algorithm with a nondeterministic

“choose” operator at line 10. The verification is successful if there exists one successful run of

the algorithm. Both successors (line 8) and successors𝑅 (line 12) calculate all the successors of

a given configuration. successors uses only the formal semantics in Γ𝐿 while successors𝑅 uses

both the semantic rules and the claims in 𝑅. This is sound because at least one real semantic

step has been made in line 8; see Appendix A for details about the soundness proof. One-path

reachability logic reasoning is implemented in K but is not published. To make the paper

self-contained we re-present the algorithm and its soundness proof.

where⇒△
is⇒+

if𝐶 ≠ ∅ and⇒ otherwise. Intuitively, it means that to move the circularities in𝐶

to the axiom set 𝐴, we need to make at least one step using the semantics. The operators “□” and

“◦” are defined in the usual way:

◦𝜑 ≡ ¬•¬𝜑 // “all-path next” □𝜑 ≡ 𝜈𝑋 . 𝜑 ∧ ◦𝑋 // “always”

In this work, we use the above matching logic encoding of one-path reachability claims.

4 GENERATING PROOF CERTIFICATES FOR K’S VERIFICATION TOOL
In this section, we describe in detail how to generate matching logic proof certificates for the

language-agnostic program verifier in K. We first review the verification algorithm (Algorithm 1)

that automates the reachability proof rules in Figure 3. Then, we describe the main procedures

for proof certificate generation, including those for symbolic execution (Section 4.2), pattern

subsumption (Section 4.3), and coinductive reasoning (Section 4.4).

4.1 Overview of the K Verification Algorithm
We show the language-agnostic verification algorithm of K in Algorithm 1, which is an optimized

implementation of the reachability proof rules in Figure 3. The input 𝑅 is a set of reachability

claims to be verified, including the necessary invariant claims. The algorithm consists of two

procedures: proveAllClaims and proveOneClaim. The first calls the latter on every input claim. The

procedure proveOneClaim starts by checking the subsumption Γ𝐿 ⊢ 𝜑 → 𝜑 ′
. If it holds, then the

claim 𝜑 ⇒reach 𝜑
′
is trivially true. If the direct subsumption is false, we perform symbolic execution

for one step from 𝜑 to get a set 𝑄 of all its successors. If 𝑄 ≠ ∅, the algorithm nondeterministically
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chooses a frontier pattern𝜓front from𝑄 and checks whether𝜓front satisfies 𝜑
′
. If yes, the verification

succeeds (line 11). Otherwise, the algorithm symbolically executes 𝜓front and continues with its

successors (line 12), following both the semantic rules and the claims in 𝑅. This is sound because in

line 8, before the while loop, we have computed the successors of 𝜑 using only the semantic rules.

Immediately after that, when we entered the loop for the first time, we chose one successor of 𝜑 ,

say 𝜑𝑠 (line 10). Therefore, we have Γ
𝐿 ⊢ 𝜑 ⇒+

reach 𝜑𝑠 . Since at least one execution step has been

made, the (Transitivity) rule in Figure 3 moves all the circularity claims (i.e., the claims in 𝑅) to the

axiom set so they can be used as semantic axioms in computing further successors (line 12). See

Appendix A for the soundness proof.

In this work we only consider verifying reachability claims on one path, known as one-path
reachability [Roşu et al. 2013]. The procedure proveOneClaim nondeterministically chooses a frontier

pattern𝜓front from all the possible successors in𝑄 (see line 10), which amounts to looking for the one

execution path that satisfies the reachability claim. Therefore, proveOneClaim is successful if there

exists a successful run, in which case a particular execution trace is found as the witness of the claim

being verified. Based on this execution trace, we can generate a matching logic proof certificate. On

the other hand, proveOneClaim fails if there is no successful run. A deterministic implementation of

proveOneClaim will require backtracking for all the nondeterministic choice(s) in line 10. In this

work we consider proof generation for successful verification runs so we always assume that there is

a successful run of line 10. Finally, the procedure proveAllClaims calls proveOneClaim on all claims

in 𝑅 and the entire verification is successful if proveAllClaims is successful.

Before we get into the technical detail of proof generation, we explain the difference between

verifying one-path and all-path reachability claims. As we have seen, a one-path reachability claim

𝜑 ⇒reach 𝜑
′
states the existence of one execution path that satisfies 𝜑 ′

(or is divergent, due to

the partial-correctness semantics). However, for concurrent and nondeterministic programs, we

often want to verify that all execution paths satisfy 𝜑 ′
, which motivates all-path reachability logic

[Ştefănescu et al. 2014, 2016]. The verification of all-path reachability claims is supported by a

modified version of Algorithm 1 where the nondeterministic choice in line 10 is eliminated and all
execution paths are checked (see Appendix B for a detailed comparison). In terms of proof systems,

all-path reachability logic extends one-path reachability logic with an extra axiom called (Step) (see

Section 7.2). The (Step) axiom derives all-path reachability claims from the (one-path) semantic rules

in Γ𝐿 and thus serves as the basis of verifying all-path claims. However, the current K pipeline that

translates K into matching logic is incomplete and the matching logic theory Γ𝐿 does not have
the (Step) axiom. Thus in this work, we only consider proof generation for one-path reachability

reasoning.

Our goal is to generate matching logic proof certificates for Algorithm 1. For clarity, we divide it

into three proof generation procedures:

• Generating proofs for symbolic execution (corresponding to lines 8 and 12);

• Generating proofs for pattern subsumption (corresponding to line 11);

• Generating proofs for coinductive reasoning (corresponding to the use of 𝑅 in line 12).

We discuss these proof generation procedures in the following.

4.2 Generating Proofs for Symbolic Execution
We use Γ𝐿 to denote the matching logic theory of the formal semantics of a language 𝐿.

Problem Formulation. Consider the following K language definition, which consists of 𝐾 (condi-

tional) rewrite rules:

{lhs𝑘 ∧ 𝑞𝑘 ⇒1

exec rhs𝑘 | 𝑘 = 1, 2, . . . , 𝐾} ⊆ Γ𝐿
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where lhs𝑘 represents the left-hand side of the rewrite rule, rhs𝑘 represents the right-hand side,

and 𝑞𝑘 denotes the rewriting condition. Unconditional rules can be regarded as conditional rules

where 𝑞𝑘 is ⊤. The notation⇒1

exec stands for one-step execution, defined in Section 3.4.

In symbolic execution, program configurations often appear with their corresponding path con-
ditions. We represent them as 𝑡 ∧𝑝 , where 𝑡 is a configuration and 𝑝 is a logical constraint/predicate

over the free variables of 𝑡 . We call such patterns constrained terms. Constrained terms are matching

logic patterns.

Unlike concrete execution, symbolic execution can create branches. Therefore, we formulate

proof generation for symbolic execution as follows. The input is an initial constrained term 𝑡 ∧ 𝑝
and a list of final constrained terms 𝑡1 ∧ 𝑝1, . . . , 𝑡𝑛 ∧ 𝑝𝑛 , which are returned by K as the result(s) of

symbolic executing 𝑡 under the condition 𝑝 . Each 𝑡𝑖 ∧ 𝑝𝑖 represents one possible execution trace.

