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Abstract
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state-space explorer.
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1 Introduction

Programming languages are the key link between computers and the software that
runs on them. While programming languages usually have a formally defined syntax,
this is not true of their semantics. Semantics is most often given in natural language,
in the form of a reference manual or reference implementation, but rarely using
mathematics. However, without a formal language semantics, it is impossible to
rigorously reason about programs in that language. Moreover, a formal semantics
of a language is a specification offering its users and implementers a solid basis
for agreeing on the meaning of programs. Of course, providing a complete formal
semantics for a programming language is notoriously difficult. This is partly because
of the mathematics involved, and partly because of poor tool support, but also
because of the poor scalability of many frameworks, both in terms of modularity at
a definitional level and in terms of simulation, execution and/or analysis time.

To address this difficulty in writing language semantics, the K framework [28]
was introduced as a semantic framework in which programming languages, calculi, as
well as type systems or formal analysis tools can be defined. The aim of K in general
is to demonstrate that a formal specification language for programming languages
can be simultaneously simple, expressive, analyzable, and scalable. This paper
serves as an introduction, tutorial, and reference for the K tool [13] version 3.2, an
implementation of the K framework. We show how using the tool one can not only
develop modular, executable definitions, but also easily experiment with language
design by means of testing and behavior exploration.

K definitions are written in machine-readable ASCII, which the K tool accepts
as input. For execution and analysis purposes, the definitions are translated into
Maude [3] rewrite theories. For visualization and documentation purposes, definitions
are typeset into their LATEX mathematical representation. Fig. 4 gives the K definition
(both ASCII and mathematical representations) of a simple calculator language with
input and output. This language is described in detail in Section 2.

Besides didactic and prototypical languages (such as λ-calculus, System F, and
Agents), the K tool has been used to formalize C [5], Python [9], Scheme [21] and
OCL [1,29]; additionally, definitions of Java 7, Haskell and JavaScript are underway.
With respect to analysis tools, the K tool has been used to define type checkers and
type inferencers [6], and is currently being used in the development of a new program
verification tool using Hoare-like assertions based on matching logic [24, 25], in a
model checking tool [2] based on predicate abstraction, and in researching runtime
verification techniques [26, 30]. All of these definitions and analysis tools can be
found on the K tool website [12].

2 Writing the first K definition

In this section we guide the reader through the process of writing a simple language
definition using the K tool. Upon completing this section, the reader should be able
to easily write and typeset a definition like that of the EXP language presented
in Fig. 4, and to compile it and use it as an interpreter. As some of the more
advanced features of K are not used by the definition in Fig. 4, we will provide
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several extensions from it, each exhibiting a feature of K. The snippets of code
presented in this paper highlight the keywords recognized by the K tool and typesets
predefined syntactic categories using italics; the K tool provides similar syntax
highlighting capabilities for several popular text editors, including vi and Emacs.

2.1 Basic ingredients

When beginning to write K definitions using the K tool, it is recommended to test
the definition as often as possible, thus catching problems early in the development
process when they are easier to fix. Therefore, we start by showing how to get a
testable definition as early as possible.

2.1.1 Modules
The K tool provides modules for grouping language features (syntax, evaluation
strategies, configuration, and execution rules). A module is defined by the syntax:
module <NAME>

...
endmodule

where <NAME> is a name identifying the module. It is customary to use only capital
letters and hyphens for a module name.

AK definition is required to have at least one main module; however, it is generally
considered good practice to isolate the (program) syntax from the semantics using
two modules: <NAME> and <NAME>-SYNTAX. Separating the syntax from the rest of the
definition minimizes program parsing ambiguities. To import modules, one needs
to add at least one imports <NAME> directive after the header of a module. Multiple
modules can be imported using the same imports directive by summing their names
with the ‘+’ symbol.

Modules need to be explicitly imported within other modules before referring to
(parts of) them. For example, the EXP-SYNTAX module needs to be imported by the EXP

module before using the syntax declared in it.
module EXP-SYNTAX
endmodule

module EXP
imports EXP-SYNTAX

endmodule

2.1.2 Compiling definitions
K definitions are usually stored into files with extension “.k”. Assume a file exp.k
containing modules EXP-SYNTAX and EXP defined above. To compile this definition (and,
indirectly, check its validity), one can execute the following command:
$ kompile exp

kompile assumes the default extension for the file to be compiled. Moreover, the
file 〈name〉.k to be compiled is assumed by default to contain a module <NAME>, where
<NAME> is the fully capitalized version of 〈name〉. Upon successful completion, kompile
prints nothing. One can change these defaults with kompile options; type kompile --help

for details.
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With the basic skeleton modules in place and the tool working, we can start to
build up our definition, which we describe in the following sections.

2.1.3 Comments
The K tool allows C-like comments, introduced by ‘//’ for single-line comments
and ‘/* ... */’ for multi-line comments. In addition, the K tool offers literate
programming [18] capabilities via LATEX-specific comments (introduced by ‘//@’ and
‘/*@’), which can be used to generate ready-to-publish definitions. We will explain
these later in Section 5.

2.2 Language syntax

Any formal semantics of a language requires first a formal syntax. Although the
K parser can parse many non-trivial languages, it is not (currently) meant to be a
substitute for real parsers. We often call the syntax defined in K “the syntax of the
semantics”, to highlight the fact that its role is to serve as a convenient notation
when writing the semantics, not as a means to define concrete syntax of arbitrarily
complex programming languages. Programs written in these languages can be parsed
using an external parser and transformed into the K AST (Abstract Syntax Tree)
for execution and analysis purposes (using the –parser option of krun).

2.2.1 User-defined syntax
Syntax in K is defined using a variant of the familiar BNF notation, with terminals
enclosed in quotes and non-terminals starting with capital letters. For example, the
syntax declaration:
syntax Exp ::= Int

| Exp "+" Exp [seqstrict] // addition
| Exp "*" Exp [seqstrict] // multiplication
| Exp "/" Exp [seqstrict] // division
| "read" // read integer from console
| "print" "(" Exp ")" [strict] // writing evaluation results to console
| "(" Exp ")" [bracket]

defines a syntactic category Exp, containing the built-in integers and three basic
arithmetic operations on expressions, as well as I/O operations. Each production can
have a space-separated list of attributes which can be specified in square brackets
at the end of the production. For example, the attribute bracket used in the last
production specifies that the brackets are only used for grouping reasons—they will
be omitted from the abstract syntax tree.

seqstrict and strict are attributes bearing semantical information, being used to
define the evaluation strategy of the corresponding construct. For example, declaring
addition seqstrict simply means that we would like arguments of plus to be evaluated
from left to right before evaluating the addition itself. Other uses of attributes are
to help the parser with operator precedences and grouping, or to instruct the PDF
generator how to display the various constructs. We will discuss these in more detail
later in the paper.

