
Composing Hidden Information

Modules over Inclusive Institutions

Joseph Goguen
Department of Computer Science & Engineering

University of California at San Diego
E-mail: goguen@cs.ucsd.edu

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign
E-mail: grosu@cs.uiuc.edu

Abstract: This paper studies the composition of modules that can
hide information, over a very general class of logical systems called
inclusive institutions. Two semantics are given for composition of
such modules using five familiar operations, and a property called
conservativity is shown necessary and sufficient for these semantics
to agree. The first semantics extracts the visible properties of the
result of composing the visible and hidden parts of modules, while
the second uses only the visible properties of the components; the
semantics agree when the visible consequences of hidden information
are enough to determine the result of the composition. A number of
“laws of software composition” are proved relating the composition
operations. Inclusive institutions simplify many proofs.

1 Introduction

Modularization limits the complexity of large systems by composing them from
parts; this eases both initial construction and later modification, and also facil-
itates reuse. Parameterized programming [10, 11] significantly further enhances
flexibility and reusability, by providing parameterized modules along with views,
also called fitting morphisms, which say how to fit the syntax of a formal param-
eter to an actual parameter in a convenient, flexible way, including defaults when
there is only one choice; moreover, views can be parameterized, dependent types
are supported through formal parameters that are parameterized by previously
introduced formal parameters, and module expressions compose modules into
systems. The module composition operations in this paper are for aggregating,

1

renaming, enriching, hiding, and instantiating parameterized modules. Module
expressions are terms built from basic modules, parameterized modules, and
views, using these five operations. We believe views are key to realizing the full
practical potential of modularization. Note that the results of this paper are by
no means limited to specification languages, let alone equational languages, and
indeed, a slightly more concrete version has been used to greatly extend Ada
generics [26, 16].

There are several good reasons to hide information in modules. First, as
emphasized by Parnas [21], information hiding supports data abstraction, and
more generally, allows replacing one module by another having the same se-
mantics for its visible signature, but a different implementation, without having
to worry that other modules might have used details of the implementation.
Second, a classic result of Bergstra and Tucker [2] says that every computable
algebra has a finite equational specification with some hidden operations, and
examples show that the hidden operations are sometimes necessary (see [19]
for a survey of this area). Third, [14] shows that every [finite] behavioral (also
called observational, or hidden) algebraic specification [13, 24, 14, 22] has an
equivalent [finite] information hiding specification with the same models, but
using ordinary satisfaction.

Category theory and institutions are heavily used in this paper. Institutions
(see Section 2.3) formalize the informal notion of logical system, with a balanced
interplay of syntax and semantics, to support research that is independent of
the underlying logic. An institution consists of: a category of signatures; a
functor from signatures Σ to classes of Σ-sentences; a contravariant functor from
signatures Σ to categories of Σ-models; and for every signature Σ, a relation of
satisfaction |=Σ between Σ-sentences and Σ-models, such that M ′ |=Σ′ ϕ(f) iff
ϕ(M ′) |=Σ f , for every signature morphism ϕ : Σ → Σ′, every Σ′-model M ′,
and every Σ-sentence f . Given a class A of Σ-sentences, let A∗ denote the class
of Σ-models that satisfy every sentence in A, and given a class V of Σ-models,
let V ∗ denote the class of Σ-sentences that are satisfied by all models in V .
Modularization has been one of the most important applications of institutions;
other topics include borrowing of logics, and translations between logics. Many
logical systems have been shown to be institutions, and most recent algebraic
specification languages have an institution-based semantics. A recent summary
of results appears in [15].

Defining and proving properties of module systems can be greatly simpli-
fied when the institution involved is inclusive, in the sense that its category
of signatures satisfies certain natural conditions that axiomatize the notion of
inclusion. (Our inclusive institutions are simpler than the original ones in [9]
because we use the inclusive categories of [15]; see Section 2.2.) It seems that
all institutions proposed for specification or programming are inclusive. Several
properties of inclusive institutions are proved, including a generalization of the
Closure Lemma of classical institution theory.

Let I be a fixed inclusive institution. In this paper, we let the term module
refer to a triple (Φ,Σ, A) where Φ is a subsignature of Σ, and A is a set of Σ-
sentences, all from I. Σ is called the working signature, and it includes both the

2

public and the private operations of the module; Φ is called the visible signature,
which defines the public interface; elements of A are called axioms. The visible
theorems of M = (Φ,Σ, A) are the Φ-sentences in the “double star closure” A∗∗

of A, also denoted Vth(M). A model of M is a Φ-model of its visible theorems.
A transparent module has Φ = Σ; these correspond to traditional specifications
without information hiding.

In the first semantics, the meaning of a module expression is the visible
theory of the result of evaluating the module expression compositionally (i.e.,
recursively) over the five operations. For example, ifM = (Φ,Σ, A) then [[M]]1 =
Vth(M), and given also M ′ = (Φ′,Σ′, A′), then [[M +M ′]]1 = Vth(M + M ′),
where M + M ′ is defined to be (Φ ∪ Φ′,Σ ∪ Σ′, A ∪ A′). This semantics is the
same as that in [16], except that signature union comes from inclusive categories
rather than the extended set theory used in [16].

In our second semantics, from [23], meaning is directly compositional over
visible theories. As before, [[M]]2 = Vth(M), but now [[M +M ′]]2 = ([[M]]2 ∪
[[M ′]]2)∗∗, where this closure is relative to the signature Φ ∪ Φ′. Meanings for
the other module composition operations are similar, and do not use the hidden
parts of component modules.

The first semantics is more comprehensive because it uses more informa-
tion; it is a non-trivial theorem that the two semantics agree when all modules
involved are conservative, where a module (Φ,Σ, A) is conservative iff every Φ-
model of its visible theorems can be extended to a Σ-model of A. Transparent
modules are obviously conservative, but in general, testing for conservativity
depends on the institution involved, and can be difficult. The modules that
arise in practice for equational institutions are conservative. One approach for
showing conservativity in equational institutions is to show that every Φ-algebra
can be enriched with private carriers and operations, such that it satisfies the
axioms. Since each semantics gives a theory, each has an associated class of
models, and these two classes also agree under conservativity. An example in
the equational institution showing that conservativity is necessary as well as
sufficient is given at the end of Section 5.1.

