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Abstract. The problem of testing a linear temporal logic (LTL) formula
on a finite execution trace of events, generated by an executing program,
occurs naturally in runtime analysis of software. An algorithm which
takes a past time LTL formula and generates an efficient dynamic pro-
gramming algorithm is presented. The generated algorithm tests whether
the formula is satisfied by a finite trace of events given as input and runs
in linear time, its constant depending on the size of the LTL formula.
The memory needed is constant, also depending on the size of the for-
mula. Further optimizations of the algorithm are suggested. Past time
operators suitable for writing succinct specifications are introduced and
shown definitionally equivalent to the standard operators. This work is
part of the PathExplorer project, the objective of which it is to construct
a flexible framework for monitoring and analyzing program executions.

1 Introduction

The work presented in this paper is part of a project at NASA Ames Research
Center, called PathExplorer [10, 9, 5, 8, 19], that aims at developing a practical
testing environment for NASA software developers. The basic idea of the project
is to extract an execution trace of an executing program and then analyze it to
detect errors. The errors we are considering at this stage are multi-threading er-
rors such as deadlocks and data races, and non-conformance with linear temporal
logic specifications. Only the latter issue is addressed in this paper.

Linear Temporal Logic (LTL) [18, 16] is a logic for specifying properties of re-
active and concurrent systems. The models of LTL are infinite execution traces,
reflecting the behavior of such systems as ideally always being ready to respond
to requests, operating systems being a typical example. LTL has been mainly
used to specify properties of concurrent and interactive down-scaled models of
real systems, so that fully formal correctness proofs could subsequently be car-
ried out, for example using theorem provers or model checkers (see for example
[11, 6]). However, such formal proof techniques are usually not scalable to real
sized systems without a substantial effort to abstract the system more or less
manually to a model which can be analyzed. Model checking of programs has



received an increased attention from the formal methods community within the
last couple of years, and several systems have emerged that can directly model
check source code, such as Java and C [7, 21, 3, 12, 2, 17]. Stateless model check-
ers [20] try to avoid the abstraction process by not storing states. Although
these systems provide high confidence, they scale less well because most of their
internal algorithms are NP-complete or worse.

Testing scales well, and is by far the most used technique in practice to
validate software systems. The merge of testing and temporal logic specification
is an attempt to achieve the benefits of both approaches, while avoiding some of
the pitfalls of adhoc testing and the complexity of full-blown theorem proving
and model checking. Of course there is a price to pay in order to obtain a
scalable technique: the loss of coverage. The suggested framework can only be
used to examine single execution traces, and can therefore not be used to prove
a system correct. Our work is based on the belief that software engineers are
willing to trade coverage for scalability, so our goal is to provide tools that are
completely automatic, implement very efficient algorithms and find many errors
in programs. A longer term goal is to explore the use of conformance with a
formal specification to achieve fault tolerance. The idea is that the failure may
trigger a recovery action in the monitored program.

The idea of using LTL in program testing is not new. It has already been
pursued in commercial tools such as Temporal Rover (TR) [4], which has mo-
tivated us in a major way to start this work. In TR, one states LTL properties
as annotations of the program, these being then replaced by appropriate code,
that is executed whenever reached1. The MaC tool [15] is another example of
a runtime monitoring tool that has inspired this work. Here Java bytecode is
instrumented to generate events of interest during the execution. Of special in-
terest is the temporal logic used in MaC, which can be classified as a kind of
interval logic convenient for expressing monitoring properties in a succinct way.
Our main theoretical contribution in this paper is Proposition 1 which shows that
the MaC logic, together with 10 others, is equivalent to the standard past time
temporal logic. The MaC tool represents a formula as an abstract tree generated
by a parser, and repeated evaluations are then done by evaluating the entire tree
each time using a general purpose tree traversing evaluation algorithm. What
we suggest is to generate a special purpose evaluation program for each formula,
that essentially specializes the combination of the general purpose evaluation
with the particular parse tree. We further suggest an extra optimization of the
generated algorithm, thereby obtaining the most efficient evaluation possible.