Unless otherwise mentioned, all subsequent syntax declarations should be added
inside the EXP-SYNTAX module.
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2.2.2 Built-ins
In addition to the predefined semantic categories (computations, lists, sets, bags,
maps), the K tool provides a number of built-in syntactic categories/datatypes,
and semantic operations for them. The dynamically evolving list of these built
in operations can be found in the files from the include/builtins directory from the
distribution. Among the currently supported built-ins are Booleans (Bool), unbounded
integers (Int), floats (Float), strings (String), and identifiers (Id).

Operations on built-in categories (such as those giving semantics for the basic
arithmetic operators) are postfixed with the name of the category: for example,
‘5 +Int 7’ applies the built-in integer addition on integers 5 and 7, while ‘5 <=Int 7’
produces the Bool true constant.

2.2.3 Parsing programs
We can test a syntax definition by parsing programs written using that syntax.
Suppose the file exp.k contains the modules EXP and EXP-SYNTAX, and that EXP imports
EXP-SYNTAX. Suppose also there exists an EXP program 2avg.exp:
print((read + read) / 2)

printing the average of two numbers read from the console.
Assuming that the definition was already compiled using kompile, the kast

command can be used to test that the program parses and to see its corresponding
K abstract syntax tree. By default, kast requires to be run from the directory
containing the K definition file, say 〈name〉.k, and the compiled definition; please
use the --help option to see more details on how to call kast from other places.

Moreover, all tokens not declared in the user syntax are assumed to be identifiers.
The K AST is simply a tree having as nodes (K) labels, either associated to

syntactic productions (e.g., ‘’_+_’), or injections of the predefined datatypes’ constants
as tokens.

2.3 Language semantics

Specifying semantics within the K tool consists of three parts: providing evaluation
strategies that conveniently (re)arrange computations, giving the structure of the
configuration to hold program states, and writing K rules to describe transitions
between configurations.

2.3.1 Evaluation strategies: strictness
Evaluation strategies serve as a link between syntax and semantics, by specifying
how the arguments of a language construct should be evaluated. For example,
both arguments of an addition operator must be evaluated before computing their
sum, whereas for the conditional operator ‘_?_:_’, only the first argument should be
evaluated, which is specified by the ‘strict(1)’ attribute:
syntax Exp ::= Exp "?" Exp ":" Exp [strict(1)]

Although the order in which summands are evaluated might not matter, it matters
crucially for a sequential composition operator (e.g., ‘_;_’); seqstrict requires a left-
to-right order of evaluation.
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syntax Exp ::= Exp ";" Exp [seqstrict]

Since rules for specifying evaluation strategies are tedious to write in most
definitional formalisms, the K tool allows the user to annotate the syntax declarations
with strictness constraints specifying how the arguments of a construct are to be
evaluated. Although strictness constraints have semantic meaning, it is more
convenient to write them as annotations to the syntax, as they often refer to multiple
non-terminal positions in the syntax declaration.

The K tool provides two strictness attributes: strict and seqstrict. Each optionally
takes a list of space-separated numbers as arguments, denoting the positions on
which the construct is strict (1 being the leftmost position). For example, the
annotation ‘strict(1)’ above specifies that only the first argument of the conditional
expression must be evaluated before giving semantics to the construct itself. If no
argument is provided, then all positions are considered strict.

The only difference between strict and seqstrict is that the latter ensures the
arguments are evaluated in the order given as an argument in the list, while the
former allows nondeterminism. In particular, if no argument is provided, seqstrict

enforces the left-to-right order of evaluation for the arguments of the considered
construct. For example, the seqstrict annotation for the ‘+’ constructor says that
we want to evaluate all arguments of the ‘+’ operator from left to right before
giving its semantics. In contrast, a strict annotation would also specify that both
subexpressions must be evaluated, but does not constrain the evaluation strategy.

The K tool distinguishes a category of terms, KResult, which is used to determine
which terms are values, or results. For example, the syntax declaration below specifies
that integers are values in the EXP language.
syntax KResult ::= Int

Unlike syntactic productions declaring language constructs, the place of this decla-
ration is in the EXP module, as it semantically defines integers as results.

More advanced details about strictness (including the more generalized notion of
evaluation contexts) as well as the use of the K tool to explore the nondeterminism
associated with strictness will be discussed later in the paper.

2.3.2 Computations
The sequencing of evaluation is made possible in K by computation structures.
Computation structures, called “computations” for short, extend the abstract syntax
of a language with a list structure using the separator y (read “followed by” or “and
then”, and written ~> in ASCII).K provides a distinguished sort, K , for computations.
The extension of the user-defined syntax of the language into computations is done
automatically for the constructs declared using the syntax keyword. The KResult
sort described in the previous section is a subsort of K .

The intuition for computation structures of the form t1 y t2 y · · · y tn is
that the listed tasks are to be processed in order. The initial computation in an
evaluation typically contains the original program as its sole task, but rules can then
modify it into task sequences.

The rules generated from strictness annotations are the main users of this
sequencing constructor; they “heat” the computation by sequencing the evaluation
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of the arguments before the evaluation of the construct itself, and then “cool” it
back once a value was obtained. For example, the heating rule for the conditional
construct would look something like:
E1:Exp ? E2:Exp : E3:Exp => E1 ~> HOLE ? E2 : E3

with the side condition the E1 is not a result. The “cool” rule would be the opposite:
E1:Exp ~> HOLE ? E2:Exp : E3:Exp => E1 ? E2 : E3

with the side condition that E1 is a result this time.

