
Security-Policy Monitoring and Enforcement with JavaMOP

Soha Hussein Patrick Meredith Grigore Roşu
University of Illinois at Urbana-Champaign

soha@illinois.edu/pmeredit@illinois.edu/grosu@illinois.edu

Abstract
Software security attacks represent an ever growing problem. One
way to make software more secure is to use Inlined Reference Mon-
itors (IRMs), which allow security specifications to be inlined in-
side a target program to ensure its compliance with the desired se-
curity specifications. The IRM approach has been developed pri-
marily by the security community. Runtime Verification (RV), on
the other hand, is a software engineering approach, which is in-
tended to formally encode system specifications within a target
program such that those specifications can be later enforced dur-
ing the execution of the program. Until now, the IRM and RV ap-
proaches have lived separate lives; in particular RV techniques have
not been applied to the security domain, being used instead to aid
program correctness and testing. This paper discusses the usage of
a formalism-generic RV system, JavaMOP, as a means to specify
IRMs, leveraging the careful engineering of the JavaMOP system
for ensuring secure operation of software in an efficient manner.

1. Introduction
Assuring that programs comply to desired security policies is cru-
cial to avoiding security vulnerabilities. Schneider [30] proposes
inlining Security Automata into a target program to monitor a set of
events for security violations. A series of security systems [6, 15–
17, 20] followed, which were built and designed specifically for the
sake of monitoring security policies at runtime. These monitors are
referred to as Inlined Reference Monitors (IRMs) [14, 30].

One of the motivations behind this research is that an inlined
monitor is more easily able to enforce behavioral guarantees within
a program than an external monitor because a richer set of observ-
able program events is available. Additionally, this allows for easy
customization of the varying security concerns of different target
programs, which works to satisfy the basic principle of least priv-
ilege[29]: the minimal level of privileges needed for a given pro-
gram is granted via a custom tailored set of IRMs.

On the other hand, Runtime Verification (RV) [4, 22, 31] aims to
combine testing with formal methods in a mutually beneficial way.
The idea underlying Runtime Verification is that system require-
ments specifications, typically formal and referring to temporal be-
haviors and histories of events or actions, are rigorously checked
at runtime against the current execution of the program, rather than
statically against all hypothetical executions.

[Copyright notice will appear here once ’preprint’ option is removed.]

JavaMOP [27] is a formalism-generic RV monitoring frame-
work for Java. JavaMOP provides a rich and expressive specifi-
cation language incorporating many complex features such as pol-
icy parameterization, corrective actions upon policy-defined condi-
tions, and usage of an extensive repository of logical formalisms.
JavaMOP supports these features with a low performance over-
head: 10% or less. While JavaMOP does not provide a rewriter of
its own, its output is an AspectJ [23] file that can be weaved into a
target program using any standard AspectJ compiler.

As an effort to establish a tight connection for IRM as a form
of the RV approach, we explore the usage of JavaMOP as a means
to specify and enforce security policies. Additionally, we extend
JavaMOP, where necessary, in order to express all of the desired
security policies. This is, then, an application paper, which focuses
on showing that an RV approach (JavaMOP) is not only quite
capable of expressing security policies, but is able to do so in highly
expressive1 and more efficient manner.

Figure 1 shows an example of a classic security policy known
as the Chinese wall [10], specified using JavaMOP. It will be de-
scribed in more detail in Section 3.4, but briefly, the policy at-
tempts to keep users in a system from accessing objects of different
datasets that are in the same Conflict Class. As an example of this
policy, consider institutions providing corporate business services
where financial analysts (subjects) advise each business (dataset)
based on its sensitive information (objects). Such an analyst must
keep the confidentiality of the information of corporations he has
accessed. On the other hand, the analyst can not advise another cor-
poration that competes with companies they have already advised.
Such competing corporations are said to have conflict of interest,
and they are grouped into the same Conflict Class.

The JavaMOP policy shown in Figure 1 provides a powerful
way to enforce the policy. It does not look for direct accesses of
objects by subjects; rather, the policy tracks all accesses of objects
that lie in the call stack of the subject, thus tracking all possible
object accesses done directly or indirectly. Note that this specifica-
tion catches violations before they occur. This is guaranteed by the
CFG pattern, which describes accesses that occur outside a match-
ing pair of method call and returns. The pattern can only fail if the
access happens inside matched pairs of calls and returns (i.e., in-
side a method call). Because the handler fires before the access of
an object is granted, illegal accesses will be denied.

The paper is organized as follows: Related work is discussed in
Section 1.1. A quick outline of JavaMOP’s main features is pre-
sented in Section 2. Section 3 discusses the usage of JavaMOP for
expressing security policies as well as policy composition. Section
4 addresses different security features in JavaMOP. Performance
overhead of security policies in JavaMOP is discussed in Section 5.
Finally we conclude our work and outline future work in Section 6.

1 JavaMOP supports multiple logical formalisms.

1 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

1 ChineseWall(Subject S) {
2 SubjectWall monitoredSubjectWall;
3 Obj readObject;
4 event methodCall before(Subject S):
5 call(* Subject .*(..)) && target(S) {
6 if (monitoredSubjectWall == null)
7 monitoredSubjectWall =
8 new SubjectWall(S);
9 }

10 event methodReturn after(Subject S) :
11 call(* Subject .*(..))&& target(S) {}
12 event access before(Obj O):
13 call(* Obj.Read ()) && target(O) {
14 readObject = O;
15 }
16 cfg: S -> S access | S M | epsilon ,
17 M -> M methodCall M methodReturn
18 | epsilon
19 @fail{
20 SubjectWall sw =
21 __MONITOR.monitoredSubjectWall;
22 Obj o = __MONITOR.readObject;
23 if(sw.conflictClassContains(o)
24 && !sw.dataSetContains(o)){
25 System.out.println(
26 "Chinese Wall is violated. Halting ..");
27 Runtime.getRuntime (). halt (1);
28 }
29 sw.addToConflictClass(o);
30 sw.addToDataSet(o);
31 }
32 }

Figure 1. The Chinese Wall Policy in JavaMOP using Context
Free Grammar (cfg)

1.1 Related Work
IRM Systems. Since Schneider introduced the theory of Execution
Monitors (EM) [30], a number of systems have been designed to
implement the theory.

For example, SASI [14, 16] is a low level, platform specific sys-
tem that supports two prototypes, one for x86 and another for Java
bytecode. SASI uses Security Automata written in the SAL (lan-
guage specification for security automata), which in turn uses ISA
(Instruction Set Architecture) to express security relevant events.
Using ISA instructions to express the security policy enriches the
vocabulary that is used by SASI, and it enables its users to write
low level security policies such as SFI (Software Fault Isolation).
However, it makes it harder to express application-level security
policies since a single application-level event might map to multi-
ple instructions in the ISA. In addition to that, SASI does not sup-
port other important features such as parameterization of policies,
general computation states and the specification of arbitrary code
within the policies.

PoET [14, 15] provides a platform-independent toolkit that uses
different libraries to expose both ISA instructions as well as appli-
cation APIs. This allows both application-level and low level poli-
cies to be expressed. However it does not resolve conflicts between
potentially conflicting policies nor does it provide a declarative pa-
rameterizations of policies.

