
Defining the Undefinedness of C ∗

Chris Hathhorn
University of Missouri, USA

crhr38@missouri.edu

Chucky Ellison Grigore Ros, u
University of Illinois at Urbana-Champaign, USA

{celliso2, grosu}@illinois.edu

Abstract
We present a “negative” semantics of the C11 language—a seman-
tics that does not just give meaning to correct programs, but also
rejects undefined programs. We investigate undefined behavior in
C and discuss the techniques and special considerations needed for
formally specifying it. We have used these techniques to modify and
extend a semantics of C into one that captures undefined behavior.
The amount of semantic infrastructure and effort required to achieve
this was unexpectedly high, in the end nearly doubling the size of
the original semantics. From our semantics, we have automatically
extracted an undefinedness checker, which we evaluate against other
popular analysis tools, using our own test suite in addition to a
third-party test suite. Our checker is capable of detecting examples
of all 77 categories of core language undefinedness appearing in the
C11 standard, more than any other tool we considered. Based on
this evaluation, we argue that our work is the most comprehensive
and complete semantic treatment of undefined behavior in C, and
thus of the C language itself.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

Keywords Undefined behavior, Programming language semantics,
C11, K Framework

1. Introduction
A programming language specification or semantics has dual duty:
to describe the behavior of correct programs and to identify incorrect
programs. Many formal semantics of various parts of C (e.g.,
Norrish [24], Papaspyrou [25], Blazy and Leroy [1], Ellison and
Ros, u [6]) have tended to focus on the meaning of correct programs.
But the “positive” semantics of C is only half the story. If we make
the assumption that programs are well-defined, then we can ignore
large swathes of the C11 standard. Most qualifiers can be ignored,
for example—const and restrict are described by the standard
entirely in terms of the undefinedness caused by their misuse. In well-
defined programs, types are all compatible, pointer arithmetic valid,
signed integers never overflow, and every function call is compatible
with the type of a matching declaration in some translation unit.

∗ Supported in part by the U.S. Department of Education under GAANN
grant number P200A100053.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Our work is an extension to Ellison and Ros, u [6]. In that paper,
the authors focused on giving semantics to correct programs and
showed how their formal definition could yield a number of tools
for exploring program evaluation. But the evaluation they performed
was against defined programs, and the completeness they claimed
was for defined programs. In this work, in contrast, we focus on
identifying undefined programs. We cover the issues we faced in
moving a complete but overspecified semantics (in the sense that it
gave meaning to undefined programs) to one capable of catching
the core-language undefined behaviors.

To the best of our knowledge, ours is the most comprehensive
semantic treatment of undefinedness in C. Undefined behavior (UB)
is often considered of secondary importance in semantics, perhaps
because of a misconception that capturing it might come “for free”
simply by not defining certain cases. We argue that this understand-
ing of UB as simply instances of underspecification by the standard
misleads about the effort required to capture it. Undefinedness per-
meates every aspect of the C11 language. The standard even makes
constructive use of it, describing several language features (e.g.,
type qualifiers), sometimes with quite complicated semantics, in
terms of the behaviors they make undefined.

Our contributions include the following:
• a study of undefinedness in C, including a discussion of the vari-

ous semantic techniques and considerations needed to capture
all core language undefinedness,
• a first semantic treatment for some of the less-studied features

of C11, such as the restrict qualifier and a linker phase,
• a semantics-based undefinedness checker, and
• a benchmark test suite for undefined behavior.

The tool, semantics, and test suite can be found at https://
github.com/kframework/c-semantics.

2. Undefined Behavior
According to the C standard, undefined behavior is “behavior,
upon use of a nonportable or erroneous program construct or of
erroneous data, for which this International Standard imposes no
requirements” [8, §3.4.3:1]. It goes on to say:

Possible undefined behavior ranges from ignoring the sit-
uation completely with unpredictable results, to behaving
during translation or program execution in a documented
manner characteristic of the environment (with or without
the issuance of a diagnostic message), to terminating a trans-
lation or execution (with the issuance of a diagnostic mes-
sage). [8, §3.4.3:2]

Particular implementations of C may guarantee particular semantics
for otherwise undefined behaviors, but these are then extensions of
the actual C language.

The C11 standard contains a list of the 203 places it invokes
undefined behavior [8, §Appendix J]. These can be divided into
three broad sets:

https://github.com/kframework/c-semantics
https://github.com/kframework/c-semantics

Our classification No. CERT undef. behavior ids.a

Core language 77 #4, 8–26, 32, 33, 35–89.
compile timeb 24
link timec 8
run time 45

Early translationd 24 #2, 3, 6, 7, 27–31, 34, 90–99,
lexical 11 101, 102, 104, 107.
macros 13

Library 101 #5, 100, 103, 105, 106,
compile time 18 108–203.
run time 83

Other 1 #1.

Total 203

a The numbers we use to identify a particular category of undefined behavior
are the same as in the CERT C Secure Coding Standard [29] and correspond
to the order in which clauses invoking undefinedness appear in the C11
standard (as well as the order they appear in Appendix J).
b Completely detectable by translation phase 7.
c Completely detectable by translation phase 8.
d Completely detectable by translation phases 1–6.

Figure 1. Breakdown of undefined behavior in C11.

• 77 involve core language features.
• 24 involve the parsing and preprocessing phases (i.e., translation

phases 1–6), which are not treated by our semantics.
• 101 involve the standard library.

Plus one additional item: “A ‘shall’ or ‘shall not’ requirement that
appears outside of a constraint is violated” [8, UB #1],1 which is
the justification for including many of the other items on the list.
Also, each item might represent more than one kind of undefined
behavior and we tend to refer to each item as a “category” because
of this. For example, the item covering division by zero contains
two distinct instances of undefinedness: “The value of the second
operand of the / or % operator is zero” [8, UB #45].

Our classification appears in Figure 1. We categorize each
behavior by the point in the translation or execution process at
which it can be recognized. “Compile time” behaviors, for example,
are those that can always be detected using only per-translation unit
static analysis, while “link time” behaviors require whole-program
static analysis to catch every instance.

Technically, even a behavior that we categorize as detectable
at compile or link time might only render the individual execution
that encounters it undefined, and not the whole program. But we
believe that strictly-conforming2 programs should be free of such
behaviors, and that analysis tools should report them, even if they
might be unreachable during execution. For example, this program
has unreachable but statically-detectable undefinedness caused by
attempting to use the value of a void expression [8, UB #23]:

int main() { if (0) (void)1 + 1; }

All attempts to use the value of a void expression can be detected
statically, so we categorize this behavior as “compile time” despite
the fact that only the actual execution that encounters the behavior
becomes undefined.

1 Whenever we quote the standard regarding an undefined behavior, we
quote Appendix J. Technically, this appendix is non-normative and the actual
wording in the normative body of the standard might differ significantly, but
the appendix tends to provide a more clear and concise description.
2 A program which does not “produce output dependent on any unspecified,
undefined, or implementation-defined behavior” [8, §4:5].

In the rest of this section, we discuss the uses and implications
of undefinedness in C11. Both Regehr [26] and Lattner [14] provide
good introductions to this topic and their work inspired much of the
discussion that follows.

