
RV-Match: Practical Semantics-Based

Program Analysis

Dwight Guth1, Chris Hathhorn1,3, Manasvi Saxena1,2, and Grigore Ros,u1,2

1 Runtime Veri�cation Inc., Urbana, USA
{dwight.guth,chris.hathhorn}@runtimeverification.com

{manasvi.saxena,grigore.rosu}@runtimeverification.com
2 University of Illinois at Urbana-Champaign, Urbana, USA

3 University of Missouri, Columbia, USA

Abstract. We present RV-Match, a tool for checking C programs for
unde�ned behavior and other common programmer mistakes. Our tool is
extracted from the most complete formal semantics of the C11 language.
Previous versions of this tool were used primarily for testing the cor-
rectness of the semantics, but we have improved it into a tool for doing
practical analysis of real C programs. It beats many similar tools in its
ability to catch a broad range of undesirable behaviors. We demonstrate
this with comparisons based on a third-party benchmark.

Keywords: C11, programming language semantics, unde�ned behavior,
static analysis, abstract interpretation.

1 Introduction

The K semantic framework4 is a program analysis environment based on term
rewriting [1]. Users de�ne the formal semantics of a target programming lan-
guage and the K framework provides a series of formal analysis tools specialized
for that language, such as a symbolic execution engine, a semantic debugger,
a systematic checker for undesired behaviors (model checker), and even a fully
�edged deductive program veri�er. Our tool, RV-Match, is based on the K frame-
work instantiated with the publicly-available C11 semantics5 [6, 7], a rigorous
formalization of the current ISO C11 standard [10]. We have specially optimized
RV-Match for the execution and detection of errors in C programs.

Unlike modern optimizing compilers, which have a goal to produce bina-
ries that are as small and as fast as possible at the expense of compiling pro-
grams that may be semantically incorrect, RV-Match instead aims at mathe-
matically rigorous dynamic checking of programs for strict conformance with
the ISO C11 standard. A strictly-conforming program is one that does not rely
on implementation-speci�c behaviors and is free of the most notorious feature
of the C language, unde�ned behavior. Unde�ned behaviors are semantic holes
left by the standard for implementations to �ll in. They are the source of many
subtle bugs and security issues [9].

4
http://kframework.org

5
https://github.com/kframework/c-semantics

http://kframework.org
https://github.com/kframework/c-semantics


2

Running RV-Match. Users interface with RV-Match through the kcc executable,
which behaves as a drop-in replacement for compilers like gcc and clang. Con-
sider a �le undef.c with contents:�

�
�
�

int main(void) {

int a;

&a+2; }

We compile the program with kcc just as we would with gcc or clang. This
produces an executable named a.out by default, which should behave just as
an executable produced by another compiler�for strictly-conforming, valid pro-
grams. For unde�ned or invalid programs, however, kcc reports errors and exits
if it cannot recover:�

�

�

�

$ kcc undef.c

$ ./a.out

Error: UB-CEA1

Description: A pointer (or array subscript) outside the

bounds of an object.

Type: Undefined behavior.

See also: C11 sec. 6.5.6:8, J.2:1 item 46

at main(undef.c:2)

In addition to location information and a stack trace, kcc also cites relevant
sections of the standard [10].

2 Practical Semantics-Based Program Analysis

Unlike similar tools, we do not instrument an executable produced by a separate
compiler. Instead, RV-Match directly interprets programs according to a formal
operational semantics. The semantics gives a separate treatment to the three
main phases of a C implementation: compilation, linking, and execution. The
�rst two phases together form the �translation� semantics, which we extract into
an OCaml program to be executed by the kcc tool. The kcc tool, then, translates
C programs according to the semantics, producing an abstract syntax tree as the
result of the compilation and linking phases. This AST then becomes the input
to another OCaml program extracted from the execution semantics.

The tool on which we have based our work was originally born as a method
for testing the correctness of the operational semantics from which it was ex-
tracted [7], but the performance and scalability limitations of this original version
did not make it a practical option for analysis of real programs. To this end, we
have improved the tool on several fronts:

� OCaml-based execution engine. We implemented a new execution engine
that interprets programs according to a language semantics 3 orders of mag-
nitude faster than our previous Java-based version. For this improvement in
performance, we take advantage of the optimized pattern-matching imple-
mented by the OCaml compiler, a natural �t for K Framework semantics.



3

In the course of this work, we uncovered and �xed a few limitations of the
OCaml compiler itself in dealing with very large pattern match expressions. 6

� Native libraries. Previous versions of our tool required all libraries to be
given semantics (or their C source code) before they could be interpreted.
We now support linking against and calling native libraries, automatically
marshalling data to and from the representation used in the semantics.

