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Abstract. Coinduction is a major technique employed to prove behav-
ioral properties of systems, such as behavioral equivalence. Its automa-
tion is highly desirable, despite the fact that most behavioral problems
are Π0

2 -complete. Circular coinduction, which is at the core of the CIRC
prover, automates coinduction by systematically deriving new goals and
proving existing ones until, hopefully, all goals are proved. Motivated
by practical examples, circular coinduction and CIRC have been recently
extended with several features, such as special contexts, generalization
and simplification. Unfortunately, none of these extensions eliminates
the need for case analysis and, consequently, there are still many nat-
ural behavioral properties that CIRC cannot prove automatically. This
paper presents an extension of circular coinduction with case analysis
constructs and reasoning, as well as its implementation in CIRC. To uni-
formly prove the soundness of this extension, as well as of past and future
extensions of circular coinduction and CIRC, this paper also proposes a
general correct-extension technique based on equational interpolants.

1 Introduction

Automated theorem proving is a subject of high interest in computer science,
frequently used in industry for hardware and software verification. Coinduction
is a proof technique for properties over infinite data structures (which typically
model behaviors of reactive systems) or for behavioral properties. Since coinduc-
tion is too complex to be automated in its full generality, existing tools attempt
to implement simpler, algorithmic variants which work in many practical cases.
Such a tool is CIRC [7], which implements circular coinduction [4, 10]. Circular
coinduction has been recently extended with special contexts [8], generalization
and simplification rules [6]. Many computer experiments with CIRC led us to the
necessity of introducing and automating case reasoning.

Case analysis is a fundamental algebraic/coalgebraic reasoning technique
whose importance has been early noticed and which has been partly investigated
(see, e.g., [1, 5]). Automating case analysis in its full generality is a difficult task,
which would certainly lead to expensive, non-terminating procedures. In this pa-
per we investigate practical means to incorporate limited but effective support
for automatic case analysis in coinductive provers, such as CIRC.
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We start by discussing two motivating examples that emphasize the impor-
tance of case analysis when proving properties by coinduction.

A stream is an infinite-list data structure a1 :a2 :a3 . . . which can be used to
model infinite behaviors. Considering the stream observers hd and tl, defined by
hd(a : s) = a and tl(a : s) = s, to prove a stream equality s = s′ by coinduction
one needs to find a set of pairs R = {ui ≡ vi | i ∈ I}, which contains the pair
s ≡ s′ and which is a congruence with respect to hd and tl, i.e., u ≡ v ∈ R
implies hd(u) = hd(v) and tl(u) ≡ tl(v) ∈ R [11, 10].

Example 1. We present a situation where case analysis over a term of enumerable
sort is needed. We assume that the bitwise negation operator, not, is defined over
streams of bits using the auxiliary bit-complement operation · . The function f
creates an infinite alternating bit stream, starting with a given first element:

0 = 1 1 = 0 hd(f(a)) = a

hd(not(s)) = hd(s) hd(tl(f(a))) = a

tl(not(s)) = not(tl(s)) tl(tl(f(a))) = f(a)

Above, s is a variable of sort stream and a is a variable of sort bit. Let us
prove f(a) = not(f(a)) by coinduction. Take R = {f(a) ≡ not(f(a)), tl(f(a)) ≡
tl(not(f(a)))}. For the first pair, hd(f(a)) = hd(not(f(a))) holds. This property
can only be checked by making a case analysis over a, which takes values from
{0, 1}. Further, tl(f(a)) ≡ tl(not(f(a))) is reduced to tl(f(a)) ≡ not(tl(f(a))) ∈
R. For the second pair, the reasoning is similar. When checking for congruence
w.r.t. hd , another case analysis over a is needed.

We show in this paper that, when the system knows that certain terms are
of enumerable sort, case analysis can be done automatically. Case analysis based
on enumerated sorts can be seen as a particular case of induction. However, we
prefer to treat it separately because its integration with the circular coinduction
engine is much simpler and, consequently, more efficient.
Example 2. The second example shows how to prove a property over streams of
integers. We define the operator sign which, when provided a stream of integers,
returns another stream with elements from the set {−1, 0, 1}:

hd(sign(s)) =

−1 if hd(s) < 0
0 if hd(s) = 0
1 if hd(s) > 0

tl(sign(s)) = sign(tl(s))

Let us prove that sign(s) = sign(sign(s)). We consider the set R = {sign(s) ≡
sign(sign(s)) | s is a stream}.

Checking that hd(sign(s)) = hd(sign(sign(s))) can only be done by making
a case analysis over hd(s). If, for instance, hd(s) < 0, then hd(sign(s)) = −1.
Therefore hd(sign(s)) < 0, so hd(sign(sign(s))) = −1. Both the left hand side
and the right hand side of the initial equation are reduced to −1 in this case.
The other two cases, hd(s) = 0 and hd(s) > 0, are handled similarly.

In the end, we need to prove that tl(sign(s)) ≡ tl(sign(sign(s))) ∈ R, which
is equivalent to sign(tl(s)) ≡ sign(sign(tl(s))) ∈ R. The property holds because
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tl(s) is a stream s′ and sign(s′) ≡ sign(sign(s′)) ∈ R for any s′. By the coinduc-
tion principle, sign(s) = sign(sign(s)).

To automate case analysis for this situation, we “encapsulate” the definition
of sign in a single syntactic construct, named guarded equation. The tool is able
to extract from such equations the information it needs to perform case analysis.