Undefinedness Enables Optimizations An implementation of C
does not need to handle UB by adding complex static checks that
may slow down compilation or dynamic checks that might slow
down execution. According to the language design principles, a
C program should be “[made] fast, even if it is not guaranteed
to be portable,” and implementations should always “trust the
programmer” [7].

Undefinedness can sometimes enable powerful optimizations.
One example is the alias analysis enabled by the restrict qualifier
(see Section 3.2) and the strict aliasing rules (see Section 3.4), which
allow compilers to infer information about how an object can be
modified, potentially reducing memory accesses. Lattner [14] gives
another canonical example:

for (int i = 0; i <= N; ++i) { ... }

Because of the undefined behavior caused by signed overflow [8,
UB #36], a compiler can often assume that such a loop will iterate
exactly N + 1 times. If i were instead declared as unsigned int,
making overflow defined, the compiler would now need to consider
the possibility that the loop will never terminate (e.g., were N to be
UINT_MAX).

Undefinedness Causes Lots of Problems Programmers often ex-
pect a compiler, in the presence of undefinedness, to generate an
executable that behaves in some reasonable way. In fact, compilers
do many unexpected things when translating programs that invoke
undefinedness. For example:

int main() { *NULL; return 0; }

This will not cause GCC, Clang, nor ICC3 to generate a program
that raises an error when run. Instead, these compilers simply ignore
the dereference.

Implementations are free to assume that undefined behavior will
not occur. This assumption leads to many strange consequences. An
example from Nagel [20]:

int x = f(); if (x + 1 < x) { ... }

Programmers might think to use a construct like this in order to
handle possible overflow. But according to the standard, x + 1 can
never be less than x unless undefined behavior occurred. Therefore,
a compiler is justified in removing the branch entirely, and GCC,
Clang, and ICC all do this. Despite these compilers only supporting
two’s complement arithmetic, where INT_MAX + 1 == INT_MIN,
they will take advantage of the undefinedness when optimizing.

Furthermore, undefinedness potentially invalidates the entire
execution on which it occurs, affecting behavior that “came before”
the undefinedness, due to compiler optimizations [6, §5.1.2.3]. The
compiler is not required to prove an expression will not invoke
undefinedness before reordering it in some way that would be
semantics-preserving assuming well-definedness. For example:

int f(int x) {
int r = 0;
for (int i = 0; i < 5; i++) {

printf("%d\n", i);
r += 5 / x;

}
return r;

}

Despite the potential division by zero occurring after the printf
lexically, it is not correct to assume that this function will “at
least” print 0 to the screen. In practice, an optimizing compiler
will notice that the expression 5 / x is invariant in the loop and

3 GCC v 4.8.2, Clang v 3.4, and ICC v 14.0 everywhere mentioned.

may choose to move it to before the loop. Clang and ICC both do
this at optimization levels above 0. The printf, in this example,
might never be reached if undefined behavior occurs in the statement
that lexically follows it.

Undefinedness can also depend on implementation details. The
standard defines two additional kinds of behavior:
implementation-defined Unspecified behavior where each imple-
mentation documents how the choice is made.

unspecified behavior Use of an unspecified value, or other behav-
ior [with] two or more possibilities and [. . .] no further require-
ments on which is chosen in any instance. [8, §3.4]

Whether a program encounters undefinedness can depend on the
choices made by an implementation regarding behaviors from these
two categories. The standard, therefore, is often not enough to di-
agnose undefinedness—the manual for a particular implementation
can also be required.

While implementation-defined behavior must be documented,
unspecified behavior has no such requirement [8, §3.19.1]. An
implementation is allowed to choose different semantics for different
occurrences of the same unspecified behavior, and may even change
between them at run time.

An example of unspecified behavior is evaluation order. Because
the evaluation order of many expressions is unspecified in C, an
implementation may take advantage of undefined behavior found
on only some of these orderings. For example, any implementation
is allowed to “miscompile” the program

int d = 5;
int setDenom(int x) { return d = x; }
int main() { return (10/d) + setDenom(0); }

because there is an evaluation strategy that would set d to 0 before
doing the division. While GCC generates an executable containing
no run time error, the CompCert compiler [15] generates code that
exhibits a division by zero.

The security implications of UB are perhaps the most dire
of all. The ability to do arbitrary computation often lives in the
undefinedness caused by buffer overflows. The standard places no
limitations on undefined behavior—all undefinedness, therefore, is
a potential security hole.

Undefinedness is Hard to Detect Detecting undefined behavior is
undecidable in general:

int main() { guard(); 5 << -1; }

Whether this program invokes undefined behavior4 depends on
whether guard() terminates. But proving guard() terminates,
even with run time information (i.e., knowing the state of the
machine when guard() is called), is undecidable.

Although it is impossible (in general) to prove that a program is
free of undefinedness, this raises the question of whether one can
monitor an execution for undefined behaviors. As we saw above,
a smart compiler may detect undefinedness statically and generate
code that does not contain the same behaviors. A monitor, therefore,
might not detect all undefined behavior if the analysis were based
only on the output from such a compiler, even though the original
program contained it. If we instead assume we will monitor the code
as run on an abstract machine, we can give more concrete answers.

First, it is both decidable and feasible to monitor an execution
and detect any undefined behavior, as long as the program is
deterministic. By deterministic, we mean there is only a single
path of execution (or all alternatives join back to the main path after
a bounded number of steps). It is feasible because one could simply
check the list of undefined behaviors against all alternatives before

4 “An expression is shifted by a negative number or by an amount greater
than or equal to the width of the promoted expression” [8, UB #51].

executing any step. Because all decisions would be joinable, only a
fixed amount of computation would be needed to check each step.

For non-deterministic single-threaded programs, one may need
to keep arbitrary amounts of information, making monitoring for un-
defined behavior decidable but intractable. Consider this program:

int r = 0;
int flip() { /* non-determ. return 0 or 1 */ }
int main() { while(1) { r = (r << 1) + flip(); } }

At iteration n of the loop above, r can be any one of 2n values.5
Because undefinedness can depend on the particular value of a
variable, all these possible states would need to be stored and
checked at each step of computation by a monitor.

If multiple threads are introduced, then even monitoring for
undefined behavior becomes undecidable. The reason is similar to
the original argument—because there are no fairness restrictions
on thread scheduling, at any point, the scheduler can decide to let
a long-running thread continue running:

// Thread 1.
while (guard()); x = 0;

// Thread 2.
5 / x;

In this example, if one could show that the loop must eventually
terminate, then running thread 1 to completion followed by thread 2
would exhibit undefined behavior. But showing that the loop termi-
nates is undecidable.

The tool we extract from our semantics combines static analysis
with a monitor, like the one described above. By default, it explores
a single evaluation strategy when encountering non-determinism
due to unspecified evaluation order in expressions, but it can also
search the other possible strategies for undefinedness. We discuss
our approach below.

