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Abstract—Runtime Verification (RV) can help find bugs by
monitoring program executions against formal properties. De-
velopers should ideally use RV whenever they run tests, to find
more bugs earlier. Despite tremendous research progress, RV still
incurs high overhead in (1) machine time to monitor properties
and (2) developer time to wait for and inspect violations from test
executions that do not satisfy the properties. Moreover, all prior
RV techniques consider only one program version and wastefully
re-monitor unaffected properties and code as software evolves.

We present the first evolution-aware RV techniques that re-
duce RV overhead across multiple program versions. Regression
Property Selection (RPS) re-monitors only properties that can be
violated in parts of code affected by changes, reducing machine
time and developer time. Violation Message Suppression (VMS)
simply shows only new violations to reduce developer time; it
does not reduce machine time. Regression Property Prioritization
(RPP) splits RV in two phases: properties more likely to find bugs
are monitored in a critical phase to provide faster feedback to
the developers; the rest are monitored in a background phase.

We compare our techniques with the evolution-unaware (base)
RV when monitoring test executions in 200 versions of 10 open-
source projects. RPS and the RPP critical phase reduce the
average RV overhead from 9.4× (for base RV) to 1.8×, without
missing any new violations. VMS reduces the average number of
violations 540×, from 54 violations per version (for base RV) to
one violation per 10 versions.

Index Terms—runtime verification, regression testing, software
evolution, specifications, software testing.

I. INTRODUCTION

Runtime Verification (RV) [4], [10], [11], [16], [21], [33],
[34], [37], [43], [58] is a technique for monitoring program
executions against formal properties. A property is a logical
formula over a set of events, e.g., method calls; intuitively, it
captures developers’ intent on correct API usage [76]. An RV
tool takes a program, program inputs (e.g., tests), and proper-
ties. The tool instruments the program based on the properties
so that executing the instrumented program generates events
and creates monitors to listen to events and check properties.
The outputs are violation messages (violations for short) which
report that the execution violated some property at a code
location. RV helped find many bugs but induces high runtime
overhead in executing the instrumented program instead of the
uninstrumented program, and some violations do not indicate
true bugs but are false alarms [52], [76].

All prior RV techniques considered only a single program
version, but software evolves over multiple versions. Devel-
opers should ideally use RV whenever they run tests, to find
more bugs earlier in the development process. However, as
software evolves, rerunning traditional, evolution-unaware RV
(base RV) has unnecessarily high overhead: machine time

can be wasted on repeatedly checking unchanged code, and
developers can repeatedly see the same violations (even if
they want to handle some violations later, they have no way to
suppress those violations). It is therefore important to develop
techniques that can reduce RV overhead—in both machine
and developer time—during software evolution. This paper
presents compelling evidence that taking software evolution
into account can significantly reduce RV overhead across
multiple program versions.

A. Techniques

We present three evolution-aware RV techniques: regres-
sion property selection (RPS), violation message suppression
(VMS), and regression property prioritization (RPP). RPS,
VMS, and RPP focus RV (and its users) on changed parts of
code and new violations that are generated. RPS can reduce
RV overhead in machine time and developer time, VMS can
reduce the overhead in developer time but not machine time,
and RPP can reduce time to see results for most critical
properties, e.g., those historically more likely to find bugs.

RPS re-monitors only properties that can be violated in parts
of code affected by changes, i.e., either directly changed or in-
directly affected; these code parts may generate new events due
to changes. Our current implementation of RPS re-monitors
only properties whose events can come from affected classes.
We focused on class-level RPS following recent evolution-
aware techniques which showed greater overall benefits of
performing analysis at class level than at finer granularity
levels like methods or statements [9], [26], [51], [88].

VMS by itself re-monitors all properties in a new code
version, but shows only new violations that were not in the old
version. VMS collects violations from both versions and com-
putes a mapping of code between new and old versions. VMS
then filters out violations of the same property that occurred on
the likely equivalent locations in both versions. VMS makes it
easier to focus on new violations, and developers can decide
whether to inspect only new or also old violations.

RPP partitions RV into two phases: it monitors some
properties in the critical phase—so called because it is on the
developer’s critical path from the moment of submitting code
changes to getting the results—and monitors the remaining
properties in the background phase. RPP reduces time to get
feedback on critical properties but still monitors all properties.
Developers select critical properties, e.g., those that helped find
bugs or those for heavily-used APIs, etc. In our evaluation,
critical properties become those that were previously violated.
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We define safety and precision for evolution-aware RV
techniques (Section III-A): an evolution-aware RV technique is
safe if it does not miss a new violation, and precise if it shows
only new violations. We develop two strong RPS variants that
are safe under certain assumptions. We also develop 10 weak
RPS variants that can trade some safety for more efficiency,
i.e., reduced overhead. RPS variants differ in what properties
they select and where they instrument the selected properties.

B. Results

We compared RPS, VMS, and RPP with base RV using
161 properties on 200 versions of 10 open-source projects (20
versions per project). The results showed that our evolution-
aware RV techniques can substantially reduce the runtime
overhead and number of violations shown, compared to base
RV. We compute the runtime overhead and the number of
shown violations per version, then average across versions of
a project and then across all projects.

Base RV has average runtime overhead of 9.4×, showing
54 violations per version. The two strong RPS variants have
runtime overhead of 7.5× and 7.9×, showing 37 and 42
violations. The 10 weak RPS variants have runtime overhead
of 2.5×–7.5×, showing 21–37 violations. Surprisingly, all
weak RPS variants were safe in our experiments although they
can be unsafe in theory. Our manual inspection showed why:
all new violations happened due to changes whose effects were
in the classes considered affected by all weak RPS variants.

VMS has negligible extra runtime overhead and reduces
the number of violations shown by two orders of magnitude
relative to base RV; VMS shows, on average, 0.1 new violation
per version, while base RV shows 54 violations per version.

RPP’s critical phase overhead is 1.8× (when combined with
RPS), and our analysis of RPP showed that about 76% of base
RV overhead goes into monitoring unviolated properties.

C. Contributions

This paper makes the following contributions:
? Evolution-Aware RV Techniques. We are the first to realize

the RPS idea [53] and additionally propose VMS and RPP.
? RPS Variants. We develop two strong RPS variants, and 10

weak RPS variants that trade some safety for efficiency.
? Results. RPS and RPP reduced base RV overhead from

9.4× to as low as 1.8×, and VMS showed two orders of
magnitude fewer violations than base RV.

