
ROSRV: Runtime Verification for Robots

Jeff Huang1, Cansu Erdogan1, Yi Zhang1, Brandon Moore1, Qingzhou Luo1,
Aravind Sundaresan2, and Grigore Rosu1

1 University of Illinois at Urbana-Champaign
2 SRI International, Menlo Park, CA 94025

{smhuang,bmmoore,cerdoga2,qluo2,grosu}@illinois.edu
aravind@ai.sri.com

Abstract. We present ROSRV, a runtime verification framework for
robotic applications on top of the Robot Operating System (ROS [8]),
a widely used open-source framework for robot software development.
ROSRV aims to address the safety and security issues of robots by pro-
viding a transparent monitoring infrastructure that intercepts and mon-
itors the commands and messages passing through the system. Safety
and security properties can be defined in a formal specification language,
and are ensured by automatically generated monitors. ROSRV integrates
seamlessly with ROS—no change in ROS nor the application code is
needed. ROSRV has been applied and evaluated on a commercial robot.

1 Introduction

The Robot Operating System (ROS [4]) is an open-source meta-operating system
for robot software development. With the increasing popularity of programmable
robots, ROS has become the de facto standard for robotic applications such as
perception [3], motion planning [1], object detection [2], etc. ROS provides com-
mon robot-specific libraries as well as standard operating system services such
as hardware abstraction, low-level device control, etc3. At the lowest level, ROS
offers a message passing interface that provides inter-process communication
including publish/subscribe messages and distributed parameter configuration.
The message passing is based on a graph architecture where computation takes
place in ROS processes (called nodes) that may receive, post and multiplex mes-
sages.

With the wide adoption of ROS, however, its safety and security are becom-
ing an important concern. For instance, any node is allowed to publish/subscribe
arbitrary messages on any topic4, which can be easily abused by attackers. More-
over, ROS is designed to be highly dynamic and distributed, making it hard or
impossible to verify statically. For example, nodes running on different hardware
devices can join and leave dynamically, changing parameters and namespaces,

3 Note that ROS is not a traditional operating system. For example, it does not deal
with process scheduling.

4 In ROS, topics are communication channels between publishers and subscribers
which identify the content of the message.

and creating new message topics. A node can be killed by another node via a
shutdown command or accidentally replaced by a new node with the same name.

In this paper, we present a runtime verification framework, ROSRV, for im-
proving the safety and security of robots running ROS. ROSRV is designed to
be lightweight, expressive, and transparent, with no changes to ROS or the ap-
plication running on top of ROS. Its core is a runtime monitoring infrastructure
that intercepts, observes and optionally modifies the commands and messages
passing through the system, and performs actions upon relevant events defined
over the messages. Safety properties are implemented as monitors on top of
this infrastructure, such that all relevant messages are monitored and property-
triggered user-specified actions are performed. For example, to prevent a robot
from overturn, a safety monitor can intercept and modify the robot speed/ac-
celeration messages. ROSRV provides a specification language for safety proper-
ties, and monitors are automatically generated from specifications. For security,
ROSRV provides a specification language for access control policies and enforces
them at runtime. For example, it is possible to specify which nodes are permitted
to publish messages on certain topics or to send shutdown signals to kill other
nodes.

ROSRV integrates seamlessly with ROS and has been applied on the Land-
Shark5, an unmanned ground vehicle (UGV) robot running ROS. We illustrate
ROSRV via a case study on LandShark and demonstrate how ROSRV improves
the safety and security of LandShark through monitoring safety properties and
enforcing access control policies. All the ROSRV source code, materials, and
demos are publicly available at http://fsl.cs.illinois.edu/rosrv.

2 Robot Operating System (ROS)

We briefly overview ROS communication concepts [7], highlighting its safety and
security limitations. ROS is a peer-to-peer network of nodes that communicate
with each other using XMLRPC and custom ROS messages that are based on
TCP/IP. Each message has a type and is transported on a channel called a topic,
and each node may subscribe and publish to arbitrarily many topics. A special
node, the Master, coordinates the communication and provides global services
such as naming, registration, parameter updates and lookups.

Fig. 1 depicts the ROS communication architecture. Node communication
is initiated with a sequence of XMLRPC requests. First, nodes register with
the Master; e.g., the publisher may register that it publishes messages on topic
“chat” at address “foo:1234”, and then when a subscriber registers to topic
“chat” the Master passes it the publisher’s address. Second, the subscriber con-
tacts the publisher to obtain a topic connection and negotiate the transport
protocol. Finally, the subscriber connects to the publisher and starts receiving
messages. ROS also supports commands that query/update the system state,
such as the name, address, and published/subscribed topics of a node, query
published topics, kill a node, etc.