The general goal of this paper is to present our approach to automating
coinduction with case analysis, and more concretely to present our extension
of CIRC with case analysis statement constructs, to describe our automated
implementation of case analysis, and to prove the soundness of our technique
and implementation. A secondary but equally important goal is to propose a
generic technique to deal with extensions of coinductive proof systems3, based
on what we call equational interpolants. An equational interpolant is a new
sentence of the form 〈e, itp〉, where e is an equation and itp is a set of equations;
each of the equations involved in an interpolant can be conditional and can have
its own quantifiers, which can be different from the others’. The intuition for
〈e, itp〉 is simple: e holds whenever itp holds. In other words, to prove E ` e one
can chose to instead prove E ` itp. This is somewhat similar to the homonimous
notion in Craig interpolation, though the later also imposes restrictions over
the signature of the interpolant; we here only take over the intuition that the
interpolant interposes between the hypotheses and the task to prove.

Equational interpolants can be used in two ways: 1) to extend the ability of
the prover to automatically find new lemmas by preserving the initial entailment
relation, and 2) to extend the initial entailment relation in a consistent way
with the specification enriched with new constructs. All previous extensions of
circular coinduction consist of adding new types of statements together with new
proof rules for them to the proof system. Interestingly, all these can be captured
as special instances of a similar but more general process involving equational
interpolants: the specific statements can be regarded as particular interpolants
and the specific proof rules can be regarded as corresponding instances of general
interpolant rules. Case analysis is no different. We borrow the general definition
of a case statement from [5], but we here capture its semantics as a particular
case of specification with equational interpolants. An immediate advantage of
our new approach is that we can use case analysis in both ways mentioned above.

In short, the solution adopted in CIRC for automated case analysis is:

– enrich the specification syntax with new constructs, named CIRC case state-
ments, for declaring enumerated sorts and guarded equations;

– transform the new constructs above uniformly into annotated case sentences
(which can be regarded as interpolants);

– extend the coinduction proof engine with a new rule, [CaseAn]; and
– redesign the algorithm for automatic detection of special contexts.

Section 2 introduces notions and notations used throughout the paper, and
the derivation rules of CIRC. Section 3 shows how the prover may be extended
3 The technique appears to be more general, but we have not experimented with it

outside our framework discussed here.
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with new rules associated to interpolants. Section 4 presents the formal represen-
tation of case sentences and their corresponding entailment relation. Section 5
introduces the new syntactic constructs for specifying CIRC case statements.
Subsections 5.1 and 5.2 describe how we extend the coinduction engine with a
new rule for case analysis, and, how we improve the algorithm for detecting spe-
cial contexts using case sentences, respectively. Section 5.3 shows how to write
behavioral specifications and prove properties using CIRC.

Acknowledgment. The paper is supported in part by NSF grants CCF-
0448501, CNS-0509321 and CNS-0720512, by NASA contract NNL08AA23C,
CNCSIS grant PN-II-ID-393, and by ANCS 602/12516 (DAK).

2 Behavioral Specification and Circular Coinduction

An algebraic specification is a triple E = (S,Σ,E), where S is a set of sorts, Σ
is a many-sorted signature and E is a set of conditional equations of the form
(∀X) t = t′ if cond , where cond = (

∧
i∈I ui = vi), I is a set of indexes; t, t′, ui,

and vi (i ∈ I) are Σ-terms with variables in X. If I = ∅ then the equation is
unconditional and may be written as (∀X) t = t′.

A Σ-context C is a Σ-term with one occurrence of a distinguished variable
∗:s of sort s. The context is written more explicitly as C[∗:s] instead of just C.
When Σ is understood, a Σ-context may be referred to as a context. If C[∗:s] is a
context of sort s′ and t is a term of sort s, then C[t] is the term of sort s′ obtained
by replacing t for ∗:s in C. Consider an equation e : (∀X) t = t′ if cond . By
C[e] we denote the equation (∀X ∪ Y )C[t] = C[t′] if cond , where Y is the set
of non-star variables occurring in C[∗:s].

A behavioral specification (e.g., [10]) is a triple B = (S, (Σ,∆), E), where S,
Σ and E are the sets composing an algebraic specification E , and ∆ is a set of
Σ-contexts, called derivatives. A derivative in ∆ is written as δ[∗:h]. The sorts
S are split in two classes: hidden sorts, H = {h | δ[∗:h] ∈ ∆}, and visible sorts,
V = S \H. A ∆-context is inductively defined as follows: 1) each δ[∗:h] ∈ ∆ is
a ∆-context; and 2) if C[∗:h′] is a ∆-context and δ[∗:h] is a term of sort h′ from
∆, then C[δ[∗:h]] is a ∆-context. A ∆-experiment is a ∆-context of visible sort.

If δ ∈ ∆ and e is an equation, then δ[e] is called a derivative of e. Given an
entailment relation ` over E , the behavioral entailment relation is defined as fol-
lows: B � e iff E ` C[e] for each ∆-experiment C appropriate for the equation e.
In this case, we say that B behaviorally satisfies e. For the streams defined in Sec-
tion 1, the derivatives are hd [∗:Stream] and tl [∗:Stream]. If B = (S, (Σ,∆), E),
then we often write B ` e for (S,Σ,E) ` e and B ∪F for (S, (Σ,∆), E ∪F ). We
assume that ` satisfies properties like reflexivity, monotonicity, transitivity, and
∆-congruence (see [10] for more details).