2.3.3 Configurations, initial configuration
In K, the state of a running program/system is represented by a configuration.
Configurations are structured as nested, labeled cells containing various computation-
based data structures. Within the K tool, configuration cells are represented using
an XML-like notation, with the label of the cell as the tag name and the contents
between the opening and closing tags. For example, the configuration of EXP is:
configuration
<k> $PGM:K </k>
<streams>
<in stream="stdin"> .List </in>
<out stream="stdout"> .List </out>

</streams>

The lines above describe both the initial configuration and the general structure
of a configuration for EXP and should be included in the EXP module (usually in
the first few lines). The configuration declaration is introduced by the configuration

keyword, and consists of a cell labeled k which is meant to hold the running program
(denoted here by the variable $PGM of type K), and a cell streams holding the in and out
cells, which model an executing program’s input/output streams (abstracted as lists).
The in and out cells in the configuration declaration contain the XML attribute
stream which is used for enhancing the interpreter generated from the definition
with interactive I/O, with current possible values stdin and stdout (see Section 2.4).
Variables in the initial configuration, e.g., ‘$PGM:K’, are place-holders. They are meant
to be initialized at the beginning of program execution (see Section 2.4).

The only types of cell contents currently allowed by the K tool are computations
and lists/bags/sets/maps of computations with their sorts being List, Bag, Set, and Map,
respectively. The elements of these structures are obtained by injecting computations
(of sort K) into these sorts through the constructors ListItem, BagItem, SetItem, and
7→ (written in ASCII as ‘|->’), respectively. As the K sort encompasses all built-
in datatypes and user-defined syntax, this allows for items like ‘ListItem(I:Int)’,
‘SetItem(5)’, and ‘x |-> 5’ to be written. Multiple items are space-separated, for
example: ‘BagItem(4) BagItem(2)’. The unit of these sorts is denoted by ‘.’ which, for
disambiguation purposes, can be suffixed by the sort name, e.g., ‘.List’ inside the in
cell in the configuration.

The configuration declaration serves as the backbone for the process of configu-
ration abstraction (later described in Section 4.1) which allows users to only mention
the relevant cells in each semantic rule, the rest of the configuration context being
inferred automatically.
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2.3.4 Rules
K rules describe how a running configuration evolves by advancing the computation
and potentially altering the state/environment. In the K tool, semantic rules are
introduced by the rule keyword. A K rule describes how a term or subterm in the
configuration can change into another term, in a way similar to that of a rewrite rule:
any term matching the left-hand side of a rule can be replaced by the right-hand
side. The rules below are to be introduced in the EXP module.

For basic operations which do not require matching multiple parts of the config-
uration, a K rule might simply look like a rewrite rule, with just one rewrite symbol
at the top of the rule. For example, the semantics of addition and multiplication are
completed by:
rule I1:Int + I2:Int => I1 +Int I2
rule I1:Int * I2:Int => I1 *Int I2

As strictness is assumed to take care of the evaluation strategy, K rules are written
with the assumption that the strict positions have already been evaluated (e.g., ‘+’
and ‘*’ were declared to be strict in all arguments).

Furthermore, all rules can have side conditions which are introduced by the
requires keyword, and are expected to be Boolean predicates. The following rule:
rule I1:Int / I2:Int => I1 /Int I2 requires I2 =/=Int 0

specifies that division should only be attempted when the denominator is non-zero.
Variables are initial-cap letters or words followed by numbers or primes, as in

Foo2 or X’. Variables can be sorted using a colon followed by the sort name. ‘X:K’ is
a variable named X of sort K. The K tool does not require a variable to be typed
everywhere it is used, but it must be typed at least once per rule. There are attempts
to infer types automatically, but we here assume that variables are explicitly typed.

Anonymous variables are represented in the K tool by the underscore ‘_’ symbol.
They allow omitting the name of a variable when that is not used elsewhere in a
rule. For example, here are the rules for evaluating the conditional expression:
rule 0 ? _ : E:Exp => E
rule I:Int ? E:Exp : _ => E requires I =/=Int 0

In the first rule, if the condition evaluates to 0, then the entire expression evaluates
to the third argument, while the second (matched by the anonymous variable‘_’)
is discarded. Otherwise, if the condition evaluates to something other than 0, the
conditional expression evaluates to the second argument, the third being discarded.

In K, rewriting is extended using what we call local rewriting. By pushing the
rewrite actions inside their contexts, K rules can omit parts of a term that would
otherwise be duplicated on both sides of a rewrite rule. In the K tool this is done
by allowing multiple occurrences of the rewrite symbol ⇒ (written in ASCII as =>),
linking the parts of the matching contexts which are changed by the rule (the left
side of ⇒) and their corresponding replacements (the right side of ⇒), as shown by
the following two rules for performing I/O:

rule <k> print(I:Int) => I ...</k>
<out>... . => ListItem(I) </out>

rule <k> read => I:Int ...</k>
<in> ListItem(I) => . ...</in>
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For example, the print rule performs two changes in the configuration: (1) the
print expression is replaced by its integer argument; (2) a list item containing that
integer replaces the empty list in the output cell (i.e., it is added to that list).
Similarly, the read rule replaces one element in the input cell by the empty list
(i.e., deletes it from that list) and uses its value as a replacement for read in the
computation cell.

In K, parts of the configuration can be omitted and inferred, so that as little
of the configuration as possible needs to be given in a rule. This inference process,
called configuration abstraction, relies on the fixed structure of the specified initial
configuration. For example, this policy allows the read and print rules mentioned
above to omit the streams cell, as it can be easily inferred. More details about
configuration abstraction are discussed in Section 4.1.

As an additional notation shortcut, K allows omission of the contents of the cells
at either end. In the K tool this is specified by attaching three dots (an ellipsis) to
the left or to the right end of a cell. With this convention, we now have the full
semantics for the print and read rules:

print if ‘print I’ (where I is an integer) is found at the beginning of the computation
cell, then it is replaced by I and I is added at the end of the output list;

read if read is found at the beginning of the computation cell, then the first element
in the input list is removed, and its value is used as a replacement for read.

Note that the rules corresponding to strictness annotations are used both to ensure
that a print or read expression would eventually reach the top of the computation if
it is in an evaluation position, and also that once they are evaluated, their values
will be plugged back into their corresponding context.

The above techniques make K rules simple and modular. By keeping rules
compact and redundancy low, it is less likely that a rule will need to be changed as
the configuration is changed or new constructs are added to the language.

2.4 Executing programs with krun

Once the K definition of a language is written in the K tool and it is compiled
successfully (using the kompile command), the krun command can be used to
execute/interpret programs written in the defined language.