Naccio [17], on the other hand, defines resource library meth-
ods, and it uses its writer to create wrappers around original method
calls such that security checks are first done before the invocation
of a target program method is allowed. However, it does not sup-
port arbitrary code or parameterization of policies. While Naccio
supports parameters that can be bound statistically to provide lim-

its for policies, they cannot be used to support multiple monitors of
the same policy.

Polymer [6, 24, 25] is a Java specific IRM that has two distin-
guished features: composition of policies (policies are first class
objects) and support for multiple remedial actions upon violation,
as well as the addition of arbitrary code inside the policies. While
Polymer does not have explicit support for parameterization, one
may manually program parameterization in Polymer because it al-
lows arbitrary code in policies.

SPoX [20] is a declarative policy specification language that
uses an XML-like structure to express invalid behavior for target
programs. SPoX supports single parameter policies, but lacks other
important features, such as general computation states and arbitrary
code. Its only supported action on policy failure is termination.

The security policy checking and enforcement systems dis-
cussed above have made significant progress towards implement-
ing the IRM paradigm. Like mentioned above there are, however,
aspects that still need to be further addressed in order for these sys-
tems to offer the functionality needed to express and enforce com-
plex security policies and compositions of them, such as: generality
in specification formalisms, so one can chose the best formalism
for any given policy; powerful composition of policies, so that one
can check and enforce multiple, possibly interacting policies at the
same time against a target system; parametricity of security pol-
icy specifications, so that various instances of the same policy can
co-exist, one per group of interacting subjects; finally, efficient im-
plementations of all the above.

RV Monitoring Systems. Many approaches have been proposed to
monitor program executions against formally specified properties.
These different systems were all designed with the idea of monitor-
ing safety properties in mind for the purposes of either enforcing
the functional correctness of post-production target programs or
debugging and testing target programs during the production phase.
These safety properties tend to focus on the correct usage of vari-
ous APIs, e.g., ensuring that iterators are used in a manner that will
not cause the target program to crash, rather than the security.

All runtime monitoring approaches [3, 5, 9, 12, 19, 26, 32] ex-
cept for JavaMOP,the system used here, have their specification for-
malisms hardwired and no two of them share the same logic. This
observation strengthens the notion that there is no silver bullet spec-
ification formalism for all purposes. Additionally, most systems fo-
cus on only the violation or validation of a pattern or formula, while
JavaMOP allows any number of logical categories on which to trig-
ger handlers. This can be anything from violation or validation, to
arbitrary sets of states in a finite state machine. This is particu-
larly important for non-finite logics like the context-free grammars
(CFGs) supported by JavaMOP, as they are not closed under com-
plementation, that is, one could not simply invert the pattern and
monitor for the opposite category. The generality of logical formal-
ism and ability to monitor for multiple possible categories makes
JavaMOP the most logical choice for a candidate RV monitoring
system with which one can specify security policies. Another large
benefit of JavaMOP over competing RV Monitoring systems is that
it is far more efficient, as extensive experimentation has shown [27].

1.2 Assumptions and Limitations
Throughout this paper, we assume that the rewriter that inlines the
JavaMOP generated AspectJ code, namely the AspectJ compiler, is
trusted. We believe that this is a reasonable assumption because the
role of JavaMOP ends with the generation of correct AspectJ code,
which, if inlined correctly, would ensure the compliance of the
program with the security policy of interest. Thus the certification
of the AspectJ compiler, or of any other compiler that can do the
same job, is beyond the role of JavaMOP. This is a long standing

2 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

<JavaMOP S p e c i f i c a t i o n >::=
<S p e c i f i c a t i o n Header>
<Event D e c l a r a t i o n >
<P r o p e r t y>
<Handler>

<S p e c i f i c a t i o n Header}> : :=
<M o d i f i e r s ><Spec . Id>

”(”<Java Parameters >”)””{”
<Java V a r i a b l e s D e c l a r a t i o n s >

<Event D e c l a r a t i o n}> : :=
” e v e n t”<Id><Extended AspectJ a d v i c e >”{”

[<Event A c t i o n s >]”}”

<P r o p e r t y >::=
<L o g i c Name>”:”<L o g i c Syntax>

<Handler> : :=
”@”<L o g i c State >”{”

<Java Statements >”}””}”

Figure 2. JavaMOP Syntax

problem that we do not discuss thoroughly here as it is beyond the
scope of this paper.

1.3 Contributions
The contributions of this paper are as follows:

• We explore, for the first time, the usage of a generic software
monitoring system, JavaMOP, as an IRM system to express and
enforce security policies.
• We provide a novel, powerful, and efficient specification of the

well known Chinese wall security policy.
• We highlight some important features of JavaMOP in the con-

text of checking security policies, such as parameterization and
the usage of the around joinpoint. The latter was added to the
JavaMOP system specifically for monitoring and enforcing se-
curity policies.
• We introduce novel and flexible policy composition and manip-

ulation using JavaMOP.
• We provide thorough experimental results for security policies

specified using JavaMOP as well as Polymer and SPoX.

2. JavaMOP as a Generic RV System
Monitoring oriented programming (MOP) is a generic monitor-
ing framework that integrates specification and implementation by
checking the former against the latter at runtime. JavaMOP is the
Java instance for MOP; for other MOP instances the reader is re-
ferred to [27]. To enforce JavaMOP specifications, the JavaMOP
tool automatically synthesizes monitors from the desired property
specifications as AspectJ code which may be weaved into a target
program using any standard AspectJ compiler.

Figure 2 shows the syntax for JavaMOP specifications. It is
composed of four main parts. The first part is the <Specification

Header>. This is where a user provides one or more <Modifier(s)>2,
a specification name <Spec.Id>, a list of specification parameters
(if any) <Java Parameters> written in Java syntax, and finally a
list of local specification variables <Java Variables Declarations>
which can be used and manipulated inside the specification.

2 <Modifiers> are a selection of running options to the specification, i.e.,
parameter binding mode, synchronization mode between multiple monitors,
suffix matching mode or perthread mode; detailed description of each mod-
ifier can be found in [27].

1 SafeLock(Lock l, Thread t){
2 int acquire_count , release_count;
3 event acquire before(Lock l, Thread t):
4 call(* Lock.acquire ())&&
5 target(l)&& thread(t){++ acquire_count ;}
6 event release before(Lock l, Thread t):
7 call(* Lock.release ())&&
8 target(l)&& thread(t){++ release_count ;}
9 event begin before(Thread t):

10 execution (* *.*(..))&&
11 thread(t)&&! within(Lock +){}
12 event end after(Thread t):
13 execution (* *.*(..))&&
14 thread(t)&&! within(Lock +){}
15 cfg: S -> S begin S end
16 | S acquire S release
17 | epsilon
18 @fail {
19 System.out.println ((
20 (__MONITOR.acquire_count
21 > __MONITOR.release_count)?
22 "not enough releases before"
23 + " end of method"
24 : "too many releases of lock "));
25 }
26 }

Figure 3. JavaMOP Specification (Safe Lock)

The second part of the JavaMOP specification is the <Event
Declaration>, where the program points a user wishes to monitor
are specified. The declaration starts with the keyword event fol-
lowed by a unique event name <Id>, then the signature of the
action to be monitored using a slightly extended AspectJ syntax
<Extended AspectJ advice>. The last part in the event declaration
is the <Event Actions>, which may optionally contain Java state-
ments that will be executed upon matching the event signature.