3. A Semantics for Catching Undefinedness
We developed our semantics in the rewriting-based K semantic
framework6 [27], inspired by rewriting logic (RL) [17]. RL orga-
nizes term rewriting modulo equations (namely associativity, com-
mutativity, and identity) as a logic with a complete proof system.
The central idea behind using such a formalism for the semantics
of languages is that the evolution of a program can be clearly de-
scribed using rewrite rules. A rewriting semantics in K consists of a
syntax (or signature) for describing terms and a set of rewrite rules
that describe steps of computation. Given some term allowed by a
signature (e.g., a program together with input), deduction consists of
the application of the rules to that term, yielding a transition system
for any program.

In K, parts of the state are represented as labeled, nested multi-
sets. For example, here is an excerpt from the configuration used
by our semantics:〈

〈K〉k
〈
〈Map〉genv 〈Map〉gtypes

〉
tu
〈Set〉locs-written

〈Map〉mem 〈Map〉env 〈Map〉types 〈List〉call-stack

〉
T

These collections contain pieces of the program state like a computa-
tion stack or continuation (e.g., k), environments (e.g., env, types),
stacks (e.g., call-stack), etc. The configuration shown above is a
subset of the configuration from our C semantics, which contains
around 100 such cells in the execution semantics and another 60
in the translation semantics. As this is all best understood through
an example, let us consider a typical rule for a simple imperative
language for dereferencing a pointer (see Section 3.1 for the deref-
erencing rules of C):

〈* X
V
···〉k 〈··· X 7→ L ···〉env 〈··· L 7→ V ···〉mem

5 That is, if we pretend int has an arbitrarily large width.
6 http://kframework.org

http://kframework.org

Program executable.The kcc tool.

C program Preprocessor
and parser krun

Translation
semantics

Program initial
configuration

Library initial
configurations

krun

Execution
semantics

Figure 2. An overview of our tool. krun is a K Framework utility for extracting an interpreter from a semantics.

We see here three cells: k, env, and mem. The k cell represents a
stack of computations waiting to be performed. The left-most (i.e.,
top) element of the stack is the next item to be computed. The env
cell is simply a map of variables to their locations and the mem cell
is a map of locations to their values. The rule above, therefore, says
that if the next thing to be evaluated (which here we call a redex)
is the application of the dereferencing operator (*) to a variable X,
then one should match X in the environment to find its location L
in memory, then match L in memory to find the associated value V .
With this information, one should transform the redex into V .

This example exhibits a number of features of K. First, rules only
need to mention those cells relevant to the rule. The cell context can
be inferred, making the rules robust under most extensions to the
language. Second, to omit a part of a cell we write “···”. In the above
k cell, we are only interested in the current redex *X, but not the rest
of the context. Finally, we draw a line underneath parts of the state
that we wish to change—above, we only want to evaluate part of the
computation, but neither the context nor the environment change.

This unconventional notation is quite useful. The above rule,
written out as a traditional rewrite rule, would be:

〈* X y κ〉k 〈ρ1,X 7→ L, ρ2〉env 〈σ1,L 7→ V , σ2〉mem

⇒ 〈V y κ〉k 〈ρ1,X 7→ L, ρ2〉env 〈σ1,L 7→ V , σ2〉mem

Items in the k cell are separated with “y,” which can now be seen.
The κ and ρ1, ρ2, σ1, σ2 take the place of the “···” above. Nearly the
entire rule is duplicated on the right-hand side. Duplication in a def-
inition requires that changes be made in concert, in multiple places.
If this duplication is not kept in sync, it leads to subtle semantic
errors. In a complex language like C, the configuration structure
is much more complicated, and would require actually including
additional cells like genv and call-stack. These intervening cells are
automatically inferred in K, which keeps rules modular.

Our semantics extends the work of Ellison and Ros, u [6], which
gave a formal semantics of C. Their semantics covered the entire
freestanding C99 feature set and passed 99.2% of the GCC torture
tests (a regression test suite), more than both the GCC and Clang
compilers. They were able to easily test the semantics because it
is executable. A wrapper script around the semantics makes the
definition behave like a C compiler. We use this same technique in
our work and call this tool kcc. See Figure 2 for an overview of
the architecture.

Despite covering all of the language features, Ellison and
Ros, u [6] focused on what we now call the positive semantics
of C—i.e., the semantics of correct programs—and only touched
on the negative semantics—i.e., the rules identifying undefined
programs. In fact, more of our time has been spent tailoring our
semantics to catch incorrect programs than was spent developing
the original semantics for correct programs. This work has nearly

doubled the size of the semantics, from 1163 rewrite rules in the
original, positive semantics [6], to 2155 in our current version.
When it comes to C, positive semantics are only half the battle—the
easier, better-understood half, we argue.

Our semantics is capable of catching 77 core language (see
Figure 1) forms of undefinedness, in addition to many behaviors
involving the most common library functions, such as malloc,
free, and printf. When our tool encounters undefined behavior,
it gets stuck and, for most undefined behaviors, prints out a message
referencing the relevant parts of the standard. But if we do not have
a message for a particular error, the reason the semantics got stuck
can usually be deduced from the final configuration and a little
familiarity with the semantics.

Just giving a semantics for correct programs is almost never
enough to catch undefined ones. While many undefined behaviors
are fairly trivial to catch and only require a more precise semantics,
others need a complicated reworking of models for core language
features. In the rest of this section, we cover the major issues that
arise when attempting to capture the undefinedness of C with an
operational semantics, as well as our solutions.

3.1 Expressions
To understand how a positive semantics can give meaning to
undefined programs, and the general process we followed in refining
and making our semantics more precise, we start with a simple
example. Consider the rule for dereferencing a pointer, which
defined in its most basic form is:

〈* (L : ptrType(T))
[L] : T

···〉k

Dereferencing a location L of type pointer-to-T yields an lvalue L of
type T ([L] : T). This rule is correct according to the semantics
of C—it works for any defined program. However, it fails to
detect undefined behaviors, such as dereferencing void or NULL
pointers [8, UB #23, 43]. In:

int main() { *NULL; return 0; }

this rule would apply to *NULL and the result ([NULL] :void) would
immediately be thrown away (by the semantics of “;”), despite the
undefined dereference.

To catch these behaviors, the above rule could be rewritten:

〈* (L : ptrType(T))
[L] : T

···〉k when T , void ∧ L , NULL

If this is the only rule in the semantics for pointer dereferencing,
then the semantics will get stuck when trying to dereference NULL
or trying to dereference a void pointer.

But we also need to eliminate the possibility of dereferencing
memory that is no longer “live”—either variables that are no longer

in scope, or allocated memory that has since been freed. Here,
then, is the most verbose version of this rule that takes all this into
account:

〈··· B 7→ object(—,Len,—) ···〉mem
〈* (sym(B) + O : ptrType(T))

[sym(B) + O] : T
···〉k

when T , void ∧ O < Len

The above rule now additionally checks that the location is still
alive (by matching an object in the memory), and checks that the
pointer is in bounds (by comparing against the length of the memory
object). Locations are represented as base/offset pairs sym(B) + O
and objects in memory are represented by a tuple containing their
type, size in bytes, and the object representation as a list of bytes.
This is explained in detail in Section 3.4.