Fig. 1 presents three programs and their runs using the krun tool. As mentioned in
Section 2.3.3, the krun tool starts executing the program in the initial configuration,
with the variable ‘$PGM’ replaced by the K AST of the input program. The rules are
then allowed to apply to the configuration, and the final configuration is obtained
when no more rules apply. For example, the final configuration obtained after
executing p1.exp contains 15 in the k cell, while the other cells are empty.

The read and print instructions affect the in and out cells. Since these cells are
annotated with the stream attribute, the krun tool requests input from the standard
input stream whenever a rule needs an item from the in cell to match, and would
flush whatever is entered in the out to the standard output stream. For example,
when executing the program 2avg.exp, krun waits for the user to enter two numbers
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$ cat p1.exp
(3 * (4 + 6)) / 2

$ krun p1.exp

<k>
15

</k>
<streams>
<in>
.

</in>
<out>
.

</out>
</streams>

$ cat 2avg.exp
print((read + read) / 2)

$ krun 2avg.exp

5
7
6
<k>
6

</k>
<streams>
<in>
.

</in>
<out>
.

</out>
</streams>

$ cat p2.exp
print(100 / read)

$ echo "0" | krun p2.exp

<k>
100 / 0 ~> print HOLE

</k>
<streams>
<in>
.

</in>
<out>
.

</out>
</streams>

Fig. 1. Three EXP programs and their interactive executions using krun

(the user entered 5 and 7 in the example), and then prints their arithmetic mean
(6); then, the final configuration is printed.

Finally, the execution of p2.exp shows two things: that it is possible to pipe
input to the program, and how a stuck final configuration looks like. As the rule for
division is guarded by the condition that the divisor is not zero, no rule can advance
the computation after read was replaced by 0. That is shown by the term ‘100/0’ at
the beginning of the computation.

3 More advanced K definitional features
In this section we present several extensions to the EXP language and we use them
to exemplify several features not addressed in the previous section.

3.1 Extending EXP with functional features

To make our language more expressive, let us start by adding λ and µ abstractions
to it, turning it into a functional language.

1 require "../exp.k"
2 require "modules/substitution.k"

4 module EXP-LAMBDA-SYNTAX
5 imports EXP-SYNTAX

7 syntax Val ::= Int
8 | "lambda" Id "." Exp [binder]
9 syntax Exp ::= Val

10 | Exp Exp [seqstrict] //application
11 | "mu" Id "." Exp [binder]
12 endmodule

14 module EXP-LAMBDA
15 imports EXP + EXP-LAMBDA-SYNTAX
16 imports SUBSTITUTION

18 syntax KResult ::= Val

20 rule (lambda X:Id.E:Exp) V:Val
21 => E[V / X]

23 rule mu X:Id.E:Exp
24 => E[mu X:Id.E:Exp / X]
25 endmodule

Fig. 2. exp-lambda.k: Extending EXP with functional features

3.1.1 Splitting definitions among files
Larger K definitions are usually spread in multiple files, each potentially containing
multiple modules. As a file-equivalent of the import command on modules, a file can
be included into another file using the require directive. require will first look up the
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path in the current directory; if not found, it will also look it up in the include
directory from the K distribution. The tree of require dependencies is followed
recursively. If a file was already included through another require command, it will
not be included twice.

3.1.2 Binders and substitution
Both lambda and mu are binders, binding their first argument in the second argument.
We use the built-in substitution operator to give semantics to these constructs. To
guarantee that the substitution works correctly (avoids variable capturing), these
constructs need to be marked with the binder annotation as shown on lines 8 and 11
of Fig. 2. Currently, the binder annotation can only be applied to a two-argument
production, of which the first must be an identifier.

With the substitution operator provided by the K tool’s SUBSTITUTION module,
the semantics of function application and µ-unrolling are straightforward. The
SUBSTITUTION module is completely defined in the K tool, leveraging the binder predicate
mentioned above, and using the AST-view of the user-defined syntax to define a
generic, capture-avoiding substitution. It exports a construct ‘syntax K ::= K [ K / K ]’,
which substitutes the second argument for the third one in the first.

To guarantee a call-by-value evaluation strategy, the application operator is
declared seqstrict in line 10. Moreover, since all rules which don’t explicitly mention
a cell are assumed to apply at the top of the computation cell, the evaluation strategy
is also outermost (the β-substitution, lines 20–21 of Fig. 2). A special category Val

is introduced to allow matching on both integers and λ-abstractions (lines 7–8 of
Fig. 2) and computation results are extended to include all the values (line 18).
Constraining rules not mentioning a cell to happen at the top of the computation
cell also helps with avoiding non-termination for µ-unrolling rule (lines 23–24), by
only unrolling µ in an evaluation position.

K does not commit to substitution-based definitions only. Environment-based
definitions are quite natural, too; in this setting, the environment is typically just
another cell in the configuration.

3.1.3 Desugaring syntax
We can show how one might desugar syntax in the K tool by adding two popular
functional constructs to our language: let and letrec.
syntax Exp ::= "let" Id "=" Exp "in" Exp

| "letrec" Id Id "=" Exp "in" Exp

Instead of directly giving them semantics, we use “macro” capabilities to desugar
them into λ and µ abstractions.
rule (let X:Id = E1:Exp in E2:Exp)
=> (lambda X.E2) E1 [macro]

rule (letrec F:Id X:Id = E1:Exp in E2:Exp)
=> (let F = mu F.lambda X.E1 in E2) [macro]

The let operator desugars into an application of a λ-abstraction, while letrec

desugars into the let construct binding a µ-abstraction. Since they won’t be part of
the AST when giving the semantics, their corresponding productions don’t need to
be annotated as binders.
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These macros are to be applied on programs at parse time; therefore both the
syntax declaration and the macros themselves belong in the EXP-LAMBDA-SYNTAX module.

3.2 Imperative features

In this section we use the pretext of adding imperative features to our language to
explain another set of advanced features of the K tool.

3.2.1 Statements
To begin, let us add a new syntactical category Stmt (for statements) and change the
semicolon to be a statement terminator instead of an expression separator.
syntax Stmt ::= Exp ";" [strict]

| Stmt Stmt

As we do not want statements to evaluate to values, we will not use strictness
constraints to give their semantics. Instead, we give semantics for the expression
statement and sequential composition with the following two rules:
rule V:Val ; => .
rule St1:Stmt St2:Stmt => St1 ~> St2

The fists rules discards the value for the expression statement; the second sequences
statements as computations.