Our goal is to generate a proof for the following goal:

Γ𝐿 ⊢ 𝑡 ∧ 𝑝 ⇒exec (𝑡1 ∧ 𝑝1) ∨ · · · ∨ (𝑡𝑛 ∧ 𝑝𝑛) (Goal)

In other words, here we are certifying the correctness of the successors (and successors𝑅) methods

used by Algorithm 1, by proving that Γ𝐿 ⊢ 𝜑 ⇒exec successors(𝜑), which further implies Γ𝐿 ⊢
𝜑 ⇒reach successors(𝜑).

Proof Hints. To help generating the proof of (Goal), we instrument K to output proof hints, which
include rewriting details such as the semantic rules that are applied and the substitutions that are

used. Formally, the proof hint for the 𝑗-th rewrite step consists of:

• a constrained term 𝑡hint𝑗 ∧ 𝑝hint𝑗 that represents the configuration before step 𝑗 ;

• 𝑙 𝑗 constrained terms 𝑡hint
𝑗,1

∧ 𝑝hint
𝑗,1
, .., 𝑡hint

𝑗,𝑙 𝑗
∧ 𝑝hint

𝑗,𝑙 𝑗
that represent the configurations after step 𝑗 ,

where for each 1 ≤ 𝑙 ≤ 𝑙 𝑗 , we also annotate it with an index 1 ≤ 𝑘 𝑗,𝑙 ≤ 𝐾 that refers to the

𝑘 𝑗,𝑙 -th semantic rule in Γ𝐿 and a substitution 𝜃 𝑗,𝑙 ;

• an (optional) constrained term 𝑡 rem𝑗 ∧ 𝑝rem𝑗 , where 𝑝rem𝑗 ≡ 𝑝hint𝑗 ∧¬
(
𝑝hint
𝑗,1

∨ · · · ∨ 𝑝hint
𝑗,𝑙 𝑗

)
, called

the remainder of step 𝑗 , representing the part/fragment of the original configuration that

“gets stuck”.

Intuitively, each constrained term 𝑡hint
𝑗,𝑙

∧𝑝hint
𝑗,𝑙

represents one execution branch, obtained by applying

the 𝑘 𝑗,𝑙 -th semantic rule (i.e., lhs𝑘 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙 ⇒1

exec rhs𝑘 𝑗,𝑙 ) using substitution 𝜃 𝑗,𝑙 . The remainder

𝑡 rem𝑗 ∧ 𝑝rem𝑗 denotes the branch where no semantic rules can be applied further and thus the

execution gets stuck. Note that 𝑡hint𝑗 and 𝑡 rem𝑗 may not be syntactically identical, even if no execution

has been made. This is because the path condition 𝑝rem𝑗 is stronger than the original condition 𝑝hint𝑗 .

With this stronger path condition, K can simplify 𝑡hint𝑗 further to 𝑡 rem𝑗 .

From the above proof hint, we can generate the proof for one symbolic execution step. For

example, the following specifies the 𝑗-th symbolic execution step:

Γ𝐿⊢
(
𝑡hint𝑗 ∧ 𝑝hint𝑗

)
⇒exec

(
𝑡hint𝑗,1 ∧ 𝑝hint𝑗,1

)
∨. . .∨

(
𝑡hint
𝑗,𝑙 𝑗

∧ 𝑝hint
𝑗,𝑙 𝑗

)
∨
(
𝑡 rem𝑗 ∧ 𝑝rem𝑗

)
(Step𝑗 )

Recall that⇒exec is the reflexive and transitive closure of the one-step execution relation, so the

remainder configuration can appear at the right-hand side even if no execution step has been made

on that branch. To prove (Step𝑗 ), we need to prove the correctness of each execution branch, for

1 ≤ 𝑙 ≤ 𝑙 𝑗 :
Γ𝐿 ⊢

(
𝑡hint𝑗 ∧ 𝑝hint

𝑗,𝑙

)
⇒1

exec

(
𝑡hint
𝑗,𝑙

∧ 𝑝hint
𝑗,𝑙

)
(Branch𝑗,𝑙 )

And for the remainder branch, we need to prove

Γ𝐿 ⊢
(
𝑡hint𝑗 ∧ 𝑝rem𝑗

)
→

(
𝑡 rem𝑗 ∧ 𝑝rem𝑗

)
(Remainder𝑗 )
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Proof Generation. Therefore, the proof goal (Goal) for symbolic execution is proved in three phases:

Phase 1. Prove (Branch𝑗,𝑙 ) and (Remainder𝑗 ) for each step 𝑗 and branch 1 ≤ 𝑙 ≤ 𝑙 𝑗 .
Phase 2. Combine (Branch𝑗,𝑙 ) and (Remainder𝑗 ) to obtain a proof of (Step𝑗 ).

Phase 3. Combine (Step𝑗 ) to obtain a proof of (Goal).

Remark 1 (Lemmas and Their Mechanized Proofs in Metamath). We need many lemmas about

the program execution relation “⇒exec” when we generate proof certificates for symbolic execution.

The most important and relevant lemmas are stated explicitly in this paper. In total, 196 new lemmas

are formally encoded, and their proofs have been completely worked out based on the Metamath

formalization of the matching logic proof system [Chen et al. 2021a; K Team 2022b], as a part of

the new contribution of the paper. These lemmas can be easily reused for future development.

In the following, we explain each proof generation step.

Phase 1: Proving (Branch𝑗,𝑙 ) and (Remainder𝑗 ). Recall that (Branch𝑗,𝑙 ) is obtained by applying

the 𝑘 𝑗,𝑙 -th semantic rule from the language semantics (where 1 ≤ 𝑘 𝑗,𝑙 ≤ 𝐾 ):

lhs𝑘 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙 ⇒1

exec rhs𝑘 𝑗,𝑙
From the proof hint, we know that the corresponding substitution is 𝜃 𝑗,𝑙 . Therefore, we instantiate

the semantic rule using 𝜃 𝑗,𝑙 and obtain the following result

Γ𝐿 ⊢ lhs𝑘 𝑗,𝑙𝜃 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙𝜃 𝑗,𝑙 ⇒1

exec rhs𝑘 𝑗,𝑙𝜃 𝑗,𝑙 (6)

where we use 𝑡𝜃 to denote the result of applying the substitution 𝜃 to 𝑡 . Note that 𝑞𝑘 𝑗,𝑙𝜃 𝑗,𝑙 is a

predicate on the free variables of Equation (6) that holds on the left-hand side, by propositional

reasoning, it also holds on the right-hand side. Therefore, we prove that:

Γ𝐿 ⊢ lhs𝑘 𝑗,𝑙𝜃 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙𝜃 𝑗,𝑙 ⇒1

exec rhs𝑘 𝑗,𝑙𝜃 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙𝜃 𝑗,𝑙 (7)

To proceed, we need the following lemma:

Lemma 4.1 (⇒1

exec Conseqence).