Other results in this paper include a number of identities that hold among the
meanings of simple module expressions. These can be considered “basic laws of
software engineering” (though they are mostly very simple); such laws were used
in the lileanna system to simplify module expressions before handing them
over to the backend of the Ada compiler for optimization [26, 16]. For example,
if we write E ≡ E′ to indicate that [[E]]1 = [[E′]]1 for module expressions E,E′,
then we have E + E′ ≡ E′ + E, and also E + (E′ + E′′) ≡ (E + E′) + E′′.
Of course, these are only the simplest examples; the most interesting identities
involve the instantiation of parameterized modules.

1.1 Related Work

We discuss only work that directly influenced this paper; readers wanting more
background and historical information should consult references in the cited
papers. The most influential were [16] and [9], by Goguen and Tracz, and

3

by Diaconescu, Goguen and Stefaneas, respectively. The first considers mod-
ules with hidden parts, using a less abstract version of institutions, in which
signatures are structured set/tuple hierarchies, so that inclusions are directly
available and need not be axiomatized. This framework is less general than that
of the present paper1, but it has the advantage of making the techniques for im-
plementing our module system more explicit. On the other hand, proofs in this
framework are less elegant, and more difficult to discover. lileanna [26, 16]
actually implements parameterized programming with modules that can hide
information, using Ada as its programming languages and Anna as its specifica-
tion language. Modularization over inclusive institutions in studied in [9], but
its modules do not hide information, and its notion of inclusion system is less
general then the present one. We paper seems a natural next step in research on
parameterized programming, as begun in [10, 11], inspired by the Clear module
system [3], and further developed in [16] and [9].

Bergstra, Heering and Klint [1] axiomatize several operations on modules and
prove certain properties, including a normalization theorem; unfortunately, first
order logic is built into their formalism for sentences, which limits the application
of their results. When our institution is first order logic, then results in this
paper prove from more basic principles all of the axioms in [1] that concern our
operations.

Inclusive institutions seem an attractive alternative to Mossakowski’s “insti-
tutions with symbols” [20], which assign sets of symbols to signatures, because
inclusions automatically keep track of shared symbols in subsignatures, while
allowing the usual operations on modules to be easily and naturally expressed.
Mossakowski’s approach was developed for the semantics of the European casl
specification language [4].

Diaconescu [7] studies modularization for category-based equational logic
(CBEL). which is limited to equational-like logics, and does not consider in-
formation hiding. We believe that under some mild conditions, CBEL is an
inclusive institution, so that results in this paper would apply to it.

Section 2 gives notation and concepts from category theory, inclusive cate-
gories and institutions. Section 3 presents inclusive institutions, and Section 4
introduces modules. Section 5 is the main section of the paper, giving the five
module operations with their semantics and the basic laws. Many of the proofs
omitted here can be found in [23]; the proof of Theorem 16 is included because
of its importance and elegance.

2 Preliminaries

Categories, inclusions and institutions are heavily used in this paper, and this
section briefly introduces our notation and terminology for these concepts.

1Although it seems to include all the standard examples.

4

2.1 Category Theory

The reader is assumed to be familiar with basics of category theory, including
limits, colimits, functors, and adjoints [18, 17]. |C| denotes the class of objects
of a category C, and C(A,B) denotes the set of morphisms in C from object A to
object B. The composition of morphisms is written in diagrammatic order, that
is, f ; g : A→ C is the composition of f : A→ B with g : B → C. Cat denotes
the category with small categories as objects and functors as morphisms. A
family of morphisms {ei : Ai → B | i ∈ I} is epimorphic iff for any two
morphisms f, g : B → C, if ei; f = ei; g for each i ∈ I then f = g.

A functor F : C → D is full (faithful) if its restrictions F : C(A,B) →
D(F(A),F(B)) are surjective (injective) for all objects A,B in C. F is dense
provided that for each D ∈ |D| there is some C ∈ |C| such that F(C) is iso-
morphic to D. A full subcategory is a subcategory such that the inclusion
functor is full. A category is skeletal iff isomorphic objects are identical. A
skeleton of a category C is a maximal full skeletal subcategory of C; it can be
shown that any two skeletons of a category are isomorphic in Cat. A category
C is equivalent to a category D iff C and D have isomorphic skeletons. It is
known [18] that two categories C and D are equivalent iff there exists a functor
F : C → D which is full, faithful and dense.

Pullbacks in Cat have the following special property: if a pair of functors
F1 : P → C1 and F2 : P → C2 is a pullback in Cat of G1 : C1 → D and
G2 : C2 → D, and if C1 ∈ |C1| and C2 ∈ |C2| are such that G1(C1) = G2(C2),
then there is a unique object P in P such that F1(P) = C1 and F2(P) = C2.

2.2 Inclusive Categories

Many categories have certain morphisms which are intuitively inclusions. The
problem of characterizing such morphisms was raised in [12], first solved in [9]
with the notion of inclusion system, and further developed and simplified in
[5, 6, 23, 15]. The simplest version occurs in [15]: An inclusive category C
is a category having a broad subcategory2 I which is a poclass (i.e., its objects
are a class such that I(A,B) has at most one element, and if both I(A,B) and
I(B,A) are non-empty, then A = B) with finite products and coproducts, called
intersection (denoted ∩) and union (denoted ∪ or possibly +), respectively,
such that for every pair A,B of objects, A ∪ B is a pushout of A ∩ B in C;
morphisms in I are written ↪→ and called inclusions. In particular, C and
I have an initial object, which we denote ∅, and A1, ..., An are disjoint iff
Ai ∩ Aj = ∅ for i 6= j. C is distributive iff I is distributive, in the sense that
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (which, as is lattice theory, is equivalent to
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)) in I.

Proposition 1 In any category C with strong inclusions I:

1. The family of inclusions Ai ↪→
⋃n
j=1Aj for i = 1, ..., n is epimorphic.

2In the sense that it has the same objects as C.

5

2.
⋃n
j=1Aj is a colimit in C of the diagram given by the pairs of inclusions

Ai ∩Aj ↪→ Ai and Ai ∩Aj ↪→ Aj for i, j = 1, ..., n.

We say that morphisms hi : Ai → Bi in C for i = 1, ..., n have a union,
written

⋃n
j=1 hj , iff there is a morphism h :

⋃n
j=1Aj →

⋃n
j=1Bj such that

(Ai ↪→
⋃n
j=1Aj);h = hi; (Bi ↪→

⋃n
j=1Bj) for i = 1, ..., n. Such a morphism

h is unique if it exists, and h1, ..., hn have a union whenever A1, ..., An are
disjoint. C has pushouts which preserve inclusions iff for any pair of arrows
(A ↪→ B,A→ A′) there are pushouts of the form (A′ ↪→ B′, B → B′). A functor
between two inclusive categories is inclusive (or preserves inclusions) iff it
takes inclusions in the source category to inclusions in the target category.