Section 2 gives a short description of the PathExplorer architecture, putting
the presented work in context. Section 3 discusses various past time logics and
shows their equivalences. Section 4 uses an example to present the algorithm for
translating a past time formula to code. Section 5 presents a formalization of
the algorithm used to generate the code. Section 6 describes our efforts to imple-
ment the presented algorithm in PathExplorer for monitoring of Java programs.
Section 7 suggests some optimizations and Section 8 concludes the paper.

1 The implementation details of TR are not public.



2 The PathExplorer Architecture

PathExplorer, PAX, is a flexible environment for monitoring and analyzing pro-
gram executions. A program (or a set of programs) to be monitored, is supposed
to be instrumented to emit execution events to an observer, which then examines
the events and checks that they satisfy certain user-given constraints. The con-
straints can be of different kinds and defined in different languages. Each kind of
constraint is represented by a rule. Such a rule in principle implements a partic-
ular logic or program analysis algorithm. Currently there are rules for checking
deadlock potentials, datarace potentials, and for checking temporal logic formu-
lae in different logics. Amongst the latter, several rules have been implemented
for checking future time temporal logic, and the work presented in this paper is
the basis for a rule for checking past time logic formulae. In general, the user
can program new rules and in this way extend PAX in an easy way.

The system is defined in a component-based way, based on a dataflow view,
where components are put together using a “pipeline” operator. The dataflow
between any two components is a stream of events in simple text format, without
any apriori assumptions about the format of the events; the receiving component
just ignores events it cannot recognize. This simplifies composition and allows
for components to be written in different languages and in particular to define
observers of arbitrary systems, programmed in a variety of programming lan-
guages. This latter fact is important at NASA since several systems are written
in a mixture of C, C++ and Java.

The central component of the PAX system is a so-called dispatcher. The
dispatcher receives events from the executing program or system and then re-
transmits the event stream to each of the rules. Each rule is running in its own
process with one input pipe, only dealing with events that are relevant to the
rule. For this purpose each rule is equipped with an event parser. The dispatcher
takes as input a configuration script, which specifies from where to read the pro-
gram execution events, and then a list of commands - a command for each rule
that starts the rule in a process.

The program or system to be observed must be instrumented to emit exe-
cution events to the dispatcher. We have currently implemented an automated
instrumentation module for Java bytecode using the Java bytecode engineering
tool JTrek [14]. Given information about what kind of events to be emitted, this
module instruments the bytecode by inserting extra code for emitting events.
Typically, for temporal logic monitoring, one specifies what variables to be ob-
served and in particular what predicates over these variables. The code will then
be instrumented to emit changes in these predicates, more specifically toggles
in atomic propositions corresponding to these predicates. The instrumentation
module together with PathExplorer is called Java PathExplorer (JPAX).

3 Finite Trace Linear Temporal Logic

We briefly remind the reader the basic notions of finite trace linear past time
temporal logic, and also establish some conventions and introduce some opera-



tors that we found particularly useful for runtime monitoring. Syntactically, we
allow the following formulae, where A is a set of “atomic propositions”:

F ::= true | false | A | ¬F | F op F Propositional operators
◦· F | �·F | �·F | F Ss F | F Sw F Standard past time operators
↑ F |↓ F | [F, F )s | [F, F )w Monitoring operators

The propositional binary operators, op, are the standard ones, and ◦· F should
be read “previously F”, �·F “eventually in the past F”, �·F “always in the past
F”, F1 Ss F2 “F1 strong since F2”, F1 Sw F2 “F1 weak since F2”, ↑ F “start
F”, ↓ F “end F”, and [F1, F2) “interval F1, F2”.

We regard a trace as a finite sequence of abstract states. In practice, these
states are generated by events emitted by the program that we want to observe.
Such events could indicate when variables are changed or when locks are acquired
or released. If s is a state and a is an atomic proposition then a(s) is true if and
only if a holds in the state s. If t = s1s2 . . . sn is a trace then we let ti denote
the trace s1s2 . . . si for each 1 ≤ i ≤ n. Then the semantics of these operators is:

t |= true is always true,
t |= false is always false,
t |= a iff a(sn) holds,
t |= ¬F iff it is not the case that t |= F ,
t |= F1 op F2 iff t |= F1 and/or/implies/iff t |= F2, when op is ∧/∨/→/↔,
t |= ◦· F iff t′ |= F , where t′ = tn−1 if n > 1 and t′ = t if n = 1,
t |= �·F iff ti |= F for some 1 ≤ i ≤ n,
t |= �·F iff ti |= F for all 1 ≤ i ≤ n,
t |= F1 Ss F2 iff tj |= F2 for some 1 ≤ j ≤ n and ti |= F1 for all j < i ≤ n,
t |= F1 Sw F2 iff t |= F1 Ss F2 or t |= �·F1,
t |=↑ F iff t |= F and it is not the case that t |= ◦· F ,
t |=↓ F iff t |= ◦· F and it is not the case that t |= F ,
t |= [F1, F2)s iff tj |= F1 for some 1 ≤ j ≤ n and ti 6|= F2 for all j ≤ i ≤ n,
t |= [F1, F2)w iff t |= [F1, F2)s or t |= �· ¬F2.

Notice the special semantics of the operator “previously ” on a trace of one
state: s |= ◦· F iff s |= F . This is consistent with the view that a trace consisting
of exactly one state s is considered like a stationary infinite trace containing only
the state s. We adopted this view because of intuitions related to monitoring.
One can start monitoring a process potentially at any moment, so the first state
in the trace might be different from the initial state of the monitored process.
We think that the “best guess” one can have w.r.t. the past of the monitored
program is that it was stationary. Alternatively, one could consider that ◦· F
is false on a trace of one state for any atomic proposition F , but we find this
semantics inconvenient because some atomic propositions may be related, such
as, for example, a proposition “gate-up” and a proposition “gate-down”.

The non-standard operators ↑, ↓, [ , )s, and [ , )w were inspired by work in
runtime verification in [15]. We found them often more intuitive and compact
than the usual past time operators in specifying runtime requirements. ↑ F is
true if and only if F starts to be true in the current state, ↓ F is true if and only
if F ends to be true in the current state, and [F1, F2)s is true if and only if F2 was



never true since the last time F1 was observed to be true, including the state
when F1 was true; the interval operator, like the “since” operator, has both
a strong and a weak version. For example, if Start and Down are predicates
on the state of a web server to be monitored, say for the last 24 hours, then
[Start,Down)s is a property stating that the server was rebooted recently and
since then it was not down, while [Start,Down)w says that the server was not
unexpectedly down recently, meaning that it was either not down at all recently
or it was rebooted and since then it was not down.

What makes past time temporal logic such a good candidate for dynamic
programming is its recursive nature: the satisfaction relation for a formula can
be calculated along the execution trace looking only one step backwards:

t |= �·F iff t |= F or (n > 1 and tn−1 |= �·F ),
t |= �·F iff t |= F and (n > 1 implies tn−1 |= �·F ),
t |= F1 Ss F2 iff t |= F2 or (n > 1 and t |= F1 and tn−1 |= F1 Ss F2),
t |= F1 Sw F2 iff t |= F2 or (t |= F1 and (n > 1 implies tn−1 |= F1 Ss F2)),
t |= [F1, F2)s iff t 6|= F2 and (t |= F1 or (n > 1 and tn−1 |= [F1, F2)s)),
t |= [F1, F2)w iff t 6|= F2 and (t |= F1 or (n > 1 implies tn−1 |= [F1, F2)w)).

We call the past time temporal logic presented above ptLTL. There is a ten-
dency among logicians to minimize the number of operators in a given logic. For
example, it is known that two operators are sufficient in propositional calculus,
and two more (“next” and “until”) are needed for future time temporal logics.
There are also various ways to minimize ptLTL. Let ptLTL�Ops be the restriction
of ptLTL to propositional operators plus the operations in Ops. Then

Proposition 1. The 12 logics2 ptLTL�{◦·,Ss}, ptLTL�{◦·,Sw}, ptLTL�{◦·,[)s}, and
ptLTL �{◦·,[)w}, ptLTL �{↑,Ss}, ptLTL �{↑,Sw}, ptLTL �{↑,[)s}, ptLTL �{↑,[)w}, and
ptLTL�{↓,Ss}, ptLTL�{↓,Sw}, ptLTL�{↓,[)s}, ptLTL�{↓,[)w}, are all equivalent.