Γ𝐿 ⊢ 𝜑 → 𝜑 ′ Γ𝐿 ⊢ 𝜑 ′ ⇒1

exec 𝜓
′ Γ𝐿 ⊢ 𝜓 ′ → 𝜓

Γ𝐿 ⊢ 𝜑 ⇒1

exec 𝜓

Intuitively, Lemma 4.1 allows us to strengthen the left-hand side and/or weaken the right-hand

side of an execution relation. Using Lemma 4.1, and by comparing our proof goal (Branch𝑗,𝑙 ) with

Equation (7), we only need to prove the following two implications between constrained terms,

which we call subsumptions:

Γ𝐿 ⊢
(
𝑡hint𝑗 ∧ 𝑝hint

𝑗,𝑙

)
→

(
lhs𝑘 𝑗,𝑙𝜃𝑘 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙𝜃𝑘 𝑗,𝑙

)
︸                                                      ︷︷                                                      ︸

left-hand side strengthening

Γ𝐿 ⊢
(
rhs𝑘 𝑗,𝑙𝜃𝑘 𝑗,𝑙 ∧ 𝑞𝑘 𝑗,𝑙𝜃𝑘 𝑗,𝑙

)
→

(
𝑡hint
𝑗,𝑙

∧ 𝑝hint
𝑗,𝑙

)
︸                                                      ︷︷                                                      ︸

right-hand side weakening

These subsumption proofs are common in our proof generation procedure (e.g. (Remainder𝑗 ) is

also a subsumption). We elaborate on subsumption proofs in Section 4.3.

Phase 2: Proving (Step𝑗 ). We combine the proofs for each branch and the remainder as follows:

Γ𝐿 ⊢ 𝑡hint𝑗 ∧ 𝑝hint𝑗,1 ⇒1

exec 𝑡
hint

𝑗,1 ∧ 𝑝hint𝑗,1 (Branch𝑗,1)

...

Γ𝐿 ⊢ 𝑡hint𝑗 ∧ 𝑝hint
𝑗,𝑙 𝑗

⇒1

exec 𝑡
hint

𝑗,𝑙 𝑗
∧ 𝑝hint

𝑗,𝑙 𝑗
(Branch𝑗,𝑙 𝑗 )

Γ𝐿 ⊢ 𝑡hint𝑗 ∧ 𝑝rem𝑗 → 𝑡 rem𝑗 ∧ 𝑝rem𝑗 (Remainder𝑗 )
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Note that our proof goal (Step𝑗 ) uses “⇒exec”, while the above use either one-step execution

(“⇒1

exec”) or implication (“→”). The following lemma allows us to turn one-step execution and

implication (i.e. “zero-step execution”) into the reflexive-transitive execution relation “⇒exec”:

Lemma 4.2 (⇒exec Introduction).

Γ𝐿 ⊢ 𝜑 → 𝜓

Γ𝐿 ⊢ 𝜑 ⇒exec 𝜓

Γ𝐿 ⊢ 𝜑 ⇒1

exec 𝜓

Γ𝐿 ⊢ 𝜑 ⇒exec 𝜓

Then, we need to verify that the disjunction of all path conditions in the branches (including the

remainder) is implied from the initial path condition:

Γ𝐿 ⊢ 𝑝hint𝑗 → 𝑝hint𝑗,1 ∨ · · · ∨ 𝑝hint
𝑗,𝑙 𝑗

∨ 𝑝rem𝑗 (8)

The above implication includes only logical constraints and no configuration terms, and thus

involves only domain reasoning. Therefore, we translate it into an equivalent FOL formula and

delegate it to SMT solvers, such as Z3 [De Moura and Bjørner 2008].

From Equation (8), we can prove that the left-hand side of (Step𝑗 ), 𝑡
hint

𝑗 ∧ 𝑝hint𝑗 , can be broken

down into 𝑙 𝑗 + 1 branches by propositional reasoning:

Γ𝐿 ⊢
(
𝑡hint𝑗 ∧ 𝑝hint𝑗

)
→

(
𝑡hint𝑗 ∧ 𝑝hint𝑗,1

)
∨ . . .∨

(
𝑡hint𝑗 ∧ 𝑝hint

𝑗,𝑙 𝑗

)
∨
(
𝑡hint𝑗 ∧ 𝑝rem𝑗

)
(9)

Note that the right-hand side of Equation (9) is exactly the disjunction of all the left-hand sides

of (Branch𝑗,𝑙 ) and (Remainder𝑗 ). Therefore, to prove the proof goal (Step𝑗 ), we use the following

lemma, which allows us to combine the executions in different branches into one (we will also

need a consequence rule for ⇒exec like Lemma 4.1, which is derivable from Lemmas 4.1 and 4.2):

Lemma 4.3 (⇒exec Merge).

Γ𝐿 ⊢ 𝜑1 ⇒exec 𝜓1 . . . Γ𝐿 ⊢ 𝜑𝑛 ⇒exec 𝜓𝑛

Γ𝐿 ⊢
𝑛∨
𝑖=1

𝜑𝑖 ⇒exec

𝑛∨
𝑖=1

𝜓𝑖

Phase 3: Proving (Goal). We are now ready to generate the final proof certificate for symbolic

execution. At a high level, the proof uses the reflexivity and transitivity of the program execution

relation ⇒exec . Therefore, our proof generation method is an iterative procedure. We start with the

reflexivity of ⇒exec , that is:

Γ𝐿 ⊢ (𝑡 ∧ 𝑝) ⇒exec (𝑡 ∧ 𝑝) (10)

Then, we repeatedly apply the following steps to symbolically execute the right-hand side of

Equation (10), until it becomes the same as the right-hand side of (Goal):

(1) Suppose we have obtained a proof certificate for

Γ𝐿 ⊢ (𝑡 ∧ 𝑝) ⇒exec

(
𝑡 im
1

∧ 𝑝 im
1

)
∨ · · · ∨

(
𝑡 im𝑚 ∧ 𝑝 im𝑚

)
(11)

where 𝑡 im
1
, 𝑝 im

1
, etc. represent the intermediate configurations and constraints, respectively.

(2) Look for a (Step𝑗 ) claim of the form

Γ𝐿 ⊢
(
𝑡hint𝑗 ∧ 𝑝hint𝑗

)
⇒exec

(
𝑡hint𝑗,1 ∧ 𝑝hint𝑗,1

)
∨ · · · ∨

(
𝑡hint
𝑗,𝑙 𝑗

∧ 𝑝hint
𝑗,𝑙 𝑗

)
∨
(
𝑡 rem𝑗 ∧ 𝑝rem𝑗

)
(Step𝑗 )

such that 𝑡hint𝑗 ∧ 𝑝hint𝑗 ≡ 𝑡 im𝑖 ∧ 𝑝 im𝑖 , for some intermediate constrained term 𝑡 im𝑖 ∧ 𝑝 im𝑖 . Without

loss of generality, let us assume that 𝑖 = 1, i.e., the first intermediate constrained term 𝑡 im
1
∧𝑝 im

1

can be rewritten/executed using (Step𝑗 ).
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(3) Symbolically execute 𝑡 im
1

∧ 𝑝 im
1

in Equation (11) for one step by applying (Step𝑗 ), and obtain

the following proof:

Γ𝐿 ⊢ (𝑡 ∧ 𝑝) ⇒exec

(
𝑡hint𝑗,1 ∧ 𝑝hint𝑗,1

)
∨ · · · ∨

(
𝑡hint
𝑗,𝑙 𝑗

∧ 𝑝hint
𝑗,𝑙 𝑗

)
∨
(
𝑡 rem𝑗 ∧ 𝑝rem𝑗

)
︸                                                               ︷︷                                                               ︸

right-hand side of (Step𝑗 )

∨
(
𝑡 im
2

∧ 𝑝 im
2

)
∨ . . . ∨

(
𝑡 im𝑚 ∧ 𝑝 im𝑚

)
︸                                   ︷︷                                   ︸

same as Equation (11)

Finally, after all symbolic execution steps are applied, we check if the resulting proof goal is the same

as (Goal), potentially after permuting the disjuncts on the right-hand side. If yes, then the proof

generation method succeeds and we generate a proof certificate for (Goal). Otherwise, the proof

generation method fails, indicating potential mistakes made by K’s symbolic execution engine.