The third part in a JavaMOP specification is the <Property>
that the specification will monitor. JavaMOP is specification for-
malism independent, supporting various logical formalisms, such
as finite state machines (FSM), extended regular expressions
(ERE), context free grammars (CFG), linear temporal logic (LTL),
and past time linear temporal logic (PTLTL) [27].

Finally, the fourth part of a JavaMOP specification is the
<Handler>, that will be executed when a specified logic state is
reached by the monitor, e.g., validation or violation. This may
optionally contain any <Java Statements> extended with a few
JavaMOP constructs.

Figure 3 shows an example of a JavaMOP specification. This
specification describes a basic programming principle for correct
usage of locks: methods within a thread should release each lock as
many times as it is acquired.

The first part of this specification names the property SafeLock,
defines the specification parameters: Lock l and Thread t (mean-
ing that the specification will be monitored for each combination
of Lock and Thread instances), and finally the local variable decla-
rations: acquire count and release count, which are used to provide
more meaningful error messages when locks are misused.

The second part in the specification is where the actions of
interest are defined; for instance, this specification defines four
events: acquire when a lock is acquired, release when a lock is
released, begin to capture the beginning of a method call, and
end to capture the end of a method call. As mentioned, JavaMOP
borrows and extends the syntax of AspectJ in event declarations.
For example, the acquire event is declared to occur before a function
call to the acquire method of the class Lock. The target and thread
clauses are used to bind parameters in the event. The release event

3 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

1 DisableSystemCalls () {
2 event systemCalls before () :
3 call(* Runtime.exec (..)) {
4 System.out.println(
5 "System Calls are not allowed. Halting ");
6 Runtime.getRuntime (). halt (1);
7 }
8 }

Figure 4. Disable System Calls

has a similar declaration only modified to capture calls to release
a lock and counting number of releases instead. begin and end are
very similar, save that begin captures the beginning of a method call
by using the before advice, while end uses the after advice. Note that
the !within(Lock+) filters out all beginning (or end) of methods that
are defined in Lock or any of its subclasses.

The fourth part of the specification is a formal description of
the desired property. As mentioned before, JavaMOP is logical-
formalism-independent. In this example, the property description
begins with cfg, meaning that a context free grammar (CFG) is
used, and continues with a CFG pattern that defines our desired
property. Note that the terminals of the grammar are our defined
events.

The last part of the specification consists of handlers to execute
in different states of the corresponding monitor. Categories con-
sidered in this paper are @match and @fail, which trigger when a
pattern language (e.g., ERE or CFG) match or fail to match, respec-
tively, and @validation and @violation, which trigger when a logical
language (e.g., LTL) evaluates to true or false, respectively. In Fig-
ure 3, the handler starts with @fail, printing an appropriate warning
message according to the number of locks being acquired and re-
leased.

3. Security Policies in JavaMOP
In this section we address specifications of security policies in
JavaMOP. Our presentation is organized into main security con-
cerns, and we identify how JavaMOP can be used to address each
of them. In each specification, the occurrence of “. . . ”3 denotes a
place where code has been omitted due to space constraints or re-
dundancy.

3.1 Access Control
One of the main security principles is the restriction of each pro-
gram’s accesses to available system resources. For example, Fig-
ure 4 shows a JavaMOP specification which can be used to prevent
the target program from invoking system calls. This is a common
type of access control where the restricted resource is the invoca-
tion of executable files.

This specification uses only the minimal structure of a JavaMOP
specification (called a raw specification); it contains no logic for-
mula to express the violation nor does it contain a handler section.
In fact, the specification monitors a single event which is exactly
before the invocation of a system call. Just before such an event is
executed, the specification halts the program as a corrective action
to avoid compromising the security of the system.

A more refined way of realizing the same above policy is shown
in Figure 5: RestrictSystemCalls. In this variation of the specifica-
tion, system calls are handled differently: the target is not halted in-
stead it is allowed to proceed after skipping the current instruction
of the system call event. The specification is still monitoring the
occurrence of a single event, but there are three main differences.

3 Note that this is not the same as “..”, which is part of the AspectJ syntax.

1 RestrictSystemCalls () {
2 event systemCalls Object around ():
3 call(* Runtime.exec (..)){}
4 ere : systemCalls+
5 @match {
6 __SKIP; // action is bypassed
7 }
8 }

Figure 5. Restrict System Calls

1 SeperationOfDuties(
2 Subject S,
3 LoanRequest L){
4 event internalRating
5 before(Subject S, LoanRequest L):
6 call(* Subject.internalRate(
7 LoanRequest))
8 && args(L) && target(S) {}
9 event externalRating

10 before(Subject S, LoanRequest L):
11 call(* Subject.externalRate(
12 LoanRequest))
13 && args(L) && target(S){}
14 event loanApproval
15 before(Subject S, LoanRequest L):
16 call(* Subject.Approveloan(
17 LoanRequest))
18 && args(L) && target(S) { }
19 ere: internalRating+ | externalRating+
20 | loanApproval+
21 @fail{
22 System.out.println(
23 "Conflicting duties. Halting .");
24 Runtime.getRuntime (). halt (1);
25 }
26 }

Figure 6. Separation of Duties

The first is that the monitoring is done around (line 2) the
occurrence of the critical event (allowing it to be skipped later).
The second difference is that an ERE (extended regular expressions)
pattern (line 4) is used, systemCalls+ (e+ means one or more
instances of e). This will match any occurrence of systemCalls. The
third is that a match handler actually skips the event matched by
the around joinpoint using the SKIP keyword (line 9).

3.2 Separation of Duties
Separation of duties is also a main security principle that enforces
internal controls to prevent frauds. Figure 6 shows an example
of a possible SeparationOfDuties policy in JavaMOP. This policy
must be customized according to the target program. This policy
is borrowed from Ponder [11], and it disallows a single user to
perform more than one action for a given loan request. This means
that even though a user might have the privilege to perform a certain
action for loans, they might be disallowed to perform the said action
if it contradicts with another critical action they have performed for
the same loan.

Note that this specification is parametric in the Subject and
the Loan (line 1). This shows a powerful feature of JavaMOP
that allows a specification to be parametric in multiple objects. A
different monitor instance will be created for each combination of
instantiated objects matching the parameters. This means the ERE
pattern only fails to match if a given Subject, S, performs more
than one type of action on a given LoanRequest, L. The pattern
achieves this by only allowing each event to occur in conjunction
with other instances of the same event. Note that S will not be

4 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

1 SqlInjection () {
2 Set <String > taintedString = new HashSet ();
3 event userInput
4 after(String tainted):
5 call(* ServletRequest.getParameter (..))
6 && target(tainted) {
7 taintedString.put(tainted);
8 }
9 event propagate

10 after(StringBuffer SB, String S):
11 call(* StringBuffer.new(String))
12 && target(SB) && args(S)
13 || call(* StringBuffer.append(String))
14 && target(SB) && args(S) {
15 if(taintedStrings.contains(S))
16 taintedStrings.put(SB.toString ());
17 }
18 event usage
19 before(String S):
20 call(* Statement.executeQuery(String))
21 && args(S) {
22 if(taintedStrings.contains(S))
23 util.checkSafeQuery(S);
24 }
25 }

Figure 7. SQL Injection

restricted from performing a different action on LoanRequest L2

(assuming L2 6= L).