5 The LandShark UGV is a product of Black-i Robotics (www.blackirobotics.com).

http://fsl.cs.illinois.edu/rosrv
www.blackirobotics.com

Publisher Subscriber

publish(“chat”, foo:1234) subscribe(“chat”)

{foo:1234}

connect(topic)
TCP server : foo:2345

connect(foo:2345)

messages

ROS Communication Architecture

ROS
Master

Fig. 1. ROS Communication Architecture

Fig. 2. Safety issues: LandShark shoots itself and tips over

2.1 ROS Safety and Security Issues

Safety is often application specific and challenging to address in a generic dis-
tributed communication framework such as ROS. Also, since ROS is designed to
be open and dynamic, it lacks any security protection mechanism. For example,
an attacker can easily create a node, query the Master about the system state,
and send shutdown commands to kill any node. Moreover, nodes are uniquely
identified by their name, with newly created nodes replacing existing ones with
the same name. Thus, an attacker can easily fake a node to publish bogus mes-
sages on important topics. For instance, a navigation node in a robot may be
killed and replaced by a fake node that misdirects the robot.

The LandShark UGV has an onboard Linux box connected to various devices:
GPS, radar, cameras, motor and turret controllers, a paintball gun, etc. The
paintball gun can fire on receiving a trigger message. Each device has a driver
and a corresponding ROS node (wrapper) which publishes sensor data and/or
accepts commands as ROS messages. An operator control unit (OCU) node
listens to messages from the robot and sends it user commands.

Fig. 2 shows two scenarios where the safety of the robot is infringed. The
first, “robot shoots itself”, is motivated by the fact that no mechanism in the
LandShark or ROS prevents this behavior, so the LandShark can shoot itself (in-
advertently or maliciously, by an attacker). The second, “LandShark tips over”,
occurs when it accelerates too quickly or becomes unbalanced. This scenario is
typical for UGVs but there is no safety mechanism in ROS to prevent it.

3 ROSRV

ROSRV is designed to address the safety and security issues in ROS-based robot
applications. Fig. 3 shows its architectural overview. The main difference from
ROS is the RVMaster node, which acts as both a secure layer protecting ROS
Master and as a functional layer for protecting the safety of the application: all
node requests to ROS Master can be intercepted by RVMaster and all messages
can be monitored, and thus the desirable safety and security policies enforced.

ROS
Master

Publisher Subscriber

ROS Monitoring Architecture

RVMaster

Monitor messagesmessages

publish(“chat”, foo:1234)

subscribe(“chat”)

{monitor :5678}

{foo:1234}

Fig. 3. ROSRV Architecture

For example, access control
policies such as allowing only
certain nodes to publish mes-
sages on a certain topic can be
enforced by checking the node
identity and topic name in the
request and rejecting it if they
do not match the policy. We
have developed an IP address-
based access control specifica-
tion that allows the security
policies to be enforced as sys-
tem configuration.

Monitors are generated by RVMaster from safety specifications and imple-
mented as ordinary ROS nodes that can subscribe and publish messages. How-
ever, RVMaster keeps track of all the communication requests by the other nodes
in the system and manipulates the point-to-point communication addresses so
that the generated monitors act as men-in-the-middle. For example, a monitor
can drop the triggering message of LandShark when the position of the gun is
within the range of pointing at itself, or modify the acceleration message when
the LandShark is moving too fast to prevent it from tipping.

An important property of ROSRV is that it does not require any change to
ROS or the application code. The only requirement is to configure the RVMaster
to listen at the standard port and the ROS Master to listen at a hidden port
visible only to RVMaster. This is implemented using a firewall to block access to
the ROS master port. In this way, all the ordinary nodes in the system remain
the same (sending requests to the default port, sending and receiving messages
from normal ROS nodes), and are not even aware of being monitored.

3.1 Monitoring Safety Properties

A safety property is specified by means of events and actions based on event
sequences. Fig. 4 shows a simple example to illustrate the idea. The property
we want to monitor here requires that the robot can only fire in certain safe
poses. There are two events, checkPosition and safeTrigger. Each event has
its own parameters and the topic and type of the messages being monitored. For
example, checkPosition is used to check whether the gun is at a safe position:
“position > -0.45” (not pointing at itself). It listens to topic /landshark/joint

states with message type sensor msgs/JointState, which holds two arrays: name
and position. The second elements of these arrays are bound to variables N

and P, respectively. They are used as the parameters of the event and in the
event handler code. Event handler code is used to trigger actions under certain
conditions. For example, in checkPosition the global variable isSafeTrigger

will be set to true if and only if the gun is at an angle larger than -0.45; later
on it is used in safeTrigger to determine whether the trigger is allowed or not.