Again, we add syntax productions to EXP-SYNTAX and K rules to EXP.

3.2.2 Syntactic lists
K provides built-in support for generic syntactic lists: List{Nonterminal, terminal}
stands for terminal-separated lists of zero or more Nonterminal elements. To
instantiate and use the K built-in lists, you must alias each instance with a (typically
fresh) non-terminal in your syntax. As an example, we can add variable declarations
to our EXP language. The first production below defines the Ids alias for the
comma-separated list of identifiers, while the second uses it to introduce variable
declarations:
syntax Ids ::= List{Id, ","}
syntax Stmt ::= "var" Ids ";"

Thus, both ‘var x, y, z;’ and ‘var ;’ are valid declarations.
For semantic purposes, these lists are currently interpreted as cons-lists (i.e.,

lists constructed with a head element followed by a tail list). Therefore when giving
semantics to constructs with list parameters, we often need to distinguish two cases:
one when the list has at least one element and another when the list is empty.
To give semantics to var, we add two new cells to the configuration: env, to hold
mappings from variables to locations, and store, to hold mappings from locations to
values. The following two rules specify the semantics of variable declarations:
rule <k> var (X:Id,Xl:Ids => Xl) ; ...</k>

<env> Rho:Map => Rho[N/X] </env>
<store>... . => N |-> 0 ...</store>

requires fresh(N:Int) .
rule var .Ids ; => . [structural]
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The first rule declares the first variable in the list by adding a mapping from a fresh
location I, specified by the fresh predicate in the side condition, to 0 in the store
cell, and by updating the mapping of the name of the variable in the env cell to
point to that location. The second rule terminates the variable declaration process
when there are no variables left to declare. ‘.Ids’ is used in the semantics to refer to
the empty list. In general, a dotted-non-terminal represents the empty collection
for that non-terminal. We prefer to make the second rule structural, thinking of
dissolving the residual empty var declaration as a structural cleanup rather than as
a computational step (see Section 4.3 for more details about the types of rules).

4 Concurrency and nondeterminism

This section shows how one can define nondeterministic features both related to
concurrency and to the under-specification (e.g., order of evaluation). Moreover,
mechanisms to control the state explosion due to nondeterminism are also presented.

4.1 Configuration abstraction

Assume we would like to extend EXP with concurrency features. The addition
of the env cell in the presence of concurrency requires further adjustments to the
configuration. First, there needs to be an env cell for each computation cell, to
avoid one computation shadowing the variables of the other one. Moreover, each
environment should be tied to its computation, to avoid using another thread’s
environment. This can be achieved by adding another cell, thread, on top of the k
and env cells, using the multiplicity XML attribute to indicate that the thread cell
can occur multiple times. multiplicity can be used to specify how many copies of a
cell are allowed: either 0 or 1 (‘?’), 0 or more (‘*’), or one or more (‘+’). Upon this
transformation, the configuration changes as follows:
configuration
<thread multiplicity="*">
<k> $PGM:K </k>
<env> .Map </env>

</thread>
<store> .Map </store>

<streams>
<in stream="stdin"> .List </in>
<out stream="stdout"> .List </out>

</streams>

A possible syntax and semantics for thread spawning is:
syntax Stmt ::= "spawn" "{" Stmt "}"

rule <k> spawn { St:Stmt } => . ...</k> <env> Rho:Map </env>
(. => <thread>... <k> St </k> <env> Rho </env> ...</thread>)

Changes in the configuration are quite frequent in practice, typically needed in
order to accommodate new language features. K’s configuration abstraction process
allows the users to not have to modify their rules when making structural changes
to the language configuration. This is crucial for modularity, because it offers the
possibility to write definitions in a way that may not require revisits to existing rules
when the configuration is changed. Indeed, except for the spawn rule, none of the
other rules (including the variable declaration rule above) need to change, despite
there being the new thread cell involved. Instead, this cell is automatically inferred
(and added by the K tool at compile time) from the definition of the configuration
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above. For our rule for var given in Section 3.2.2, it means that the k and env cells
will be considered as being part of the same thread cell, as opposed to each being
part of a different thread. The K tool can infer this context in instances when there
is only one correct way to complete the configuration used in rules in order to match
the declared configuration. To better understand what we mean by “one correct
way”, we refer the interested reader to the K overview papers [27,28].

Multiplicity information is important in the configuration abstraction process, as
it tells the K tool how to complete rules like that for a rendezvous construct:
syntax Exp ::= "rendezvous" Exp [strict]

rule <k> rendezvous I:Int => I ...</k> <k> rendezvous I => I ...</k>

As the k cell does not have the multiplicity set to ‘*’ and thread does, the tool
can infer that each of the two computations resides in its own thread.

Continuing to add imperative features to our language, we can take the above
information and add rules for reading and setting a variable in memory:
syntax Exp ::= Id

rule <k> X:Id => I ...</k>
<env>... X |-> L:Int ...</env>
<store>... L |-> I:Int ...</store>

syntax Exp ::= Id = Exp [strict(2)]

rule <k> X:Id = I:Int => I ...</k>
<env>... X |-> L:Int ...</env>
<store>... L |-> (_ => I) ...</store>

Note how these rules avoid mentioning the thread cell.
One limitation of the current implementation is that it does not allow multiple

cells with the same name to appear in the initial configuration. This is not an
inherent limitation of the configuration abstraction process, and will be corrected in
future implementations of the K tool.

4.2 Advanced strictness and evaluation contexts

Suppose that in our language we would like to be able to allow threads to share any
variable, not only those shared by the thread spawning semantics, but also some
created afterwards. Assuming the two threads already share one variable, we can
achieve this goal using references. The syntax and semantics for adding references are:
syntax Exp ::= "&" Id

rule <k> & X:Id => L ...</k>
<env>... X |-> L:Int ...</env>

syntax Exp ::= "*" Exp [strict]

rule <k> * L:Int => I ...</k>
<store>... L |-> I:Int ...</store>

The above only provides read access to the references. To allow write access, we
need to update the syntax and semantics for assignment as well:
syntax Exp ::= Exp "=" Exp [strict(2)]

rule <k> * L:Int = I:Int ...</k>
<store>... L |-> (_ => I) ...</store>

However, this rule is not sufficient by itself, as it assumes the argument of ‘*’ has
been evaluated. Until now, we handled evaluation order using strictness annotations,
but strictness cannot be used in this case because there are two syntactic productions
involved (‘*’ and ‘_=_’) instead of one.