II. RUNNING EXAMPLE

Our running example is necessarily detailed to show the
specifics of RV that evolution-aware RV techniques exploit,
and to highlight differences between the RPS variants in later
sections. We illustrate properties, how evolution-unaware base
RV works in the JavaMOP [40], [43], [58] tool used in our
experiments, and violations.

A. Examples of Monitored Properties

In our running example, we use the three properties in
figures 1a–1c, written in JavaMOP syntax [38]; they helped
find several confirmed bugs [52]. Properties have three parts:
(1) events: relevant method calls or field accesses, (2) a spec-
ification: logical formula over the events, and (3) a handler:
action to take when events match (or violate) the specification.
Collections_SynchronizedCollection (CSC): CSC checks
that code synchronizes on a synchronized Collection

before iterating over it [18]. Not synchronizing on such
Collection before iterating “may result in non-deterministic
behavior” [17]. CSC defines four events in lines 3–10 of
Fig. 1a: (1) sync (lines 3–4) occurs when Collections.sy

nchronizedCollection is called to create a Collection,
c, (2) syncMk (lines 5–6) occurs when c.iterator is called
to obtain an Iterator i in a thread that holds the lock on c,
(3) asyncMk (lines 7–8) occurs when c.iterator is called
without first locking on c, and (4) access (lines 9–10) occurs
when accessing i from a thread that does not hold c’s lock.
When sync occurs, JavaMOP creates a monitor object to listen
for CSC events (hence the creation event keywords).

CSC’s specification (line 11 of Fig. 1a) is an Extended
Regular Expression which matches if the code either (1) cre-
ates c (sync event) and obtains i without first locking on c

(asyncMk event), or (2) creates c (sync event) and obtains i
from a thread that locks on c (syncMk event) but accesses i

from a thread that does not lock on c (access event). When
a CSC monitor receives an event that causes its specification
to match, its handler (line 12) is invoked. The handler can
be any code, but most properties, including CSC, just print a
violation to warn developers of a potential bug.
StringTokenizer_HasMoreElements (STHME): STHME
checks that getting tokens from StringTokenizer, st, is
only done after checking that st has more elements [82].
STHME (Fig. 1b) defines two events: (1) hasnexttrue

(lines 2–4) occurs when st.hasMoreElements or st.ha

sMoreTokens is invoked and returns true, and (2) next

(lines 5–7) occurs when st.nextElement or st.nextToken
is invoked. The STHME specification (line 8) is a past-time
LTL formula [57] stating that a next event on st must be
preceded by a hasnexttrue event on st. When the STHME
specification does not hold, line 9 prints a violation.
URLDecoder_DecodeUTF8 (URLD): URLD checks that
URLs are decoded from UTF-8, to avoid producing incompati-
ble URLs [83], [84]. URLD’s only event, decode (lines 2–5 in
Fig. 1c), occurs if URL is decoded with non-UTF-8 encoding.
The handler on line 6 prints a violation on each decode event.

B. Base RV, Causes of Overhead, and Property Violations

We describe the example Java code in Fig. 1d and violations
that occur when JavaMOP is used to monitor its execution
against the CSC, STHME, and URLD properties. The example
code is hypothetical, created to illustrate our techniques.
Example Code: Fig. 1d shows five classes—A, B, C, D, and
E—and two versions—line 11 in the old version is replaced
with line 12 in the new version. A.a() concatenates the string
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1 Collections_SynchronizedCollection(Collection c, Iterator i) {
2 Collection c;
3 creation event sync after() returning(Collection c):
4 call(* Collections.synchronizedCollection(Collection)){ this.c = c;}
5 event syncMk after(Collection c) returning(Iterator i) :
6 call(* Collection+.iterator()) && target(c) && Thread.holdsLock(c){}
7 event asyncMk after(Collection c) returning(Iterator i):
8 call(* Collection+.iterator()) && target(c) && !Thread.holdsLock(c){}
9 event access before(Iterator i) :

10 call(* Iterator.*(..)) && target(i) && !Thread.holdsLock(this.c){}
11 ere: (sync asyncMk) | (sync syncMk access)
12 @match{ RVMLogging.out.println(/*violation message*/); }}

(a) Collections_SynchronizedCollection (CSC) property

1 StringTokenizer_HasMoreElements(StringTokenizer s) {
2 event hasnexttrue after(StringTokenizer s) returning(boolean b):
3 (call(boolean StringTokenizer.hasMoreTokens()) ||
4 call(boolean StringTokenizer.hasMoreElements())) && target(s) && b{}
5 event next before(StringTokenizer s):
6 (call(* StringTokenizer.nextToken()) ||
7 call(* StringTokenizer.nextElement())) && target(s){}
8 ltl: [](next => (*) hasnexttrue)
9 @violation { RVMLogging.out.println(/*violation message*/); }}

(b) StringTokenizer_HasMoreElements (STHME) property

1 URLDecoder_DecodeUTF8() {
2 event decode before(String enc) :
3 call(* URLDecoder.decode(String, String)) && args(*, enc) {
4 if (enc.equalsIgnoreCase("utf-8") || enc.equalsIgnoreCase("utf8"))
5 return;
6 RVMLogging.out.println(/*violation message*/); }}

(c) URLDecoder_DecodeUTF8 (URLD) property

1 class A {
2 String a(List i, String sep) {
3 String o = "";
4 for (Object a : i) {
5 o += a.toString() + sep;
6 } return o; }}
7

8 class B extends A {
9 String b(List l) {

10 String i;
11 - i = a(l, " ");
12 + i = a(Collections.synchronizedList(l), " ");
13 return i.trim(); }
14 Boolean flag() { return true; }}
15

16 class C {
17 String c(List<String> l) {
18 B b = new B(); D d = new D();
19 String s = b.b(l);
20 return d.d(s, b.flag()) + ": " + s; }}
21

22 class D {
23 String d(String s, boolean flag) {
24 StringTokenizer t = new StringTokenizer(s);
25 String out = "";
26 if (flag) {
27 if(t.hasMoreTokens()){out = t.nextToken();}
28 } else { out = t.nextToken(); }
29 return out; }}
30

31 class E {
32 void e(String u, String e) throws Exception {
33 D d = new D(); assert(!u.isEmpty());
34 String url = d.d(u, false);
35 if (url.startsWith("https")) {
36 String s = URLDecoder.decode(url, e);
37 System.out.print(s); }}}