Circular coinduction [4, 10] is a coinductive proving technique for behavioral
properties which can be defined as a proof system (see [10]). To prevent the use
of coinductive hypotheses in contextual reasoning, circular coinduction uses a
freezing operator − : s→ Frozen, defined for each sort s; Frozen is a new sort.
A frozen equation is an equation of the form (∀X) t = t′ if cond .
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CIRC implements a circular coinduction engine for the proof system given
in [10] using a set of reduction rules of the form (B,F ,G) ⇒ (B,F ′,G′), where
B represents the behavioral specification, F is the set of coinductive hypotheses
(a set of frozen equations) and G is the current set of goals. An equational goal
(proof obligation) is a conditional equation g of the form (∀X)t = t′ if cond . For
the sake of the presentation, the goals are also represented as frozen equations.

Here is a brief description of the reduction rules underlying CIRC:

[Done]: (B,F , ∅)⇒ ·
Whenever the set of goals is empty, the system terminates with success.
[Reduce]: (B,F ,G ∪ { e })⇒ (B,F ,G) if B ∪ F ` e
If the current goal is a `–consequence of B ∪ F then e is dropped.
[Derive]: (B,F ,G ∪ { e })⇒ (B,F ∪ { e },G ∪ {∆[e] })

if B ∪ F 6` e ∧ e is hidden
When the current goal e is hidden and it is not a `–consequence, it is added
to the specification and its derivatives to the set of goals. ∆[e] denotes the
set { δ[e] | δ ∈ ∆}.

[Generalize]: (B,F ,G ∪ {(∀Y ) θ(t) = θ(t′) })⇒ (B,F ,G ∪ {(∀Y ) t = t′ })
where θ : X → TΣ(Y ) is a substitution.

If the current goal can be generalized after identifying the substitution θ,
then we replace it by its generalized form.
[Fail]: (B,F ,G ∪ { e })⇒ failure if B ∪ F 6` e ∧ e is visible
This rule stops the reduction process with failure whenever the current goal
e is visible and cannot be proved using `.

The entailment relation used in CIRC is �̀� : E �̀� (∀X)t = t′ if
∧
i∈I ui =

vi iff nf(t) = nf(t′), where nf(t), the normal form of t, is computed using an
enhanced version of the initial specification:

– the variables X of the equations are turned into fresh constants;
– the condition equalities ui = vi are added as equations to the specification;
– the equations in the specification are oriented and used as rewrite rules on t.
The rules [Done], [Reduce], and [Derive] implement the proof rules with the

same names given in [10]. The rule [Generalize] is presented in [6]. After a failing
stop signaled by [Fail], further human intervention is required in order to identify
the source of the failure. There are also some additional rules used only for
optimization purposes. An example of such a rule is [Normalize], which computes
the normal form of an equation and can be used, for instance, in combination
with the rule [Derive].

The next result is a variant of the soundness theorem given in [10].

Theorem 1 (Soundness). Let B be a behavioral specification, and ` an en-
tailment relation. If (B,F0 = ∅,G0 = G ) ⇒∗ (B,Fn,Gn = ∅), using [Reduce]
and [Derive], then B � G.

We use this result in the next section. The proof of correctness for the rule
[Generalize] is given in [6]; in the next section we show that it can be regarded
as a particular case of a more general technique.
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3 Extending CIRC with equational interpolants

In this section we present a technique that allows us to easily extend the proof
system with new reduction rules.

Definition 1. 1) If Σ is a signature then a Σ-equational interpolant is a pair
〈e, itp〉, where e is a Σ-equation and itp is a finite set of Σ-equations.
2) A behavioral specification with interpolants B = (S, (Σ,∆), (E, I)) is a be-
havioral specification (S, (Σ,∆), E) together with a set I of interpolants. An
entailment relation for E is extended to (E, I) as follows: in the definition of `
E is replaced with (E, I) and a new rule is added:

(E, I) ` itp
(E, I) ` e

if 〈e, itp〉 ∈ I (1)

3) If ` is an entailment relation for E and I is a set of interpolants, then we
say that I is `–preserving if E ` itp implies E ` e, for each 〈e, itp〉 ∈ I.

Theorem 2. Let B = (S, (Σ,∆), (E, I)) and ` be an entailment relation such
that I is `–preserving. If e is a Σ–equation then (S, (Σ,∆), E) � e if and only
if (S, (Σ,∆), (E, I)) � e.

The CIRC engine associates a rewrite rule of the form:

[itp]: (B,F ,G ∪ e )⇒ (B,F ,G ∪ itp )

with each interpolant 〈e, itp〉 ∈ I. We write [itp] ∈ I in order to denote that the
rule [itp] is associated with an interpolant from I. The following theorem states
that if we enhance the proof system presented in [10] with interpolants, then it
remains sound w.r.t. the new entailment relation.

Theorem 3. Let B be a behavioral specification, ` an entailment relation, and I
a set of interpolants. If (B,F0 = ∅,G0 = G )⇒∗ (B,Fn,Gn = ∅), using [Reduce],
[Derive] and the rules associated to I, then B � G.

A consequence of the proof of Theorem 3 is that the equational interpolants
preserve the circular coinduction principle [10]:

Corollary 1. In the hypothesis of Theorem 3, there is a set of frozen equations
F such that B ∪ F ` ∆[F ] .

Notice that in the conclusion of Theorem 3, � is built on the extended `
(the extension of the initial entailment to specifications with interpolants). If I
is `-preserving, then � is the behavioral extension of the initial `. Therefore
there are two ways of using interpolants within a coinductive proof:
Implicit use. In this case the equational interpolants must be `–preserving and
are used to justify why other rules are sound; the soundness of their use is given
by Theorem 2. An example of implicit using of equational interpolants is that of
the generalization rule [6]. By this rule, a concrete equation u = u′ is replaced
by a more general one t = t′. This means that there is a substitution θ such that
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θ(t) = u and θ(t′) = u′. It is easy to see that [Generalize] for u = u′ and θ is
equivalent with the rule [itp] corresponding to the interpolant 〈u = u′, {t = t′}〉.
Theorem 4 in [6] becomes a direct consequence of Theorem 3.
Explicit use. The specification includes special syntactical constructs for de-
noting equational interpolants. For instance, the equational interpolants may be
explicitly included in a CIRC theory using simplification rules [6] or case sen-
tences (see Section 5). In this case the user is the one who decides whether the
equational interpolants included in the specification are `–preserving or that
they really extend `. In other words, the explicit use of equational interpolants
is a part of the specification design.