However, all of these extra side-conditions can make rules more
complicated and difficult to understand. We often embed more
complicated checks into the main computation. For example, the
above rule could be rewritten as two rules:

〈 * (L : ptrType(T))
checkDeref(L,T) y [L] : T

···〉k

〈··· B 7→ object(—,Len,—) ···〉mem
〈 checkDeref(sym(B) + O,T)

·

···〉k

when O < Len ∧ T , void

The actual rule for dereferencing pointers from our semantics uses a
combination of these techniques, but it also must take into account
misuse of the restrict qualifier (Section 3.2) and the strict aliasing
rules (Section 3.4). These examples should demonstrate how the
simple and straightforward rules needed for characterizing defined
programs quickly become quite complicated when undefinedness
must also be ruled out.

Unsequenced Reads and Writes Unsequenced writes or an unse-
quenced write and read of the same object is undefined [8, UB #35].
For example, this program would seem to return 3, and it does when
compiled with Clang or ICC:

int main() {
int x = 0;
return (x = 1) + (x = 2);

}

However, it is actually undefined because multiple writes to the
same location must be sequenced [8, UB #35], but the operands in
the addition have an unspecified evaluation order. Compiled with
GCC, this same program returns 4.

To catch this in our semantics, we use a technique similar
to Norrish [24] and track all locations that have been modified
since the last sequence point in a set called locs-written. Whenever
we write to or read from a location, we first check this set to verify
the location had not previously been written:

〈 writeByte
writeByte’

(Loc,V) ···〉k 〈S ·

Loc
〉locs-written when Loc < S

〈 readByte
readByte’

(Loc) ···〉k 〈S 〉locs-written when Loc < S

After either of the above rules have executed, the primed operations
will take care of any additional checks and eventually the actual
writing or reading. Finally, when we encounter a sequence point,
we empty the locs-written set:

〈 seqPoint
·

···〉k 〈 S
·

〉locs-written

Overlapped Writes Another subtlety of assignment comes from
the UB caused by assignment of an “inexactly overlapping ob-
ject” [8, UB #54]. This can happen, e.g., if one variant of a union is

assigned to another. If the value being assigned was read from the
object being assigned to, then the overlap must be exact. To catch
this, we must track the location from which values were read while
evaluating the right side of the assignment.

3.2 Type Modifiers
Type modifiers in C are another good example of the extra effort
needed to capture undefinedness. If we assume all programs are
correct, then we can generally ignore all type modifiers. Only when
modifiers are misused, such as by programs exhibiting undefined-
ness, do they become significant. To catch these misuses requires
actually giving semantics to all the modifiers that appear in C11.

First, consider the type qualifier const. In C, const makes the
qualified object unchangeable after initialization. Writes can only
occur through non-const types [8, §6.3.2.1:1, 6.5.16:1] and at-
tempting to write to a const-qualified object through a non-const-
qualified lvalue invokes undefinedness [8, UB #64]. Therefore, in
correct programs, this qualifier has no effect. But to actually catch
misuse of const by incorrect programs requires the semantics to
keep track of const qualifiers and check them during all modifica-
tions and conversions.

One might expect checking for const-correctness to be possible
statically, but qualifiers can be dropped by casting pointers. For
example:

const char p = 'x'; *(char*)&p = 'y';

The ability to manipulate the “object representation” of objects
through pointers to char is an important feature of C, yet writing
to any part of an object declared with const through such a pointer
still invokes undefinedness.

Other modifiers that need similar special consideration in-
clude restrict, volatile, _Atomic, the alignment specifiers
(_Alignas), and the function specifiers (inline and _Noreturn).
The important point is that objects in memory generally must retain
the qualifiers they were declared with in order to verify operations
through pointers, which may have dropped the qualifiers. We handle
this by maintaining the effective type of every object stored in
memory (as described in Section 3.4). From the effective type of an
object, we can calculate the effective modifiers at every offset into
that object, and with this information detecting modifier-specific
misuse generally becomes easy. The type qualifier restrict, how-
ever, requires extra effort.

The restrict Qualifier The standard gives clear license for a
positive semantics to elide it: “deleting all instances of [restrict]
from all preprocessing translation units composing a conforming
program does not change its meaning” [8, §6.7.3:8]. But, as with
const, deleting all instances of restrict potentially causes a
program containing undefinedness to become well-defined. In fact,
the standard gives the meaning of the restrict qualifier entirely in
terms of what becomes undefined, in a whole section section devoted
to the topic [8, §6.7.3.1, UB #68, 69]. In a sense, the entire purpose
of qualifiers like const and restrict is to allow programmers the
ability to add extra undefinedness to their programs.

Generally speaking, if an object is accessed through a restrict-
qualified pointer, and it is also modified, then it should only ever be
accessed through that same pointer, for the duration of the execution
of the scope in which that pointer was declared. For example, these
three file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert, according to the standard, that “if an object is accessed using
one of a, b, or c, and that object is modified anywhere in the program,
then it is not also accessed through the other two” [8, §6.7.3.1].

It is not just accesses through restrict-qualified pointers that
must be monitored, therefore, but all pointer dereferences. Further-
more, capturing this behavior requires tracking which restrict-
qualified pointers any particular pointer or pointer expression is
based on. Because the value of one restrict-qualified pointer
variable can be assigned to another in certain cases, a particular
pointer expression might be based on multiple restrict-qualified
pointers. We handle this using the “pointer provenance” mechanism
described in Section 3.5.

In addition to tracking which restrict-qualified pointers an
expression is based on, we need two further sets of information in
order to capture misuses of restrict:
1. a map between object addresses and the set of restrict-

qualified pointers through which accesses to that object have
occurred and

2. a map between blocks and modified object addresses.
The map in (1) associates objects stored in memory with the
restrict-qualified pointers that have been used to access them.
This is the main mechanism we use to verify future accesses also
occur through expressions based on these pointers. But we also
need (2) because a restrict-qualified pointer is associated with
the block that it is declared in, which is not necessarily the same
block as an access occurs in. To actually catch all misuses, therefore,
requires keeping track of which locations have been modified in
the scope of all blocks with associated restrict-qualified pointers.
Whenever a write occurs, then, the location must be added to the
modified set of every active block.

Now, during every dereference of a pointer expression p, that
references some object x, we verify it is well-defined by forming two
sets of restrict-qualified pointers: R, the set of active restrict-
qualified pointers associated with x from previous accesses, and R′,
the set of active restrict-qualified pointers that p is based on. A
restrict-qualified pointer is active if and only if its associated
block is active and x has been modified during the execution of that
block. A dereference is well-defined, then, only when R = R′.

3.3 The Translation Phase
C11 lists eight “translation phases” [8, §5.1.1.2]. The first six phases
involve preprocessing. The seventh corresponds to the actions taken
by implementations to transform the C source files of a translation
unit into a compiled object file. The eighth, which corresponds to
linking, governs how multiple translation units are combined:

All external object and function references are resolved.
Library components are linked to satisfy external references
to functions and objects not defined in the current translation.
All such translator output is collected into a program image
which contains information needed for execution in its
execution environment.
Our semantics gives a separate treatment to the three major

phases of C implementations: compilation, linking, and execution
(see Figure 2). This brings our semantics very close to how C
compilers actually operate. In particular, kcc can separately translate
translation units and later link them together to form an executable.
We use this technique, for example, to pre-translate the standard
library in order to speed up the time it takes the tool to interpret
C programs.