K contexts can be used to solve this problem, by generalizing strictness annotations.
They allow the user to declare that a position in an arbitrary term should be evaluated.
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K contexts are similar to evaluation contexts [8,16]. For example, here is the context
declaration needed above:
context * HOLE = _

where HOLE designates the position to be evaluated first. As contexts are essentially
semantics, we add them to the EXP module.

The context can be conditional, allowing side conditions on any of the variables
of the term, including the HOLE. For example,
context _ / HOLE
context HOLE / I:Int requires I =/=Int 0

specifies an evaluation strategy for division where the denominator must be evaluated
first, and the numerator is evaluated only if the value for the denominator is non-zero.

The hole itself can be constrained. For example, in an object-oriented language,
context HOLE . X:Id requires HOLE =/=K super

specifies that the expression in the left side of a selection construct should be
evaluated (to an object closure) only if the expression is not “super”; this to allow
static lookup when using super, for example.

4.3 Controlling nondeterminism

There are two main sources of nondeterminism in programming languages—concurrency
and order of evaluation. In this section we explain how the K tool can be used to
explore both kinds of nondeterministic behavior.

4.3.1 Transitions
At the theoretical level, K rules are partitioned into structural rules and computational
rules. Intuitively, structural rules rearrange the configuration so that computational
rules can apply. Structural rules therefore do not count as computational steps. A
canonical example of structural rules are the rules generated for strictness constraints.
A K semantics can be thought of as a generator of transition systems or Kripke
structures, one for each program. Only the computational rules create steps, or
transitions, in the corresponding transition systems or Kripke structures.

Although desirable from a theoretical point of view, allowing all computational
rules to generate transitions may yield a tremendous number of interleavings in
practice. Moreover, most of these interleavings are usually behaviorally equivalent.
For example, the fact that a thread computes a step 2+5 ⇒ 7 is likely irrelevant
for other threads, so one may not want to consider it as an observable transition
in the space of interleavings. Since the K tool cannot know (without help) which
transitions need to be explored and which do not, our approach is to let the user say
so explicitly, allowing one to declare rules bearing certain attributes as “transitions”.
The rules bearing attributes tagged as transitions are the only ones considered as
transitions when exploring a program’s transition system.

For example, suppose we would like to explore the nondeterminism generated by
the semantics of print for the EXP program p5.exp containing the program
spawn (print 1);
spawn (print 2);

15



$ krun p5.exp --search
Search results:

Solution 1:

<k>
1

</k>
<k>
2

</k>
<k>
3

</k>
<streams>
<in>
.

</in>
<out>
"132"

</out>
</streams>

Solution 2:

<k>
1

</k>
<k>
2

</k>
<k>
3

</k>
<streams>
<in>
.

</in>
<out>
"123"

</out>
</streams>

Solution 3:

<k>
1

</k>
<k>
2

</k>
<k>
3

</k>
<streams>
<in>
.

</in>
<out>
"312"

</out>
</streams>

Solution 4:

<k>
1

</k>
<k>
2

</k>
<k>
3

</k>
<streams>
<in>
.

</in>
<out>
"321"

</out>
</streams>

Solution 5:

<k>
1

</k>
<k>
2

</k>
<k>
3

</k>
<streams>
<in>
.

</in>
<out>
"231"

</out>
</streams>

Solution 6:

<k>
1

</k>
<k>
2

</k>
<k>
3

</k>
<streams>
<in>
.

</in>
<out>
"213"

</out>
</streams>

Fig. 3. Exploring the executions of a program with krun --search

print 3

To do that, we can annotate the print rule with the print tag (to be able to refer to
it), and recompile with kompile --transition "print".

To contain the output and better make our point, we consider the simpler defini-
tion of EXP as a multithreaded calculator language presented in Fig. 4; nevertheless
the technique presented extends to more complex languages. Fig. 3 displays all
behaviors observed using the --search option of the krun tool on p5.exp.

4.3.2 Nondeterministic strictness
Although good in theory, the unrestricted use of heating/cooling rules may create
an immense, often unfeasible large space of possibilities to analyze. Therefore, for
performance reasons, the K tool chooses a default arbitrary, but fixed, order to
evaluate the arguments of a strict language construct. Specifically, similarly to
refocusing semantics [4], once a path to a redex is chosen, no other path is chosen
until all redexes on that path are evaluated. This has the side effect of potentially
losing behaviors due to missed interleavings.

To restore these missing interleavings, the K tool offers a superheat/supercooling
process. These allow the user to customize the level of strictness-based nondeter-
minism available. They bear no theoretical signification, in that they do not affect
the semantics of the language in any way. However, they have practical relevance,
specific to our implementation of the K tool. More precisely, productions whose
attributes are specified as superheat suring compilation is used to tell the K tool that
we want to exhaustively explore all the nondeterministic evaluation choices for the
strictness of the corresponding language construct. Similarly, whenever a rule tagged
with an attribute specified as supercool during compilation is applied, the K tool will
reset the current context, restarting the search for a redex. Upon this step, the rules
defining the descent towards the next redex have the possibility to pick another
evaluation order.
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This way, we can think of superheating/supercooling as marking fragments of
computation in which exhaustive analysis of the evaluation order is performed. Used
carefully, this mechanism allows us to explore more nondeterministic behaviors of a
program, with minimal loss of efficiency.

For example, let us name the addition operator in EXP:
syntax Exp ::= Exp "+" Exp [plus, strict]

After recompiling the K definition with kompile -superheat "plus", we can run the
program p3.exp ((print(1) + print(2)) + print(3)) using the --search option of krun.
The tool finds four solutions, differing only in the contents of their out cell, containing
strings "213", "123", "321", and "312". Why only four different outputs and not six? In
the absence of any supercool rule, superheat only offers nondeterministic choice. That
is, once an argument of a construct was chosen to be evaluated, it will be evaluated
completely. In order to observe full nondeterminism, the rules whose behavior we
consider observable, e.g., the output rule, must be specified as supercooling:
rule <k> print I:Int => I ...</k>

<out>... . => ListItem(I) </out> [output]

then, after recompiling using kompile --superheat "plus" --supercool "output", krun --search

will exhibit all six expected behaviors of p3.exp, containing in the out cell the
additional strings "132" and "231".