4 Specifications with Cases

In this section we recall from [5] the definitions for case sentences and we show
that their semantics can be given by means of equational interpolants.

Let (S,Σ) be an algebraic signature. A Σ-case sentence over the set of vari-
ables Y is a nonempty set {casei | i ∈ I} written as (∀Y ) (

∨
i∈I casei), where

casei = (
∧
j∈Ji

uij = vij), and uij , v
i
j ∈ TΣ(Y ), for each i ∈ I and j ∈ Ji. Hence,

cases and conditions have the same syntax. If θ : Y → TΣ(X) is a substitution,
then θ(casei) denotes the case θ(

∧
j∈Ji

uij = vij) =
∧
j∈Ji

θ(uij) = θ(vij). A speci-
fication with cases is a triple E = (S,Σ, (E, C)), where (S,Σ,E) is an algebraic
specification and C is a set of case sentences.

An entailment relation (S,Σ,E) ` e can be extended to specifications with
cases (S,Σ, (E, C)) ` e by means of equational interpolants. Each specification
with cases (S,Σ, (E, C)) is associated with a specification with equational in-
terpolants (S,Σ, (E, IC)), where IC is the set of pairs 〈e, itpcase,θ(e)〉 with e an
equation (∀X)t = t′ if cond, case a case sentence (∀Y )(

∨
i∈I casei) in C, θ : Y →

TΣ(X) a substitution, and itpcase,θ(e) the set {(∀X)t = t′ if cond ∧θ(casei) | i ∈
I}. In other words, each triple that consists of an equation, a case sentence, and
a substitution uniquely defines an equational interpolant. The second inference
rule from Definition 1 interpreted for the interpolant defined by a case sentence
becomes similar to the one given in [5]:

(∀Y ) (
∨

i∈I
casei) ∈ C,

θ : Y → TΣ(X),
(∀i ∈ I)(S,Σ, (E, C)) ` (∀X) t = t′ if cond ∧ θ(casei)

(S,Σ, (E, C)) ` (∀X) t = t′ if cond
(2)

However, we do not impose a “completeness” condition for case sentences,
which in our terms is equivalent to saying that the interpolants IC are `–
preserving. For instance, we may have a specification as follows:

even(0) = true f(x) = x if even(x)
even(s(0)) = false f(x) = s(x) if not even(x)
even(s(s(x))) = even(x)

If we consider the case sentence c given by (∀x)even(x ) = true ∨ even(x ) =

7
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false and ` denotes the equational deduction, then we have (S,Σ, (E, {c})) `
(∀x )even(f (x )) = true. Obviously, we cannot infer from the specification that
(S,Σ,E) ` (∀x)(even(x ) == true or even(x ) == false) (and hence (S,Σ,E) 6`
(∀x )even(f (x )) = true) because this property is an inductive consequence. There-
fore the rule (2) is a real extension of the initial entailment relation (here the
equational deduction). The explicit use of case sentences in specifications may
directly influence the definition of the entailment relation. In this way the user
has a larger freedom in using case analysis.

As it is noted in [5], the use of case analysis at this level of generality is
very expensive and finding an appropriate substitution θ is a difficult task which
cannot be easily automatized. In [4] the following method is proposed: each case
sentence comes with a pattern, usually denoted by p, which is just a Σ-term
with variables. The case analysis rule is enabled only if the pattern p matches a
subterm of t or t′, and then the substitution also comes for free. The user must
specify the pair (pattern, case sentence) to be used for a particular task.

We want to exploit the same idea but in an automated way. For this, we
introduce annotated case sentences, which are pairs of the form (p, {casei | i ∈
I}). Here, p ∈ TΣ(Y ) is the pattern and (∀Y ) (

∨
i∈I casei) is a case sentence.

As we said above, the case analysis is a proper component of the specification.
Therefore the solution we propose here is to include in the specification language
special syntactical constructs from which annotated case sentences can be au-
tomatically computed. Knowing the set of annotated case sentences included in
the specification, a prover can supervise the case analysis making use of proof
tactics. In the next section we introduce three such syntactical constructs.

5 Implementation in CIRC

CIRC theories extend the syntax of Full-Maude theories by allowing the user to
specify derivatives [7], special contexts [8] and simplification rules [6]. Here we
present how one can use new syntactic constructs in CIRC theories that enable
the prover to automatically use case analysis. These new syntactic constructs are
named CIRC case statements. We introduce three types of CIRC case statements:
enumerated sorts, guarded equations and annotated case sentences.

Enumerated sorts are declared using the syntax “enum s is ct1 . . . ctn .”,
where s is the name of the sort and cti, i = 1..n, are the constants that define it.
The guarded equations syntax is: “geq t = t1 if case1 [] . . . tn if casen [] .”,
where t and ti, i = 1..n are TΣ(Y )-terms and casei, i = 1..n are disjoint condi-
tions. The notation for guarded equations is inspired from Dijkstra’s command
language [3], except that the syntax of the guards is inspired from the Maude
convention for the conditional equations. Annotated case sentences are directly
declared using the syntax “cases pattern = p if case1 \/ . . . \/ casen .”.