2.3 Institutions

Institutions were introduced by Goguen and Burstall [12] to formalize the in-
tuitive notion of logical system. An institution consists of a category Sign
whose objects are called signatures, a functor Sen : Sign → Set giving
for each signature a set whose elements are called Σ-sentences, a functor
Mod : Sign→ Catop giving for each signature Σ a category of Σ-models, and
a signature-indexed relation called satisfaction, |= = {|=Σ| Σ ∈ Sign}, where
|=Σ⊆ |Mod(Σ)| × Sen(Σ), such that for each signature morphism h : Σ→ Σ′,
the satisfaction condition, m′ |=Σ′ Sen(h)(a) iff Mod(h)(m′) |=Σ a, holds
for all m′ ∈ |Mod(Σ′)| and a ∈ Sen(Σ). We may write h instead of Sen(h)
and �h instead of Mod(h); m�h is called the h-reduct of m. The satisfaction
condition then takes the simpler form m′ |=Σ′ h(a) iff m′�h |=Σ a. We may
omit the subscript Σ when it can be inferred from context. Given a set A of
Σ-sentences, let

A∗ = {m ∈Mod(Σ) | m |=Σ a for all a ∈ A} ,
and given a class V of Σ-models, let

V ∗ = {a ∈ Sen(Σ) | m |=Σ a for all m ∈ V } .
Then the closure of a set of Σ-sentences A is A• = A∗∗, and • is a closure
operator, i.e., it is extensive, monotonic and idempotent; the sentences in A•

are called the theorems of A.
A specification or presentation is a pair (Σ, A) where Σ is a signature and

A is a set of Σ-sentences. A specification morphism from (Σ, A) to (Σ′, A′)
is a signature morphism h : Σ → Σ′ such that h(A) ⊆ A′•. Specifications and
specification morphisms give a category denoted Spec. A theory (Σ, A) is a
specification with A = A•; the full subcategory of theories in Spec is denoted
Th. Given a specification (Σ, A), Mod(Σ, A) denotes the full subcategory of
Mod(Σ) of models that satisfy A; given a morphism h : (Σ, A) → (Σ′, A′), �h
takes models of A′ to models of A. We will also use |=Σ for sets of sentences:
A |=Σ B iff Mod(Σ, A) ⊆Mod(Σ, B). Th and Spec are equivalent categories,
where the equivalence functor is just the inclusion Us : Th → Spec. This
functor has a left-adjoint-left-inverse Fs : Spec → Th, given by Fs(Σ, A) =

6

(Σ, A•) on objects and the identity on morphisms; note that Fs is also right
adjoint to Us, so that Th is a reflective and coreflective subcategory of Spec.

A theory morphism h : (Σ, A)→ (Σ′, A′) is conservative iff for any (Σ, A)-
model m there is a (Σ′, A′)-model m′ such that m′�h= m, i.e., iff its retract map
�h : Mod(Σ′, A′) →Mod(Σ, A) is surjective. A signature morphism h : Σ →

Σ′ is conservative iff it is conservative as a morphism of void theories, i.e., iff
h : (Σ, ∅•)→ (Σ′, ∅′•) is conservative. An important result of [12] is that Th is
cocomplete whenever Sign is cocomplete; therefore Th has pushouts whenever
Sign has pushouts: if h1 : (Σ, A) → (Σ1, A1) and h2 : (Σ, A) → (Σ2, A2) are
theory morphisms, and if (h′1 : Σ1 → Σ′, h′2 : Σ2 → Σ′) is a pushout of (h1, h2)
in Sign, then (h′1 : (Σ1, A1)→ (Σ′, A′), h′2 : (Σ2, A2)→ (Σ′, A′)) is a pushout
of h1, h2 in Th, where A′ = (h′1(A1) ∪ h′2(A2))•.

Proposition 2 Given h : Σ→ Σ′, A,A′ ⊆ Sen(Σ), and a ∈ Sen(Σ), then:

1. Closure Lemma: h(A•) ⊆ h(A)•, i.e., A |=Σ a implies h(A) |=Σ′ h(a).

2. If h is conservative, then A |=Σ a iff h(A) |=Σ′ h(a).

3. h(A•)• = h(A)•.

4. (A• ∪A′)• = (A ∪A′)•.

For example, the institution for lileanna [26, 16] has Anna as its specifi-
cation language, and Ada programs as its models.

3 Inclusive Institutions

The semantics of module systems over an institution is much simplified when
signature inclusions are available, in the following sense:

Definition 3 An institution is inclusive iff Sign is inclusive and has pushouts
which preserve inclusions, Sen is inclusive, and Mod preserves pushouts which
preserve inclusions, i.e., takes them to pullbacks in Cat. An inclusive institution
is distributive iff its category of signatures is distributive. �

We now fix an inclusive institution and refer to it as the “given institution.”
Many natural properties can be expressed intuitively in inclusive institutions,
for example, if A and A′ are sets of Σ- and Σ′-sentences, respectively, then
(A• ∪ A′•)• = (A ∪ A′)•, where the outermost closures are done over Σ ∪ Σ′-
sentences; also, if Φ ↪→ Σ, a ∈ Sen(Φ), and A ⊆ Sen(Φ), then A |=Φ a implies
A |=Σ a, with equivalence when Φ ↪→ Σ is conservative. The category Th tends
to have many of the properties of Sign. In particular,

Proposition 4 For any inclusive institution, Th is inclusive and has pushouts
that preserve inclusions.