It is worth noting that the use of these compilation options is sound with respect
to the semantics of the definition in the sense that they allow the K tool to partially
explore the transition system defined by the semantics.

5 Literate programming

K definitions adhere to the literate programming paradigm [18] by allowing an inter-
mixture of formal rules and human-language descriptions to serve as documentation.
In addition to the normal comments mentioned in Section 2.1.3, the K tool also
supports “literate” comments, which are used in generating .pdfs by using the "-pdf"
option of the kompile tool. These special comments are allowed to contain any
LATEX command.

Single line LATEX comments are introduced by ‘//@’:
//@ Arithmetic Syntax

Multi-line LATEX comments are also declared using the same pattern:
/*@ This is a multi-line explanation

of what was or what comes next. */

In addition to the special LATEX comments, the K tool allows the user to associate
LATEX commands for typesetting terminals in productions. For example, the latex

attribute of the production:
syntax Exp ::= Exp "<=" Exp [seqstrict, latex("{#1}\leq{#2}")]

instructs that a term ‘E <= E’’ should be displayed as ‘E ≤ E′’ everywhere when
typesetting the definition.
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In the LATEX notation, in-place replacement is displayed on the vertical axis,
using a horizontal line instead of the rewrite symbol. Moreover, cells are displayed
as labeled containers (or bubbles) holding their content, perhaps having their side
edges looking jagged or torn, to specify that some content was abstracted away.

To help with better distinguishing cells and their contents, the XML attribute
color can be used in the configuration to specify the color of each cell (using the
standard colors from the LATEX package xcolor).

For large configurations, the user can specify where the top level configuration
of the sub-cells of a cell should be split on multiple lines, by using the HTML-like
‘<br/>’ element. The ‘<br/>’ element can also be used at the top level of large rules
with many cells to split them on multiple lines provided that the rule is annotated
with the large attribute.

The K tool can generate LATEX from definitions, for documentation purposes.
For example, the graphical depiction of the ASCII definition EXP presented in Fig.
4 was obtained with the command:
$ kompile exp --backend pdf
Generated exp.pdf which contains the language definition.

By using a special comment in a definition, introduced by !, the user can provide
additional LATEX commands to go into the preamble of the generated LATEX file:
/*!
\title{EXP}
\author{Author (\texttt{author@mail.com})}
\organization{Organization}
*/

The tool puts the contents of this comment just before the \begin{document}
corresponding to the whole definition and automatically appends \maketitle.

6 Related Work

The theoretical foundations of K have been laid out in [28]. A more up-to-date
overview of the K technique is presented in the current volume [27].

There have been several reports on previous prototypes of the K tool [11, 31].
Although they might provide historic insights on the evolution of the K tool, this
report describes a substantially improved version of the K tool which resembles the
previous only in the sense that they have the same goals.

We would like to mention several other platforms and tools to help the language
researcher in experimenting with various designs and features which are closely
related to our research. Rascal [10, 17, 32] and Spoofax [14, 15] target developing
IDEs for domain specific languages with Eclipse integration and code generation fea-
tures. PLanCompS (Programming Language Components and Specifications) [22,23]
focuses on modularity and on the development of a component-based framework
for the design, specification and implementation of programming languages. Re-
dex [7, 19, 20] focuses on specifying and debugging operational semantics and allows
interactive exploration of term reductions and using randomized test generation.
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1 module EXP-SYNTAX

3 //@ Arithmetic Syntax
4 syntax Exp ::= Int
5 | "(" Exp ")" [bracket]
6 | Exp "+" Exp [seqstrict] //addition
7 | Exp "*" Exp [seqstrict] //multiplication
8 | Exp "/" Exp [seqstrict] //division
9 | Exp "?" Exp ":" Exp [strict(1)]

10 | Exp ";" Exp [seqstrict]

12 //@ Input / Output Syntax

14 syntax Exp ::= "read"
15 | "print" "(" Exp ")" [strict]

18 //@ Concurrency features
19 syntax Exp ::= "spawn" Exp
20 | "rendezvous" Exp [strict]
21 end module

23 module EXP
24 imports EXP-SYNTAX
25 syntax KResult ::= Int
26 configuration
27 <k color="green" multiplicity="*"> $PGM:K </k>
28 <streams>
29 <in color="magenta" stream="stdin"> .List </in>
30 <out color="Fuchsia" stream="stdout"> .List </out>
31 </streams>

33 //@ Arithmetic Semantics

35 rule I1:Int + I2:Int
36 => I1 +Int I2

38 rule I1:Int * I2:Int
39 => I1 *Int I2

41 rule I1:Int / I2:Int => I1 /Int I2
42 requires I2 =/=Int 0

44 rule 0 ? _ : E:Exp => E

46 rule I:Int ? E:Exp : _ => E requires I =/=Int 0

48 rule _:Int ; I2:Int => I2

51 //@ Input / Output Semantics

54 rule <k> read => I:Int ...</k>
55 <in> ListItem(I) => . ...</in>

59 rule <k> print(I:Int) => I ...</k>
60 <out>... . => ListItem(I) </out>

64 //@ Concurrency Semantics

67 rule <k> spawn E => 0 ...</k>
68 (. => <k> E </k>)

73 rule <k> rendezvous I => I ...</k>
74 <k> rendezvous I => I ...</k>

77 end module

MODULE EXP-SYNTAX

Arithmetic Syntax

SYNTAX Exp ::= Int
| (Exp) [bracket]
| Exp + Exp [strict]
| Exp * Exp [strict]
| Exp / Exp [strict]
| Exp ? Exp : Exp [strict(1)]
| Exp ; Exp [seqstrict]

Input / Output Syntax

SYNTAX Exp ::= read
| print (Exp) [strict]

Concurrency features

SYNTAX Exp ::= spawn Exp
| rendezvous Exp [strict]

END MODULE

MODULE EXP

SYNTAX KResult ::= Int

CONFIGURATION:

$PGM

k*

•List

in

•List

out

streams

Arithmetic Semantics

RULE I1 + I2

I1 +Int I2

RULE I1 * I2

I1 ∗Int I2
RULE I1 / I2

I1 ÷Int I2

requires I2 =/=Int 0

RULE 0 ? — : E

E

RULE I ? E : —

E

requires I =/=Int 0

RULE — ; I2

I2

Input / Output Semantics

RULE read

I

k

I

•List

in

RULE print (I )

I

k

•List

I

out

Concurrency Semantics

RULE spawn E

0

k

•Bag

E

k

RULE rendezvous I

0

k

rendezvous I

0

k

END MODULE

Fig. 4. K definition of a calculator language with I/O (left: ASCII source; right: generated LATEX)
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7 Conclusions
The K tool demonstrates that a formal specification language for programming
languages can be simultaneously simple, expressive, analyzable, and scalable. Exe-
cutability, modularity, and state-space search are key features of the K tool, allowing
to easily experiment with language design and changes by means of testing and even
exhaustive nondeterministic behavior exploration.