The syntactic constructs presented above are not disjoint. For instance, the
enumerated sorts and the guarded equations can be seen as particular instances
of the annotated case sentence (see below). We found these syntactic constructs
adequate in most of the case studies we considered. We believe they are more
intuitive and familiar to a programmer than a syntactic construct that allows

8
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the direct definition of an annotated case sentence. Moreover, the solution we
present here can easily be extended with other syntactic constructs if they are
considered to be useful in practice.

A CIRC specification with cases is a triple E = ((S, Se), Σ, (E,Eg, C)), where
S,Σ,E have similar meanings to those from the equational many sorted specifi-
cations, Se is a set of enumerated sorts, Eg is a set of guarded equations, and C
are the annotated case sentences. We associate each E = ((S, Se), Σ, (E,Eg, C))
with a “compiled” specification with cases Ẽ = (S̃, Σ̃, (Ẽ, C̃)), where:

– S̃ is S together with the names of the enumerated sorts;
– Σ̃ is Σ together with the constants of the enumerated sorts;
– Ẽ is E together with the conditional equations (∀Y )t = ti if casei, i = 1..n,

for each guarded equation in Eg;
– C̃ is the set of annotated case sentences obtained in the following manner:
• any enumerated sort “enum s is ct1 . . . ctn .” defines the annotated case

sentence (∀{y}) (y, y = ct1 ∨ · · · ∨ y = ctn), where y is of sort s;
• any guarded equation “geq t = t1 if case1 [] . . . tn if casen [] .”

defines the annotated case sentence (∀Y ) (t, case1 ∨ . . . ∨ casen), where
Y is the set of the variables occurring in the guarded equation;

• any sentence “cases pattern = p if case1 \/ . . . \/ casen .” defines
the annotated sentence (∀Y ) (p, case1 ∨ . . . ∨ casen), where Y is the set
of the variables occurring in the pattern p.

Example 3. For the first example presented in Section 1 we have one enumerated
sort in Se: enum Bit is 0 1 . Ẽ has the following components:

– S̃ = S ∪ {Bit};
– Ẽ = E;
– Σ̃ = Σ ∪ {op 0 : -> Bit . , op 1 : -> Bit .};
– C̃ = {(B, B = 0 ∨ B = 1)}, where B is a variable of sort Bit.

Example 4. For the second example, we have one guarded equation in Eg:
geq hd(sign(S)) =

-1 if hd(S) < 0 = true []
0 if hd(S) = 0 []
1 if hd(S) > 0 = true [] .,

where S is a variable of sort Stream . Ẽ is given by:
– S̃ = S; Σ̃ = Σ;
– Ẽ = E ∪ { ceq hd(sign(S)) = -1 if hd(S) < 0 = true . ,

ceq hd(sign(S)) = 0 if hd(S) = 0 . ,
ceq hd(sign(S)) = 1 if hd(S) > 0 = true . };

– C̃ = {(hd(sign(S)), hd(S) < 0 = true ∨ hd(S) = 0 ∨ hd(S) > 0 = true)}.

Instead of using guarded equations, one could also declare the conditional equa-
tions from Ẽ presented above and specify the case sentence by: “cases pattern =
hd(sign(S)) if hd(S) < 0 = true \/ hd(S) = 0 \/ hd(S) > 0 = true
.”. In this way the user has the freedom to choose the syntax which describes
his/her system in the best way.

9
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It is worth noting that if a specification with cases is used, then the entail-
ment relation is used during the proving process is that given by the associated
equational interpolants (see Section 4).

5.1 Extending the circular coinduction engine

In this section we describe how we enhanced the CIRC engine with automatic
case analysis, and prove the correctness of our extension. We here only consider
a behavioral specification with general cases, B̃ = (S̃, (Σ̃,∆), (Ẽ, C̃)); other spe-
cialized case statements can be desugared into general ones, as explained above.

We extend the coinduction proving engine with the reduction rule [CaseAn].
This rule replaces a conditional equation t = t′ if cond by a set of equations
{t = t′ if cond ∧ θ(casei) | i ∈ I} if the case sentence (∀Y )(p,

∨
i∈Icasei) is in C̃

and θ(p) is a subterm of t or t′. [CaseAn] is therefore an instance of the rule [itp]
corresponding to 〈t = t′ if cond , {t = t′ if cond ∧ θ(casei) | i ∈ I}〉:

[CaseAn] :(B̃,F ,G ∪ { t = t′ if cond})⇒

(B̃,F ,G ∪ { t = t′ if cond ∧ θ(casei) | i ∈ I}

if (∀Y )(p,
∨

i∈I
casei) is in C̃ and θ(p) is a subterm of t or t′

where F is the set of frozen axions and G ∪ { t = t′ if cond} is the current set
of goals. By Theorem 3, the extended engine is sound because [CaseAn] is a rule
associated to the interpolant defined by (2).

One of the challenges we encountered was to find the best candidate for case
analysis when more than one substitution could be applied. In our experiments,
the strategy that gave the best results was to identify a subterm of either t or
t′ with the smallest height possible where at least one of the patterns p from C̃
could provide a substitution.

5.2 Computing Special Contexts using Cases

In this subsection we give an intuition on what special contexts are with a few ex-
amples, and present the new algorithm for detecting special contexts using case
analysis, as well as some required notions, and the result expressing the correct-
ness of the algorithm. The formal background for special contexts is presented
more in detail in [8].