� Expanded translation phase. In our C semantics, we now calculate the type
of all terms, the values of initializers, and generally do more evaluation of
programs during the translation phase. Previously, much of this work was
duplicated during execution.

� Error recovery and implementation-de�ned behavior. We have implemented
error recovery and expanded support for implementation-de�ned behavior.
Programs generated by older versions of kcc would halt when encountering
unde�ned or implementation-de�ned behavior. Our new version of kcc gives
semantics for many common unde�ned behaviors so the interpreter can con-
tinue with what was likely the expected behavior after reporting the error.
Similarly, we have added support for implementation pro�les, giving users
an easy way to parameterize the semantics over the behaviors of common C
implementations.

� Scope of errors. We have also expanded the breadth of the errors reported by
kcc to include bad practices and errors involving standard library functions.7

These improvements have allowed kcc to build and analyze programs in
excess of 300k lines of code, including the BIND DNS server.

Performance evaluation. For an idea of the extent of the performance enhance-
ments over previous versions of our tool, consider this simple program that cal-
culates the sum of integers between 0 and 10000:�

�

�

�
#include <stdio.h>

int main(void) {

int i, sum = 0;

for (i = 0; i < 10000; ++i) sum += i;

printf("Sum: %d\n", sum); }

In the table below, we compare the time in seconds to compile and run this
program �ve times with an old version of our tool8 [9] to our new version using
our OCaml execution engine. The �rst and second rows report the average time
for �ve compilations and runs,9 respectively, and the third reports the sum of all

6 See http://caml.inria.fr/mantis/view.php?id=6883 and http://caml.inria.

fr/mantis/view.php?id=6913.
7 For a summary of the kinds of errors kcc will report, see https://github.com/kf

ramework/c-semantics/blob/master/examples/error-codes/Error_Codes.csv.
8 Version 3.4.0, with K Framework version 3.4.
9 These tests were run on a dual CPU 2.4GHz Intel Xeon with 8GB of memory. On
more memory-intensive programs, we see an additional order of magnitude or more
improvement in performance.

http://caml.inria.fr/mantis/view.php?id=6883
http://caml.inria.fr/mantis/view.php?id=6913
http://caml.inria.fr/mantis/view.php?id=6913
https://github.com/kframework/c-semantics/blob/master/examples/error-codes/Error_Codes.csv
https://github.com/kframework/c-semantics/blob/master/examples/error-codes/Error_Codes.csv


4

runs plus the average compilation time to simulate the case of a compiled test
being run on di�erent input.

Old kcc New kcc Change

Avg. compile time 13 s 2 s −85%
Avg. run time 816 s 11 s −99%
All runs + avg. comp. 4092 s 59 s −99%

3 Evaluation

Of course, many other tools exist for analyzing C programs. In this section,
we compare RV-Match with some popular C analyzers on a benchmark from
Toyota ITC. We also brie�y mention our experience with running our tool on
the SV-COMP benchmark. The other tools we consider:

� GrammaTech CodeSonar is a static analysis tool for identifying �bugs that
can result in system crashes, unexpected behavior, and security breaches� [8].

� MathWorks Polyspace Bug Finder is a static analyzer for identifying �run-
time errors, concurrency issues, security vulnerabilities, and other defects in
C and C++ embedded software� [11].

� MathWorks Polyspace Code Prover is a tool based on abstract interpretation
that �proves the absence of over�ow, divide-by-zero, out-of-bounds array
access, and certain other run-time errors in C and C++ source code� [12].

� Clang UBSan, TSan, MSan, and ASan (version 3.7.1) are all clang mod-
ules for instrumenting compiled binaries with various mechanisms for detect-
ing unde�ned behavior, data races, uninitialized reads, and various memory
issues, respectively [5].

� Valgrind Memcheck and Helgrind (version 3.10.1, GCC version 4.8.4) are
tools for instrumenting binaries for the detection of several memory and
thread-related issues (illegal reads/writes, use of uninitialized or unaddress-
able values, deadlocks, data races, etc.) [13].

� The CompCert C interpreter (version 2.6) uses an approach similar to our
own. It executes programs according to the semantics used by the CompCert
compiler [3] and reports unde�ned behavior.

� Frama-C Value Analysis (version sodium-20150201), like Code Prover, is a
tool based on static analysis and abstract interpretation for catching several
forms of unde�nedness [4].