(d) Example evolving code

Fig. 1: Example properties and evolving code that we use to illustrate base RV and evolution-aware RV techniques

1 public class TC {
2 @Test public void testC() {
3 B b = new B(); C c = new C(); D d = new D();
4 List<String> l1 = Arrays.asList("1", "2");
5 assert(b.b(l1).equals("1 2"));
6 assert(c.c(l1).equals("1: 1 2"));
7 assert(d.d("1 2", false).equals("1")); } }
8

9 public class TE {
10 @Test public void testE() throws Exception {
11 E e = new E(); String u = "https://bing.com";
12 assert(e.e(u + " b", "ISO-8859-1").equals(u)); } }

Fig. 2: Tests for code in Fig. 1d

representation of all elements in its input List. B extends A

and B.b() invokes A.a() to get a string representation of the
input List, which it then trims to remove leading or trailing
white space. C.c() first invokes B.b() to obtain a string
representation of its input List, which it prints after prefixing
with the first sub-string, obtained from D.d(). D.d() tokenizes
the input string and returns the first token; for performance
reasons, it only checks that the input string has more than one
token if its caller sets flag (e.g., the caller may already ensure
non-emptiness). E.e() decodes an encoded HTTPS URL from
a string after ensuring the string is not empty and invoking
D.d() to get the first sub-string.
Monitoring and Causes of RV Overhead: We use the code
in Fig. 1d to describe three RV concepts: instrumentation,

monitor creation, and event/violation handling. Let us consider
what happens when the tests in Fig. 2 are run on the old ver-
sion of Fig. 1d. During class loading, JavaMOP instruments all
statements in classes A through E that can generate events men-
tioned in the properties. The instrumentation causes events to
be triggered during execution. Example instrumentation points
in Fig. 1d include (1) before creating an Iterator on line 4
which may trigger CSC events, (2) after hasMoreTokens and
before nextToken on line 27, and before line 28, which may
all trigger STHME events, and (3) before line 36 which may
trigger URLD events. At runtime, monitors are created to listen
for and handle events. In the old version, only STHME and
URLD monitors are created; creation event for CSC never
occurs because List l on line 11 is not a synchronized

Collection. One STHME monitor is created when the first
relevant event occurs on each StringTokenizer; only one
URLD monitor is created at the start of execution (unlike CSC
and STHME, URLD has no parameters). Base RV induces
high runtime overhead due to managing very many monitors,
and dispatching even more events to monitors [42], [58],
e.g., with base RV, one project in our evaluation with 78
thousand lines of code created over 232 million monitors,
which received almost 3 billion events.

Violations: When events occur that match or violate a
monitor’s specification, the violation handler prints a violation,
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Specification Collections_SynchronizedCollection has been violated on line B.b(B
.java:11). Documentation for this property can be found at https://
runtimeverification.com/monitor/annotated−java/__properties/html/java/util/
Collections_SynchronizedCollection.html

A synchronized collection was accessed in a thread−unsafe manner.

Fig. 3: An example property violation

like in Fig. 3. A violation contains the violated property
name, the location (i.e., fully qualified class name, method,
source file name, and line number) of the last event that
caused the violation, a URL for the property definition, and
a sentence describing the violation. These help developers to
reason whether a property violation is a true bug or false alarm.

We distinguish between violation instances, the list of viola-
tions, and the set of violations. Violation instances repeat, e.g.,
if property-violating code is in a loop or executed by multiple
tests. We map violation instances of the same property that
occur at the same location to the same violation. Developers
may prefer to only see violations, but seeing all violation
instances can help in debugging. Running tests in Fig. 2 on old
version of Fig. 1d generates two violations from three violation
instances. Lines 7 and 12 in Fig. 2 cause two instances of a
STHME violation by executing t.nextToken on line 28 of
Fig. 1d without calling t.hasMoreTokens. Line 12 in Fig. 2
causes one instance of a URLD violation by executing line 36
of Fig. 1d to decode a non-UTF-8 encoded URL. It can be time
consuming to inspect/debug violations [52]. We next discuss
evolution-aware RV techniques which aim to reduce runtime
overhead of RV and show fewer violations as software evolves.

III. EVOLUTION-AWARE RV TECHNIQUES

We describe our evolution-aware RV techniques which
leverage software evolution to reduce the runtime overhead
of base RV across multiple program versions and to focus
developers on new violations after a change. Base RV (illus-
trated through the example in Section II) is evolution-unaware.
For example, running base RV on the new version of code
in Fig. 1d would re-monitor all available properties and re-
incur the entire overhead wastefully because the code change
does not affect (i.e., alter the behavior of) all classes, e.g., E is
unaffected. Further, properties whose events are only generated
from unaffected classes cannot have any new violations after
the code change. Finally, it may be desirable to monitor on the
developer’s critical path, from when they launch tests to when
they see the test results, only properties that are more likely
to find bugs than others, e.g., based on a project’s history.

Section III-A defines safety and precision, two notions that
we use in this paper to analyze and measure the quality of
our evolution-aware RV techniques. Section III-B describes
RPS, our technique to re-monitor only properties that can
have new violations after a code change, and also includes
our definition of affected classes and how RPS uses affected
classes to select the subset of properties to re-monitor in a new
program version. Section III-C describes various RPS variants.
Sections III-D and III-E describe our other two evolution-
aware RV techniques, VMS and RPP, respectively. RPS, VMS,

and RPP can be used separately or together, and we illustrate
them throughout this section using the example from Fig. 1.

A. Safety and Precision

Safety measures loss in violation-finding (and thus potential
bug-finding) ability. Precision measures minimality. We define
safety and precision relative to base RV and relevant viola-
tions. In this paper, relevant violations are new violations—
violations that are in the new version, but not in the old
version, after accounting for violations that merely changed
line numbers in the code. Definition 1 allows developers to
plug in other notions of relevant violations.

Definition 1. Relevant Violation: Relevant violations for an
evolution-aware RV technique are those due to the changes.

Definition 2. Safety: An evolution-aware RV technique is safe
if it finds all relevant violations that base RV finds.

Definition 3. Precision: An evolution-aware RV technique is
precise if it finds only relevant violations that base RV finds.