We have seen in Section 2 that the frozen hypotheses cannot be used in
contextual reasoning. However, there are contexts under which it is “safe” to use
the frozen hypotheses. In [8] it is defined such a class of contexts, called special
contexts. A context γ[∗:h] is called special if, by definition, for any experiment
C for γ there is some term t such that B ` C[γ[∗:h]] = t and each occurrence of
∗:h in t appears in a subterm which is an experiment of depth smaller than or
equal to that of C.

Example 5. Let us consider the operation f over streams of bits defined as:
f(0 : s) = 1 : f(s), f(1 : s) = 0 : 0 : f(f(f(s))). By making a case analysis we
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deduce that f(∗:Stream) is a special context (see below). Knowing this, CIRC is
able to automatically prove that f(0∞) = 1∞ and f(1∞) = 0∞.

Not all contexts are special. Consider, for instance, the operation odd defined
by odd(a : b : s) = a : odd(s). Let s and t be specified by hd(s) = hd(t), tl(s) =
odd(s) and tl(tl(t)) = odd(t). If we wrongly assume that odd(∗:Stream) is special
then we manage to prove that odd(t) = s, which is unsound.

CIRC has been able so far to automatically detect special contexts deriv-
ing from the operators defined using unconditional equations. Now the prover
may detect contexts that derive from operators defined using specifications with
cases (and implicitly, conditional equations). For instance, with the enhanced al-
gorithm, CIRC detects that sign(∗:Stream), introduced in the second motivating
example, and f(∗:Stream), defined in Example 5, are special contexts.

We next present in detail the algorithm computing special contexts for spec-
ifications with case sentences and its correctness. In order to fix the terms of the
discussion, for the rest of this subsection we consider the following items:

– B = ((S, Se), (Σ,∆), (E,Eg, C)), a fixed CIRC confluent and terminating
behavioral specification with cases;

– B̃ = (S̃, (Σ̃,∆), (Ẽ, C̃)), the compiled behavioral specification with cases;
– any derivative δ ∈ ∆ is (S̃, Σ̃, Ẽ)-irreducible;
– Ctx (Σ), the set of all Σ-contexts
– Σhidden ⊆ Σ̃, the set of operations with hidden result and at least one hidden

argument;
– Ctx◦(Σhidden), the set of contexts f(x1, . . . , xn) with f ∈ Σhidden , xi = ∗

for exactly one hidden argument i and for j 6= i, xj are variables;
– for a ∆-context C, the hidden depth of C is defined by |C|• = |C| if C is

hidden, and |C|• = |C| − 1 if C is visible;
– a fixed set Γ ⊆ Ctx◦(Σhidden)
– a generalized constant is an operation whose arguments are of visible sort

The problem of deciding if a given context is special for a given specification
is Π0

2 -complete. This complexity is due to the facts that B ` C[γ[∗:h]] = t must
be tested for all ∆-experiments C and that testing C[γ[∗:h]] = t with t satisfying
the property from the definition of the special contexts is recursive enumerable.
In practice, t is the normal form of C[γ[∗:h]]. Moreover, the set of candidates for
special contexts is also infinite. So, the best we can do is to find an algorithm
which tests a property similar to the one above for a finite set of candidates and a
finite set of ∆-contexts. Regarding the candidates, we are looking for a maximal
set of minimal depth special contexts which is closed under composition: if γ1

and γ2 are special and γ1[γ2] is defined, then γ1[γ2] is special. The minimal set
of ∆-context which must be tested is ∆ itself. Therefore, as described in [8], we
try to find a property Comp(C, t) and a set Γ ⊆ Ctx◦(Σhidden) such that the
property Special(Γ ), given by:

Special(Γ ) def= (∀γ ∈ Γ )(∀δ ∈ ∆)Comp(δ, γ)

implies that each Γ -context is special. If we have an algorithm for computing the
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predicate Comp(C, t), then the searching for a suitable Γ requires the evaluation
of the predicate for a small set of pairs (C, t).

First we present an axiomatic definition for the predicate Comp.

Definition 2. A ∆-compositional structure for Γ is a pair (T ,Comp), where
T is a set of terms and Comp(C, t) is a predicate defined over ∆-contexts C and
terms t ∈ T , which together satisfy the following conditions:

1. Ctx (Γ ) ⊆ T
2. Comp(∗, t) = Comp(t, ∗) = true;
3. let C1 and C2 be two ∆-contexts such that C1[C2] is defined; if Comp(C2, t2)

and (∀t ∈ T )Comp(C1, t), then Comp(C1[C2], t2);
4. let γ1 and γ2 be two Γ -contexts such that γ1[γ2] is defined; if Comp(C, γ1) and

((∀D ∈ Ctx (∆)) |D|• ≤ |C|• implies Comp(D, γ2), then Comp(C, γ1[γ2]).

The first main result of this section shows that the property Special(Γ ) can
be extended to Γ -contexts and ∆-contexts for the case of a ∆-compositional
structure.

Theorem 4. Let (T ,Comp) a ∆-compositional structure for Γ . If Special(Γ ),
then (∀γ ∈ Ctx (Γ ))(∀C ∈ Ctx (∆))Comp(C, γ).

A particular structure (T ,Comp) for specifications without cases is given in
[8]. Here we extend that structure to specifications with cases. The definition
for T remains unchanged, namely that of (k, Γ )-composite terms; we recall it in
order to make the paper self-contained.