The Toyota ITC benchmark [14]. This publicly-available10 benchmark consists
of 1,276 tests, half with planted defects meant to evaluate the defect rate capa-
bility of analysis tools and the other half without defects meant to evaluate the
false positive rate. The tests are grouped in nine categories: static memory, dy-
namic memory, stack-related, numerical, resource management, pointer-related,
concurrency, inappropriate code, and miscellaneous.

10
https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark

https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark


5

We evaluated RV-Match along with the tools mentioned above on this bench-
mark. Our results appear in Figure 1 and the tools we used for our evalu-
ation are available online.11 Following the method of Shiraishi, Mohan, and
Marimuthu [14], we report the value of three metrics: DR is the detection rate,
the percentage of tests containing errors where the error was detected; FPR =
100−FPR, where FPR is the false positive rate; and PM is a productivity metric,
where PM =

√
DR× FPR, the geometric mean of DR and FPR.

Interestingly, and similar to our experience with the SV-COMP benchmark
mentioned below, the use of RV-Match on the Toyota ITC benchmark detected a
number of �aws in the benchmark itself, both in the form of unde�ned behavior
that was not intended, and in the form of tests that were intended to contain
a defect but were actually correct. Our �xes for these issues were accepted by
the Toyota ITC authors and we used the �xed version of the benchmark in
our experiments. Unfortunately, we do not have access to the MathWorks and
GrammaTech static analysis tools, so in Figure 1 we have reproduced the results
reported in Shiraishi, Mohan, and Marimuthu [14]. Thus, it is possible that the
metrics scored for the other tools may be o� by some amount.

The SV-COMP benchmark suite. This consist of a large number of C programs
used as veri�cation tasks during the International Competition on Software Ver-
i�cation (SV-COMP) [2]. We analyzed 1346 programs classi�ed as correct with
RV-Match and observed that 188 (14%) of the programs exhibited unde�ned be-
havior. Issues ranged from using uninitialized values in expressions, potentially
invalid conversions, incompatible declarations, to more subtle strict aliasing vi-
olations. Our detailed results are available online.12

4 Conclusion

We have presented RV-Match, a semantics-based ISO C11 compliance checker.
It does better than the other tools we considered in terms of its detection rate,
and note that it reports no false positives. Also, we think our experience with
�nding unde�ned behavior even in the presumed-correct programs of the above
benchmarks demonstrates our tool's usefulness.

We do not claim, however, that our approach is simply better than the ap-
proaches represented by the other tools. We see our technology as a complement
to other approaches. Static analysis tools, for example, are more forgiving in
terms of analyzing code that does not even compile, so they can help �nd errors
earlier. They also typically analyze all code in one run of the tool. On the other
hand, our tool, like all tools performing dynamic analysis, generally requires the
program to actually execute in order to detect most errors. Our tool also limits
itself to the code that is actually executed, so it is best combined with existing
testing infrastructure (e.g., by running unit tests with kcc).

11
https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark

12
https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark

https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark
https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark


6

Tool St
at
ic
m
em
or
y

D
yn
am
ic
m
em
or
y

St
ac
k-
re
la
te
d

N
um
er
ic
al

R
es
ou
rc
e
m
an
ag
em
en
t

Po
in
te
r-
re
la
te
d

C
on
cu
rr
en
cy

In
ap
pr
op
ria
te
co
de

M
isc
.

Av
g.
(u
nw
ei
gh
te
d)

Av
g.
(w
ei
gh
te
d)

RV-Match (kcc)
DR 100 94 100 96 93 98 67 0 63 79 82

FPR 100 100 100 100 100 100 100 � 100 100 100

PM 100 97 100 98 96 99 82 0 79 89 91

GrammaTech
CodeSonar

DR 100 89 0 48 61 52 70 46 69 59 68

FPR 100 100 � 100 100 96 77 99 100 97 98

PM 100 94 0 69 78 71 73 67 83 76 82

MathWorks
Bug Finder

DR 97 90 15 41 55 69 0 28 69 52 62

FPR 100 100 85 100 100 100 � 94 100 98 99

PM 98 95 36 64 74 83 0 51 83 71 78

MathWorks
Code Prover

DR 97 92 60 55 20 69 0 1 83 53 53

FPR 100 95 70 99 90 93 � 97 100 94 95

PM 98 93 65 74 42 80 0 10 91 71 71

UBSan + TSan
+ MSan + ASan

(clang)

DR 79 16 95 59 47 58 67 0 37 51 47

FPR 100 95 75 100 96 97 72 � 100 93 95

PM 89 39 84 77 67 75 70 0 61 69 67

Valgrind
+ Helgrind

(gcc)