In this paper, we have shown a subset of the features offered by the K tool. To
learn more about it, or to start developing your own programming language, please
download the K tool from our open source project page [12,13].
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A Syntax of K in K

The module below describes the syntax of K in a format similar to the current K
syntax specification formalism.

This syntax cannot be currently used by the K tool to parse K; it is only meant
to serve as a documentation tool.

Syntax definitional features used below which are not currently supported by
the K tool:
• Optional arguments in productions, specified using ? (and brackets)
• Parameterized non-terminals (used for Variable)

Special syntactic categories
• Text for arbitrary text (parsing is assumed greedy)
• Path for specifying paths

module K-SYNTAX

syntax File ::= List{FileItem,""}
syntax FileItem ::= "require" Path

| Module
| LatexComment
| LatexPreamble

syntax LatexPreamble ::= "/*!" Text "*/"
syntax LatexComment ::= "//@" Text "\n"

| "/*@" Text "*/"

syntax Module ::= "module" Imports Sentences "endmodule"

syntax Imports ::= List{Import,""}
syntax Import ::= "imports" ModuleIds

syntax ModuleIds ::= List{Id,"+"}
syntax Sentences ::= List{Sentence,""}
syntax Sentence ::= "syntax" Sort "::=" Syntax
| "context" Term ("requires" KTerm)? ("[" Attrs "]")?
| "configuration" BagTerms
| "rule" Term ("requires" KTerm)? ("[" Attrs "]")?
| LatexComment

syntax Ids ::= List{Id,""}
syntax Sort ::= Id | "K" | "KLabel" | "KList" | "List" | "ListItem"

| "Set" | "SetItem" | "Bag" | "BagItem" | "Map" | "MapItem"
| "CellLabel" | "KResult"

syntax Sorts ::= List{Sort,""}

syntax Terminal ::= String
syntax CFGSymbol ::= Sort | Terminal
syntax ProdTerm ::= List{CGFSymbol,""}
syntax Production ::= ProdTerm ("[" Attrs "]")?

syntax Syntax ::= List{Production,"|"}

syntax Term ::= ListTerms | BagTerms | MapTerms | ListTerms | SetTerms
| KLabelTerm | CellLabelTerm | KListTerms

syntax CellLabelTerm ::= Id | "k" | "T"
| CellLabelTerm "=>" CellLabelTerm
| Variable{CellLabel}

syntax CellTerm ::= "<" CellLabelTerm CellAttrs? ">" Term "</" CellLabelTerm ">"

syntax BagTerm ::= "BagItem" "(" KTerm ")"
| CellTerm
| BagTerms "=>" BagTerms
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| "." | ".Bag"
| Variable{Bag} | Variable{BagItem}

syntax BagTerms ::= List{BagTerm,""}

syntax SetTerm ::= "SetItem" "(" KTerm ")"
| SetTerms "=>" SetTerms
| "." | ".Set"
| Variable{Set} | Variable{SetItem}

syntax SetTerms ::= List{SetTerm,""}

syntax MapTerm ::= KTerm "|->" KTerm
| MapTerms "=>" MapTerms
| "." | ".Map"
| Variable{Map} | Variable{MapItem}

syntax MapTerms ::= List{MapTerm,""}

syntax ListTerm ::= "ListItem" "(" KTerm ")"
| ListTerms "=>" ListTerms
| Variable{List} | Variable{ListItem}
| "." | ".List"

syntax ListTerms ::= List{ListTerm,""}

syntax KLabelTerm ::= Id
| KLabelTerm "=>" KLabelTerm
| Variable{KLabel}

syntax KItemTerm ::= KLabelTerm "(" KListTerms ")"
| KTerm "=>" KTerm
| "HOLE"
| ".K"
| Variable{K}
// | Int | Bool | Float | String
// | User defined syntax

syntax KTerm ::= List{KItemTerm,"~>"}

syntax KListTerm ::= KTerm
| ".KList"
| KListTerms "=>" KListTerms
| Variable{KList}

syntax KListTerms ::= List{KListTerm,",,"}

syntax Attrs ::= List{Attr,","}

syntax Attr ::= AttrKey "(" Text ")"
syntax AttrKey ::= Id | "strict" | "seqstrict" | "hybrid" | "function"

| "structural" | "transition" | "superheat" | "supercool"
| "latex" | "large"
| "binder"

syntax CellAttrs ::= List{CellAttr,""}
syntax CellAttr ::= CellAttrKey "=" String

syntax CellAttrKey ::= "multiplicity" | "color" | "stream"

syntax Variable{##X##} ::= "_" | "_:##X##" | Id ":##X##"
endmodule

23


	Introduction
	Writing the first K definition
	Basic ingredients
	Modules
	Compiling definitions
	Comments

	Language syntax
	User-defined syntax
	Built-ins
	Parsing programs

	Language semantics
	Evaluation strategies: strictness
	Computations
	Configurations, initial configuration
	Rules

	Executing programs with krun

	More advanced K definitional features
	Extending EXP with functional features
	Splitting definitions among files
	Binders and substitution
	Desugaring syntax

	Imperative features
	Statements
	Syntactic lists


	Concurrency and nondeterminism
	Configuration abstraction
	Advanced strictness and evaluation contexts
	Controlling nondeterminism
	Transitions
	Nondeterministic strictness


	Literate programming
	Related Work
	Conclusions
	Acknowledgments

	References
	Syntax of K in K