	 safeTrigger() {
	 bool isSafeTrigger = false;
	 event checkPosition(string N, double P)
	 /landshark/joint_states sensor_msgs/JointState
	 ‘{name[1]:N, position[1]:P}’ {
	 if (N=="turret_tilt"){if (P > -0.45){ //check gun position
	 isSafeTrigger = true;
	 }else{
	 isSafeTrigger = false;
	 } } }
	 event safeTrigger() /landshark_control/trigger
 landshark_msgs/PaintballTrigger ‘{}’ {
	 if(!isSafeTrigger) return; //drop trigger message
	 }
	 }

Fig. 4. Safe Trigger Specification

Our monitoring in-
frastructure enables us
to use any logic plu-
gins of Monitoring-
Oriented Programming
(MOP [5]) to spec-
ify temporal proper-
ties over events, such
as regular expressions,
linear temporal log-
ics, context-free gram-
mars, etc., and to
trigger actions only
when certain patterns
of event sequences are

matched, because such specifications translate into ordinary code that imple-
ments corresponding monitors, which are executed as event actions.

ROSRV automatically generates C++ monitoring code from all the user-
defined specifications, and creates nodes that act as monitors as explained above.
Each event generates one call back method and all the call back methods are
registered by RVMaster. Parameters of events are treated as references to fields
in monitored messages, so users can modify messages in event handler code.
Event handlers are inserted in call back methods that are called at runtime.

3.2 Enforcing Security Policies

ROSRV enforces access control based on a user-provided specification of access
policies as input configuration. On receiving any XMLRPC request, RVMas-
ter decides whether the request is allowed to go to the ROS Master according
the specification. The policies are currently categorized into four different sec-
tions: [Nodes], [Subscribers], [Publishers], and [Commands]. Under each section,
the access policy is written as a key followed by an assignment symbol and a
list of values. For [Nodes], “key” is the node name, and “value” is the machine
identity allowed to create nodes with the name “key”. For [Subscribers] and
[Publishers], “key” is the topic name and “value” is the node identity allowed
to subscribe/publish to the topic. For [Commands], “key” is the command name
and “value” is the node identity allowed to perform the command. We support
access granularity at a host level. We use the source IP address of the request

[Groups]
localhost = 127.0.0.1
certikos = ip1 ip2 ip3 ip4
ocu = ip5 ip6 ip7 ip8
[Nodes]
default=localhost
/landshark_radar=certikos

[Publishers]
default=localhost certikos
/landshark_control/trigger= ocu

[Subscribers]
default = localhost certikos
/landshark/gps = ocu

[Commands]
Commands: full access
getSystemState = localhost certikos ocu
Commands: limited access
lookupNode = localhost certikos
Commands: local access only
shutdown = localhost

Fig. 5. Sample access control policy for LandShark

to identify the host, because the node name itself is self-reported. IP address
aliases and groups are also supported in our specification language.

Fig. 5 shows a snippet of the LandShark access policy. The [Group] section de-
fines three groups of IP addresses. In the [Nodes] section, “default=localhost”
means that by default “localhost” is allowed to create a node with any name,
and “/landshark_radar=certikos” that the alias “certikos” is allowed to
create a node with name “/landshark_radar”. In [Publishers], only nodes run-
ning on machine “ocu” can publish to topic “/landshark_control/trigger”.
In [Commands], “getSystemState=localhost certikos ocu” means that nodes
running on machines “localhost”, “certikos”, or “ocu” are allowed to send
“getSystemState” requests to ROS Master, and “shutdown=localhost” that
only nodes on “localhost” are allowed to “shutdown” other nodes.

4 Current Limitations and Future Work

Security The main limitation of the current implementation is the reliance on IP
addresses in particular and on network routing in general to guarantee security.
Naively trusting IP addresses does not protect against attackers who can run
processes on the same (virtual) machines as trusted nodes, or spoof packets on
physical network segments carrying unencrypted traffic. To defend against local
attacks, the RVMaster and the mutually distrustful nodes can be run on separate
(virtual) machines. To protect against spoofed IP addresses, the machines can
be configured to receive packets from other machines on distinct virtual network
interfaces, with the link between interface and machine using encrypted tunnels
or relying on the virtual machine monitor to provide private local connections.
Then routing can be configured so that only packets from specific machines can
claim recognized IP addresses, and also to prevent nodes from being accessed
directly. We intend to augment RVMaster with tools to automate the creation
and configuration of virtual machines to more easily provide this level of security.