DR 9 80 70 22 57 60 72 2 29 44 42

FPR 100 95 80 100 100 100 79 100 100 95 97

PM 30 87 75 47 76 77 76 13 53 65 65

CompCert
interpreter

DR 97 29 35 48 32 87 58 17 63 52 51

FPR 82 80 70 79 83 73 42 83 71 74 76

PM 89 48 49 62 52 80 49 38 67 62 63

Frama-C
Value Analysis

DR 82 79 45 79 63 81 7 33 83 61 66

FPR 96 27 65 47 46 40 100 63 49 59 55

PM 89 46 54 61 54 57 26 45 63 60 60

Fig. 1. Comparison of tools on the 1,276 tests of the ITC benchmark. The num-
bers for the GrammaTech and MathWorks tools come from Shiraishi, Mohan, and
Marimuthu [14].

� Highlighting indicates the best score in a category for a particular metric.

� DR, FPR, and PM are, respectively, the detection rate, 100−FPR (the complement
of the false positive rate), and the productivity metric.

� The �nal average is weighted by the number of tests in each category.
� Italics and a dash indicate categories for which a tool has no support.



REFERENCES 7

References

[1] Grigore Ros,u and Traian Florin S, erb nut, . �An Overview of the K Se-
mantic Framework�. In: J. Logic and Algebraic Programming 79.6 (2010),
pp. 397�434. doi: 10.1016/j.jlap.2010.03.012.

[2] Dirk Beyer. �Tools and Algorithms for the Construction and Analysis of
Systems: 22nd International Conference (TACAS'16)�. In: ed. by Mar-
sha Chechik and Jean-François Raskin. 2016. Chap. Reliable and Repro-
ducible Competition Results with BenchExec and Witnesses (Report on
SV-COMP 2016), pp. 887�904. isbn: 9783662496749. doi: 10.1007/978-
3-662-49674-9_55.

[3] Brian Campbell. �An Executable Semantics for CompCert C�. In: Certi-
�ed Programs and Proofs. Vol. 7679. Lecture Notes in Computer Science.
Springer, 2012, pp. 60�75. doi: 10.1007/978-3-642-35308-6_8.

[4] Géraud Canet, Pascal Cuoq, and Benjamin Monate. �A Value Analysis
for C Programs�. In: Conf. on Source Code Analysis and Manipulation
(SCAM'09). IEEE, 2009, pp. 123�124. doi: 10.1109/SCAM.2009.22.

[5] Clang. Clang 3.9 Documentation. url: http://clang.llvm.org/docs/
index.html.

[6] Chucky Ellison. �A Formal Semantics of C with Applications�. PhD thesis.
University of Illinois, July 2012. url: http://hdl.handle.net/2142/
34297.

[7] Chucky Ellison and Grigore Ros,u. �An Executable Formal Semantics of C
with Applications�. In: ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL'12). 2012, pp. 533�544. doi: 10.
1145/2103656.2103719.

[8] GrammaTech. CodeSonar. url: http://grammatech.com/products/
codesonar.

[9] Chris Hathhorn, Chucky Ellison, and Grigore Ros,u. �De�ning the Un-
de�nedness of C�. In: 36th Conf. on Programming Language Design and
Implementation (PLDI'15). 2015.

[10] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:2011: Prog. Lang.�C.
Tech. rep. Intl. Org. for Standardization, 2012.

[11] MathWorks. Polyspace Bug Finder. url: http://www.mathworks.com/
products/polyspace-bug-finder.

[12] MathWorks. Polyspace Code Prover. url: http://www.mathworks.com/
products/polyspace-code-prover.

[13] Nicholas Nethercote and Julian Seward. �Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation�. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI'07). ACM,
2007, pp. 89�100. doi: 10.1145/1250734.1250746.

[14] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. �Test Suites
for Benchmarks of Static Analysis Tools�. In: The 26th IEEE International
Symposium on Software Reliability Engineering (ISSRE'15). Vol. Indus-
trial Track. 2015.

http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-642-35308-6_8
http://dx.doi.org/10.1109/SCAM.2009.22
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://hdl.handle.net/2142/34297
http://hdl.handle.net/2142/34297
http://dx.doi.org/10.1145/2103656.2103719
http://dx.doi.org/10.1145/2103656.2103719
http://grammatech.com/products/codesonar
http://grammatech.com/products/codesonar
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-code-prover
http://www.mathworks.com/products/polyspace-code-prover
http://dx.doi.org/10.1145/1250734.1250746

	RV-Match: Practical Semantics-BasedProgram Analysis