Proof. The equivalences follow by the following easy to check properties:

�·F = true Ss F
�·F = ¬�· ¬F

F1 Sw F2 = (�·F1) ∨ (F1 Ss F2)
�·F = F Sw false
�·F = ¬�· ¬F

F1 Ss F2 = (�·F2) ∧ (F1 Sw F2)
↑ F = F ∧ ¬ ◦·F
↓ F = ¬F ∧ ◦· F

[F1, F2)s = ¬F2 ∧ ((◦· ¬F2) Ss F1)
[F1, F2)w = ¬F2 ∧ ((◦· ¬F2) Sw F1)

↓ F = ↑ ¬F
↑ F = ↓ ¬F

[F1, F2)w = (�· ¬F2) ∨ [F1, F2)s
[F1, F2)s = (�·F1) ∧ [F1, F2)w

◦· F = (F → ¬ ↑ F ) ∧ (¬F →↓ F )
F1 Ss F2 = F2 ∨ [ ◦·F2,¬F1)s

2 The first two are known in the literature [16].



For example, the definition of ◦· F in terms of ↑ F and ↓ F says that in order to
find out the value of a formula F in the previous state it suffices to look at the
value of the formula in the current state and then, if it is true then look if the
formula just started to be true or else look if the formula just ended to be true.

Unlike in theoretical research, in practical monitoring of programs we want to
have as many temporal operators as possible available and not to automatically
translate them into a reduced kernel set. The reason is twofold. On the one
hand, the more operators are available, the more succinct and natural the task
of writing requirement specifications. On the other hand, as seen later in the
paper, additional memory is needed for each temporal operator, so we want to
keep the formulae as concise as possible.

4 The Algorithm Illustrated by an Example

In this section we show via an example how to generate dynamic programming
code for a concrete ptLTL-formula. We think that this example would practically
be sufficient for the reader to foresee our general algorithm presented in the next
section. Let ↑ p→ [q, ↓ (r ∨ s))s be the ptLTL-formula that we want to generate
code for. The formula states: “whenever p becomes true, then q has been true
in the past, and since then we have not yet seen the end of r or s”. The code
translation depends on an enumeration of the subformulae of the formula that
satisfies the enumeration invariant: any formula has an enumeration number
smaller than the numbers of all its subformulae. Let ϕ0, ϕ1, ..., ϕ8 be such an
enumeration:

ϕ0 = ↑ p→ [q, ↓ (r ∨ s))s,
ϕ1 = ↑ p,
ϕ2 = p,
ϕ3 = [q, ↓ (r ∨ s))s,
ϕ4 = q,
ϕ5 = ↓ (r ∨ s),
ϕ6 = r ∨ s,
ϕ7 = r,
ϕ8 = s.

Note that the formulae have here been enumerated in a post-order fashion. One
could have chosen a breadth-first order, or any other enumeration, as long as
the enumeration invariant is true.

The input to the generated program will be a finite trace t = e1e2...en of
n events. The generated program will maintain a state via a function update :
State× Event→ State, which updates the state with a given event.

In order to illustrate the dynamic programming aspect of the solution, one
can imagine recursively defining a matrix s[1..n, 0..8] of boolean values {0, 1},
with the meaning that s[i, j] = 1 iff ti |= ϕj . This would be the standard
way of regarding the above satisfaction problem as a dynamic programming



problem. An important observation is, however, that, like in many other dynamic
programming algorithms, one doesn’t have to store all the table s[1..n, 0..8],
which would be quite large in practice; in this case, one needs only s[i, 0..8] and
s[i− 1, 0..8], which we’ll write now[0..8] and pre[0..8] from now on, respectively.
It is now only a relatively simple exercise to write up the following algorithm for
checking the above formula on a finite trace:

State state← {};
bit pre[0..8];
bit now[0..8];
Input: trace t = e1e2...en;
/* Initialization of state and pre */
state← update(state, e1);
pre[8]← s(state);
pre[7]← r(state);
pre[6]← pre[7] or pre[8];
pre[5]← false;
pre[4]← q(state);
pre[3]← pre[4] and not pre[5];
pre[2]← p(state);
pre[1]← false;
pre[0]← not pre[1] or pre[3];
/* Event interpretation loop */
for i = 2 to n do {

state← update(state, ei);
now[8]← s(state);
now[7]← r(state);
now[6]← now[7] or now[8];
now[5]← not now[6] and pre[6];
now[4]← q(state);
now[3]← (pre[3] or now[4]) and not now[5];
now[2]← p(state);
now[1]← now[2] and not pre[2];
now[0]← not now[1] or now[3];
if now[0] = 0 then output(‘‘property violated’’);
pre← now;

};

In the following we explain the generated program.