B. Regression Property Selection (RPS)

RPS reduces accumulated base RV overhead by re-
monitoring only properties that can be violated in parts of
code affected by changes [53]. For RPS to be useful, its
end-to-end time (i.e., time to select properties plus time to re-
monitor selected properties) must be less than base RV time.
Thus, we consider changes and affected parts of code at the
class-level granularity, which was more effective than only
finer-granularity levels (e.g., statements or methods) for other
evolution-aware techniques [26], [51], [88]. The reason is that
the analysis at the class level achieved a better balance of
efficiency (class-level analysis is faster than analyses at finer
granularity) and precision (class-level analysis may capture
more than necessary because it is coarser grained).

The notion of affected classes is central to RPS, because it
relates code changes with the properties. Intuitively, a property
should be re-monitored only if its events can be generated
from some class affected by the code change. That is, affected
classes are those that can generate events that lead to new
violations after code changes. Conversely, a class that is
unaffected by a change cannot generate an event that leads
to a new violation. Formally, RPS variants compute affected
classes as those that satisfy some of the following conditions,
which capture when a class may generate events that lead to
new violations after a code change:

Definition 4. Affected Class: For RPS, a class C is affected
by a change if (1) C changed, (2) C transitively depends (via
inheritance or use) on a class that changed, or (3) a class that
satisfies (1) or (2) can pass objects to C.

Condition 3 captures classes whose control flow may change
(leading to new events and violations) if received objects
change. For example, in Fig. 1d, D does not depend on the
changed class (B) or its transitive dependents (C and TC); if
only B.flag() changes to return false on line 14, then the
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“else” branch on line 28, instead of the “then” branch on
line 27 will execute, leading to a STHME violation.

Definition 5. Regression Property Selection (RPS): A tech-
nique to select and re-monitor, in a new program version, only
properties that may have new violations.

RPS has four steps: (1) construct a class dependency graph
(CDG) from the new program version, (2) find affected classes,
(3) select properties, and (4) re-monitor selected properties.

Definition 6. Class Dependency Graph (CDG): A graph that
has a node for each class in the program, and an edge from
class C to class C′ if C depends on C′ via inheritance or use.

B AC

DE

TC

TE

Fig. 4: Class dependency graph (CDG) for Figures 1d and 2.
Edges mean “depends on”; the changed class is colored

Step 1: RPS constructs the CDG in Fig. 4 for the new version
of the code in Fig. 1d and the tests in Fig. 2.
Step 2: Strong RPS computes affected classes from the CDG
as affected(∆) = ∆ ◦ (E−1)∗ ◦ E∗, where ∆ is the set of
changed and new classes, E is the set of edges in the CDG,
∗ is the reflexive and transitive closure, ◦ is the relational
image, and −1 is the inverse relation. affected(∆) captures the
three conditions in Definition 4. In our example, ∆ = {B};
only B changed (Condition 1). ∆ ◦ (E−1)∗ = {B, C, TC};
TC and C transitively depend on ∆ (Condition 2). Lastly,
affected(∆) = {A, B, C, D, TC}; A and D may generate new
events due to changes to B or the interaction of C with B

(Condition 3). E, TE /∈ affected(∆) since they cannot generate
new events. Although elided in our example due to space
limits, newly added classes are in ∆, so RPS re-monitors
properties that may be violated in newly added classes.
Steps 3 and 4: RPS re-monitors only CSC and STHME in
the new version. No (new) events for URLD are generated
in affected(∆). So, RPS saves the time to re-monitor URLD
(if both tests are run), and developer time for (re-)inspecting
URLD violations. Any URLD violations must be in E and
cannot be new violations, because E 6∈ affected(∆).
Discussion of RPS: If a property was not instrumented
into the old version, but code changes can cause it to be
violated in affected(∆), RPS selects it, e.g., CSC is selected
by strong RPS. Two CSC violation instances occur in the new
version in Fig. 1d; lines 4–6 iterate over the synchronized

Collection initialized on line 12 without locking on it,
matching the left disjunct in CSC’s specification (line 11,
Fig. 1a), so the handler (line 12) prints the violation in Fig. 3.

Base RV does not consider changes, dependencies, or
classes that generate events for each property. After each
change (e.g., from line 11 to line 12 in Fig. 1d), base RV re-
monitors all properties and shows old and new violations. In

our example, base RV shows three violations: the two STHME
and URLD violations from the old version, plus the new CSC
violation. RPS shows only the old STHME violation, plus the
new CSC violation. Note that RPS by itself is not precise;
it does not show only new violations. Showing only new
violations is the goal of VMS (Section III-D).

C. RPS Variants

RPS determines (1) what properties to select and (2) where
in the program to instrument selected properties. The strong
RPS described in Section III-B is safe under certain assump-
tions: it selects to re-monitor all properties for which events
can be generated from all affected classes (“what”), and
instruments them throughout the program (“where”), including
third-party libraries and even unaffected classes. However, that
strong RPS variant is imprecise (it may instrument and monitor
selected properties in unaffected classes). We describe here a
second, more precise strong RPS variant. Weak RPS variants
trade some safety for further overhead reduction. Weak RPS
variants differ in what affected classes they use for selecting
properties and where they instrument selected properties.
Strong RPS Safety Assumptions: Strong RPS is safe under

the following assumptions: (1) the CDG is complete, (2) there
are no test order dependencies [8], [29], [89], and (3) dynamic
language features, e.g., reflection and classloading, do not
introduce additional CDG edges.
Notation: Subscripts distinguish how affected classes are
computed. ps1 computes affected1(∆) = ∆◦(E−1)∗◦E∗ (Def-
inition 4). ps2 computes affected2(∆) = ∆ ◦ ((E−1)∗ ∪ E∗),
which consists of only classes that either depend transitively
on ∆ (dependents) or ∆ transitively depends on (dependees);
affected2 is more unsafe than affected1 because it omits condi-
tion 3 from Definition 4 to not include classes, e.g., D in Fig. 4,
that may generate new events because they receive objects
from dependents of ∆. ps3 relaxes Definition 4 even further by
omitting condition 3; it computes affected3(∆) = ∆◦(E−1)∗,
i.e., only dependents of ∆.

Once the corresponding set of affected classes (affected(∆))
has been used to select the properties to re-monitor (namely
properties whose events may be generated from affected(∆)),
we obtain more variants by choosing “where” to instrument
the selected properties. We can reduce where to instrument
the selected properties, in order to obtain more reduction of
base RV overhead, at two levels: (1) do not instrument the
selected properties in unaffected classes in the program but
still instrument all third-party library classes loaded into the
JVM, and (2) do not instrument the selected properties in any
third-party library class.