Proof: The category of inclusions ITh in Th consists of morphisms (Σ, A) ↪→
(Σ′, A′) where Σ ↪→ Σ′ is an inclusion in Sign and A ⊆ A′. It is easy to

7

check that ITh is a poclass with the same objects as Th. Define the union
of theories (Σ, A), (Σ′, A′) by (Σ, A) ∪ (Σ′, A′) = (Σ ∪ Σ′, (A ∪ A′)•) where
the closure is over (Σ ∪ Σ′)-sentences, and define their intersection by (Σ, A) ∩
(Σ′, A′) = (Σ∩Σ′, A∩A′). We now show correctness of these definitions. That
union is a pushout of an intersection in ITh follows from the construction of
pushouts in Th. Now consider an inclusion (Σ, A) ↪→ (Σ1, A1) in Th and a
morphism h : (Σ, A) → (Σ2, A2) in Th. Let (Σ2 ↪→ Σ′, hΣ′ : Σ1 → Σ′) be a
pushout of (Σ ↪→ Σ1, h : Σ→ Σ2) in Sign which preserves the inclusion. Then
((Σ2, A2) ↪→ (Σ′, A′), hΣ′ : (Σ1, A1) → (Σ′, A′)) is the desired pushout in Th,
where A′ = (A2 ∪ hΣ′(A1))•, again by the construction of pushouts in Th. �

Convention 5 We do not assume any particular way to calculate pushouts of
signatures, nor do we require these pushouts to have any special properties,
but for notational convenience, we assume a fixed pushout that preserves the
inclusions of diagrams (Φ ↪→ Σ, h : Φ → Φ′); let (Φ′ ↪→ Σh, hΣ : Σ → Σh)
denote this pushout. Also, we may say theory extension instead of theory
inclusion. �

Open Problem It would be useful to have an algorithm for pushouts of the
usual signatures, that is closed under horizontal and/or vertical composition,
i.e., such that Σ′(hΣ) = Σ′h for any (Φ ↪→ Σ, h : Φ→ Φ′) and Σ ↪→ Σ′, and such

that (Σh)g = Σh;g for any signature morphism g with source Φ′.

Definition 6 Given ı : Φ ↪→ Σ in Sign and A ⊆ Sen(Σ), let ThΣ
Φ(A) denote

ı−1(A•) ⊆ Sen(Φ), called the Φ-visible theorems of A (over Σ). �

ThΣ
Φ(A) contains all the Φ-sentences that are consequences of A. When ı is an

identity, then ThΣ
Σ(A) = A•.

Example 7 Assume a logic where equational reasoning and induction are sound,
and let LIST be a specification of lists containing at least the sorts Elt and List ,
a constant nil of sort List , and a constructor cons : Elt × List → List . Let Φ
extend the signature of lists by a reverse operation rev : List → List , let Σ
extend Φ by a private operation aux : List ×List → List , and let A contain the
equations

• (∀L : List) rev(L) = aux (L,nil).

• (∀P : List) aux (nil, P) = P .

• (∀E : Elt ;L,P : List) aux (cons(E,L), P) = aux (L, cons(E,P)).

Then the following are two Φ-visible theorems of A over Σ:

• rev(nil) = nil,

• (∀L : List) rev(rev(L)) = L.

The proof of the second requires induction and two lemmas. �

The following properties are familiar for many particular logics, because they
hold in any inclusive institution:

8

Proposition 8 If Ψ ↪→ Φ ↪→ Σ, A ⊆ A′ ⊆ Sen(Σ), and B ⊆ Sen(Φ), then:

1. B ⊆ ThΣ
Φ(B).

2. ThΦ
Ψ(B) ⊆ ThΣ

Ψ(B).

3. ThΦ
Ψ(B) = ThΣ

Ψ(B) if Φ ↪→ Σ is conservative.

4. ThΣ
Ψ(A) ⊆ ThΣ

Φ(A).

5. ThΣ
Φ(A) ⊆ ThΣ

Φ(A′).

6. ThΣ
Ψ(A) ⊆ ThΣ

Φ(ThΣ
Ψ(A)).

7. ThΣ
Ψ(ThΣ

Φ(A)) ⊆ ThΣ
Ψ(A).

8. ThΣ
Φ(ThΣ

Φ(A)) = ThΣ
Φ(A).

9. ThΦ
Φ(ThΣ

Φ(A)) = ThΣ
Φ(A).

10. ThΦ
Ψ(ThΣ

Φ(A)) = ThΣ
Ψ(A).

Proof: Let ı′ : Ψ→ Φ and ı : Φ→ Σ be the two inclusions.

1. If b ∈ B then B |=Σ b, i.e., b ∈ ThΣ
Φ(B).

2. By 1. of Proposition 2.

3. This is exactly 2. in Proposition 2.

4. Since Sen is a morphism of inclusion systems, a is in Sen(Φ) whenever a
is in Sen(Ψ).

5. This is equivalent to ı−1(A•) ⊆ ı−1(A′
•
), which holds because A• ⊆ A′•.

6. This follows from 1. with ThΣ
Ψ(A) for B.

7. This is equivalent to (ı′; ı)−1(ı−1(A•)) ⊆ (ı′; ı)−1(A•), which is true be-
cause ı−1(A•) ⊆ A•.

8. This follows from 6. and 7., with Ψ = Φ.

9. By 1., ThΣ
Φ(A) ⊆ ThΦ

Φ(ThΣ
Φ(A)). On the other hand, ThΦ

Φ(ThΣ
Φ(A)) ⊆

ThΣ
Φ(ThΣ

Φ(A)) by 2., and also ThΦ
Φ(ThΣ

Φ(A)) ⊆ ThΣ
Φ(A) by 8.

10. This is equivalent to ı′
−1

(ı−1(A•)) = (ı′; ı)−1(A•), which is true.
�

Lemma 9 Generalized Closure Lemma: Given A ⊆ Sen(Σ), inclusions
ı : Φ ↪→ Σ, ı′ : Φ′ ↪→ Σ′, and morphisms h : Φ → Φ′ and g : Σ → Σ′ such that
the diagram

Φ �
� ı //

h ��

Σ
g��

Φ′
� �

ı′
// Σ′

commutes, then h(ThΣ
Φ(A)) ⊆ ThΣ′

Φ′(g(A)).

9

Proof: Let a be a Φ-sentence in ThΣ
Φ(A), so that A |=Σ a. Then g(A) |=Σ′ g(a)

by the classic Closure Lemma (1. of Proposition 2). But g(a) = h(a) because

Sen preserves inclusions, and so h(a) is in ThΣ′

Φ′(g(A)). �

The classic Closure Lemma is the special case of the above where ı, ı′ are iden-
tities, that is, where there are no private features.

4 Modules

Our modules, like those in [16], extend the usual algebraic specifications by
allowing hidden information, which may be used in defining visible features.