4.3 Generating Proofs for Pattern Subsumption
It is common in generating proof certificates for symbolic execution that we need to generate

the proof certificates for implications between constrained terms. We call such implications sub-
sumptions. Formally, a subsumption has the form Γ𝐿 ⊢ (𝑡 ∧ 𝑝) → (𝑡 ′ ∧ 𝑝′). We reduce it into the

following two sub-goals that are sufficient for the subsumption to hold:

Γ𝐿 ⊢ 𝑝 → 𝑝′ Γ𝐿 ⊢ 𝑝 → (𝑡 = 𝑡 ′)

To prove the first sub-goal Γ𝐿 ⊢ 𝑝 → 𝑝′, we note that both 𝑝 and 𝑝′ are logical constraints.
Therefore, its proof is delegated to external SMT solvers. To prove the second sub-goal Γ𝐿 ⊢ 𝑝 →
(𝑡 = 𝑡 ′), we first try an SMT solver with all constructors abstracted to uninterpreted functions. If the

SMT solver proves the goal with such abstraction, our proof generation method succeeds. Otherwise,

we break down 𝑡 and 𝑡 ′ into sub-terms. Specifically, if 𝑡 ≡ 𝑓 (𝑡1, . . . , 𝑡𝑛) and 𝑡 ′ ≡ 𝑓 (𝑡 ′
1
, . . . , 𝑡 ′𝑛), we

reduce the sub-goal into a set of goals:

Γ𝐿 ⊢ 𝑝 → (𝑡1 = 𝑡 ′1) · · · Γ𝐿 ⊢ 𝑝 → (𝑡𝑛 = 𝑡 ′𝑛)

Then we call our proof generation method recursively on the above sub-goals. Note that the second

type of sub-goals corresponds to the unification between 𝑡 and 𝑡 ′.
Our method here for pattern subsumption is incomplete but covers most simplifications done

by K. Generally speaking, it is undecidable to prove such subsumptions as it requires to prove

first-order theorems in an initial algebra of an equational/algebraic specification. However, there

exist techniques that are shown to be effective in automating inductive theorem proving, such as

Maude ITP [Hendrix 2008], which can be integrated by our work in the future.

4.4 Generating Proofs for Coinduction
Recall that the verification algorithm (Algorithm 1) performs symbolic execution from the left-hand

side of each claim until all branches are subsumed by the right-hand side.While the proof generation

procedures in previous sections Sections 4.2 and 4.3 can cover symbolic execution already, the

missing part is line 12 in Algorithm 1, where we apply not the semantic rules but the claims in 𝑅 to

perform symbolic execution, which forms a circular argument. Our purpose is to generate proof

certificates that justify the soundness of such circular reasoning, by showing that the algorithm is

performing a coinduction on the (potentially infinite) execution trace.

We start with the simplest case when 𝑅 has only one claim 𝜑 ⇒reach 𝜓 . We assume that we have

already rewritten 𝜑 to some intermediate configuration 𝜑 ′
using at least one steps (so logically
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speaking, the set of claims 𝑅 = {𝜑 ⇒reach 𝜓 } has been flushed to the reachability logic axiom set by

(Transitivity) in Figure 3):

Γ𝐿 ⊢ 𝜑 ⇒+
reach 𝜑

′
(12)

Further, suppose that the proof hint indicates that we need to apply the original claim 𝜑 ⇒reach 𝜓

(as a coinduction hypothesis) to 𝜑 ′
. We generate a proof certificate for this single step

Γ𝐿 ⊢ □(∀FV(𝜑,𝜓 ). 𝜑 ⇒reach 𝜓 ) → 𝜑 ′ ⇒reach 𝜑
′′

(13)

where FV(𝜑,𝜓 ) is the set of all free variables in 𝜑 and 𝜓 . Intuitively, we instantiate all the free

variables using the substitution specified by the proof hint, where 𝜑 ′′
is the result of applying

the claim 𝜑 ⇒reach 𝜓 as a regular semantic rule on 𝜑 ′
. Recall that Equation (13) is the matching

logic encoding of the reachability judgment {𝜑 ⇒reach 𝜓 } ⊢reach∅ 𝜑 ′ ⇒ 𝜑 ′′
(see Example 5 and the

discussion followed).

Now, we apply (Transitivity) to Equations (12) and (13) and obtain the proof certificate for

Γ𝐿 ⊢ ◦□(∀FV(𝜑,𝜓 ). 𝜑 ⇒reach 𝜓 ) → 𝜑 ⇒+
reach 𝜑

′′

which is the matching logic encoding of the reachability judgment ⊢reach{𝜑⇒reach𝜓 } 𝜑 ⇒ 𝜑 ′′
, where

𝜑 ⇒reach 𝜓 belongs to the circularity set. Then, we reuse the proof generation procedure in

Section 4.2 to generate the proof certificate for the symbolic execution of 𝜑 ′′
, except that now there

is an additional premise ◦□(∀FV(𝜑,𝜓 ). 𝜑 ⇒reach 𝜓 ) that encodes the semantics of circularity.

Finally, if the verification algorithm successfully terminates, we will obtain the proof certificate

Γ𝐿 ⊢ ◦□(∀FV(𝜑,𝜓 ). 𝜑 ⇒reach 𝜓 ) → 𝜑 ⇒reach 𝜓

which by (Circularity), derives Γ𝐿 ⊢ 𝜑 ⇒reach 𝜓 , as desired.

Generally speaking, Algorithm 1 allows to have 𝑛 claims in 𝑅 = {𝜑1 ⇒reach 𝜓1, . . . , 𝜑𝑛 ⇒reach 𝜓𝑛}
and their proofs could arbitrarily invoke each other’s coinduction hypothesis. This is called set
circularity, which is derivable in reachability logic (see [Roşu et al. 2012, Lemma 5])

𝐴 ⊢reach𝑅 𝜑 ⇒ 𝜓 for all (𝜑 ⇒ 𝜓 ) ∈ 𝑅
(Set Circularity)

𝐴 ⊢reach∅ 𝜑 ⇒ 𝜓 for all (𝜑 ⇒ 𝜓 ) ∈ 𝑅
Here, all the claims in 𝑅 are simultaneously added to the circularity set, featuring a mutual coin-

duction among all the coinduction hypotheses. Our current implementation does not support

(Set Circularity) in its full generality. We assume that the proof of each claim only invokes itself as the

coinduction hypothesis. This is not a restriction in theory because using [Roşu et al. 2012, Lemma

5], any proof using (Set Circularity) can be mechanically translated to one using only (Circularity),

which is fully supported by our implementation.