Declarations Initially a state is declared. This will be updated as the input
event list is processed. Next, the two arrays pre and now are declared. The
pre array will contain values of all subformulae in the previous state, while
now will contain the value of all subformulae in the current state. The trace
of events is then input. Such an event list can be read from a file generated
from a program execution, or alternatively the events can be input on-the-fly
one by one when generated, without storing them in a file first. The latter
solution is in fact the one implemented in PAX, where the observer runs in
parallel with the executing program.



Initialization The initialization phase consists of initializing the state variable
and the pre array. The first event e1 of the event list is used to initialize the
state variable. The pre array is initialized by evaluating all subformulae bot-
tom up, starting with highest formula numbers, and assigning these values
to the corresponding elements of the pre array; hence, for any i ∈ {0 . . . 8}
pre[i] is assigned the initial value of formula ϕi. The pre array is initialized
in such a way as to maintain the view that the initial state is supposed
stationary before monitoring is started. This in particular means that ↑ p
is false, as well as is ↓ (r ∨ s), since there is no change in state (indices 1
and 5). The interval operator has the obvious initial interpretation: the first
argument must be true and the second false for the formula to be true (index
3). Propositions are true if they hold in the initial state (indices 2, 4, 7 and
8), and boolean operators are interpreted the standard way (indices 0, 6).

Event Loop The main evaluation loop goes through the event trace, starting
from the second event. For each such event, the state is updated, followed by
assignments to the now array in a bottom-up fashion similar to the initial-
ization of the pre array: the array elements are assigned values from higher
index values to lower index values, corresponding to the values of the corre-
sponding subformulae. Propositional boolean operators are interpreted the
standard way (indices 0 and 6). The formula ↑ p is true if p is true now and
not true in the previous state (index 1). Similarly with the formula ↓ (r ∨ s)
(index 5). The formula [q, ↓ (r ∨ s))s is true if either the formula was true in
the previous state, or q is true in the current state, and in addition ↓ (r ∨ s)
is not true in the current state (index 3). At the end of the loop an error
message is issued if now[0], the value of the whole formula, has the value 0
in the current state. Finally, the entire now array is copied into pre.

Given a fixed ptLTL formula, the analysis of this algorithm is straightforward.
Its time complexity is Θ(n) where n is the length of the input trace, the constant
being given by the size of the ptLTL formula. The memory required is constant,
since the length of the two arrays is the size of the ptLTL formula. However,
one may want to also include the size of the formula, say m, into the analysis;
then the time complexity is obviously Θ(n · m) while the memory required is
2 · (m + 1) bits. The authors think that it’s hard to find an algorithm running
faster than the above in practical situations, though some slight optimizations
can be imagined (see Section 7).

5 The Algorithm Formalized

We now formally describe our algorithm that synthesizes a dynamic program-
ming algorithm from a ptLTL-formula. It takes as input a formula and generates
a program as the one above, containing a “for” loop which traverses the trace
of events, while validating or invalidating the formula. To keep the presentation
simple, we only show the code for ptLTL�{↑,↓,[)s} formulae. The generated pro-
gram is printed using the function output, which is overloaded to take one or
more text parameters which are concatenated in the output.



Input: past time LTL formula ϕ
let ϕ0, ϕ1, ..., ϕm be the subformulae of ϕ;
output(“State state← {};”);
output(“bit pre[0..m];”);
output(“bit now[0..m];”);
output(“Input: trace t = e1e2...en;”);
output(“/* Initialization of state and pre */”);
output(“state← update(state, e1);”);
for j = m downto 0 do {

output(“ pre[”, j, “]← ”);
if ϕj is a variable then output(ϕj , “(state);”);
if ϕj is true then output(“true;”);
if ϕj is false then output(“false;”);
if ϕj = ¬ϕj′ then output(“not pre[”,j′, “];”);
if ϕj = ϕj1 op ϕj2 then output(“pre[”,j1, “] op pre[”,j2, “];”);
if ϕj = [ϕj1 , ϕj2)s then output(“pre[”,j1, “] and not pre[”, j2, “];”);
if ϕj =↑ ϕj′ then output(“false;”);
if ϕj =↓ ϕj′ then output(“false;”);