Definition 10 A module is a triple (Φ,Σ, A), where Φ ↪→ Σ are signatures
and A is a set of Σ-sentences; Φ is called the visible signature, Σ the working
signature, Th(M) = ThΣ

Σ(A) the working theorems, and Vth(M) = ThΣ
Φ(A)

the visible theorems. A morphism h : M → M ′ of modules is a morphism
of their visible signatures such that h(Vth(M)) ⊆ Vth(M ′). �

Modules together with module morphisms form a category MSpec. The
functorM from Th to MSpec defined byM(Σ, A) = (Σ,Σ, A) andM(h) = h,
is full, faithful and dense, i.e., is an equivalence of categories. Further (by
Theorem 1, page 91 of [18]), M is part of an adjoint equivalence, with left
adjoint T : MSpec → Th defined by T (Φ,Σ, A) = (Φ,ThΣ

Φ(A)) on objects,
and the identity on morphisms; the unit of this adjunction is 1Φ : (Φ,Σ, A) →
(Φ,Φ,ThΣ

Φ(A)). We let U : MSpec → MSpec denote the functor T ;M, tak-
ing modules (Φ,Σ, A) to modules (Φ,Φ,ThΣ

Φ(A)). Notice that T is also a right
adjoint of M, so that Th is (modulo isomorphism) a reflective and coreflective
subcategory of MSpec. Since the two categories are equivalent, every categor-
ical property [17] of Th is also a property of MSpec. In particular, pushouts
are preserved and reflected by M and T , and MSpec is cocomplete whenever
Sign is cocomplete, since Th is cocomplete (by [12]).

Definition 11 A Φ-model m satisfies M = (Φ,Σ, A) iff m |=Φ Vth(M); in
this case, we write m |= M . �

If h : M →M ′ is a module morphism and m′ |= M ′, then m′�h |= M . Therefore
in any inclusive institution, the functor Mod extends to MSpec by mapping
a module M to the full subcategory Mod(M) of Mod(Φ) with the Φ-models
satisfying M as its objects.

It is common to call a theory extension (Σ, A) ↪→ (Σ, A′) conservative when
A = A′∩Sen(Σ); we call this notion syntactic conservativity to distinguish it
from the semantic version. Notice that for any module M = (Φ,Σ, A), the the-
ory inclusion (Φ,Vth(M)) ↪→ (Σ,Th(M)) is syntactically conservative, because
Vth(M) = ThΣ

Φ(A) = {a ∈ Sen(Φ) | A |=Σ a} = {a ∈ Sen(Φ) | a ∈ Th(M)} =
Th(M) ∩ Sen(Φ). As shown in [9], syntactic conservativity is a necessary but
insufficient condition for semantic conservativity. So it is not surprising that we
also need a stronger conservativity for modules:

10

Definition 12 A module M is conservative if and only if the theory inclusion
(Φ,Vth(M)) ↪→ (Σ,Th(M)) is conservative. �

Transparent modules, with Φ = Σ, are always conservative. But there are
simple non-conservative modules, even for unsorted equational logic, such as
the following (after [9]):

Example 13 Let Φ contain a constant a and a unary operation −, let Σ addi-
tionally contain a constant c, and let A contain the equation c = −c. Then the
visible theorems of this module form an empty theory, but there are Φ-models
that cannot be extended to Σ-models satisfying A, such as m = {1,−1} with
ma = 1, m−(1) = −1 and m−(−1) = 1. �

5 Operations on Modules

We give two natural semantics for each module combining operation. The first
(from [16]) takes the visible theorems of the combined module, while the second
(from [23]) combines the visible theorems of the component modules. The mod-
ule composition used in the first semantics essentially combines the parts of the
component modules, with renamings to avoid name conflicts, while the second
semantics combines their visible theorems directly. The first semantics is more
comprehensive because it makes use of more information, and the two can agree
only under special conditions, when interactions among hidden information can
be safely ignored. Note that when proving theorems, it may be easier to use pri-
vate information than to use only its consequences; for example, the former may
be finite while the latter is infinite. We show that conservativity is a necessary
and sufficient condition for the two semantics to agree; this result can be seen as
saying when it is safe to ignore interactions among hidden parts. All five module
operations have simple definitions over any inclusive institution, corresponding
to natural ways to implement them, and they all preserve conservativity under
natural conditions.

5.1 Aggregation

The aggregation of modules is essentially the union of their various parts. How-
ever, this simple view is complicated by the need to handle symbols having the
same name but defined in different modules, and symbols coming from shared
submodules. A standard way to prevent name clashes is to tag symbols with
the name of the module where they are defined; symbols defined in shared sub-
modules are then tagged just once. Some languages with overloaded operators
have complex symbol resolution algorithms, while others take the simple union
of all symbols, leaving the name collision problem to the user. The latter ap-
proach is actually appropriate for our purpose, which is to investigate the role
of private symbols in the semantics of aggregation. Moreover, if symbols are
already tagged with their originating module when they are declared, with their

11

untagged name available as a convenient abbreviation when it is unambiguous
(as is done in OBJ), this approach is equivalent to the standard one.

We will show that the two semantics for aggregation agree when the compo-
nent modules are conservative and all the symbols that they share are visible,
and we will give counterexamples showing that both these requirements are nec-
essary. We also give some simple “laws of software composition” and prove a
number of other basic properties of aggregation.

Definition 14 Given modules M = (Φ,Σ, A) and M ′ = (Φ′,Σ′, A′), their ag-
gregation M + M ′ is (Φ ∪ Φ′,Σ ∪ Σ′, A ∪ A′). We then let [[M +M ′]]1 =
Vth(Φ∪Φ′,Σ∪Σ′, A∪A′), and [[M +M ′]]2 = (Vth(M)∪Vth(M ′))•, where the
closure is with respect to Φ ∪ Φ′. �

This definition makes sense because Φ ∪ Φ′ ↪→ Σ ∪ Σ′ and A ∪ A′ is a set of
(Σ ∪ Σ′)-sentences, since Sen preserves inclusions.

Proposition 15 Aggregation is commutative, associative and idempotent be-
cause union is. If ı and ı′ denote the inclusions Φ ↪→ Φ ∪ Φ′ and Φ′ ↪→ Φ ∪ Φ′,
respectively, then ı : M → M + M ′ and ı′ : M ′ → M + M ′ are module mor-
phisms. Therefore m |= M +M ′ implies m�Φ |= M and m�Φ′ |= M ′ for any
(Φ ∪ Φ′)-model m.

We call the following a “theorem” because of its importance; informally, it
says that if all common symbols of two conservative modules are visible, then
any model of both sets of visible theorems extends to a model of both sets of
working theorems.