As we saw in Figure 1, many undefined behaviors are statically-
detectable, and many of these deal with the semantics of declarations
and building typing environments. It is tempting to not take these
behaviors too seriously because many of these issues are readily
reported on by compilers and static analyzers. But the semantics
for building typing environments and dealing with the linkage of
identifiers is notoriously tricky in C because multiple declarations,
both within the same translation unit and across multiple translation

units, at file scope and block scope, might refer to the same object.
And even easily-detectable static undefinedness can slip through
compilers and produce unexpected results. For example, consider
the following program, composed of two translation units:

// Trans. unit 1.
static int a[];
int main() { return a[0]; }

// Trans. unit 2.
int a[] = {1, 2, 3};

GCC and Clang both compile this program, but they disagree about
the value it returns. The GCC-compiled program returns 1, while
the Clang compiled program returns 0. Both behaviors are allowed
by the standard because the static declaration of a, with an
incomplete array type, invokes undefined behavior: “an object with
internal linkage and an incomplete type is declared with a tentative7

definition” [8, UB #89].
Our semantics for translation phase seven primarily handles the

building of typing environments for a translation unit. But we also do
a simple abstract interpretation of all function bodies, during which
we evaluate all constant expressions and catch cases of statically-
detectable undefinedness.

Typing environments for each translation unit are built by pro-
cessing the declarations. The declaration status of an identifier takes
one of four states, in order of increasing definedness: declared, com-
pleted, allocated, and defined. For example, the declaration for the
identifier x moves through all four states:

extern int x[]; // declared
extern int x[3]; // completed
int x[3]; // allocated
int x[3] = {1, 2, 3}; // defined

Each successive declaration must be compatible with previous
declarations. When a declaration passes the “allocated” state, we
can reserve a symbolic address for the object.

All four states are needed to prevent various kinds of malformed
declarations. We must distinguish “allocated” symbols from “de-
fined” in order to prevent multiple definitions [8, UB #84], for
example, and a declaration left in the “declared” state by the end of
a translation unit might be an incomplete tentative definition that
must be completed and allocated.

Linking In translation phase eight, then, we combine translation
units together by resolving each identifier with external linkage that
appears in an expression (i.e., every identifier that is actually used)
to a single definition. We also must verify that declarations for the
same identifier are compatible [8, UB #15] and duplicate definitions
do not exist [8, UB #84].

Most C implementations handle compiling and linking in sep-
arate phases, and by the time the linking phase has been reached,
most typing information has been lost. As a result, for example, com-
pilers generally will not issue a warning about the undefinedness
that results from the type incompatibility of the call to f below [8,
UB #41]:

// Trans. unit 1.
int f(int);
int main() {

return f(1);
}

// Trans. unit 2.
int f(void) {

return 1;
}

The CompCert compiler, due to its current reliance on an exter-
nal linker, suffers from this same limitation [16]. Detecting such
issues requires whole-program static analysis and because of the
subtleties of type compatibility and the rules governing the linkage
of identifiers, this can be hard to get right.

Other similar cases of link time undefinedness also seem to
slip by compilers without warnings. For example, the following

7 “A declaration of an identifier for an object that has file scope without an
initializer, and without a storage-class specifier or with the storage-class
specifier static, constitutes a tentative definition.” [8, §6.9.2:2]

program relies on a common language extension for declaring a
global identifier shared between multiple translation units and will
usually not elicit a warning from GCC or Clang:

// Trans. unit 1.
int x;
int main() { ... }

// Trans. unit 2.
int x;
...

But it is a language extension, and as such it relies on undefined
behavior. Each of those global declarations of x constitutes a
“tentative definition,” which becomes a real definition by the end of
the translation unit. The program is therefore undefined because the
identifier x has multiple external definitions [8, UB #84].

3.4 Memory Model
Addresses in our memory model are symbolic base/offset pairs,
which we write as sym(B) + O, where B corresponds to the base
address of an object itself and the O represents the offset of a
particular byte in the object. We wrap the base using “sym” because
it is symbolic—despite representing a location, it is not appropriate
to, e.g., directly compare B < B′ [8, §6.5.8:5]. These base addresses
also encode their storage duration. This allows, for example, reading
uninitialized memory with static storage duration8 to result in
zeros, while reading uninitialized memory with automatic storage
duration9 to result in an error. Our memory, then, is a map from
base addresses to blocks of bytes. Each base address represents the
memory of a single object.

This model is the same technique used by Blazy and Leroy [1]
and by Ros, u et al. [28]. It takes advantage of the fact that the address
of objects in memory and addresses returned by allocation functions
like malloc() are unspecified [8, §7.20.3]. However, there are a
number of restrictions on addresses, such as the elements of an array
being contiguous and the fields in a struct being ordered (though
not necessarily contiguous). Consider:

int a, b;
if (&a < &b) { ... }

If we gave objects concrete, numerical addresses, then they would al-
ways be comparable. However, this excerpt is actually undefined [8,
UB #53]. We only give semantics to pointer comparisons when the
two addresses share a common base. For example:

〈 (sym(B) + O : T) < (sym(B) + O′ : T)
1 : int

···〉k when O < O′

Thus, evaluation gets stuck on the program above because &a and
&b do not share a common base B. Of course, sometimes locations
are comparable, for example:

struct { int a; int b; } s;
if (&s.a < &s.b) { ... }

The addresses of a and b are guaranteed to be in order [8, §6.5.8:5],
and our semantics does allow this comparison because the pointers
share a common base.

Because all data must be split into bytes to be stored in mem-
ory, the same must happen with pointers. However, because our
addresses are not actual numbers, they must be split symbolically.
Assuming a particular pointer sym(B) + O was four bytes long, we
split it into the list of bytes given by

subObject(sym(B) + O, 0), subObject(sym(B) + O, 1),
subObject(sym(B) + O, 2), subObject(sym(B) + O, 3)

where the first argument of subObject is the object in question and
the second argument is which byte this represents. This allows the
reconstruction of the original pointer, but only if given all the bytes.

8 Objects declared at file scope or with the specifier static.
9 Objects declared inside a function without register, static, or extern.

Indeterminate Memory An indeterminate value is one that may
be “either an unspecified value or a trap representation,” where
a trap representation is “an object representation that need not
represent a value of the object type” [8, §3.19]. Uninitialized block
scope variables not declared static or extern, for example, take
indeterminate values.

Using trap representations for indeterminate values is an im-
plementation choice, but it is one that clearly leads to more unde-
finedness. In general, we use a trap representation wherever the
standard allows one to be used. Then, if the value of a trap repre-
sentation is ever needed when evaluating an expression, we catch
the undefined behavior that results [8, UB #12]. However, an im-
portant exception must be made for the unsigned char type [8,
§6.2.6.1:3–4]—values of this type have no trap representation. We
model this in our semantics by transforming trap representations
into unspecified values when read through an lvalue of unsigned
char type. Unspecified values will also cause the semantics to get
stuck in many cases, but we define more operations on them than
on trap representations. This allows for the implementation of func-
tions like memcpy(), for example—every byte must be copied, even
indeterminate values [8, §6.2.6.1:4].