};
output(“/* Event interpretation loop */”);
output(“for i = 2 to n do {”);
for j = m downto 0 do {

output(“ now[”, j, “]← ”);
if ϕj is a variable then output(ϕj , “(state);”);
if ϕj is true then output(“true;”);
if ϕj is false then output(“false;”);
if ϕj = ¬ϕj′ then output(“not now[”,j′, “];”);
if ϕj = ϕj1 op ϕj2 then output(“now[”,j1, “] op now[”, j2, “];”);
if ϕj = [ϕj1 , ϕj2)s then

output(“(pre[”, j, “] or now[”,j1, “]) and not now[”, j2, “];”);
if ϕj =↑ ϕj′ then

output(“now[”, j′, “] and not pre[”, j′, “];”);
if ϕj =↓ ϕj′ then

output(“not now[”, j′, “] and pre[”, j′, “];”);
};
output(“ if now[0] = 0 then output(‘‘property violated’’);”);
output(“ pre ← now;”);
output(“}”);

where op is any propositional connective. Since we have already given a detailed
explanation of the example in the previous section, we shall only give a very
brief description of the algorithm.

The formula should be first visited top down to assign increasing numbers to
subformulae as they are visited. Let ϕ0, ϕ1, ..., ϕm be the list of all subformulae.
Because of the recursive nature of ptLTL, this step insures us that the truth value
of ti |= ϕj can be completely determined from the truth values of ti |= ϕj′

for all j < j′ ≤ m and the truth values of ti−1 |= ϕj′ for all j ≤ j′ ≤ m.



Before we generate the main loop, we should first generate code for initializing
the array pre[0..m], basically giving it the truth values of the subformulae on the
initial state, conceptually being an infinite trace with repeated occurrences of the
initial state. After that, the generated main event loop will process the events.
The loop body will update/calculate the array now and in the end will move it
into the array pre to serve as basis for the next iteration. After each iteration i,
now[0] tells whether the formula is validated by the trace e1e2...ei.

Since the formula enumeration procedure is linear, the algorithm synthesizes
a dynamic programming algorithm from an ptLTL formula in linear time with
the size of the formula. The boolean operations used above are usually very
efficiently implemented on any microprocessor and the arrays of bits pre and
now are small enough to be kept in cache. Moreover, the dependencies between
instructions in the generated “for” loop are simple to analyze, so a reasonable
compiler can easily unfold or/and parallelize it to take advantage of machine’s
resources. Consequently, the generated code is expected to run very fast. Later we
shall illustrate how such an optimization can be part of the translation algorithm.

6 Implementation of Offline and Inline Monitoring

In this section we briefly describe our efforts to implement in PathExplorer the
above described algorithm to create monitors for observing the execution of Java
programs. We present two approaches that we have pursued. In the first off-line
approach we create a monitor that runs in parallel with the executing program,
potentially on a different computer, receiving events from the running program,
and checking on-the-fly that the formulae are satisfied. In this approach the
formulae to be checked are given in a separate specification. In the second inline
approach, formulae are written as comments in the program text, and are then
expanded into Java code that is inserted after the comments.

6.1 Offline Monitoring

The code generator for off-line monitoring has been written in Java, using
JavaCC [13], an environment for writing parsers and for generating and manip-
ulating abstract syntax trees. The input to the code generator is a specification
given in a file separate from the program. The specification for our example looks
as follows (the default interpretation of intervals is “strong”):

specification Example is
P = start(p) -> [q,end(r|s));

end

Several named formulae can be listed; here we have only included one, named P.
The translator reads this specification and generates a single Java class, called
Formulae, which contains all the machinery for evaluating all the formulae (in
this case one) in the specification. This class must then be compiled and instan-
tiated as part of the monitor. The class contains an evaluate() method which
is applied after each state change and which will evaluate all the formulae. The



class constructor takes as parameter a reference to the object that represents
the state such that any updates to the states by the monitor based on received
events can be seen by the evaluate() method. The generated Formulae class
for the above specification looks as follows:

class Formulae{
abstract class Formula{

protected String name; protected State state;
protected boolean[] pre; protected boolean[] now;

public Formula(String name,State state){
this.name = name; this.state = state;