For the first level of instrumentation reduction, we use the
superscript c to show that unaffected classes in the program
(i.e., complement of affected(∆)) are not instrumented: psc1
excludes (affected1)c, psc2 excludes (affected2)c, and psc3 ex-
cludes (affected3)c. To see the benefit of not instrumenting
affected(∆)c, consider ps1 and psc1, which are both safe.
psc1 is safe because unaffected classes cannot generate any
new events or alter the sequence of events for the selected
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TABLE I: “What” properties RPS variants select

What ps1 ps2 ps3
properties in ∆ 3 3 3
properties in dependents of ∆ 3 3 3
properties in dependees of ∆ 3 3 7
properties in dependees of dependents of ∆ 3 7 7

TABLE II: “Where” RPS variants instrument properties

Where (i ∈ {1, 2, 3}) psi psci ps`i psc`i
affected(∆) 3 3 3 3
affected(∆)c 3 7 3 7
third-party library classes 3 3 7 7

ps1, psc1

ps2

ps3

psc2

psc3

ps`1

ps`2

ps`3

psc`1

psc`2

psc`3

ps1

ps2

ps3

psc1

psc2

psc3

ps`1

ps`2

ps`3

psc`1

psc`2

psc`3

Fig. 5: Lattices of RPS variants. Left lattice ordered by “less
safe than”. Right lattice ordered by “more efficient than”

properties, so they cannot have new violations. However, psc1
can be more efficient and more precise (i.e., show fewer old
violations) than ps1 if selected properties can generate events
from classes in (affected1)c. For example, in the CDG of
Fig. 4, if a selected property p can generate events from
B∈affected1 and E∈(affected1)c, and tests TC and TE are run,
psc1 can save the time to monitor p in E. (Note that when safety
assumptions of strong RPS do not hold, ps1 is safer than psc1;
by instrumenting selected properties in unaffected classes, ps1

can find some violations that psc1 miss.) On the other hand, not
instrumenting affected(∆)c can make weak RPS variants more
unsafe—an weak RPS variant that instruments all classes has
a chance to find some violations from instrumented classes
that are not in the computed affected(∆).

The second level of instrumentation reduction does not
instrument any third-party library class. We denote weak RPS
variants that exclude all third-party library classes with ` in the
superscript. For example, psc`3 means that affected3 is used to
select properties, classes in (affected3)c are not instrumented,
and third-party library classes are also not instrumented. ps`3
means that affected3 is used to select properties and only third-
party library classes are not instrumented. In sum, we evaluate
strong RPS (ps1, psc1) and 10 weak RPS variants: ps2, ps3,
psc2, psc3, ps`1, ps`2, ps`3, psc`1 , psc`2 , and psc`3 . Tables I and II
distinguish RPS variants in terms of what part of the CDG is
used for selecting properties, and where the selected properties
are instrumented; 3 means inclusion, and 7 means exclusion.
Efficiency/Safety Tradeoff: Weak RPS variants trade some
safety for lower runtime overhead. Fig. 5 shows two lattices

of RPS variants; lower variants can be less safe (left lattice) but
more efficient (right lattice) than higher ones. ps2 computes
{A, B, C, TC} as affected2. D is not in affected2, so ps2 can
miss new STHME violations, e.g., when changing only true

to false on line 14 in Fig. 1d—ps2 does not even re-monitor
STHME for this change. If such cases are rare, then ps2 can
be safe but have lower overhead than strong RPS. In general,
ps2 can be unsafe if there is data flow to classes that are
not dependents or dependees of ∆. ps3 computes affected3

as {B, C, TC}—dependents of ∆—which includes neither ∆’s
dependees, e.g., A, nor dependees of ∆’s dependents, e.g., D.
Therefore, ps3 can be more unsafe than ps2, e.g., if A changes
such that a new violation results from events that are local
to A, ps2 will find that new violation, but ps3 will not find
it. Technique psc3 could miss new violations that psc2 finds. In
fact, psc3 misses the new CSC violation after the change in
Fig. 1d; it selects to re-monitor CSC but does not instrument
A, so asyncMk is not triggered. Excluding third-party library
classes from instrumentation can also be unsafe, e.g., if A or
D are third-party library classes. Weak RPS variants that do
not instrument affected(∆)c can be faster but safe if changes
only lead to new violations in ∆ and its dependents. Lastly,
for weak RPS, false alarms can result from excluding classes
from instrumentation. For example, if the STHME property’s
hasnexttrue event is triggered from a third-party library
class that is not instrumented, and the next event is triggered
in affected(∆), a violation will occur even though the program
satisfies the STHME property

D. Violation Message Suppression (VMS)

VMS improves base RV by showing only new violations.
Showing only new violations right after a change is more ef-
fective than showing old plus new violations to get developers
to act—they are still in the mental context of the change and
are the ones who can best address new violations [65].

Definition 7. Violation Message Suppression (VMS): A tech-
nique to show, in a new program version, only new violations
that did not occur in an old version.

Base RV shows three violations in the new version of
the example in Fig. 1d: line 4 (two instances), line 28 (two
instances), and line 36 (one instance). The latter two were
in the old version, and their line numbers did not change.
(More generally, VMS does not simply check equality of line
numbers but builds a likely mapping between old and new
line numbers based on code context.) In the new version, VMS
shows only the violation on line 4, instead of showing all three.
VMS can be used with RPS to reduce the old violations shown
by RPS. Running RPS on new version of Fig. 1d will show
two violations (lines 4 and 28); VMS shows only one (line 4).

VMS’ inputs are the violations from the old and new
versions, plus the source files in both versions. Each violation,
v = 〈p, c, l〉, contains a triple of the property name (p) that
was violated, and the class (c) and line number (l) of the last
event that violated the property. Let V1 and V2 be the set of
violations from monitoring the old version (P1) and the new
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version (P2), respectively. VMS computes Vnew, the set of new
violations that are in P2 but not in P1. VMS does not simply
compute V2\V1 that may report many old violations for which
only the line numbers changed. Using only line numbers to
match statements in two code versions performs poorly [75].