5 IMPLEMENTATION
We implemented the proof generation procedures in Section 4 in Python. Our implementation can

be found in [Lin et al. 2022]. Here we provide some interesting details about the implementation

and discuss its limitations.

Firstly, we implemented a higher-level tactic language for writing proofs about types/sorts,

from which the lower-level Metamath proofs are constructed. Note that K operates in a sorted

setting while matching logic is unsorted. Instead, sorts are defined axiomatically using theories. To

bridge this gap and reduce human engineering effort, we developed and used the tactic language to

automate the generation of all the sort-related proofs. For example, to specify that the free variables

𝑥 and 𝑦 in a pattern 𝜑 have sorts 𝑠1 and 𝑠2, respectively, we write ⊢ (𝑥 :𝑠1 ∧ 𝑦 :𝑠2) → 𝜑 , where 𝑥 :𝑠1
and 𝑦 :𝑠2 are predicates, stating that 𝑥 and 𝑦 belong to the inhabitants of 𝑠1 and 𝑠2, respectively.
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Now, suppose we have proved ⊢ 𝑥 :𝑠1 → 𝜓 and ⊢ (𝑦 :𝑠2 ∧ 𝑥 :𝑠1) → (𝜓 → 𝜑) and we want to prove

⊢ (𝑥 :𝑠1 ∧ 𝑦 :𝑠2) → 𝜑 using the following propositional lemma:

⊢ 𝜃 → 𝜑 ⊢ 𝜃 → (𝜑 → 𝜓 )
⊢ 𝜃 → 𝜓

The tactic language will automatically rearrange the sort premises by proving that ⊢ (𝑥 :𝑠1∧𝑦 :𝑠2) ↔
𝑦 :𝑠2 ∧ 𝑥 :𝑠1. A lot of such simple but tedious sort-related proofs are handled by the tactic language.

Secondly, we developed a library of 196 lemmas about the rewriting and reachability relations

such as Lemma 4.2 in Section 4. These lemmas were proved manually in Metamath in ∼4,000 lines
and have been added to the existing Metamath database of matching logic. Note that all these

lemmas are checked by the Metamath verifiers so they do not belong to the trust base.

Thirdly, we implemented several optimizations for constructing proof certificates to improve

performance. To avoid reproducing a (sub)-proof over and over again, we cache an incomplete

work-in-progress proof when its size exceeds a certain threshold and add it as a lemma, which

can be used in future proofs to reduce duplicates. To save runtime memory, we represent proof

trees as directed acyclic graphs (DAGs) where the common subtrees are shared. When we apply an

intermediate lemma or combine multiple DAGs, we use a greedy algorithm to merge the subtrees

that have the same conclusion. Even with these optimizations, proofs are still huge (in the order of

tens of megabytes), which is primarily due to the space-inefficient text-based encoding. To reduce

the proof sizes further, we can compress the proofs using a generic compression tool such as xz

[Tukaani Team 2021], which provides >95% reduction in size; see Section 6 for more details.

The K deductive verifier consists of a powerful symbolic execution tool that supports many

complex features such as evaluation order, conditional rewriting, “otherwise” rules (which are catch-

all rules if no other semantic rules can be applied), user-defined contexts, unification modulo axioms,

etc. Our current prototype implementation supports proof generation for a significant subset of

these features. For evaluation orders, K specifies them using strictness attributes (Section 3.2),

which are reduced to a special case of conditional rewriting, which is supported by our tool. The

“otherwise” rules are also reduced to conditional rewriting where the condition states that no other

semantic rules are applicable, and thus are also supported by our tool. K also provides a more

advanced (but also much less often used) way to define evaluation orders using explicit user-defined

contexts, which is not supported by our tool yet. Finally, unification modulo maps (i.e., unification

modulo associativity, commutativity, and units) is supported. Currently, the logical encoding of

a K semantics is computed by a frontend tool called kompile (see Figure 6), which lacks a clear

documentation of the axioms it generates. This makes developing the proof generation procedure

harder because we need to manually find suitable classes of axioms in kompile’s output. Therefore,

we expect supporting proof generation for large real-world K developments to be a long-term

endeavor, which involves a formalization of kompile and requires a close collaboration with the K
team (see Section 7.1 for more discussion on kompile).

6 EVALUATION
We evaluated our proof generation method using two benchmark sets. The first benchmark set

consists of some verification problems of programs written in three programming languages, which

aims at showing that our method is indeed language-agnostic. The second benchmark set is a

selection of C verification examples from the SV-COMP competition [SV-COMP 2021]. We used a

machine with Intel i7-12700K processors and 32 GB of RAM. The evaluation results are shown in

Figure 5. In the following, we discuss the benchmark sets and the evaluation results in detail.
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Time (seconds)

Task Spec. LOC Steps Hint Size Proof Size K Verifier Gen. Check 1 Check 2

sum.imp 40 42 0.58MB 37/1.6MB 4.2 105 1.8 9.6

sum.reg 46 108 2.24MB 111/3.6MB 9.1 259 5.4 15.9

sum.pcf 18 22 0.29MB 38/1.5MB 2.9 119 2.4 12.2

exp.imp 27 31 0.5MB 37/1.5MB 3.7 108 2.0 10.5

exp.reg 27 43 0.96MB 70/2.3MB 4.7 177 3.1 13.3

exp.pcf 20 29 0.5MB 65/2.3MB 3.8 199 3.1 13.7

collatz.imp 25 55 1.14MB 49/1.7MB 4.8 138 2.6 12.4

collatz.reg 37 100 3.66MB 209/4.7MB 9.3 414 5.5 31.6

collatz.pcf 26 39 1.51MB 110/2.2MB 5.3 247 5.2 23.6

product.imp 44 42 0.62MB 44/1.8MB 3.9 124 2.4 11.0

product.reg 24 42 0.81MB 65/2.3MB 4.3 164 4.0 11.8

product.pcf 21 48 0.82MB 80/2.8MB 5.3 234 4.9 18.4

gcd.imp 51 93 1.9MB 74/2.3MB 22.9 237 2.7 17.8

gcd.reg 27 73 1.92MB 124/3.3MB 18.6 306 3.6 16.9

gcd.pcf 22 38 1.35MB 150/3.2MB 12.8 367 5.2 28.5

ln/count-by-1 44 25 0.24MB 28/1.3MB 2.7 81 1.6 8.0

ln/count-by-2 44 25 0.26MB 28/1.3MB 9.0 88 1.4 8.1

ln/gauss-sum 51 39 0.53MB 38/1.6MB 4.6 107 2.0 10.2

ln/half 62 65 1.3MB 63/2.2MB 13.1 173 3.0 11.8

ln/nested-1 92 84 1.88MB 104/3.4MB 7.5 231 5.9 20.1

Fig. 5. Performance of Our Proof Generation Prototype. From left to right, we list the verification tasks,
specification LOC, number of symbolic execution steps, proof hint size, proof object size (uncompressed/-
compressed), K verifier time (without proof generation), proof generation time, and proof checking time
(check 1 using smetamath [O’Rear andCarneiro 2019] and check 2 using our own implementation in Rust [Wang
2022]). Tasks with prefix ln/ are from the loop-new benchmark of SV-COMP [SV-COMP 2021].