Scalability Currently ROSRV is centralized. All the monitor nodes live in
the same multithreaded process, and all communication in the system is moni-
tored. We tested the performance of monitoring with 10+ nodes in Landshark.
The message delay caused by monitoring is on small digits of milliseconds. Al-
though this is acceptable in our current project, the centralized monitoring may
face scalability problems with a large number of nodes. We plan to investigate
decentralized mechanisms such as multimaster [6] to improve scalability. The

multimaster approach also enriches the fault tolerance of the system, as the
current ROS master is a single point of failure.

Formal verification Currently the runtime verified system is not formally
verified. This would require a formal model of ROS itself, as well as proving that
the generated monitors and glue code guarantee the desired global system prop-
erties. At the implementation level, this would consist of showing that RVMaster
respects the given model of ROS and invokes the monitor code at correct times
to impose monitoring, and developing tools to prove that monitor code generated
from higher level specifications actually correctly monitors those specifications.

5 Conclusion

With our society increasingly depending on robots, the importance of their safe
and secure operation cannot be overstated. This paper makes first steps towards
the runtime verification of robot applications. Users provide formal safety and
security specifications, and monitors are automatically generated and incorpo-
rated in the system to ensure the safety and security of robots.

Acknowledgement: This material is based on research sponsored by DARPA
under agreement number FA8750-12-C-0284. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

References

1. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP:
Stochastic trajectory optimization for motion planning. In ICRA, pages 4569–4574.
IEEE, 2011.

2. U. Klank, D. Carton, and M. Beetz. Transparent object detection and reconstruction
on a mobile platform. In ICRA, pages 5971–5978. IEEE, 2011.

3. B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker. Towards perceptual
shared autonomy for robotic mobile manipulation. In ICRA, pages 6245–6251.
IEEE, 2011.

4. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source robot operating system. In ICRA Workshop on
Open Source Software, 2009.

5. G. Roşu and F. Chen. Semantics and algorithms for parametric monitoring. Logical
Methods in Computer Science, 8(1):1–47, 2012.

6. ROS contributors. ROS Multimaster. http://wiki.ros.org/rocon_multimaster.
[Accessed 2014-04-25].

7. ROS contributors. ROS technical overview. http://wiki.ros.org/ROS/Technical%
20Overview. [Accessed 2014-04-25].

8. ROS contributors. ROS.org. http://wiki.ros.org. [Accessed 2014-04-25].

http://wiki.ros.org/rocon_multimaster
http://wiki.ros.org/ROS/Technical%20Overview
http://wiki.ros.org/ROS/Technical%20Overview
http://wiki.ros.org

A Demo Overview

The ROSRV tool consists of the RVMaster node written in C++, a monitor
generator (called rosmop) written in Java and JavaCC, and a set of bash scripts
to compile and start ROS. The tool works on Ubuntu 12.04 with ROS Groovy
distribution release. The user simply describes the property or a set of properties
using the monitor specification language and specifies the access control policy
in a configuration file. Taking the property specifications as input, ROSRV first
automatically generates all the monitors, with each monitor corresponding to one
property. The user can run rosmop with either a single property specification or
the directory containing a set of property specifications, to generate the monitors
and compile the whole system.

In the accompanying video, we demonstrate the use of ROSRV with three
monitors and four access control policies on the Landshark robot.

– Safe Trigger: we first show that by default the Landshark can shoot itself
when we move the gun to point at itself. We then enable the safe trigger
monitor and show the gun is no longer allowed to shoot when pointing at
Landshark, but can still shoot when pointing at the ground.

– Safe Zone: this monitor monitors the location of Landshark against a zone,
and ensures that once Landshark enters the zone it cannot move out. Within
the zone, we also show Landshark is disallowed to shoot itself, to demonstrate
that the tool can support multiple monitors working simultaneously.

– Logging: in many cases, users want to log messages in the robot to understand
the runtime behavior of the system. We show a logging monitor that, once
enabled, prints out the messages that the user is interested in, which could
be useful for debugging.

– Access control policies: we demonstrate a policy for each of the four sections
in the sample access control policies in Fig. 5. We run this demo with two
machines: one running ROSRV and all the legal nodes, and the other running
the attacker nodes. We show the attacker nodes cannot perform any action
not specified in the access control policy file, such as publishing messages on
a certain topic, killing another node, or pretending to be an existing legal
node.

The demonstration video is available at:
http://fsl.cs.illinois.edu/index.php/ROSRV

http://fsl.cs.illinois.edu/index.php/ROSRV

	ROSRV: Runtime Verification for Robots*0ex