For each class Cδ ∈ ∆, where ∆ is the set of changed
classes (including newly added and renamed classes), VMS
first creates a mapping, MCδ , from line numbers in the
source file of Cδ in P2 to line numbers with the likely same
statement in the corresponding source file in P1. Each line
number in P2 maps to at most one line number in P1; some
line numbers in P2 may not be in MCδ . Note that MCδ

is likely (i.e., not exact) as it is based on simple syntactic
and not semantic equivalence; the latter is rather challenging
and does not scale currently [28], [56]. MC is identity if
C did not change. Then, V∆

new= ∪Cδ∈∆ VMS(V1,V2,MCδ),
where VMS(V1,V2,MCδ)={〈p,Cδ, l〉∈V2 | @l′∈MCδ(l) ∨
〈p,Cδ,MCδ(l)〉/∈V1}. Let ∆′ be the set of unchanged classes.
New violations in ∆′ are V∆′

new= ∪C∈∆′ VMS(V1,V2,MC).
Vnew = V∆

new ∪ V∆′

new is the output of VMS. V∆′

new is non-empty
when interactions with changed classes cause new violations
in ∆′, or when test non-determinism i.e., “flakiness” [7], [9],
[30], [58], [79] leads to non-determinism during monitoring.
Discussion of VMS: VMS can save developer time for
inspecting violations but slightly increases machine time, e.g.,
VMS increases time by <1% in our experiments. As we
showed with our example, VMS can further reduce violations
shown by RPS.

E. Regression Property Prioritization (RPP)

Developers may be more interested in violations of critical
properties than other violations, e.g., violations of properties
that previously helped find bugs may be more critical. RPP
partitions RV into two phases: a critical phase and a back-
ground phase. After a code change, the critical phase immedi-
ately re-monitors (manually or automatically selected) critical
properties and provides results to developers. The background
phase separately re-monitors other properties. Developers get
delayed feedback if non-critical properties are violated. RPP
allows (manually or automatically) moving properties between
the phases as properties become more or less critical during
software evolution. To evaluate RPP, we consider previously
violated properties as critical. RPP is inspired by regression
test prioritization [22], [36], [78], [81], [87], but we are first to
propose RPP for reducing RV overhead as software evolves.
Discussion of RPP: The benefit of RPP is to remove the re-
monitoring of non-critical properties from developers’ critical
path (from the moment of submitting code changes to the
moment of getting feedback). RPP’s disadvantage is that it
delays the time for developers to get feedback if non-critical
properties are violated. RPS and VMS can be used with RPP—
RPP merely first runs some subset of selected properties.

IV. IMPLEMENTATION

We present our implementation of RPS, VMS, and RPP.

A. Regression Property Selection (RPS)

Building CDG, Computing Changes and Affected Classes:
We used STARTS [51], [54] to build CDGs, compute ∆, find
affected(∆) in P1, and persist checksums of classes in P1

to disk. The checksums are used to compute the classes that
changed between P1 and P2. STARTS is a publicly available
regression test selection (RTS) tool that implements most of
these steps. By default, STARTS computes affected3, which
suffices for RTS [47], [51], [54], [66], but is not sufficient
for strong RPS. We extended STARTS to compute affected1

and affected2. We chose STARTS because it is static and
fast—it requires neither test runs nor code instrumentation
to find dependencies among classes, or compute affected(∆).
We monitor test executions, so using a dynamic technique to
compute dependencies or affected(∆) would incur additional
overhead. Also, instrumentation performed by a dynamic
technique could interfere with JavaMOP instrumentation.
Monitoring: We used JavaMOP [43], [58] to monitor test
executions against formal properties. JavaMOP is publicly
available [40], uses AspectJ for load-time instrumentation, and
allows monitoring many properties in one execution. JavaMOP
was used in several RV studies [10], [20], [37], [52], [53],
[58], [72], [74]. In each version, we follow publicly available
instructions [39] to build and attach a JavaMOP agent [64]
with selected properties to the JVM that executes tests.
Selecting Properties to Re-monitor: The properties re-
monitored are those for which affected(∆) can generate events.
To select properties, we first used the AspectJ compiler to
very quickly and statically weave all available properties into
affected(∆), and record properties whose aspects get weaved.
If aspects from a property do not get weaved into any class in
affected(∆), its events cannot be generated from affected(∆)
at runtime. Time to select properties is part of RPS end-to-
end time, so we optimized static weaving to be as fast as
possible—only 3.3s on average in our experiments.

B. Violation Message Suppression (VMS)

VMS implementation is straightforward: (1) take violations
from P1 and P2, (2) remove violations generated in P2 if line
mapping can map the same violation to a likely corresponding
line number in P1 (after taking care of renames), and (3) report
any remaining violations generated in P2 as likely new viola-
tions. Our line mapping extends the jDiff utility of jEdit [41],
a Java implementation of Myers’ classic algorithm [61].

C. Regression Property Prioritization (RPP)

We considered critical properties to be those that were
violated in the project’s history. In the first version of each
project, there is no history, so there is a choice to monitor
all properties in either the critical or background phase. It
is not clear which of these choices is better; monitoring all
properties in the either phase for the first version unfairly
increases its average overhead. Therefore, we split properties
into critical and background phases after the first version,
depending on whether they were violated in the first version.
We do not include the first version when computing the
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TABLE III: Projects in our study

Name #Test KLOC Tests[s] tmop/ttests

commons-dbcp 26 20.1 56.5 2.0
imglib2 74 44.2 11.3 3.7
commons-lang 130 69.5 22.4 3.9
jackson-core 79 31.7 11.2 5.6
commons-io 96 29.2 106.5 5.8
commons-math 432 180.4 93.6 6.4
imaging 63 37.6 18.4 6.4
javapoet 17 7.9 10.7 7.2
stream-lib 24 8.4 127.1 12.2
opentripplanner 126 78.7 55.1 40.5

X 106.7 50.7 51.3 9.4
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Fig. 6: Test time vs. base RV overhead for several projects

average overheads of each phase. From the second version
onward, if a property gets violated in the background phase,
our RPP implementation moves it to the critical phase in the
next version. We leave it as future work to investigate criteria
for moving properties which have not been violated after a
while from the critical phase back to the background phase.

V. EVALUATION

We list our research questions, describe our experimental
setup, and answer the research questions.

A. Research Questions

We answer the following research questions: RQ1: How
much does RPS reduce the machine time overhead of base
RV? RQ2: How many violations does VMS show and how
safe are RPS variants? RQ3: How much does RPP reduce
time for developers to get feedback on critical properties?