3.3 SQL Injection
Figure 7 shows another security policy that uses a raw JavaMOP
specification. The policy detects SQL-injection attacks [2], where
malicious users try to corrupt a database by inserting unsafe SQL
statements through system input.

In SQL injection, a string is tainted when it depends upon some
user input; when a tainted string is used as an SQL query, it should
be checked to avoid potential attacks. In Figure 7, a HashSet is
declared to store all tainted strings. Three types of events need to
be monitored: userInput occurs when a string is obtained from user
input (by calling ServletRequest.getParameter()); propagate occurs
when a new string is created from another string via a StringBuffer;
finally, usage occurs when a string is used as a query.

Appropriate actions are triggered at observed events: at userIn-
put, the user input string is added to the tainted set; at propagate, if
the new string is created from a tainted string then it is marked as
tainted, too; at usage, if the query string is tainted then a provided
method, called Util.checkSafeQuery, is called to check the safety of
the query. Thus the safety check, which can be an expensive oper-
ation, is invoked dynamically, on a by-need basis.

3.4 Wall Policies
We discuss here two policies: the FileNetworkWall and the Chinese
Wall policies, where the first is a computer specific variation of
the second, for restricting conflicting uses of system resources for
applications.

We start by showing in Figure 8 the FileNetworkWall policy,
where the target program is allowed to either access the network
or the file system, but not both. The policy is elegantly specified by
grouping all file methods into a single fileAccess event (lines 3-4)
and likewise grouping all network methods into a single networkAc-
cess event (lines 6-7). The PTLTL formula will cause the handler to
be triggered if there is an access to the network with a file access in
the past, or vice versa. Here, the symbol <*> means, ”eventually
in the past.”

1 FileNetworkWall () {
2 event fileAccess before ():
3 call(* Runtime.exec (..))
4 || call(* File.creatNewFile ())
5 || ... //other file access methods
6 {}
7 event networkAccess before ():
8 call(URL.new (..))
9 || call(Socket.new (..))

10 || ... //other network access methods
11 {}
12 ptltl: (fileAccess => <*> netWorkAccess)
13 or (netWorkAccess => <*> fileAccess)
14 @validation {
15 System.out.println(
16 "Conflicting resource access. "
17 + "Halting ..");
18 Runtime.getRuntime (). halt (1);
19 }
20 }

Figure 8. File Network Wall

The classic ChineseWall [10] policy in terms of subjects and
objects laying in different dynamically defined conflict classes is
shown in Figure 1 from Section 1. This specification provides a
novel handling for the Chinese wall: it does not look for direct ac-
cesses of objects by subjects. Rather, the policy tracks all accesses
of objects that lie in the call stack of the subject. The approach
was chosen because there may be accesses to objects that may be
performed in several different methods of the subject where the ref-
erence to the subject is not immediately available to AspectJ. The
policy performs stack inspection for each subject to ensure that ac-
cessed objects are not in conflict with previously accessed objects
of different datasets.

The policy is parametric in the Subject, meaning that there will
be a monitor instance created for each subject instance monitor-
ing the validation and violation of the policy. The policy requires
defining an auxiliary class which is defined in another file and is
not shown here: SubjectWall. A SubjectWall object carries the list
of conflict classes and datasets of accessed objects for each subject.

The policy also defines two local monitor variables, readObject
and monitoredSubjectWall. The first carries the object accessed by
the subject, the second is an instance of SubjectWall, where all
datasets and conflict classes of accessed objects are stored.

The policy defines three events. The methodCall event denotes
all method calls made by a subject instance; its action creates a
monitoredSubjectWall for a given subject, if one does not already
exist. The methodReturn event refers to the end of method calls
made by subjects. The access event looks for any read of an object.
Note that the read access is not parameterized by the subject, so
it will match a read performed by any subject rather than just the
subject of the current monitor instance.

A CFG pattern, which is matched for failure, is used to express
the property. Here, the handler will be triggered whenever there is
an access that occurs between at least one pair of methodCall and
methodReturn events. An access will be seen outside of methodCall
and methodReturn if the access belongs to a different Subject than
the Subject of interest for a given monitor instance, and we do not
wish the handler to be triggered in such a case.

The handler checks if the accessed object is in the subject’s
conflict class but not its data set. This is performed through the
SubjectWall sw, which defines the wall of datasets and conflict
classes accessed by the subject. Whenever there is an access to
an object, the object’s dataset value and conflict class value are
validated against the subject’s wall of previously accessed datasets
and conflict classes using the method calls dataSetContains(O)

5 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

and conflictClassContains(O). If the object’s conflict class value
is found but the dataset value is not found within the subject’s
wall (implying that the subject has accessed another object of a
different dataset that lies in the same conflict class of the object
being accessed) then the target is halted, otherwise the subject
wall is updated to reflect the accessed dataset and conflict class
of the object and the access is allowed. The conflict classes are
constructed by the target program using the SubjectWall class (and
possibly other associated classes).

To our knowledge, no monitoring systems other than Java-
MOP can even specify this property conveniently. For example,
in SASI [14, 16] one needs to write a security automaton whose
states represent only the set of events of the target program. There
is no way in SAL to perform the general computations necessary
to maintain conflict classes and data sets. The only way to specify
a Chinese wall policy in SASI is to construct a fixed number of
objects and their corresponding datasets, which is, of course, not
amenable to the addition of new objects or datasets (see [14]).

It is also difficult to specify this policy in SPoX [20]. Even
though SPoX supports general purpose states and supports param-
eter specifications, only states with integer data types can be rep-
resented (it cannot, for instance, represent list states). But a more
serious problem in SPoX is that it does not support invocation of
methods, for example to check if the accessed object lies in a con-
flict class or is already in an accessed dataset. SPoX also has no
way to update the subject’s accessed dataset or conflict class.

PoET on the other hand is more powerful in expressing secu-
rity policies than SASI or SPoX; it provides global structured se-
curity states and allows the addition of states inside a certain class
(thereby implementing an implicit parameter). With PoET, then,
one can express the Chinese wall policy, but one also needs to de-
fine a variable for each subject instance where the depth inside a
subject call is tracked. Only when a read is detected inside a subject
call the required security checks for the Chinese wall are tested.

PoET [14, 15] and Polymer [6, 24, 25] are able to support the
Chinese wall policy, but Polymer has a restriction: it does not sup-
port policy parameters. However, since Polymer is an imperative
language that supports general purpose code, one may use data
structures to keep different instances of the subject in order to emu-
late parameters. This, however, is error prone. Note also, that PoET
would require complicated data structures to monitor policies with
more than one parameter.

Naccio [17] cannot express this property because it does not
support parameters, and it does not support general purpose code,
making it impossible to emulate parameters.

3.5 Policy Composition
Once a number of policies are written and tested separately for cor-
rect operation, the next step is to enforce multiple policies con-
currently. We refer to this as the Policy Composition problem. Re-
gardless of the importance of policy composition, it has not re-
ceived considerable attention in prior research except for in the
Polymer [6, 7, 24, 25] project, which defines a number of Policy
Combinators to enable different compositions of policies.