Theorem 16 If modules M = (Φ,Σ, A) and M ′ = (Φ′,Σ′, A′) are conservative
and if Φ ∩ Φ′ = Σ ∩ Σ′, then for any (Φ ∪ Φ′)-model m such that m |=Φ∪Φ′

Vth(M) ∪Vth(M ′) there is a (Σ ∪ Σ′)-model m′ such that m′ �Φ∪Φ′= m and
m′ |=Σ∪Σ′ Th(M) ∪ Th(M ′).

Proof: By the Satisfaction Condition, m�Φ |=Φ ThΣ
Φ(A) and m�Φ′ |=Φ′

ThΣ′

Φ′(A
′). Since (Φ,Σ, A) and (Φ′,Σ′, A′) are conservative, there exist a Σ-model

mΣ of A and a Σ′-model mΣ′ of A′ such that mΣ�Φ= m�Φ and mΣ′�Φ′= m�Φ′ .

Φ �
� //
q�

##

Σ � s

%%
Σ ∩ Σ′ = Φ ∩ Φ′

-

;;

q�

##

Φ ∪ Φ′ �
� // Σ ∪ Σ′

Φ′
-

;;

�� // Σ′
�,

99

Then by the functoriality of reducts, mΣ�Φ∩Φ′= (mΣ�Φ)�Φ∩Φ′= (m�Φ)�Φ∩Φ′=
m�Φ∩Φ′= (m�Φ′)�Φ∩Φ′= (mΣ′�Φ′)�Φ∩Φ′= mΣ′ �Φ∩Φ′ . Since Σ ∩ Σ′ = Φ ∩ Φ′,
and Mod preserves intersection-union pushouts, and by the construction of

12

pullbacks in Cat, there is a (unique) (Σ ∪ Σ′)-model m′ such that m′�Σ= mΣ

and m′�Σ′= mΣ′ ; thus m′�Σ |=Σ A and m′�Σ′ |=Σ′ A
′. Therefore the Satisfaction

Condition gives m′ |=Σ∪Σ′ A ∪A′. The reader may check that this essentially
says that m′ is a model of both Th(M) and Th(M ′), and that (m′�Φ∪Φ′)�Φ= m�Φ

and (m′�Φ∪Φ′)�Φ′= m�Φ′ . Therefore m′�Φ∪Φ′ satisfies the conditions that are
uniquely satisfied by m (because the union of Φ and Φ′ is a pushout of their
intersection, because Mod preserves it, and because of the way pullbacks are
built in Cat). Therefore m′�Φ∪Φ′= m. �

Proposition 17 If M and M ′ are modules as in Theorem 16, then

1. [[M +M ′]]1 = [[M +M ′]]2.

2. m |= M +M ′ iff m�Φ |= M and m�Φ′ |= M ′ for any (Φ ∪ Φ′)-model m.

3. M +M ′ is conservative.

Proof: 1. is equivalent to ThΣ∪Σ′

Φ∪Φ′(A∪A′) = ThΦ∪Φ′

Φ∪Φ′(ThΣ
Φ(A)∪ThΣ′

Φ′(A
′)). By

Proposition 8, ThΣ
Φ(A) ⊆ ThΣ∪Σ′

Φ∪Φ′(A ∪ B) and ThΣ′

Φ′(B) ⊆ ThΣ∪Σ′

Φ∪Φ′(A ∪ B), so

ThΦ∪Φ′

Φ∪Φ′(ThΣ
Φ(A)∪ThΣ′

Φ′(B)) ⊆ ThΣ∪Σ′

Φ∪Φ′(A∪B). Conversely, consider a (Φ∪Φ′)-
sentence a such that A ∪A′ |=Σ∪Σ′ a, and let m be a (Φ∪Φ′)-model for ThΣ

Φ(A)

and ThΣ′

Φ′(A
′). By Theorem 16, there exists a (Σ∪Σ′)-model m′ of A∪A′ such

that m′ �Φ∪Φ′= m. Then m′ |=Σ∪Σ′ a, and so by the Satisfaction Condition,

m′�Φ∪Φ′ |=Φ∪Φ′ a, that is, m |=Φ∪Φ′ a. Consequently, a is in ThΦ∪Φ′

Φ∪Φ′(ThΣ
Φ(A) ∪

ThΣ′

Φ′(A
′)). This shows that ThΣ∪Σ′

Φ∪Φ′(A ∪A′) ⊆ ThΦ∪Φ′

Φ∪Φ′(ThΣ
Φ(A) ∪ ThΣ′

Φ′(A
′)).

2. follows from the equivalences:

m |= M +M ′ iff
m |=Φ∪Φ′ V th(M +M ′) iff (by 1.)
m |=Φ∪Φ′ (V th(M) ∪ V th(M ′))• iff
m |=Φ∪Φ′ V th(M) ∪ V th(M ′) iff
m |=Φ∪Φ′ V th(M) and m |=Φ∪Φ′ V th(M ′) iff
m�Φ |=Φ V th(M) and m�Φ′ |=Φ′ V th(M ′) iff
m�Φ |= M and m�Φ′ |= V th(M ′) .

Only the right to left implication is interesting, since the other direction needs
neither conservativity nor that Φ ∩ Φ′ = Σ ∩ Σ′.

For 3., take a (Φ ∪Φ′)-model m of ThΣ∪Σ′

Φ∪Φ′(A ∪A′). Then m is also a (Φ ∪Φ′)-

model of ThΣ
Φ(A) and ThΣ′

Φ′(A
′), and by Theorem 16 there is a (Σ ∪ Σ′)-model

m′ of A ∪ A′ such that m′ �Φ∪Φ′= m. Therefore, m′ is a (Σ ∪ Σ′)-model of
ThΣ∪Σ′

Σ∪Σ′(A ∪A′); this shows that (Φ,Σ, A) + (Φ′,Σ′, A′) is conservative. �

Despite its somewhat complex proof, this result looks so natural that one
might be tempted to think its hypothesis too strong. But visibility of shared
symbols really is needed. Let M have a visible constant 0, a private constant c
and a sentence 0 = c, while M ′ has a constant 1, the same private c, and the

13

sentence 1 = c. Then (Vth(M)∪Vth(M ′))• is empty while Vth(M+M ′) contains
0 = 1. This suggests that an implementation of aggregation should rename all
shared private symbols even if they occurred as a consequence of enriching a
shared module. Conservativity of M and M ′ is also needed. Let Φ be the
signature with constants 0, 1 and a binary operation +, let Σ add to Φ a private
constant c, let A have the equation 0 + c = 1 + c, let Σ′ = Φ′ = Φ, and let A′

have equations (∀X) X +X = 0 and (∀X,Y, Z) X + (Y + Z) = (X + Y) + Z.
Then the equation 0 = 1 is in Vth(M + M ′) but not in (Vth(M) ∪ Vth(M ′))•,
and this occurs because M is not conservative.