B. Experimental Setup

Projects: Table III shows 10 open-source, Maven-based Java
projects from GitHub used in our study, 9 of which we also
used in prior work [51], [54], [80]. #Test is average number
of test classes used (we skipped very few test classes from
6 projects due to problems with JavaMOP instrumentation),
KLOC is average thousands of lines of code, Tests[s] is aver-
age test time, and tmop/ttests is average base RV overhead.
Properties: We used 161 manually written properties found to
be good in our prior study [52]. The properties were written to
formalize Java APIs [50], [58] and are publicly available [70].
Versions: We started from a recent commit in each project
and went back into the history, to select 20 commits/versions
where (1) at least one .java file changed, (2) all tests pass
without JavaMOP, and (3) all tests pass with JavaMOP.
Running Experiments: We wrote scripts to automate running
tests, collect violations and measure time for three configura-
tions on each version: (1) without JavaMOP, (2) with base RV,
and (3) with each evolution-aware RV technique. For RPS,
the most common case is that .java file changes modify
the bytecode, so properties may need to be re-monitored. If
.java file changes do not modify bytecode, we skip tests (no
re-monitoring); time is only spent to check for changes. If

changes affect bytecode, but no properties are selected to be
re-monitored, all tests are run without JavaMOP, and the end-
to-end time is the time to compute changes, find affected(∆),
check if properties need re-monitoring, and run tests.

C. RQ1: Overhead reduction from RPS
We present RV overhead in multiples (×), as the ratio

tmop/ttests, where tmop is time with JavaMOP and ttests is time
without JavaMOP. We first show on a sample of 89 projects
whether the high overhead induced by base RV can be seen
in open-source projects with short- (<10s), medium- (10s–
300s), and long-running (>300s) tests. These 89 projects were
sampled from our prior studies [51], [52], [54], [80] and from
the Apache continuous integration server. Fig. 6 plots ttests

(x-axis, log scale, in seconds) vs. tmop/ttests (y-axis). Projects
in all three categories exhibit high overhead, so high base RV
overhead is not a fixed cost that is more pronounced in projects
with shorter-running tests. Squares show projects in this study.
We did not evaluate our techniques on the other projects
because (1) tmop − ttests is too small for RPS to be beneficial,
(2) test-running times are high for long-running projects which
requires more resources than we have to evaluate them, or
(3) we could not get 20 versions that satisfy our criteria.

Solid bars in Fig. 7 show average runtime overhead of base
RV (BL) and the RPS variants (ps) discussed in Section III-C.
All overheads are computed from end-to-end time including
time for analysis, running tests, and monitoring test executions.
The results show several points. First, all RPS variants reduced
the average base RV overhead, which is 9.4×. Strong RPS
variants, ps1 and psc1, have 7.9× and 7.5× overhead, respec-
tively. As expected, weak RPS variants with fewer classes in
affected(∆) achieve more reduction. psc`3 is the most efficient
weak RPS variant, with 2.5× overhead. Second, comparing BL
and BL` shows that base RV spends about 36% of overhead
on third-party library code: (BL−BL`)/BL. Since psc1 is safe
under certain assumptions, and, as we show in Section V-D,
excluding unaffected and third-party library classes was safe
in our experiments, psc`1 may, in general, achieve the best
efficiency/safety tradeoff among weak RPS variants.

We also evaluated how much regression test selection
(RTS) [14], [23], [24], [26], [27], [31], [51], [77], [87], [88]
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Fig. 7: Runtime overheads of, and violations from base RV (BL), RPS variants (ps), VMS, and RTS (ts) with 161 properties

can reduce base RV overheads during software evolution. RTS
is a general approach (independent of RPS) for reducing the
overhead of regression testing by re-running only a subset
of tests whose behavior can differ after code changes. We
previously noted that RTS can also reduce base RV overhead,
since RTS already reduces testing overhead [53]. We evaluate
a static class-level RTS technique, implemented in STARTS,
which uses the same CDG as RPS. (Other RTS techniques
compute dependencies dynamically [24], [26], [88], but it was
challenging to evaluate them because their instrumentation
often clashed with JavaMOP.) Since RTS can select more
tests than those whose behavior differs after a code change,
it may be imprecise as an evolution-aware RV technique
(Section III-A). So, we also evaluated RPS plus RTS to see
how these two can together further reduce base RV overhead.

The four rightmost solid bars in Fig. 7 show the overhead
with RTS, with and without libraries. ts shows combination of
RTS with base RV, i.e., rerun a subset of tests but re-monitor
all properties, while ps3ts shows RPS (using variant ps3) plus
RTS, i.e., rerun a subset of tests and re-monitor a subset of
properties. When measuring the overhead, we used end-to-
end RTS time, which includes the time to select the tests.
Combining base RV with RTS has 6.4× overhead, compared
with 9.4× for base RV. RPS plus RTS gives lower overhead
(5.9×) than RTS alone, showing that RPS can provide value
even where RTS is used. Since RTS can be unsound, it may
incorrectly miss to select tests [23], [26], [51], [77], which
makes RTS an unsafe evolution-aware RV technique. Finally,
as we show in RQ2, RTS by itself is imprecise; it should be
combined with VMS to show only new violations.

D. RQ2: VMS and RPS Safety

We discuss the results of VMS, and how we used these
results to guide our manual checking of RPS safety. The

striped bars in Fig. 7 show average number of violations from
all techniques evaluated in Section V-C; the vms bar shows
VMS average. The most significant result is that VMS is orders
of magnitude more precise than RPS. For four projects, no new
violation occurred in the range of versions.

Further, library exclusion results in very little difference in
the average number of violations, which is good, because most
violations can still be found when libraries are excluded. Very
few violations in the libraries makes sense because libraries
are widely used and tend to be better tested. We manually
checked all violations that are not generated when libraries
are excluded and found 87.5% of them to be in the third-
party libraries themselves, and not in the project code. Among
these, only one was a new violation and it was due to a library
version change—all events leading to the violation were in the
new version of the library, so library exclusion did not lead to
missing any new violation in the projects. All violations that
are missed in projects when excluding libraries were not new
violations, providing some justification for excluding libraries
when one does not care about violations in libraries, and partial
explanation for why library exclusion did not lead to missing
new violations.
RPS Safety: We manually confirmed safety of RPS variants
by checking if all new violations from VMS were also reported
by each variant. VMS reported a total of 33 new violations in
16 of the 200 versions across all projects. Of these, 5 were
due to flakiness, which we confirmed by re-running several
times (i.e., these 5 violations could also have happened in the
old version). All RPS variants found 27 of the new violations,
but all missed one new violation. The one new violation that
all variants missed was the aforementioned library version
change. It is surprising that weak RPS variants were safe in our
experiments, since they are theoretically unsafe. Therefore, we
carried out further manual inspection of the changes involved
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in the 16 versions with new violations, to see why weak
variants were safe. We found that all new violations happened
due to events in affected3, a subset of affected1 and affected2,
so all the variants were able to catch the new violations.
This further explains why weak RPS variants were safe in
our experiments (Section V-C showed that excluding library
classes did not lead to missing new violations in the projects).