JavaMOP, by default, allows multiple policies to coexist within
a given target program. However it makes no guarantees on how
they will operate together if their events interfere with each other,
that is, if they happen to select some of the same program points.
By default, which policy will be triggered first when events inter-
fere is decidable only by the order in which AspectJ [23] files are
weaved into the program or by using an aspect precedence decla-
ration, which is part of the AspectJ standard. These are, at best, an
incomplete way to allow for policy composition. To ensure proper
composition, some sort of coordination and management among

different policies is necessary, in order to allow precedence as well
as conflict resolution.

Consider the following concrete example in JavaMOP that illus-
trates policies conflict and composition. Suppose that one wants to
enforce both the RestrictSystemCalls in Figure 5, and the FileNet-
workWall policy in Figure 8. Now consider a situation where the
target program accesses a network resource followed by a system
call invocation; this violates both policies. Now we have a conflict
between skipping the system call and halting.

Generally speaking the options available to JavaMOP handlers
can be split into four basic groups: halting the target program,
proceeding with the code that triggered the current event, skipping
the code that caused the current event, or executing some arbitrary
Java code. We will refer to these as Halt (Figure 4), Skip (Figure
5), Proceed (Figure 3, since execution is not stopped or altered
instead it is allowed to continue), and Exec (Figure 1 since it shows
arbitrary Java Code), respectively.

For any two Policies say A and B, JavaMOP creates two mon-
itors4 at runtime, one for each policy. If Policy A has a Halt state-
ment inside the handler and so does Policy B. Then obviously their
combined outcome should be to Halt the program.

However, a conflict occurs when different operations are used
by the handlers of each policy (i.e., conflict between halting or
skipping in the above mentioned example).

A
Halt Skip Proceed Exec

B

Halt Halt ? ? ?
Skip ? Skip ? ?

Proceed ? ? Proceed ?
Exec ? ? ? ?

Table 1. Combination of behavior of two policies, A and B, with
different handlers

Table 1 shows the different categories of operations that a han-
dler might contain. Cells marked with ? indicate a conflict between
different handler actions that must be resolved. The types of handler
operations can be grouped into a lattice, from the least restrictive to
the most restrictive: Proceed @ Exec or Skip @ Halt.

The idea that we adopt in JavaMOP to resolve conflicts between
two or more policies, is that instead of allowing the policies in
conflict to execute their handlers statements, they instead delegate
their operations to a higher JavaMOP specification. The job of this
higher JavaMOP specification is to monitor the execution of other
specifications, rather than monitoring the execution of the target,
for the sake of coordination among them.

Reflecting that on our concrete example above, we will demon-
strate the scenario where one wants to be less restrictive by not halt-
ing the target if the file access violating the FileNetworkWall policy
is skipped by the RestrictSystemCalls. The first thing we need to do
is to modify the handlers of FileNetworkWall and RestrictSystem-

Calls to call four special methods defined for a Manager class5. We
show in Figure 9 the updated version of FileNetworkWall 6, the other
policy is updated in a similar way.

The second thing we need to do is to create a new higher policy,
called ConflictManager, that will monitor calls to methods of the

4 Note that a given monitor can, as mentioned, contain multiple monitor
instances, one for each combination of bound parameters.
5 The Manager class is a helper class that contains no logic of its own,
instead it contains a set of methods that are invoked by different policies
where appropriate.
6 we use the notation of MONITOR in the handler part to refer to one of
the local variables defined in the monitor.

6 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

1 import java.io.*;
2 import java.net.*;
3

4 FileNetworkWall () {
5 Manager M1 = new Manager ();
6

7 event fileAccess before ():
8 call(* Runtime.exec (..))||
9 call(* File.creatNewFile ())

10 || ... //other file access methods
11 {}
12 event networkAccess before ():
13 call(URL.new (..))|| call(Socket.new (..))
14 || ... //other network access methods
15 {}
16 ptltl : networkAccess => <*>fileAccess
17 @match{ __MONITOR.M1.haltFN (); }
18

19 ptltl: fileAccess => <*>networkAccess
20 @match{ __MONITOR.M1.haltNF (); }
21 }

Figure 9. Delegation of the File Network Wall Policy

Manager class, then decide whether the system really needs to be
halted. The ConflictManager policy is shown in Figure 10.

It defines four events: the haltFN event, which is called by the
FileNetworkWall policy whenever it wants to halt after detecting a
file access followed by a network access, the haltNF event, which
is similar to the above event except it is invoked when the violation
pattern of network access followed by file access is detected, the
proceed event, which is called whenever there is another file oper-
ation (this is done by adding a new event to RestrictSystemCalls),
and the skip event, which is called whenever there is a system call
that is going to be skipped.

The policy defines the valid trace using PTLTL. Unlike in previ-
ous policies, the events are generated by other policies, rather than
the target program directly. The policy specifies two properties one
for each case of violation for the FileNetworkWall. The first property
states that, if there is a halt resulting from the pattern of: fileAccess
networkAccess, then at least one of the fileAccess events must have
been proceeded. While the second property states that, if there is
a halt resulting from the pattern of: networkAccess fileAccess then
the haltNF event must be preceded immediately by a skip event.
Note that the skip event does not appear in the formula; instead, it
causes the absence of the necessary proceed event that would have
saved the policy from violation. This composition requires that Re-
strictSystemCalls be given a higher precedence or weaved first, to
ensure that skip or proceed will occur immediately before haltFN
and haltNF.

Moreover, suppose that we wish to enforce FileNetworkWall
and RestrictSystemCalls per user or Subject within the program.
To do this, all we need to do is to update the involved policies
to declare a Subject parameter on the specification, and to make
the events parametric in Subject. Figure 11 shows the necessary
changes for the ConflictManager. Similar changes are required for
the two composed properties.

4. Discussion
Now that we have seen how JavaMOP can elegantly specify and
enforce different security policies that range from the simple to the
complex, we devote this section to highlight other security relevant
features of JavaMOP.

1 ConflictManager () {
2 event haltFN
3 after (): call(void Manager.haltFN ()){}
4 event haltNF
5 after (): call(void Manager.haltNF ()){}
6 event proceed
7 after (): call(void Manager.proceed ()){}
8 event skip
9 after (): call(void Manager.skip ()){}

10 ptltl: haltFN => <*>proceed
11 @validation{
12 System.out.println(
13 "FileNetworkWall violated .. Halting .");
14 Runtime.getRuntime (). halt (1);
15 }
16 ptltl: haltNF => (*) proceed
17 @validation{
18 System.out.println(
19 "FileNetworkWall violated .. Halting .");
20 Runtime.getRuntime (). halt (1);
21 }
22 }

Figure 10. Conflict Manager

1 ConflictManager(Subject S) {
2 event haltFN before(Subject S):
3 call(void Manager.halt1(Subject))
4 && args(S){}
5 event haltNF before(Subject S):
6 call(void Manager.halt1(Subject))
7 && args(S){}
8 event proceed before(Subject S):
9 call(void Manager.proceed(Subject))

10 && args(S){}
11 event skip before(Subject S):
12 call(void Manager.skip(Subject))
13 && args(S){}
14 ptltl: haltFN => <*>proceed
15 @validation{
16 System.out.println(
17 "FileNetworkWall violated .. Halting .");
18 Runtime.getRuntime (). halt (1);
19 }
20 ptltl: haltNF => (*) proceed
21 @validation{
22 System.out.println(
23 "FileNetworkWall violated .. Halting .");
24 Runtime.getRuntime (). halt (1);
25 }
26 }

Figure 11. Parametric Conflict Manager

4.1 Level of Enforcement
Security policies can be expressed and inlined at different levels
within a target program, e.g., application-level or object code level.
JavaMOP, Polymer [6, 24, 25] and SPoX [20] use the Java API to
mark certain security relevant application-level operations (events)
inside the target program for monitoring. Thus JavaMOP should
not be used, for example, to specify and enforce low level secu-
rity policies like memory management and software fault tolerance
isolation. Systems like SASI and PoET/PSLang [14, 15] are more
suitable to specify such policies since the security relevant oper-
ations are specified with ISA instructions, which provide a richer
vocabulary to express relevant low level operations. However, it is
much more difficult, if not impossible, to use these latter systems
to enforce application-level security.