The two semantics naturally extend to an arbitrary number of modules:
[[M1 + · · ·+Mn]]1 = Vth(M1 + · · ·+Mn), and [[M1 + · · ·+Mn]]2 = (Vth(M1)∪
... ∪Vth(Mn))•, where the closure is over Φ1 ∪ ... ∪ Φn. We then have

Corollary 18 If the given institution is distributive and if Mj = (Φj ,Σj , Aj)
for j = 1, ..., n are conservative such that Σi ∩ Σj = Φi ∩ Φj for i, j = 1, ..., n
with Mi 6= Mj, then:

1. [[M1 + · · ·+Mn]]1 = [[M1 + · · ·+Mn]]2 .

2. m |= M1 + · · ·+Mn iff m�Φj |= Mj for j = 1, ..., n, where m is a (Φ1 ∪
... ∪ Φn)-model.

3. M1 + · · ·+Mn is conservative.

5.2 Renaming

Renaming is straightforward for transparent algebraic specifications: given a
specification (Σ, A) and a morphism h : Σ → Σ′, the renaming of (Σ, A) by h,
denoted (Σ, A)?h, is obtained by renaming each Σ-sentence in A, i.e., (Σ, A)?h =
(Σ′, h(A)). The situation is more complex for modules with hiding, because only
the visible symbols are renamed, and because renamed symbols could clash with
private names. These problems are handled abstractly by signature pushouts.

Definition 19 Given M = (Φ,Σ, A) and h : Φ→ Φ′, the renaming of M by
h, written M ? h, is the module (Φ′,Σh, hΣ(A)) (see Convention 5). Moreover,
[[M ? h]]1 = Vth(Φ′,Σh, hΣ(A)), and [[M ? h]]2 = h(Vth(M))•, where the closure
is over Φ′. �

The morphism h is first extended to the morphism hΣ on the whole working
signature, and then A is renamed by hΣ. This is well defined because Φ′ ↪→ Σh
and hΣ(A) is a set of Σh-sentences. Notice that h : M → M ? h is a module
morphism by the Generalized Closure Lemma (Lemma 9), so m |= M ? h implies
m�h |= M for any Φh-model m.

The next result says that, assuming conservativity, the two semantics coin-
cide: the visible theorems of a renamed module are exactly those generated by
the renamed visible theorems of the initial module, i.e., the models of the re-
named module are exactly those whose reducts are models of the initial module;
moreover, conservativity is preserved under renaming.

Proposition 20 If M = (Φ,Σ, A) is a conservative module, then

14

1. [[M ? h]]1 = [[M ? h]]2 .

2. m |= M ? h iff m�h |= M for any Φ′-model m.

3. M ? h is conservative.

Proof: For 1., we need ThΦ′

Φ′(h(ThΣ
Φ(A))) = ThΣh

Φ′ (hΣ(A)). By Lemma 9,

h(ThΣ
Φ(A))) ⊆ ThΣh

Φ′ (hΣ(A)); applying ThΦ′

Φ′ to this inclusion, Proposition 8

gives ThΦ′

Φ′(h(ThΣ
Φ(A))) ⊆ ThΣh

Φ′ (hΣ(A)). Conversely, let a ∈ Sen(Φ′) such that
hΣ(A) |=Σh

a and let m′ be a Φ′-model such that m′ |=Φ′ h(ThΣ
Φ(A)). We

need to show m′ |=Φ′ a. By the Satisfaction Condition, m′�h |=Φ ThΣ
Φ(A).

Since (Φ,Σ, A) is conservative, there is a Σ-model m such that m�Φ= m′ �h
and m |=Σ ThΣ

Σ(A). By the construction of pullbacks in Cat (Section 2.1),
and since Mod preserves intersection-union pushouts (Definition 3), there is a
Σh-model, say mh, such that mh�hΣ

= m and mh�Φ′= m′. Then mh�hΣ
|=Σ A

(because m |=Σ ThΣ
Σ(A) and A ⊆ ThΣ

Σ(A)), and so mh |=Σh
hΣ(A). Further,

mh |=Σh
a because hΣ(A) |=Σh

a. Finally, if ı′ is the inclusion Φ′ ↪→ Σh then
mh |=Σh

ı′(a), so mh�ı′ |=Φ′ a; therefore m′ |=Φ′ a.

2. follows since m�h |= M iff m�h |=Φ V th(M) iff m |=Φ′ h(V th(M)) (Satis-
faction Condition) iff m |=Φ′ h(V th(M))• iff m |=Φ′ V th(M ? h) (by 1.) iff
m |= M ? h.

For 3., let m be a Φ′-model of ThΣh

Φ′ (hΣ(A)), that is, m |= M ? h. By 2., m�h is
a Φ-model of ThΣ

Φ(A). Then by conservativity of (Φ,Σ, A), there is a Σ-model
mΣ of A such that mΣ�Φ= m�h. But the pair of morphisms hΣ and Φ′ ↪→ Σh
is a pushout of h and Φ ↪→ Σ; therefore, since Mod preserves these pushouts
(see Definition 3), by the construction of pullbacks in Cat, there is a Σh-model
m′ such that m′�(hΣ)= mΣ and m′�Φ′= m. Then by the Satisfaction Condition,

m′ |=Σh
hΣ(A), that is m′ is a Σh-model of ThΣh

Σh
(hΣ(A)). Therefore, for a

Φ′-model m of Vth(M ? h) we have a Σh-model m′ of Th(M ? h) such that
m′�Φ′= m. This shows that M ? h is conservative. �

One might think that conservativity is not needed here. But consider the
unsorted equational logic module M = (Φ,Σ, A) where Φ contains constants
a, b and a binary operation f , Σ adds one more constant c, and A contains the
equations f(a, c) = a and f(b, c) = f(a, a); suppose also that Φ′ consists of only
one constant d and that h takes both a and b to d. Then h(Vth(M))• is an
empty theory because Vth(M) is empty, while Vth(M ?h) contains the equation
f(d, d) = d. Notice that M is not conservative.

A desirable property of renamings is that they can be composed, in the sense
that (M ? h)?g = M?(h; g) for any appropriate h and g. This is straightforward
for transparent specifications, but it can be hard to insure when hiding is allowed
because of the variety of conventions for renaming hidden symbols to prevent
name clashes with the visible symbols in the result (this is similar to the variety
of choices for hΣ in Convention 5).