E. RQ3: RPP Effectiveness

Fig. 8 shows RPP results, where the RPS variants do not
exclude libraries. The first finding is that RPP alone (noRPS)
overhead for monitoring background properties (bg) is roughly
three times more than its overhead for monitoring critical
properties (cr). The second finding is that overheads for cr
and bg do not sum up to base RV overhead. For all projects,
but one, cr+bg noRPS is greater than BL. Being greater is
expected because time to run tests is repeated between cr and
bg. The surprising project is opentripplanner, where the sum of
cr and bg is less than BL for monitoring all properties together,
likely due to reduced memory pressure when the properties are
split. Finally, cr with ps3ts has only 1.8× overhead, compared
with 9.4× for base RV.

VI. DISCUSSION

We highlight internal details of RPS and properties that
contributed the most monitors and events in each project.
RPS Internals: Our analysis of data from running RPS shows
that changes are small compared to the size of the program,
and that our analysis is very fast compared to the time for
monitoring. The data here is for ps1. The average CDG in our
experiments had 720 nodes and 3706 edges. On average, ∆
contained 7 nodes each version, leading to an average of 233
nodes in affected(∆). The total analysis time was 4.3% of the
end-to-end time—this includes the time to find affected(∆),
repackage the Jar file with selected properties, and to find the
classes from which new events may be generated after a code
change. The rest of the time is spent on monitoring.
Different properties dominated base RV overhead: We
measured the number of monitors created, events triggered,

and the top two properties that contribute the most monitors
(Top M) and events (Top E). No property always dominated
monitor creation or event generation, but two properties,
Iterator_HasNext and StringBuilder_ThreadSafe are
in Top M for all projects. No property dominates Top E.
Iterator_HasNext and StringBuilder_ThreadSafe are
quite common in Top E and generate most events in open-
tripplanner, the project with the highest base RV overhead.
Iterator_HasNext helped find several bugs [52], so devel-
opers may still want to monitor it. We are not aware that
StringBuilder_ThreadSafe previously helped find bugs.

VII. RELATED WORK

Many RV techniques and tools were proposed in almost
two decades since the first papers on RV [33], [34], mostly
concerned with speeding up RV on one program version.
Example techniques (1) improve the efficiency of synthesizing
monitors [35], (2) improve the efficiency of monitor garbage
collection [42], [44], [58], (3) create a virtual machine to
make RV more efficient in production [2], (4) reduce RV
overhead by sharing information among monitors [20], [58],
[72], (5) support efficient monitoring of properties written in
different formalism [5], [32], [59], [60], (6) analyze observed
executions in monitors to infer characteristics of unseen execu-
tions [12], [13], (7) allow RV to monitor multiple properties in
one execution [44], [58], (8) reduce the time that RV wastes in
loops [71], etc. Tools include Eagle [3], JavaMOP [40], [43],
[58], jMonitor [45], JPaX [33], MarQ [74], MOPBox [10],
Mufin [20], Ruler [5], and TraceMatches [1], [11]. We used
JavaMOP because it is publicly available [40]. A complemen-
tary line of research is to automatically mine the properties
that RV can monitor [6], [15], [19], [25], [46], [48], [49],
[55], [62], [63], [67]–[69], [73], [76], [85], [86], [90].

Our recent large-scale study [52] showed that RV can find
many new bugs during testing, but at high overhead of 4.3×
for base RV, with the extra time incurred by JavaMOP (4.08s
– 12.48s) being too small for RPS to be beneficial.

VIII. CONCLUSIONS

We presented three evolution-aware RV techniques: RPS,
VMS, and RPP. Our techniques reduced base RV overhead
from 9.4× to as low as 1.8×, were safe, and showed two
orders of magnitude fewer violations than base RV. Our results
provide strong evidence that taking evolution into account can
significantly improve base RV.
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[16] F. Chen and G. Roşu. Towards monitoring-oriented programming: A
paradigm combining specification and implementation. In RV, 2003.

[17] Collections. https://docs.oracle.com/javase/8/docs/api/java/util/
Collections.html#synchronizedCollection-java.util.Collection-.

[18] Collections_SynchronizedCollection. http://fsl.cs.illinois.
edu/annotated-java/__properties/html/java/util/Collections_
SynchronizedCollection.html.

[19] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
test cases for specification mining. In ISSTA, 2010.

[20] N. Decker, J. Harder, T. Scheffel, and D. Schmitz, Malteand Thoma.
Runtime monitoring with union-find structures. In TACAS, 2016.

[21] M. B. Dwyer, R. Purandare, and S. Person. Runtime verification in
context: Can optimizing error detection improve fault diagnosis? In RV,
2010.

[22] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky.
Selecting a cost-effective test case prioritization technique. SQJ, 12(3),
2004.

[23] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. IST, 2010.

[24] E. Engström, M. Skoglund, and P. Runeson. Empirical evaluations of
regression test selection techniques: a systematic review. In ESEM, 2008.

[25] M. Gabel and Z. Su. Online inference and enforcement of temporal
properties. In ICSE, 2010.

[26] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In ISSTA, 2015.

[27] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques. In ICSE, 1998.

[28] A. Gyori, S. K. Lahiri, and N. Partush. Refining interprocedural change-
impact analysis using equivalence relations. In ISSTA, 2017.

[29] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable testing: detecting
state-polluting tests to prevent test dependency. In ISSTA, 2015.

[30] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable testing: Detecting
state-polluting tests to prevent test dependency. In ISSTA, 2015.

[31] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for
Java software. In OOPSLA, 2001.

[32] K. Havelund, D. Peled, and D. Ulus. First order temporal logic
monitoring with BDDs. In FMCAD, 2017.

[33] K. Havelund and G. Rosu. Monitoring Java programs with Java
PathExplorer. In RV, 2001.

[34] K. Havelund and G. Rosu. Monitoring programs using rewriting. In
ASE, 2001.

[35] K. Havelund and G. Rosu. Synthesizing monitors for safety properties.
In TACAS, 2002.

[36] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing
less without sacrificing quality. In ICSE, 2015.

[37] S. Hussein, P. Meredith, and G. Roşu. Security-policy monitoring and
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