Benchmarks. To demonstrate that our proof generation method is language-agnostic, we defined

three different programming languages in K:

• IMP (see Figure 2): a simple imperative language with C-like syntax;

• REG: an assembly language for a register-based virtual machine;

• PCF, i.e., programming computable functions [Plotkin 1977]: a typed functional language

with a fixed-point operator.

We considered the following verification examples:

• SUM, which computes 1 + · · · + 𝑛 for input 𝑛;

• EXP, which computes 𝑛𝑘 for inputs 𝑛 and 𝑘 ;

• COLLATZ, which computes the Collatz sequence [Guy 2004] for input 𝑛 until it reaches 1;

• PRODUCT, which computes the product of integers using a loop.

• GCD, which computes the greatest common divisor of two integers using the Euclidean

algorithm.

All benchmark programs and their formal specifications are implemented/specified in the three

programming languages IMP, REG, and PCF. Figure 5 shows that our prototype can generate

proof certificates for all these programs without additional effort. The detailed encoding of these

verification tasks in K can be found in our repository [Lin et al. 2022]. Besides these verification
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examples, we also considered the C programs from the loop-new benchmark set in the SV-COMP

competition [SV-COMP 2021].

Even for simple arithmetic programs such as SUM, the symbolic execution process is complicated,

as one can see from the proof object sizes in Figure 5. A lot of seemingly innocuous operations

that are performed by the K deductive verifier, such as substitution and equational simplification,

result in very long matching logic proof certificates, which encode proof steps down to the lowest

possible level—the proof system (Figure 4).

Evaluation Results. We measured the performance of both proof generation and proof checking.

For proof generation, we measured the generation time, the number of symbolic execution steps,

the sizes of the proof hint and the final proof certificates. We also measured the sizes of compressed

proof certificates using a generic compression tool xz [Tukaani Team 2021]; these compressed

proofs can be decompressed and checked on-the-fly using an online Metamath verifier such as

mmverify [Levien and Wheeler 2019]. The key highlights of our evaluation are:

(1) Proof checking using Metamath is very fast, even for very long proofs;.

(2) Proof generation takes more time, often in the order of minutes, depending on the number of

symbolic execution steps that are conducted during verification but not much relevant to the

size of the program being verified.

(3) Proof certificates are very large, but they are simply plain text files and their sizes can

be greatly reduced using any mainstream compression tool. Compressed proofs can be

decompressed on-the-fly for proof checking by using an online Metamath verifier, as a

space-time trade-off.

We explain the experimental results in detail.

Proof Generation. At a high level, the proof generation time consists of (1) the time to generate the

matching logic theory Γ𝐿 from the K formal language semantics of 𝐿, and (2) the time to generate

the proof certificates using the procedures described in Section 4. In our experiments, (1) only

takes a few seconds and is linear to the number of semantic rules. Most time is spent on (2), which

is linear to the number of symbolic execution steps conducted during verification and the sizes

of the intermediate configurations. Generally speaking, deductive verifiers are slow, and it takes

even more time for users to propose the right invariants. In our view, it is therefore acceptable to

spend the extra time on generating rigorous and machine-checkable proof certificates for deductive

verifiers and their verification runs, which help establish the correctness of the verification results

on a smaller trust base.

Proof Checking. Due to the simplicity of Metamath and the 240-line formalization of matching

logic, it is very fast to check proof certificates. Once the proofs are generated, they can be made

public as machine-checkable correctness certificates of the verification tasks. Anyone concerning

about the correctness of the verification can access the public proof certificates, set up a proof

checking environment (which is much simpler than setting up a verification environment), and

check the proofs independently. We are optimistic about the scalability of our method on large

K developments because proof checking scales well. The sizes of proof certificates are linear to

the number of symbolic execution steps and the sizes of configurations. The complexity of proof

checking is also linear to the sizes of proof certificates. We do not see a nonlinear factor or an

exponential explosion in our proof generation method.

Proof Compression. Metamath has its own format to compress proofs (see [Megill and Wheeler

2019, Appendix B]). On top of that, proof certificates can be compressed as plain text files using

any mainstream compression tool such as xz [Tukaani Team 2021], which leads to >95% reduction
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Fig. 6. Two-Phase Translation from K to Matching Logic

in the proof sizes, as shown in Figure 5, at the expense of spending more time in decompressing the

proofs for proof checking and using an online proof checker, which can be slower than an offline

one. It is left as future work to study such space-time trade-off in proof checking and find the right

balance.

7 DISCUSSION
7.1 Reducing the Trust Base of K
K is a complicated artifact under active development. Among its 550,000 lines of code base, roughly

40,000 lines are for the frontend, implemented in Java. There is also 160,000 lines of C++/Java

code that focuses mainly on efficient concrete program execution. The most relevant code base is

the 120,000-line Haskell backend that supports symbolic reasoning and formal verification. The

language-agnostic deductive verifier is implemented in the Haskell backend of K.
The K frontend provides an intuitive frontend syntax that allows to write formal semantics more

easily. For example, the frontend syntax swallows the entire concrete syntax of the programming

language being defined and allows language designers to use directly the concrete syntax in writing

the semantic rules, without needing to write their abstract syntax trees. Also, the frontend syntax

includes shortcuts and notations for writing program configurations. In a semantic rule, only the

necessary part of a configuration needs to be explicitly mentioned, while the other part can be

omitted and automatically inferred by K. The frontend also implements type inference for the

variables in semantic rules, so the users usually do not need to explicitly specify the variable types.

All the above frontend shortcuts and notations will be eliminated by the frontend of K. The
frontend tool kompile translates the formal language semantics into an intermediate formal language

called Kore [K Team 2022a], which is used to specify matching logic patterns and axioms. kompile

parses all the concrete syntax into abstract syntax trees, represented as patterns. It also infers the

omitted parts of configurations in semantic rules and the types of all the variables. In the end,

kompile produces one Kore definition— as one source file definition.kore—that includes the entire

matching logic encoding of the formal language semantics. The compiled Kore file is then passed

to K’s backends to generate the corresponding language tools.

Therefore, Kore behaves as the intermediate interface between the frontend and the backends. It

is also the boundary between the informal and formal worlds. Since Kore is a formal specification

language for writing matching logic theories, the formal semantics of a Kore definition is the
matching logic theory that it defines. However, the frontend syntax of K (as shown in Figure 2)

does not (yet) have a formal semantics. Its meaning is completely determined by kompile, which

lacks a formal specification.