}
public String getName(){return name;}
public abstract boolean evaluate();

}
private List formulae = new ArrayList();
public void evaluate(){

Iterator it = formulae.iterator();
while(it.hasNext()){

Formula formula = (Formula)it.next();
if(!formula.evaluate()){

System.out.println("Property " + formula.getName() + " violated");
}}}
class Formula_P extends Formula{

public boolean evaluate(){
now[8] = state.holds("s");
now[7] = state.holds("r");
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[4] = state.holds("q");
now[3] = (pre[3] || now[4]) && !now[5];
now[2] = state.holds("p");
now[1] = now[2] && !pre[2];
now[0] = !now[1] || now[3];
System.arraycopy(now,0,pre,0,9);
return now[0];

}
public Formula_P(State state){

super("P",state);
pre = new boolean[9]; now = new boolean[9];
pre[8] = state.holds("s");
pre[7] = state.holds("r");
pre[6] = pre[7] || pre[8];
pre[5] = false;
pre[4] = state.holds("q");
pre[3] = pre[4] && !pre[5];
pre[2] = state.holds("p");
pre[1] = false;
pre[0] = !pre[1] || pre[3];

}
}
public Formulae(State state){

formulae.add(new Formula_P(state));
}

}

The class contains an inner abstract3 class Formula and, in the general case, an
inner class Formula X extending the Formula class for each formula in the spec-
ification, where X is the formula’s name. In our case there is one such Formula P

class. The abstract Formula class declares the pre and now arrays, without giving

3 An abstract class is a class where some methods are abstract, by having no body.
Implementations for these methods will be provided in extending subclasses.



them any size, since this is formula specific. An abstract evaluate method is also
declared. The class Formula P contains the real definition of this evaluate()

method. The constructor for this class in addition initializes the sizes of pre and
now depending on the size of the formula, and also initializes the pre array.

In order to handle the general case where several formulae occur in the spec-
ification, and hence many Formula X classes are defined, we need to create in-
stances for all these classes and store them in some data structure where they
can be accessed by the outermost evaluate() method. The formulae list vari-
able is initialized to contain all these instances when the constructor of the
Formulae class is called. The outermost evaluate() method, each time called,
goes through this list and calls evaluate() on each single formula object.

6.2 Inline Monitoring

The general architecture of PAX was mainly designed for offline monitoring in
order to accommodate applications where the source code is not available or
where the monitored process is not even a program, but some kind of physical
device. However, it is often the case that the source code of an application is
available and that one is willing to accept extra code for testing purposes. Inline
monitoring has actually higher precision because one knows exactly where an
event was emitted in the execution of the program. Moreover, one can even
throw exceptions when a safety property is violated, like in Temporal Rover
[4], so the running program has the possibility to recover from an erroneous
execution or to guide its execution in order to avoid undesired behaviors.

In order to provide support for inline monitoring, we developed some simple
scripts that replace temporal annotations in Java source code by actual monitor-
ing code, which throws an exception when the formula is violated. In [5] we show
an example of expanded code for future time LTL. We have not implemented the
script to automatically expand past time LTL formulae yet, but the expanded
code would essentially look like the body of the method evaluate() above. The
“for” loop and the update of the state in the generic algorithm in Section 4 are
not needed anymore because the atomic predicates use directly the current state
of the program when the expanded code is reached during the execution.

It is inline monitoring that motivated us to optimize the generated code as
much as possible. Since the running program and the monitor are a single process
now, the time needed to execute the monitoring code can significantly influence
the otherwise normal execution of the monitored program.

7 Optimizing the Generated Code

The generated code presented in Section 4 is not optimal. Even though a smart
compiler can in principle generate good machine code from it, it is still worth
exploring ways to synthesize directly optimized code especially because there
are some attributes that are specific to the runtime observer which a compiler
cannot take into consideration.