7 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

4.2 Class of Policies Enforced
JavaMOP monitors a single execution trace as it occurs, thus it
does not enforce policies that depend on observing multiple pos-
sible executions. For example, it cannot monitor Information Flow
policies, which may require checking all possible execution traces.
This would imply that JavaMOP enforces policies which are char-
acterized as properties, that is, where the set membership for a set
of executions is determined by each element alone and not by other
members of the set; i.e., other executions [1].

Policies that check that no principal ever has access to a given
resource are liveness properties, thus they cannot be expressed
by any monitoring system because any partial execution may be
extended to a invalid one. However if the availability is bounded
to a limit then it can be expressed, e.g., a policy which monitors
denials bounded within a set period of seconds [18]. Because of the
time period, this property is actually a safety policy that specifies
the set of traces in which access is not allowed during the specified
time period [30].

And since JavaMOP (with AspectJ) is able to rewrite the target
to enforce security policies and to trigger possibly different correc-
tive handlers upon violation of a policy, JavaMOP is categorized
as a Program Rewrite [21]. And thus JavaMOP can enforce RW-
enforceable policies (policies that are enforceable by rewriting the
program to an equivalent valid execution) including EM-policies
(Execution Monitor policies) and satisfiable static policies [21].

4.3 JavaMOP versus AspectJ
Aspect Oriented Programming (AOP) is well known for best spec-
ifying security concerns, due to its modularity and the its ability
to seperate concerns and crosscut them where needed. However, as
shown in [28] , using AspectJ becomes a hard task when it is used to
specify event-history based specifications, or moreover when used
to enforce specifications on certain objects of classes (parametrized
specifications). That is where a security enforcement mechanism,
or more generally a runtime verification system such as JavaMOP,
comes into action.

JavaMOP makes implementation details of AspectJ transparent
to users (such as declaration of different security states, or creat-
ing the appropriate structure to deal with history based events), fo-
cusing only on the important parts for their specification to work,
leaving the details for JavaMOP to handle.

In this paper we showed examples that support our claim that
JavaMOP is a mature and a complete tool that better serves the
specification of security policies.

4.4 AspectJ Correctness
As mentioned in the introduction, the process of inlining the gen-
erated AspectJ code into the program is outside the boundaries of
JavaMOP, and thus JavaMOP makes no guarantees that the actual
weaving of the AspectJ file is done correctly.

However, it is worth highlighting that there are some security
concerns that arise in the AspectJ-weaved code (for example, in
AspectJ5 for a privileged aspects to access private class members
it introduces into the target class a public method to get and set the
private member) [13]. This is an area of active research [13, 33].

4.5 Restricting Java Reflection
JavaMOP makes no restriction on the code written inside the event
action or the property handlers. Additionally, JavaMOP makes no
restrictions about using Java reflection within a program. There
is a reason for this: JavaMOP is designed to be a general RV
system that can be used for many purposes, not necessarily for
security. However, since Java reflection can be used maliciously
to circumvent the integrity of JavaMOP monitors, it is usually

1 RestrictJavaReflection (){
2

3 Class c;
4

5 boolean isJavaMOPClass(java.lang.Class c)
6 {// check reflected object usage does not
7 // implement MOPObject interface
8 }
9

10

11 event fieldAccess
12 before(java.lang.reflect.Method method):
13 call(* java.lang.reflect.Method .*(..))
14 && target(method){
15 c = method.getDeclaringClass ();}
16

17 event classAccess
18 before(java.lang.reflect.Field field):
19 call(* java.lang.reflect.Field .*(..))
20 && target(field){
21 c = field.getDeclaringClass ();}
22

23 event constructorAccess
24 before(java.lang.reflect.Constructor constructor):
25 call(* java.lang.reflect.Constructor .*(..))
26 && target(constructor){
27 c = constructor.getDeclaringClass ();}
28

29

30 ere: fieldAccess | classAccess
31 | constructorAccess
32

33 @match{
34 if(__MONITOR.isJavaMOPClass(__MONITOR.c))
35 System.out.println (" Reflection used to access
36 javamop class: "+ __MONITOR.c.getName ());
37 Runtime.getRuntime (). halt (1);
38 }
39 }

Figure 12. Restricting Java Reflection.

advised, as in Polymer or Naccio, that one should write a specific
JavaMOP property that restricts the usage of Java reflection.

Figure 12 shows part of the policy that restricts the Java Reflec-
tion methods. Since all JavaMOP classes must implement MOPOb-
ject interface, restricting the usage of Java Reflection is accom-
plished by checking that any object (i.e., Method, Field or Con-
structor) using a reflection method does not directly or indirectly
reside in a class that implements the MOPObject interface.

5. Evaluation and Performance
This section presents the results of three experiments regarding the
performance of policy monitoring with JavaMOP. The first and the
second use the DaCapo benchmark suite (version 9.12-bach) [8]
and several Java API security policies. The first experiment shows
the runtime overhead of monitoring different JavaMOP security
policies, while the second experiment shows a comparison of the
overheads of JavaMOP, SPoX and Polymer on DaCapo.

The third experiment shows the performance of the ChineseWall
policy, which is not relevant to any programs in the DaCapo bench-
mark suite. All experiments were performed on a machine with
1.00 GB of RAM with a 3GHz Pentium R© 4 processor, running
Ubuntu Linux 9.10.

8 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

Hidden Disable File FileNetwork DisSys All
FileAccess Network Creation Wall Calls Policies

avrora 3 64 64 1 0 0 2 14 14 0 1388 0 1 0 2 1416 56
batik -1 122 122 1 685 685 -1 0 0 0 1692 685 -1 0 1 2071 1542

eclipse -1 642 642 1 438 438 2 28 28 1 1958 439 1 0 1 3047 1542
fop 1 121 121 0 0 0 0 0 0 1 667 0 1 0 1 548 49
h2 2 15 15 0 0 0 -1 0 0 1 73 0 -1 0 -1 70 9

jython 0 2726 2726 2 0 0 -1 2 2 1 7347 0 -2 0 -1 10049 2720
luindex 1 25 25 0 0 0 1 256 256 0 24534 0 -1 0 -2 16475 176
lusearch -2 1549 1549 0 0 0 0 0 0 0 3807 0 0 0 0 3670 1033

pmd -1 3138 3138 -1 0 0 -1 0 0 -3 6288 0 0 0 -1 7182 2242
sunflow 0 13 13 1 0 0 1 0 0 2 72 0 1 0 0 67 9
tomcat 1 37 37 2 3 3 1 0 0 2 20044 3 1 0 1 14680 39

tradebeans 0 13 13 0 0 0 1 0 0 0 3430 0 0 0 1 3427 9
tradesoap 0 15 15 0 0 0 1 0 0 0 2788 0 0 0 -1 2787 11

xalan -1 23826 23826 0 1 1 -1 0 0 1 47741 1 -2 0 0 51144 17022

Table 2. DaCapo Results. For each policy, except DisSysCalls, three numbers are shown: average percent overhead within ± 3%, total
number of events monitored, and number of triggered handlers. Sometimes

5.1 Performance Results for JavaMOP
The default input for DaCapo was used, and we use the -converge
option to ensure the validity of our test by running each test mul-
tiple times, until the execution time converges. After convergence,
the runtime is stabilized within 3%, thus average overhead numbers
in Table 2 and 3 should be interpreted as ±3%.