Definition 3. Let k be an integer number ≥ −1. A (k, Γ )-composite is defined
as follows:
1. any non-star variable and any constant is a (−1, Γ )-composite;
2. any ∆-context C is a (|C|•, Γ )-composite;
3. if f : v1 . . . vn → v is a data operator or a generalized constant and ti is a

(ki, Γ )-composite for i = 1, . . . , n, then f(t1, . . . , tn) is a (k, Γ )-composite,
where k = max{k1, . . . , kn};

4. if γ ∈ Γ and t is a (k, Γ )-composite, then γ[t] is a (k, Γ )-composite;
5. if C is a ∆-context, t a (k, Γ )-composite with k = −1 or t of the form

g(t1, . . . , tn) with g generalized constant, then C[t] is a (k, Γ )-composite.

The new definition of the predicate Comp is based on the notion of normal
form of a term computed in the presence of cases.

We first define the operation Eqn, which transforms the provided conjunction
of cases into a set of equations in the following manner:
Eqn(

∧
i∈I ui = vi) =

⋃
i∈I Eqn(ui = vi)

Eqn(ui = vi) =

{
{ui = vi}, the set variables from ui is included in that of vi
{vi = ui}, otherwise

If C̃ is a set of annotated case sentences, then the C̃-normal form of a term t
is the set nf eE,eC(t) of pairs 〈t′, case〉 satisfying: t′ = nf eE∪Eqn(case) and there is no
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pattern p in C̃ which is an instance of a subterm of t′. The component case is a
conjunction of cases in C̃ used in the rewriting obtaining the irreducible term t′.
An algorithm computing nf eE,eC is:

nf eE,eC ← 〈nf eE(C[t]), nil〉
while (∃〈t′, case〉 ∈ nf eE,eC)(∃θ : Y → TΣ(X))(∃(p,

∨
i∈I casei) ∈ C̃)

such that θ(p) is a subterm of t′ do
nf eE,eC ← nf eE,eC − {〈t′, case〉}

∪ {〈nf eE∪Eqn(case)∪Eqn(θ(casei))
(t′), case ∧ θ(casei)〉 | i ∈ I}

Let terms(nf eE,eC(t)) denote the set {t′ | 〈t′, case〉 ∈ nf eE,eC(t)}. We can define
now the predicate Comp:

Comp(C, t) def= (∀t′ ∈ terms(nf eE,eC(C[t]))) t′ is a (k′, Γ )-composite∧k′ ≤ k+ |C|•

where t is a (k, Γ )-composite, and C is a ∆-context. Since any Γ -context is a
(0, Γ )-composite, C[∗] = C and ∗[t] = t.

Theorem 5. Let B = (S, (Σ,∆), (E, C)) be a behavioral specification with cases
and Γ a subset of Ctx◦(Σhidden) such that Special(Γ ) holds. Then any Γ -context
γ is special.

Example 6. Consider the operation f defined in Example 5. The normal forms of
hd(f(s)) and tl(f(s)) are {〈1, hd(s) = 0〉, 〈0, hd(s) = 1〉} and {〈f(tl(s)), hd(s) =
0〉, 〈0 : f3(tl(s)), hd(s) = 1〉} respectively. If Γ = {f(∗:Stream)}, then it is easy
to see that Special(Γ ) holds and therefore f(∗:Stream) is a special context.

Theorem 5 is the foundation for an algorithm computing a set of context
Γ ⊆ Ctx◦(Σhidden), which is a basis for special contexts. The description of the
algorithm is the same as the one presented in [8], except that the call Comp(δ, γ)
requires the computation of the normal forms with cases for δ[γ], as presented
above. Therefore the theorem above also ensures the correctness of both versions
of the algorithm.

5.3 CIRC with case analysis at work

In this section we present how CIRC theories are specified and a few com-
mands in order to automatically prove properties using case analysis. The reader
may use the web interface at http://fsl.cs.uiuc.edu/index.php/Special:
CircOnline in order to test the examples.

Let us use CIRC in order to prove that by merging two infinite sorted streams
of natural numbers we obtain a sorted stream. This is not a trivial example; even
the proof by hand requires a significant effort. The sorted property can be de-
fined by isSorted(S ) = hd(S ) < hd(tl(S ))∧isSorted(tl(S )). The merge operation
is defined by hd(merge(S ,S ′)) = hd(S ) if hd(S ) < hd(S ′), hd(merge(S ,S ′)) =
hd(S ′) if hd(S ) ≥ hd(S ′), tl(merge(S ,S ′)) = merge(tl(S ),S ′) if hd(S ) < hd(S ′),
tl(merge(S ,S ′)) = merge(S , tl(S ′)) if hd(S ) ≥ hd(S ′) and can be specified
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by two guarded equations. We further consider another operation, toBits that
transforms the provided stream of natural numbers into a stream of bits in
this manner: hd(toBits(S )) = 1 if hd(S ) < hd(tl(S )), hd(toBits(S )) = 0 if
hd(S ) ≥ hd(tl(S )), tl(toBits(S )) = toBits(tl(S)). The operation above can also
be specified using guarded equations or two conditional equations together with
a case sentence for the pattern hd(S). If ones denotes the stream of 1’s, then the
property above is equivalent to:

toBits(merge(S1:Stream,S2:Stream)) = ones if
isSorted(S1:Stream) = true ∧ isSorted(S2:Stream) = true

Even though merge is defined using guarded equations, the algorithm suc-
ceeds to find that merge(∗:Stream, S:Stream) and merge(S:Stream, ∗:Stream) are
special contexts. The context toBits(∗:Stream) is not found because the defini-
tion of toBits does not fulfill the criteria checked by the algorithm (the definition
of hd(toBits(S)) depends on a bigger experiment, hd(tl(S))); this can be seen as
a limitation of the algorithm. Recall that the problem of special contexts is
Π0

2 -complete, so there is no an algorithm able to always find all special contexts.
We present the dialog needed to prove that by merging two sorted streams

we obtain a sorted stream. After the tool and specification are loaded, three
commands are need to prove this property:

– (initialize .), which sets the initial state of the prover;
– add the property as an initial goal:

(add cgoal toBits(merge(S1:Stream,S2:Stream)) = ones
if isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true .)