Strict Aliasing As Krebbers [12] points out, the memory model
described above is not sufficient to capture the aliasing restrictions
of C11 [§6.5:6–7]. These restrictions are intended to allow opti-
mizations using type-based alias analysis. Each object in memory,
according to the strict aliasing rules, has an “effective type” and a
compiler is allowed to assume that accesses to such objects will
only occur through an lvalue expression of either a compatible type
(modulo qualifiers and signedness) or a character type. The effective
type of an object is its declared type or (in the case of memory
allocated with malloc) the type of the lvalue through which the
last store occurred. For example, line 4 below results in undefined
behavior according to the strict aliasing rules [8, UB #37]:
1 int main() {
2 int *p = malloc(sizeof(p));
3 *(long*)p = 42;
4 return *p;
5 }

To address this, we store the declared type of objects along with
their object representations. In the case of memory allocated with
malloc, we keep another map from symbolic addresses to the type
of the last object stored at the address.

With this extra typing information, we can calculate the effective
type at a certain byte offset into an object. In the case of an aggregate
type, there can be ambiguity about whether an offset should have
the type of the aggregate or its first element, but the strict aliasing
rules allow for a pointer to an aggregate or union type to be aliased
by a pointer to a type of any of its elements. We also do not need to
keep track of the active variant of a union type because a pointer to a
union type may be aliased to a pointer to any of the union elements,
regardless of which one is “active.” We catch other misuse of unions
using the mechanism described in the next section.

3.5 Pointer Provenance
Consider this example, inspired by Defect Report #260 [2004]:
1 int main() {
2 char a[2][2];
3 char *p = &a[0][1] + 1, *q = &a[1][0];
4 if (memcmp(&p, &q, sizeof(p)) == 0) {
5 *q = 42;
6 *p = 42;
7 }
8 }

Even though the standard requires that arrays be contiguously
allocated, and therefore the bit patterns representing the p and q

pointers should compare equal on line 4, it does not follow that
the assignments on lines 5 and 6 are both defined. In fact, the
assignment on line 5 is well-defined, but the assignment on line
6 invokes undefined behavior according to the following criteria:

Addition [...] of a pointer into, or just beyond, an array object
and an integer type produces a result that points just beyond
the array object and is used as the operand of a unary *
operator that is evaluated. [8, UB #47]
The moral here is that the provenance10 of pointers can be

significant when determining whether operations performed on them
are defined. When checking if a dereference is within bounds, it
matters whether a pointer value was based on an array or whether it
came from the & operator applied to a scalar. Checking the type or
value at the memory location before a dereference is not enough.

Therefore, we use an approach similar to the fat pointers of Jim
et al. [11] and Necula et al. [21] and make a distinction between the
value that might be stored in a pointer variable and the symbolic
addresses that actually pick out objects in our memory model. The
former might have additional qualifiers, or tags, that carry extra
information about the provenance of the address. We generalize
this technique to catch many different kinds of undefinedness in our
semantics. Pointer values might carry any of the following four tags,
which are not part of the object representation of pointers (from
the perspective of a C program), but can still follow pointer values
through, e.g., function calls and memory stores. The details of when
each tag will be attached to a pointer and when it might be removed
depends on the tag, but often the standard is not clear about just
how long and through what kinds of expressions the provenance of
a pointer should remain significant.

fromUnion “When a value is stored in a member of an object
of union type, the bytes of the object representation that do not
correspond to other members take unspecified values” [8, §6.2.6.1:7].
This tag tracks the union variant a pointer or lvalue expression is
based on so we can mark the section of memory not overlapping with
the active variant as unspecified. This allows some type punning11

while still catching violations that can result from attempting to use
the unspecified values in the non-overlapped part of the union.

fromArray As we pointed out above, we must track the size of an
array that a pointer is based on and its current offset into the array in
order to catch violations dealing with undefined pointer arithmetic
and out-of-bounds pointer dereferences [8, UB #46–49].

basedOn We also must track when a pointer can be traced back
to the value stored in some restrict-qualified pointer variable.
This allows us to associate objects in memory with the restrict-
qualified pointers used to access them and check for undefined
assignments involving restrict-qualified pointers [8, UB #68, 69].

align We track a pointers’s alignment using this same mechanism.
We use this for catching the undefinedness that results from a
misaligned pointer after a conversion [8, UB #25].

4. Evaluation
In order to evaluate our semantics and the analysis tool generated
from it, we first looked for a suite of undefined programs. Although
we were unable to find any test suite focusing on undefined behav-
iors, we did find test suites that included a few key behaviors. We
consider our inability to find a definitive metric for evaluating our
work to be symptomatic of the surprising lack of attention our goal
of detecting strictly-conforming C programs has received. Below

10 This term comes from Defect Report #260 [2004].
11 I.e., accessing a value through a union variant other than the variant of the
lvalue through which the last write occured, which is allowed in some cases.

we mention the testing and cataloguing work we found related to
undefinedness, including the Juliet Test Suite, which we use as one
of our partial undefinedness benchmarks. We end this section with a
description of our own undefinedness test suite.

There is an ISO technical specification for program analyzers
titled “C Secure Coding Rules” [2013], suggesting programmatically
enforceable rules for writing secure C code. It is similar to MISRA-
C [18], whose goal was to create a “restricted subset” of C to help
those using C meet safety requirements. MISRA released a “C
Exemplar Suite,” containing both conforming and non-conforming
code for the majority of the MISRA C rules. However, these tests
contain many undefined behaviors mixed into a single file, and
no way to run the comparable defined code without running the
undefined code. Furthermore, the MISRA tests focus on statically
detectable UB. The CERT C Secure Coding Standard [29] and
MITRE’s “common weakness enumeration” (CWE) classification
system [19] are other similar projects, identifying many causes of
program error and cataloging their severity and other properties.
The projects mentioned above include many undefined behaviors—
for example, the undefinedness of signed overflow [8, UB #36]
corresponds to CERT’s INT32-C and to MITRE CWE-190.

The Juliet Test Suite NIST has released a suite of tests called the
Juliet Test Suite for C/C++ [23], which is based on MITRE’s CWE
classification system. It contains over 45,000 tests, each triggering
one of the 116 different CWEs supported by the suite. Most of the
tests (∼70%) are C and not C++ and they focus on statically de-
tectable behaviors. But not all of the CWEs are actually undefined—
many are simply insecure or unsafe programming practices.

Because the Juliet tests include a single undefined behavior per
file and come with positive tests corresponding to the negative tests,
we decided to extract an undefinedness benchmark from them. To
use the Juliet tests as a test suite for undefinedness, we had to
identify which tests were actually undefined. This was largely a
manual process that involved understanding the meaning of each
CWE. It was necessary due to the large number of defined-but-
bad-practice tests that the suite contains. Interestingly, the suite
contained some tests whose supposedly defined portions were
actually undefined. Using our analysis tool, we were able to identify
six distinct problems with these tests, which we submitted to NIST.