In this paper, we are interested in certifying backend correctness. More precisely, we are certifying

the language-agnostic deductive verifier, implemented by the Haskell backend. Previously, the

correctness of formal verification in K depends on the 120,000-line Haskell backend and its internal

verification algorithm (Algorithm 1) aswell as optimized, complex algorithms for symbolic execution
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and pattern matching/subsumption. By generating proof certificates for these algorithms, we

eliminate them from the trust base.

We should also clarity that the entire trust base for end-to-end verification in K is still large and

should be further reduced in the future. Firstly, the kompile tool belongs to the trust base. Secondly,

the automatic encoder (developed in [Chen et al. 2021a]) that translates Kore into Metamath belongs

to the trust base (Figure 6), although the translation is very simple; it only parses the Kore definition

and prints it in the Metamath format. Thirdly, the formalization of matching logic in Metamath

belongs to the trust base, which is very small (240 lines). However, all the backend algorithms are

no longer in the trust base. They are certified by matching logic proofs and the proof checker.

7.2 Future Directions
We identify some main future directions of the current work.

Firstly, as discussed in Section 7.1, the frontend tool kompile needs to be trusted. It is not satisfying,

because the frontend consists of roughly 40,000 lines of Java, while many tasks that it performs,

such as configuration inference and completion, can also be formalized as matching logic proofs,

the same way how program execution and deductive verification are matching logic proofs. In

the long run, we see no reason to not formalize the entire K frontend, even including the parser.

Indeed, the concrete syntax given by a context-free grammar can be regarded as the initial algebra

of an equational/algebraic specification [Goguen et al. 1977]. A parser can then be specified as a

function from the domain of strings (sequences of characters) to that initial algebra. Since initial

algebra semantics can be defined in matching logic [Chen et al. 2020], the parsing function can be

inductively axiomatized and certified by matching logic proofs.

The second future direction is to incorporate proofs for SMT solvers. Currently, our implemen-

tation trusts SMT solvers and does not generate proof objects for them. K uses SMT solvers for

domain reasoning, such as Γ𝐿 ⊢ 𝜑 → 𝜓 , where 𝜑 and𝜓 are logical constraints about domain values

such as integers. To prove such domain properties, we encode them as equivalent FOL formulas

and query an SMT solver, thus resulting in a gap in our proof certificates that needs to be addressed

separately in the future, following existing research such as [Barrett et al. 2015; Stump et al. 2013].

The third future direction is to address the current incompleteness of the proof generation

procedure (i.e. failure to produce a proof even when the verifier succeeds). Currently, we can

identify two sources of incompleteness:

• The subsumption proof generation (Section 4.3) may not match the actual simplification

procedure of the K verifier, thus resulting in subsumptions that are correctly done by K but

cannot be proved by our proof generation tool.

• Our proof generation procedure does not support the (Set Circularity) rule as discussed in

Section 4.4, while the K verifier does use (Set Circularity) in general.

These sources of incompleteness arise from the inconsistency between our proof generation

procedure and the actual implementation of the K verifier. Therefore, a long-term collaboration

with the K team is required to improve the completeness of our proof generation tool.

Finally, as discussed in Section 4.1, we plan to extend our proof generation method to support

proof generation for all-path reachability reasoning [Ştefănescu et al. 2014, 2016]. In the current

work, we only consider one-path reachability logic, which captures the partial correctness of one

execution trace. For nondeterministic and concurrent programs, we need all-path reachability logic

to prove the correctness of all execution traces. All-path reachability logic is proposed for precisely

that purpose. An all-path reachability claim 𝜑 ⇒∀
reach 𝜓 holds iff for every maximal and finite

execution traces starting from 𝜑 ,𝜓 is reachable. The proof system of all-path reachability logic has

identical proof rules as one-path reachability logic in Figure 3 (replacing⇒ with⇒∀
reach), except

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 23. Publication date: January 2023.



23:26 Zhengyao Lin, Xiaohong Chen, Minh-Thai Trinh, John Wang, and Grigore Roşu

one additional axiom called (Step)

(Step) 𝐴 ⊢reach∅ 𝜑 ⇒∀
reach (𝜓1 ∨ · · · ∨𝜓𝐾 )

where 𝐴 = {lhs1 ⇒ rhs1, . . . , lhs𝐾 ⇒ rhs𝐾 } is the set of all the semantic rules, which are one-path

rules in nature. The (Step) axiom derives all-path claims from these semantic rules, where𝜓𝑘 is the

result of executing 𝜑 for one step, using the 𝑘-th semantic rule lhs𝑘 ⇒ rhs𝑘 for 1 ≤ 𝑘 ≤ 𝐾 . Thus, the

(Step) axiom states that the only way to make an execution step is to use one of the semantic rules

in 𝐴. Since the current K pipeline that translates K into matching logic (Figure 6) is incomplete and

the resulting theory Γ𝐿 does not have the (Step) axiom, proof generation for all-path reachability

claims is left as future work.

8 CONCLUSION
In this paper, we proposed a method that generates proof certificates for the language-agnostic

one-path deductive verifier in theK formal semantics framework. Each successful run of the verifier

is certified by a formal proof in matching logic, on a case-by-case basis. The proof certificates

consist of the entire formal semantics of the programming language as matching logic axioms and

the program property being verified, as well as the detailed proof steps that derive the property

from the formal language semantics. Our proof certificates are encoded in Metamath and can

be automatically checked by any Metamath verifiers. We finished a prototype implementation

of our proof generation method and experimented with it on verification examples across three

different programming languages, which demonstrated that our method supports language-agnostic
verification. The experiment showed promising performance in both proof generation and proof

checking. With the proposed work, we reduced the trust base of K. What was previously in the

trust base—the internal algorithms for verification, symbolic execution, pattern matching, etc. in

the backend of K, comprising 120,000 lines of Haskell—are now certified by proof certificates.
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A SOUNDNESS OF ALGORITHM 1
In this section we present the soundness proof of Algorithm 1. The soundness proof is similar to the

soundness proof of the all-path verification algorithm in [Ştefănescu et al. 2016]. It is an immediate

corollary of the Set Circularity Lemma [Roşu et al. 2012, Lemma 5].

In the following we abbreviate ⇒reach as ⇒ for simplicity.

First, we present the Set Circularity Lemma as in [Roşu et al. 2012, Lemma 5].

Lemma A.1 (Set Circularity Lemma). Let 𝑅 be a set of one-path reachability claims. If Γ𝐿 ⊢𝑅
𝜑 ⇒ 𝜑 ′ for every 𝜑 ⇒ 𝜑 ′ ∈ 𝑅 then Γ𝐿 ⊢ 𝜑 ⇒ 𝜑 ′ for every 𝜑 ⇒ 𝜑 ′ ∈ 𝑅.

The soundness of the algorithm is formalized as the following theorem.

Theorem A.2 (Soundness). Let 𝑅 be a set of one-path reachability claims. If proveAllClaims(𝑅)
returns success then Γ𝐿 ⊢ 𝜑 ⇒ 𝜑 ′ for all 𝜑 ⇒ 𝜑 ′ ∈ 𝑅.