We measured the performance of each of the following security
specifications separately then we measured the performance when
all of them are instrumented simultaneously; the security policies
measured are: RestrictHiddenFileAccess, a policy that simply re-
stricts access to hidden files; DisableNetwork, which disallows all
network traffic; RestrictFileCreation, which disallows the creation
of files; and FileNetworkWall and DisableSystemCalls, which were
defined earlier in the paper.

Table 2 shows three numbers for each policy: average percent-
age overhead within ± 3%, total number of monitored events, and
number of times the handlers were triggered. The DisableSystem-
Calls shows only the first two numbers since it is a raw JavaMOP
specification that does not contain a handler. The AllPolicies in ta-
ble 2 shows the same figures when all the policies are enforced
simultaneously on DaCapo. Note that when the policy’s property
is monitoring the occurrence of a single event, then the number of
times the handlers were triggered is exactly the number of times the
events were monitored, i.e., HiddenFileAccess, DisableNetwork and
FileCreation.

JavaMOP shows no significant performance overhead when any
of the above specifications are enforced on DaCapo independently
or when they are all enforced at the same time. We attribute this
result to a number of reasons. The first is that these specifications
are, from the perspective of JavaMOP’s capabilities, relatively sim-
ple specifications that are not parameterized. This means that for
each policy, a single monitor will be synthesized, creating at most
four monitor instances at the same time, when all the policies are
enforced simultaneously (a small number of monitors compared
to the much heavier workload for which JavaMOP has been opti-
mized). Negative overheads are occasionally possible because addi-
tional code introduced by the AspectJ weaving process changes the
program structure in DaCapo, sometimes causing the benchmark to
run slightly faster due to better instruction cache layout.

5.2 JavaMOP Vs. SPoX Vs. Polymer on DaCapo
In this experiment we instrumented 4 policies: the discussed previ-
ously DisableSystemCalls and FileNetworkWall, in addition to Limi-
tOpenedFiles which bounds the number of files being opened to a
statically bound variable and NoWriteAfterClose a parametric pol-
icy that ensures that no file is being written after it was closed.

SPoX shows also no significant measurements for almost all
DaCapo programs, except for fop (which takes an XSL-FO file,
parses it and formats it, generating a PDF file), SPoX shows '
16% average overhead. We attribute that due to the fact that fop
benchmark makes extensive usage of the file API methods that
the policies used in the performance measurement are monitoring.
Thus the load of usage of the APIs used in SPoX specifications
increases, which increases in turn the crosscutting points and thus
requires more weaving to be done.

On the other hand Polymer shows the worst percentage over-
head with maximum of 128%. We attribute this to the fact that
Polymer did not undergo any performance enhancements: Poly-
mer’s concern, while being built, was to ensure the security of the
rewriter and the validity of the weaving process rather than the per-
formance of the process.

The last specification NoWriteAfterClose measures the perfor-
mance overhead for JavaMOP and SPoX for a parametric specifica-
tion. We did not measure the specification on Polymer, since Poly-
mer does not support parametric specifications. JavaMOP again
shows better performance when an extensive usage of the file APIs
are being used by DaCapo as in fop (1%), while SPoX shows av-
erage performance overhead 16%. For other DaCapo programs no
significant overhead difference was observed.

5.3 JavaMOP Chinese Wall Performance
To test the ChineseWall security policy, we have customized a
simulation program for stock work flow, where users (subjects) are
allowed to access objects in datasets that do not lay in the same
conflict class of previously accessed objects.

We tested the program at different numbers of loads: running
subjects, datasets and conflict classes. We also tested multiple dif-
ferent call depths (0, 25 and 50) for the call depth of each subject.
Table 4 summarizes the results in three groups of columns. The
first group of columns (#Subjects, #Datasets and #Conflict classes)
shows the load size of the test performed. It is worth noting that, for
each load, a monitor is created for each subject, resulting in at most

9 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

DisableSys FileNetwork LimitOpened NoWrite
Calls Wall Files AfterClose

MOP SPoX Polymer MOP SPoX Polymer MOP SPoX Polymer MOP SPoX
avrora 1 3 1 3 2 2 2 2 2 2 1
batik -1 0 -1 1 -1 -1 -1 1 0 -1 -1

eclipse -1 1 -8 1 1 -3 0 -5 -1 1 -2
fop 0 16 19 5 17 15 0 16 13 1 16
h2 1 1 - 2 0 - -1 -1 - -1 -1

jython 1 -2 -2 -1 -2 2 0 -2 1 -1 -4
luindex 0 3 -1 0 3 14 0 0 13 1 5
lusearch 0 0 0 0 1 2 -1 1 0 1 1

pmd -2 -2 10 -2 -2 128 -2 -2 39 -1 -2
sunflow 1 0 0 0 0 1 1 0 -1 1 0
tomcat 2 0 7 1 0 126 1 -1 44 2 -1

tradebeans 1 1 2 1 0 1 1 0 1 1 1
tradesoap 0 -1 1 0 1 9 0 1 3 -1 0

xalan -1 -1 4 -1 -3 63 1 -3 22 -1 -2

Table 3. DaCapo Results. Except for the last policy (which shows only JavaMOP and SPoX average overhead), three average overhead
numbers are shown for JavaMOP, SPoX and Polymer respectively.

#Subjects #Datasets #Conflict %Overhead #Method call/return #Access Total events #Trigger
100 1000 10 6 2000 1000 3000 51500
200 4000 20 9 8000 4000 12000 406000
300 9000 30 5 18000 9000 27000 1363500
400 16000 40 3 32000 16000 48000 3224000
500 25000 50 6 50000 250000 75000 6287500

Table 4. ChineseWall Results. The table shows test load size (#Subjects, #Datasets, #Conflict classes), average percent over-
head(%Overhead), number of paired method call and return events monitored (#Method call/return), number of access events monitored
(#Access), total number of monitored events (Total #events), and number of triggered handlers(#Trigger).

three hundred monitor instances (the highest load tested) running
simultaneously.