This extraction gave us 4113 tests, with about 96 lines per test.
The tests can be divided into six classes of undefined behavior: use
of an invalid pointer (buffer overflow, returning stack address, etc.),
division by zero, bad argument to free() (stack pointer, pointer not
at start of allocated space, etc.), uninitialized memory, bad function
call (incorrect number or type of arguments), or integer overflow.
We then ran these tests using Valgrind Memcheck [22], and the
Value Analysis plugin for Frama-C [3], in addition to our tool, kcc.
The results appear in Figure 3.

Our Undefinedness Test Suite Because we were unable to find
an ideal test suite for evaluating detection of undefined behaviors,
we began development of our own. As we discussed in Section 2,
undefined behavior reached during an execution causes the entire
execution to become undefined. This means each test in the suite
must be a separate program, otherwise one undefined behavior may
interact with another. In addition, each test should come with a
corresponding defined test as a control, making it possible to identify
false-positives in addition to false-negatives. Our suite currently
includes 261 tests. These tests are much broader than the Juliet tests,
covering all 77 categories of core language undefined behaviors
(identified in Figure 1) as opposed to the 12 covered by the Juliet
tests. We hope it will serve as a starting point for the development
of a larger, more comprehensive undefinedness test suite.

We compared the same tools as before against our own test suite.
This time, we also included the CompCert interpreter [2] and the

Tools (% passed)

Undefined behavior No. tests Valgrinda V. Analysisb kcc

Use of invalid pointer (UB #10, 43, 46, 47) 3193 70.9 100.0 100.0
Division by zero (UB #45) 77 0.0 100.0 100.0
Bad argument to free() (UB #179) 334 100.0 100.0 100.0
Uninitialized memory (UB #21) 422 100.0 100.0 100.0
Bad function call (UB #38–41) 46 100.0 100.0 100.0
Integer overflow (UB #36) 41 0.0 100.0 100.0

a Valgrind Memcheck, v. 3.5.0, http://valgrind.org
b Frama-C Value Analysis plugin, v. Nitrogen-dev, http://frama-c.com/value.html

Figure 3. Comparison of analyzers against the Juliet Test Suite.

Tools (% passed)

Undefined behavior No. tests Astréea CompCertb Valgrindc V. Analysisd old kcce kcc

Compile time (24 UBs) 81 40.7 60.5 0.0 32.1 38.3 98.8
Link time (8 UBs) 38 47.4 84.2 0.0 42.1 23.7 100.0
Run time (45 UBs) 142 46.5 40.9 9.9 58.5 40.1 99.3
Total (77 UBs) 261 44.8 53.3 5.4 47.9 37.2 99.2

a The Static Analyzer Astrée, v. 14.10, http://www.absint.com
b CompCert C interpreter, v. 2.3pl2, http://compcert.inria.fr
c Valgrind Memcheck, v. 3.10.0, http://valgrind.org
d Frama-C Value Analysis, v. Neon, http://frama-c.com/value.html
e Version of the tool from Ellison and Ros, u [6].

Figure 4. Comparison of analyzers against our test suite comprising 261 tests, covering 77 core language undefined behaviors. Note that
some tools don’t support all language features covered in the tests.

Tools Comp. time Link time Run time Total

Astrée 11 4 26 41
CompCert 15 7 23 45
Valgrind 0 0 5 5
V. Analysis 11 4 30 45
all but kcc 17 7 34 58
old kcc 10 2 23 35
kcc 24 8 45 77

Figure 5. Core language undefined behaviors each tool detects
(total out of 77). We counted a tool as having coverage for a behavior
if it caught the behavior in at least one test.

Astrée analyzer [4]. The former interprets programs according to the
semantics of the formally-verified CompCert compiler. Like our tool,
it attempts to detect undefinedness and halts when it encounters an
undefined behavior. The latter, Astrée, is an abstract-interpretation
based analyzer reported to detect most undefined behavior (albeit
in C99, not C11). As can be seen in the tables, our tool passes
most of our test cases. The two failures are due to minor bugs still
outstanding at the time of this writing.

From these results (Figure 4), and based on the premise that our
test suite includes tests for each behavior that are trivial enough
that no tool looking for that behavior could miss it, we estimate
the number of core language undefined behaviors each tool detects
in Figure 5. These tools do not have complete coverage for many
behaviors—the CompCert interpreter, for example, does not support
programs comprising multiple translation units, so it necessarily
will not have complete coverage for any of the behaviors we have
categorized “link time.”

From Figure 5 we can see that none of the other tools we
tested appeared to have coverage for 19 core language undefined

behaviors.12 Many of these deal with newer features of the C
language, such as the restrict qualifier (#68, 69), alignment
specifiers (#73), variable-length arrays (#75), and the inline
function specifier (#70). Some are tricky to monitor for, such
as unsequenced side-effects (#35) and misuses of restrict and
const (discussed in Section 3).

Other Related Work As we mention in the introduction, many
previous semantic efforts have tended to focus on the semantics of
defined programs. The recent work of Krebbers [12, 13] is a notable
exception, however. His semantics, formalized in Coq, captures
many of the hairier sources of undefinedness, such as expression non-
determinism and the the alias restrictions (discussed in Section 3.4).

The closest comparison for our kcc tool might be the CompCert
interpreter, considered above. Note that the CompCert compiler, in
contrast, being a C implementation, does not generally report on
UB and is perfectly justified in taking any action upon encountering
it. We also consider a few analyzers above. Some of our techniques
for capturing undefinedness have precedent in the literature on such
analyzers, which we try to point out in our discussion. But many of
these tools, such as Valgrind, tend to have a narrow focus when it
comes to detecting UB, which we think our results demonstrate.

Other promising recent work on detecting undefinedness comes
from Wang et al. [30]. They charaterize undefinedness as code
unstable under optimization and instead of attempting to catch the
behaviors themselves, they catch code that would be affected by
optimizations that aggressively take advantage of undefinedness.

5. Future Work and Conclusion
If some possible implementation is allowed by the standard to treat
some expression as invoking undefined behavior, then our tool

12 The complete list: UB #14, 22, 25, 35, 42, 60, 64–66, 68–70, 73, 75, 77,
80, 83, 86, and 89.

http://valgrind.org
http://frama-c.com/value.html
http://www.absint.com
http://compcert.inria.fr
http://valgrind.org
http://frama-c.com/value.html

should treat it as undefined behavior. Our goal is to detect maximally
portable, strictly-conforming programs. An example of this zeal is
in our treatment of “negative zeros.” The standard specifies that it
is implementation-defined as to whether the two negative zero bit
patterns (i.e., a sign bit of one with all ones or zeros in the value bits)
might be a “trap representation or a normal value” [8, §6.2.6.2:2].
In our semantics, then, creating either of these bit patterns with a
signed integer type using the bitwise operators should raise an error.
In practice, however, few (if any) real implementations actually treat
the negative zero bit patterns as trap representations.

Although our semantics is parameterized over, e.g., the size
of various types, we need to expand this mechanism to include
more implementation-defined behaviors in order to make our tool
more practical for real-world applications. Often, checking for
conformance with a certain implementation is more desirable than
checking for strict conformance to the standard. For example, the
encoding of negative integers is implementation-defined, yet two’s
complement is standard in all major implementations today.