Proof. If proveAllClaims(𝑅) returns success then proveOneClaim(𝑅, 𝜑 ⇒ 𝜑 ′) returns success
for every 𝜑 ⇒ 𝜑 ′ ∈ 𝑅. By Lemma A.3 below, Γ𝐿 ⊢𝑅 𝜑 ⇒ 𝜑 ′

for every 𝜑 ⇒ 𝜑 ′ ∈ 𝑅. By the Set

Circularity Lemma, Γ𝐿 ⊢ 𝜑 ⇒ 𝜑 ′
for every 𝜑 ⇒ 𝜑 ′ ∈ 𝑅. □
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Lemma A.3 states that proveOneClaim(𝑅, 𝜑 ⇒ 𝜑 ′) proves 𝜑 ⇒ 𝜑 ′
with 𝑅 being the circularity

set. Formally,

Lemma A.3. If proveOneClaim(𝑅, 𝜑 ⇒ 𝜑 ′) returns success then Γ𝐿 ⊢𝑅 𝜑 ⇒ 𝜑 ′, where 𝑅 is the
circularity set.

Proof. The algorithm calls two procedures successors(_) and successors𝑅 (_), whose soundness
is assumed. That is, if 𝜓 ′ ∈ successors(𝜓 ) then Γ𝐿 ⊢ 𝜓 ⇒1

exec 𝜓
′
. If 𝜓 ′ ∈ successors𝑅 (𝜓 ) then

Γ𝐿 ∪ 𝑅 ⊢ 𝜓 ⇒1

exec 𝜓
′
. Here, ⇒1

exec denotes one-step execution.

Let us consider a successful run of proveOneClaim(𝑅, 𝜑 ⇒ 𝜑 ′). If it returns success in line 7,

we have Γ𝐿 ⊢ 𝜑 → 𝜑 ′
. By (Consequence) and (Reflexivity), we have Γ𝐿 ⊢ 𝜑 ⇒ 𝜑 ′

, which also implies

Γ𝐿 ⊢𝑅 𝜑 ⇒ 𝜑 ′
because no circularity would be needed.

If the algorithm returns success in line 11 then we obtain a sequence of patterns𝜓0,𝜓1,𝜓2, . . . ,𝜓𝑛
where𝜓0 = 𝜑 ,𝜓1 ∈ successors(𝜓0), and for each 1 ≤ 𝑖 ≤ 𝑛 − 1,𝜓𝑖+1 ∈ successors𝑅 (𝜓𝑖 ). Note that𝜓1

is chosen in the first iteration where the frontier set 𝑄 is calculated using successors(_). Starting
from the second iteration the frontier set 𝑄 is calculated using successors𝑅 (_). The soundness
of successors(_) and successors𝑅 (_) implies that Γ𝐿 ⊢ 𝜓0 ⇒1

exec 𝜓1 and for every 1 ≤ 𝑖 ≤ 𝑛 − 1,

Γ𝐿 ∪ 𝑅 ⊢ 𝜓𝑖 ⇒1

exec 𝜓𝑖+1. Finally, we have Γ
𝐿 ⊢ 𝜓𝑛 → 𝜑 ′

from the exit point in line 11.

The above successful run derives a one-path reachability proof of Γ𝐿 ⊢𝑅 𝜑 ⇒ 𝜑 ′
as follows. Note

that by (Consequence), we only need to derive a proof of Γ𝐿 ⊢𝑅 𝜓0 ⇒ 𝜓𝑛 . We first apply (Transitivity),

which generates two sub-goals: Γ𝐿 ⊢𝑅 𝜓0 ⇒ 𝜓1 and Γ𝐿 ∪ 𝑅 ⊢ 𝜓1 ⇒ 𝜓𝑛 . The first sub-goal is implied

by Γ𝐿 ⊢ 𝜓0 ⇒1

exec 𝜓1 and the (Axiom) rule, because𝜓1 is a successor of𝜓0 using the semantic axioms

in Γ𝐿 . The second sub-goal is implied by Γ𝐿 ∪ 𝑅 ⊢ 𝜓𝑖 ⇒1

exec 𝜓𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 and the

(Transitivity) rule, where the circularity rules 𝑅 are also used in calculating the successors. □

14 procedure proveAllClaims∀(𝑅)
15 foreach 𝜑 ⇒reach 𝜑

′ ∈ 𝑅 do
16 if proveOneClaim∀(𝑅, 𝜑 ⇒reach 𝜑

′) = failure then return failure;

17 return success;

18 // proving one all-path reachability claim
19 procedure proveOneClaim∀(𝑅, 𝜑 ⇒reach 𝜑

′)
20 𝑄 ≔ successors(𝜑);

21 if 𝑄 = ∅ and Γ𝐿 ⊬ 𝜑 → 𝜑 ′ then return failure;
22 while 𝑄 ≠ ∅ do
23 𝜓front ≔ pop(𝑄);

24 if Γ𝐿 ⊢ 𝜓front → 𝜑 ′ then continue;
25 else if ∃ 𝜃 with Γ𝐿 ⊢ 𝜓front → 𝜓𝜃 for𝜓 ⇒ 𝜓 ′ ∈ 𝑅 then 𝑄 ≔ 𝑄 ∪𝜓 ′𝜃 ;

26 else 𝑄 ′ ≔ successors(𝜓front)

27 if 𝑄 ′ = ∅ then return failure;
28 𝑄 ≔ 𝑄 ∪𝑄 ′

;

29 return success;
Algorithm 2: Algorithm for proving all-path reachability claims.

B ALGORITHM FOR PROVING ALL-PATH REACHABILITY CLAIMS
In Section 4.1 we mentioned that the algorithm for proving all-path reachability claims can be

obtained by eliminating the nondeterministic choice in the one-path algorithm (Algorithm 1) and
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making it check all execution paths. To make the paper self-contained, we present the all-path

algorithm (Algorithm 2) for reference. This algorithm can be found in [Ştefănescu et al. 2016,

Section 5].

To avoid confusion, we number the lines of the all-path algorithm starting 14. Thus, lines 1–13

refer to the one-path algorithm and lines 14–29 refer to the all-path algorithm.

We explain the difference between the one-path and the all-path verification algorithms. Specif-

ically, in line 7, instead of checking Γ𝐿 ⊢ 𝜑 → 𝜑 ′
and returning success, the all-path algorithm

returns failure if the checking does not pass. In line 10, besides choosing𝜓front from𝑄 , the all-path

algorithm also deletes𝜓front from 𝑄 (via the pop operation). In line 11, instead of returning success,
the all-path algorithm continues with the rest frontier patterns in 𝑄 ; however, if the condition fails,

the all-path algorithm stops and returns failure. In line 12, all the successors of𝜓front are added to

𝑄 . When computing the successors, a claim in 𝑅 is preferred (line 25) to the semantic rules (line 26).

Since claims in 𝑅 are all-path reachability rules, we only need to compute the successor using one

claim and add the result𝜓 ′𝜃 to 𝑄 . For semantic rules, on the other hand, we need to compute all

the successors and add all of them to 𝑄 (line 28). As an optimization, the algorithm returns failure
immediately if neither a claim in 𝑅 nor a semantic rule can be applied (line 27). Finally, the all-path

algorithm returns success since all execution paths have been verified (line 29).
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