A first observation is that not all the bits in pre are needed, but only those
which are used at the next iteration, namely 2, 3, and 6. Therefore, only a bit per
temporal operator is needed, thereby reducing significantly the memory required
by the generated algorithm. Then the body of the generated “for” loop becomes
after (blind) substitution (we don’t consider the initialization code here):

state← update(state, ei)
now[3]← r(state) or s(state)
now[2]← (pre[2] or q(state)) and not (not now[3] and pre[3])
now[1]← p(state)
if ((not (now[1] and not pre[1]) or now[2]) = 0)

then output(‘‘property violated’’);

which can be further optimized by boolean simplifications:

state← update(state, ej)
now[3]← r(state) or s(state)
now[2]← (pre[2] or q(state)) and (now[3] or not pre[3])
now[1]← p(state)
if (now[1] and not pre[1] and not now[2])

then output(‘‘property violated’’);

The most expensive part of the code above is clearly the function calls, namely
p(state), q(state), r(state), and s(state). Depending upon the runtime require-
ments, the execution time of these functions may vary significantly. However,
since one of the major concerns of monitoring is to affect the normal execution
of the monitored program as little as possible, especially in the inline monitor-
ing approach, one would of course want to evaluate the atomic predicates on
states only if really needed, or rather to evaluate only those that, probabilis-
tically, add a minimum cost. Since we don’t want to count on an optimizing
compiler, we prefer to store the boolean formula as some kind of binary deci-
sion diagram, more precisely, as a term over the operation ? : , for example,
pre[3] ? pre[2] ? now[3] : q(state) : pre[2] ? 1 : q(state) (see [9] for a formal
definition). Therefore, one is faced with the following optimum problem:

Given a boolean formula ϕ using propositions a1, a2, ..., an of costs c1, c2,
..., cn, respectively, find a ( ? : )-expression that optimally implements ϕ.

We have implemented a procedure in Maude [1], on top of a propositional cal-
culus module, which generates all correct ( ? : )-expressions for ϕ, admittedly
a potentially exponential number in the number of distinct atomic propositions
in ϕ, and then chooses the shortest in size, ignoring the costs. Applied on the
code above, it yields:

state← update(state, ej)
now[3]← r(state) ? 1 : s(state)
now[2]← pre[3] ? pre[2] ? now[3] : q(state) : pre[2] ? 1 : q(state)
now[1]← p(state)



if (pre[1] ? 0 : now[2] ? 0 : now [1 ])
then output(‘‘property violated’’);

We would like to extend our procedure to take the evaluation costs of predicates
into consideration. These costs can either be provided by the user of the sys-
tem or be calculated automatically by a static analysis of predicates’ code, or
even be estimated by executing the predicates on a sample of states. However,
based on our examples so far, we conjecture at this incipient stage that, given a
boolean formula ϕ in which all the atomic propositions have the same cost, the
probabilistically runtime optimal ( ? : )-expression implementing ϕ is exactly
the one which is smallest in size.

A further optimization would be to generate directly machine code instead
of using a compiler. Then the arrays of bits now and pre can be stored in two
registers, which would be all the memory needed. Since all the operations ex-
ecuted are bit operations, the generated code is expected to be very fast. One
could even imagine hardware implementations of past time monitors, using the
same ideas, in order to enforce safety requirements on physical devices.

8 Conclusion

A synthesis algorithm has been described which generates from a past time
temporal logic formula an algorithm which checks that a finite sequence of events
satisfies the formula. The algorithm has been implemented in PathExplorer, a
runtime verification tool currently being developed. Operators convenient for
monitoring were presented and shown equivalent to standard past time temporal
operators. It is our intention to investigate how the presented algorithm can be
refined to work for logics that can refer to real-time, and data values. Other kinds
of runtime verification are also investigated, such as, for example, techniques for
detecting error potentials in multi-threaded programs.
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19. Grigore Roşu and Klaus Havelund. Synthesizing Dynamic Programming Algo-
rithms from Linear Temporal Logic Formulae. Technical Report TR 01-08, NASA
- RIACS, May 2001.

20. Scott D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In
Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes in Computer Science,
pages 224–244. Springer, 2000.

21. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
Checking Programs. In Proceedings of ASE’2000: The 15th IEEE International
Conference on Automated Software Engineering. IEEE CS Press, September 2000.