Undefinedness is a feature of the C language that can facilitate
aggressive optimizations. But it is also terribly subtle and the source
of many bugs. In order for compilers to take full advantage of
the optimization opportunities afforded by undefinedness, users
must be aware of the assumptions compilers make about their code.
More generally, detecting the absence of undefined behavior is an
important goal on the road to fully verified software.

References
[1] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset

of the C language. Journal of Automated Reasoning, 43(3):263–288,
2009. URL http://dx.doi.org/10.1007/s10817-009-9148-3.

[2] B. Campbell. An executable semantics for CompCert C. In Certified
Programs and Proofs, volume 7679 of Lecture Notes in Computer
Science, pages 60–75. Springer, 2012. URL http://dx.doi.org/
10.1007/978-3-642-35308-6_8.

[3] G. Canet, P. Cuoq, and B. Monate. A value analysis for C programs. In
Conf. on Source Code Analysis and Manipulation (SCAM’09), pages
123–124. IEEE, 2009. URL http://dx.doi.org/10.1109/SCAM.
2009.22.

[4] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. In Programming Languages and
Systems, volume 3444 of Lecture Notes in Computer Science, pages 21–
30. Springer Berlin Heidelberg, 2005. URL http://dx.doi.org/10.
1007/978-3-540-31987-0_3.

[5] C. Ellison. A Formal Semantics of C with Applications. PhD thesis,
University of Illinois, July 2012. URL http://hdl.handle.net/
2142/34297.

[6] C. Ellison and G. Ros, u. An executable formal semantics of C with
applications. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’12), pages 533–544, 2012. URL
http://dx.doi.org/10.1145/2103656.2103719.

[7] ISO/IEC JTC 1, SC 22, WG 14. Rationale for international standard—
programming languages—C. Technical Report 5.10, Intl. Org. for
Standardization, 2003. URL http://www.open-std.org/jtc1/
sc22/wg14/www/C99RationaleV5.10.pdf.

[8] ISO/IEC JTC 1, SC 22, WG 14. Defect report #260. Technical report,
2004. URL http://www.open-std.org/jtc1/sc22/wg14/www/
docs/dr_260.htm.

[9] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:2011: Programming
languages—C. Technical report, Intl. Org. for Standardization, 2012.

[10] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC TS 17961:2013 C secure
coding rules. Technical report, Intl. Org. for Standardization, 2013.

[11] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical

Conference (ATEC’02), pages 275–288. USENIX Association, 2002.
URL http://dl.acm.org/citation.cfm?id=647057.713871.

[12] R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In
Certified Programs and Proofs, volume 8307 of Lecture Notes in
Computer Science, pages 50–65. Springer, 2013. URL http://dx.
doi.org/10.1007/978-3-319-03545-1_4.

[13] R. Krebbers. An operational and axiomatic semantics for non-
determinism and sequence points in C. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’14),
pages 101–112. ACM, 2014. URL http://dx.doi.org/10.1145/
2535838.2535878.

[14] C. Lattner. What every C programmer should know about unde-
fined behavior, 2011. URL http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.html.

[15] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009. URL http://dx.doi.org/10.
1145/1538788.1538814.

[16] X. Leroy. The CompCert C verified compiler: Documentation
and user’s manual, version 2.3. Technical report, INRIA Paris-
Rocquencourt, 2014.

[17] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155, 1992. URL
http://dx.doi.org/10.1016/0304-3975(92)90182-F.

[18] MISRA. MISRA-C: 2004—Guidelines for the use of the C language
in critical systems. Technical report, MIRA Ltd., 2004.

[19] MITRE. The common weakness enumeration (CWE) initiative, 2012.
URL http://cwe.mitre.org/.

[20] T. Nagel. Troubles with GCC signed integer overflow op-
timization, 2010. URL http://thiemonagel.de/2010/01/
signed-integer-overflow/.

[21] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’02), pages 128–
139. ACM, 2002. URL http://dx.doi.org/10.1145/503272.
503286.

[22] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’07),
pages 89–100. ACM, 2007. URL http://dx.doi.org/10.1145/
1250734.1250746.

[23] NIST. Juliet test suite for C/C++, version 1.0, 2010. URL http:
//samate.nist.gov/SRD/testsuite.php.

[24] M. Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-
453, University of Cambridge, 1998.

[25] N. S. Papaspyrou. Denotational semantics of ANSI C. Computer
Standards and Interfaces, 23(3):169–185, 2001.

[26] J. Regehr. A guide to undefined behavior in C and C++, 2010. URL
http://blog.regehr.org/archives/213.

[27] G. Ros, u and T. F. S, erbănut,ă. An overview of the K semantic framework.
J. Logic and Algebraic Programming, 79(6):397–434, 2010. URL
http://dx.doi.org/10.1016/j.jlap.2010.03.012.

[28] G. Ros, u, W. Schulte, and T. F. S, erbănut,ă. Runtime verification of C
memory safety. In Runtime Verification (RV’09), volume 5779, pages
132–152. Springer, 2009. URL http://dx.doi.org/10.1007/
978-3-642-04694-0_10.

[29] R. C. Seacord. The CERT C Coding Standard, Second Edition: 98
Rules for Developing Safe, Reliable, and Secure Systems. 2014.

[30] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. To-
wards optimization-safe systems: Analyzing the impact of undefined
behavior. In ACM Symposium on Operating Systems Principles
(SOSP’13), pages 260–275. ACM, 2013. URL http://dx.doi.org/
10.1145/2517349.2522728.

http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/978-3-642-35308-6_8
http://dx.doi.org/10.1007/978-3-642-35308-6_8
http://dx.doi.org/10.1109/SCAM.2009.22
http://dx.doi.org/10.1109/SCAM.2009.22
http://dx.doi.org/10.1007/978-3-540-31987-0_3
http://dx.doi.org/10.1007/978-3-540-31987-0_3
http://hdl.handle.net/2142/34297
http://hdl.handle.net/2142/34297
http://dx.doi.org/10.1145/2103656.2103719
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://dl.acm.org/citation.cfm?id=647057.713871
http://dx.doi.org/10.1007/978-3-319-03545-1_4
http://dx.doi.org/10.1007/978-3-319-03545-1_4
http://dx.doi.org/10.1145/2535838.2535878
http://dx.doi.org/10.1145/2535838.2535878
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://cwe.mitre.org/
http://thiemonagel.de/2010/01/signed-integer-overflow/
http://thiemonagel.de/2010/01/signed-integer-overflow/
http://dx.doi.org/10.1145/503272.503286
http://dx.doi.org/10.1145/503272.503286
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746
http://samate.nist.gov/SRD/testsuite.php
http://samate.nist.gov/SRD/testsuite.php
http://blog.regehr.org/archives/213
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/978-3-642-04694-0_10
http://dx.doi.org/10.1007/978-3-642-04694-0_10
http://dx.doi.org/10.1145/2517349.2522728
http://dx.doi.org/10.1145/2517349.2522728

	Introduction
	Undefined Behavior
	A Semantics for Catching Undefinedness
	Expressions
	Type Modifiers
	The Translation Phase
	Memory Model
	Pointer Provenance

	Evaluation
	Future Work and Conclusion