The second group shows the percentage performance overhead
between the original test program and one instrumented with the
ChineseWall policy. As shown in the table, JavaMOP yields low
performance overhead, ' 9% at the most, when the target is run-
ning a high load of datasets, despite the fact that the test program
does very little that is not a policy event. This is shown by the last
group of columns which summarizes the number of monitored pairs
of method call and return events (#Method call/return), number
of monitored access events (#Access), total number of monitored
events (Total #events), and, finally, the number of times the handler
for the Chinese Wall policy was triggered(#Trigger). The number
of access events multiplied by the number of subjects constitutes
the upper bound for number of times the handler is triggered. This
number is significantly lower because JavaMOP does not create
monitor instances for a given Subject until absolutely necessary.

6. Conclusion
In this paper, the relationship between Inlined Reference Monitors
(IRMs) and the general purpose Runtime Verification (RV) was ex-
plored. We showed that, despite their different backgrounds, they
actually overlap in similar functionality. In fact IRM can be con-
sidered as a specific instance of RV. We demonstrated how Java-
MOP, an RV system, is able to effectively and efficiently specify
and monitor security policies.

We discussed how JavaMOP can be used to resolve potential
conflicts that might arise when multiple specifications are enforced.
This is done by delegating handlers of the conflicting specifications

to a higher JavaMOP specification, which in turn decides the appro-
priate action to be taken.

Finally we presented and discussed the results of our perfor-
mance experiments for JavaMOP and two other IRM systems
mainly SPoX and Polymer.

A formal framework for the composition of JavaMOP specifi-
cations is a direction for future research.

References
[1] B. Alpern and F. B. Schneider. Defining Liveness. Technical report,

Ithaca, NY, USA, 1984.

[2] C. Anley. Advanced SQL Injection in SQL Server Applications.
NGSSoftware Insight Security Research, 2002.

[3] P. Avgustinov, J. Tibble, and O. de Moor. Making Trace Monitors
Feasible. In Object Oriented Programming, Systems, Languages and
Applications (OOPSLA’07), pages 589–608. ACM, 2007.

[4] H. Barringer, B. Finkbeiner, Y. Gurevich, and H. Sipma. Runtime
Verification (RV’05). Elsevier, 2005. ENTCS 144.

[5] H. Barringer, D. Rydeheard, and K. Havelund. Rule Systems for Run-
time Monitoring: from EAGLE to RULER. J. Logic Computation,
November 2008.

[6] L. Bauer, J. Ligatti, and D. Walker. A Language and System for
Enforcing Run-time Security Policies. Technical Report TR-699-04,
Princeton University, 2004.

[7] L. Bauer, J. Ligatti, and D. Walker. Composing Security Policies with
Polymer. SIGPLAN Not., 40:305–314, 2005.

[8] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss,

10 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking De-
velopment and Analysis. In Object-oriented Programming Systems,
Languages, and Applications (OOPSLA’06), pages 169–190. ACM,
2006.

[9] E. Bodden. J-LO, a tool for runtime-checking temporal assertions.
Master’s thesis, RWTH Aachen University, 2005.

[10] D. Brewer and M. Nash. The Chinese Wall security policy. In
IEEE Symposium on Security and Privacy (SOSP’89), pages 206–214.
IEEE, 1989.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In Workshop on Policies for Distributed
Systems and Networks (POLICY’01), pages 18–38. Springer, 2001.

[12] M. d’Amorim and K. Havelund. Event-Based Runtime Verification of
Java Programs. ACM SIGSOFT Software Engineering Notes, 30(4):
1–7, 2005.

[13] B. De Win, F. Piessens, and W. Joosen. How secure is AOP and What
can we do about it? In Proceedings of the 2006 international workshop
on Software engineering for secure systems, SESS ’06, pages 27–
34, New York, NY, USA, 2006. ACM. ISBN 1-59593-411-1. doi:
10.1145/1137627.1137633. URL http://doi.acm.org/10.1145/
1137627.1137633.

[14] U. Erlingsson. The Inlined Reference Monitor Approach to Security
Policy Enforcement. PhD thesis, Cornell University, 2003.

[15] U. Erlingsson and F. B. Schneider. IRM Enforcement of Java Stack
Inspection. In IEEE Symposium on Security and Privacy (SOSP’00),
pages 246–255. IEEE, 2000.

[16] U. Erlingsson and F. B. Schneider. SASI Enforcement of Security
Policies: A Retrospective. ACM Transactions on Information and
System Security, 3:87–95, 2000.

[17] D. Evans. Policy-Directed Code Safety. PhD thesis, MIT, 2000.

[18] V. D. Gligor. A Note on Denial-of-Service in Operating Systems.
IEEE Trans. Softw. Eng., 10:320–324, May 1984. ISSN 0098-5589.
doi: 10.1109/TSE.1984.5010241.

[19] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational Queries
Over Program Traces. In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’05), pages 385–402. ACM,
2005.

[20] K. W. Hamlen and M. Jones. Aspect-Oriented In-lined Reference
Monitors. In Workshop on Programming Languages and Analysis for
Security (PLAS’08), pages 11–20. ACM, 2008.

[21] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability
Classes for Enforcement Mechanisms. ACM Transactions on Pro-
gramming Languages and Systems, 28:175–205, 2006.

[22] K. Havelund and G. Roşu. Runtime Verification (RV’01, RV’02,
RV’04). Elsevier, 2001, 2002, 2004. ENTCS 55, 70, 113.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In European Conference on
Object Oriented Programming (ECOOP’01), volume 2072 of LNCS,
pages 327–353. Springer, 2001.

[24] J. Ligatti, J. Ligatti, L. Bauer, and D. Walker. Edit Automata: En-
forcement Mechanisms for Run-time Security Policies. Journal of
Information Security, 4:2–16, 2003.

[25] J. A. Ligatti. Policy Enforcement via Program Monitoring. PhD thesis,
Princeton University, 2006.

[26] M. Martin, V. B. Livshits, and M. S. Lam. Finding Application Errors
and Security Flaws Using PQL: a Program Query Language. In
Object Oriented Programming, Systems, Languages and Applications
(OOPSLA’07), pages 365–383. ACM, 2005.

[27] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An Overview
of the MOP Runtime Verification Framework. Journal on Software
Techniques for Technology Transfer, 2011. to appear.

[28] P. H. Phung and D. Sands. Security Policy Enforcement in the OSGi
Framework Using Aspect-Oriented Programming. In Proceedings of
the 2008 32nd Annual IEEE International Computer Software and
Applications Conference, COMPSAC ’08, pages 1076–1082, Wash-

ington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-
3262-2. doi: 10.1109/COMPSAC.2008.149.

[29] J. Saltzer and M. Schroeder. The Protection of Information in Com-
puter Systems. Proceedings of the IEEE, 63:1278–1308, 1975.

[30] F. B. Schneider. Enforceable Security Policies. ACM Transactions on
Information and Systems Security, 1:30–50, 2000.

[31] O. Sokolsky and M. Viswanathan. Runtime Verification (RV’03).
Elsevier, 2003. ENTCS 89.

[32] V. Stolz and E. Bodden. Temporal Assertions using AspectJ. In
Runtime Verification (RV’05), volume 144 of ENTCS, pages 109–124.
Elsevier, 2005.

[33] B. D. Win, W. Joosen, and F. Piessens. AOSD Security: A Practical
Assessment. In Workshop on Software engineering Properties of
Languages for Aspect Technologies (SPLAT03, pages 1–6, 2003.

11 2012/5/24

PLAS'12, ACM, pp 3:1-3:11. 2012