– (coinduction .), which launches the circular coinduction engine.

Here is the full dialog with CIRC, where we can see that merge defines indeed
special contexts.

> (initialize .)
Initializing ...
The special contexts are:
merge(*:Stream,V#2:Stream)
merge(V#1:Stream,*:Stream)

> (add cgoal toBits(merge(S1:Stream,S2:Stream)) = ones
if isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true .)

> (coinduction .)
Proof succeeded.
Number of derived goals: 10
Number of proving steps performed: 39
Maximum number of proving steps is set to: 256

Proved properties:
toBits(merge(S1:Stream,S2:Stream)) = ones if
isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true

The full proof for our property, given as inference rules, can be checked using
the command (show proof .). We present one of the rules in which we emphasize
the application of [CaseAn]:

14

ICFEM'10, LNCS 6447, pp 220-236.  2010



1. |||- [* toBits(tl(merge(S1:Stream,S2:Stream))) *] = [* ones *] if
isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true /\
hd(S1:Stream)< hd(S2:Stream) = true

2. |||- [* toBits(tl(merge(S1:Stream,S2:Stream))) *] = [* ones *] if
isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true /\
hd(S1:Stream)<= hd(S2:Stream) = false

---------------------------------------------------------- [Cases]
|||- [* toBits(tl(merge(S1:Stream,S2:Stream))) *] = [* ones *] if

isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true

Another challenging example is inspired from [9] and consists of proving that
Rev3(N)(Rev3(N)(S)) = S, where

Rev3(N)(S) = Z3(T3(N)(S), T3(N − 1)(S), T3(N − 2)(S)
hd(Z3(S1, S2, S3)) = hd(S1) tl(Z3(S1, S2, S3)) = Z3(S2, S3, tl(S1))

hd(T3(N)(S)) = hd(tln mod 3(S)) tl(T3(N)(S)) = T3(N)(tl3(S))

with N ranging over natural numbers and S over streams. Even if the definition
of hd(T3(N)(S)) is given by cases (because of n mod 3), is not recommended to
use guarded equations for specifying it because it is possible to obtain patterns
of the form hd(T3(N − 1)(S)), which forces a case analysis on ”(N − 1) mod 3”;
now we have to include in the specification how to compute ”(N − 1) mod 3”
when we know ”N mod 3” and how to compute ”N mod 3” when we know ”(N−
1) mod 3” and this cannot be done using only rewriting (it is a source of non-
termination). Therefore we specified it with conditional equations and we added
the case sentence

cases pattern = N if N mod 3 = 0 ∨N mod 3 = 1 ∨N mod 3 = 2 .
Even so the proof is long and complex: 12 case analyses and 14 new lemmas
automatically discovered.

6 Conclusions

We presented a simple and efficient solution for automating coinductive reason-
ing with case analysis. The starting point was the extension of the specifications
and of the entailment relation with case sentences given in [5]. A novelty of the
approach presented here consists of giving semantics to case sentences by means
of equational interpolants, a general technique for extending coinductive provers
like CIRC introduced also here. The soundness of the use of equational inter-
polants in the coinductive proving process is shown and hence the soundness of
the reasoning with cases is obtained as a consequence.

The basic idea is to include special syntactical constructs in the specification
language. These special constructs are then processed in order to exdd tract
annotated case sentences. A prover can supervise the application of the case
analysis by means of proof tactics.

Using the concept of “normal form with cases”, we were able to write algo-
rithms and heuristics helping the prover. In particular, we showed that extending
the algorithm computing the special contexts with case analysis, the prover was
able to find a larger class of special contexts. Consequently, a larger class of
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properties can be proved. The simpler the predicate Comp is, the faster the al-
gorithm for detecting special contexts becomes. Therefore, as future work, there
is room and motivation for improving the form of the predicate.

Case analysis based on three syntactic constructs, enumerated sorts, guarded
equations and annotated case sentences, has been implemented in CIRC and
experiments showed that the new prover is able to handle a large class of practical
examples.

A similar approach is given in [2], where the induction and a contextual
simplification technique are used to prove behavioral (observational) properties.
That approach also deals with case analysis and critical contexts (which are
different from special contexts). Circular coinduction is more flexible because
it is parametric in the basic entailment relation, and consequently can prove
more coinductive properties. On the other hand, we currently do not disproof
conjectures (CIRC only reports failure to find a proof under specified constraints,
but not that the property is false).
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4. Joseph Goguen, Kai Lin, and Grigore Roşu. Circular coinductive rewriting. In ASE
’00: Proceedings of the 15th IEEE international conference on Automated software
engineering, pages 123–132, Washington, DC, USA, 2000. IEEE.

5. Joseph Goguen, Kai Lin, and Grigore Roşu. Conditional circular coinductive
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8. Dorel Lucanu and Grigore Roşu. Circular coinduction with special contexts. In
Karin Breitman and Ana Cavalcanti, editors, ICFEM, volume 5885 of LNCS, pages
639–659. Springer, 2009.

9. M. Niqui and J.J.M.M. Rutten. Sampling, splitting and merging in coin-
ductive stream calculus. In Mathematics of Program Construction 2010
(MPC’10), 2010. To appear. See CWI Technical report SEN-E0904, 2009,
http://homepages.cwi.nl/˜janr/papers/.
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