Proposition 21 If pushouts of inclusions in Sign are chosen such that they

15

can be composed vertically (see Section 3), then (M ? h)? g = M ? (h; g) for any
module M = (Φ,Σ, A) and any morphisms h : Φ→ Φ′ and g : Φ′ → Φ′′.

Proof: ((Φ,Σ, A) ? h) ? g equals (Φ′,Σh, hΣ(A)) ? g by Definition 19, which
equals (Φ′′, (Σh)g, g(Σh)(hΣ(A))) also by Definition 19, which further equals

(Φ′′,Σh;g, (h; g)Σ(A)) by hypothesis, which finally equals (Φ,Σ, A)?(h; g), again
by Definition 19. �

5.3 Enrichment

A common way to reuse software and specification is through enrichment, which
adds functionality to an existing module. For example, lileanna [26] imple-
ments enrichment by adding a partial signature to the given signature and then
adding code over the resulting signature. However, it is simpler to use extensions
of total signatures.

Definition 22 Given modules M = (Φ,Σ, A) and (Φ′,Σ′, A′) with Φ ↪→ Φ′

and Σ ↪→ Σ′, the enrichment of M by (Φ′,Σ′, A′), written M@(Φ′,Σ′, A′),
is the module (Φ′,Σ′, A ∪A′), and [[M@(Φ′,Σ′, A′)]]1 = Vth(Φ′,Σ′, A ∪A′) and
[[M@(Φ′,Σ′, A′)]]2 = Vth(Φ′,Φ′ ∪ Σ, A ∪Vth(Φ′ ∪ Σ,Σ′, A′)). �

Both visible (Φ′) and private (Σ′) symbols can be added, as well as sentences
(A′) involving all these symbols. Note that if ı is the inclusion Φ ↪→ Φ′ then
ı : M → M@(Φ′,Σ′, A′) is a morphism of modules, so m |= M@(Φ′,Σ′, A′)
implies m�Φ |= M for any Φ′-model m.

The first semantics is straightforward, but the second requires some expla-
nation. The key is to take a working-in-M perspective, similar to the intuition
for module enrichment in software engineering, and to consider how the newly
added features affect the semantics of the current working environment, re-
garded as visible. Since new visible symbols are added to M , those symbols
extend the working signature to Φ′ ∪ Σ, and their effect on the working envi-
ronment is the visible theorems of the module (Φ′ ∪ Σ,Σ′, A′). We first prove
the following:

Lemma 23 In the context of Definition 22, if Ψ ↪→ Σ′ is such that (Ψ,Σ′, A′)

is conservative, then ThΣ′

Ψ (A ∪A′) = ThΨ
Ψ(A ∪ ThΣ′

Ψ (A′)).

Proof: Since A ⊆ ThΣ
Ψ(A ∪ A′) and ThΣ

Ψ(A′) ⊆ ThΣ′

Ψ (A ∪ A′), it follows by

Proposition 8 that ThΨ
Ψ(A ∪ ThΣ′

Ψ (A′)) ⊆ ThΣ′

Ψ (A ∪ A′). Conversely, let a be a

(Ψ)-sentence in ThΣ′

Ψ (A∪A′). In order to prove that a is in ThΨ
Ψ(A∪ThΣ′

Ψ (A′)),

take a (Ψ)-model m of A ∪ ThΣ′

Ψ (A′). Since (Ψ,Σ′, A′) is conservative, there is
a Σ′-model m′ of A′ such that m′�Ψ= m. But m |=Ψ A, that is, m′�Ψ |=Ψ A;
then by the satisfaction condition we get m′ |=Σ′ A. Therefore m′ |=Σ′ A ∪A′,
and so m′ |=Σ′ a, because we supposed that A ∪A′ |=Σ′ a. Consequently, the
satisfaction condition implies m′�Ψ |=Ψ a, i.e., m |=Ψ a. Therefore, a is in
ThΨ

Ψ(A ∪ ThΣ′

Ψ (A′)). �

16

Proposition 24 In the context of Definition 22, if (Φ′ ∪Σ,Σ′, A′) is conserva-
tive then

1. [[M@(Φ′,Σ′, A′)]]1 = [[M@(Φ′,Σ′, A′)]]2 ,
2. M@(Φ′,Σ′, A′) is conservative if (Φ′,Φ′ ∪ Σ, A ∪ Vth(Φ′ ∪ Σ,Σ′, A′)) is

conservative.

Proof: Replacing Ψ by Φ′ ∪Σ and then taking the Φ′-visible theorems of the

two sides in the equality given by Lemma 23, we get ThΣ′

Φ′(A∪A′) = ThΦ′∪Σ
Φ′ (A∪

ThΣ′

Φ′∪Σ(A′)). Equation 1. now follows from the calculation

[[M@(Φ′,Σ′, A′)]]1 = Vth(Φ′,Σ′, A ∪A′)
= ThΣ′

Φ′(A ∪A′)
= ThΦ′∪Σ

Φ′ (A ∪ ThΣ′

Φ∪Σ(A′))
= Vth(Φ′,Φ′ ∪ Σ, A ∪Vth(Φ′ ∪ Σ,Σ′, A′))
= [[M@(Φ′,Σ′, A′)]]2 .

For 2., let m be a Φ′-model of Vth(M@(Φ′,Σ′, A′)). Then by Proposition
8, m is also a Φ′-model of Vth(Φ′,Φ′ ∪ Σ, A ∪ Vth(Φ′ ∪ Σ,Σ′, A′)) and so by
conservativity, there is a (Φ′ ∪Σ)-model m′′ of A∪Vth(Φ′ ∪Σ,Σ′, A′) such that
m′′�Φ′= m. Now, since (Φ′∪Σ,Σ′, A′) is conservative, there is a Σ′-model m′ of
A′ such that m′�Φ′∪Σ= m′′. By the Satisfaction Condition, m′ |=Σ′ A, so that
m′ |=Σ′ A ∪A′ and, of course, m′�Φ′= m. �

One can enrich an imported module with essentially anything, including
inconsistent sentences. But an important special case is when no new visible
symbols are added. This is useful when refining an incomplete module that
declares an interface, or when one wants to further constrain an existing module
in order to change its intended semantics (for example, adding the equation
10 = 0 to the module that specifies integers to get integers modulo 10).

Corollary 25 If M ′ = (Σ,Σ′, A′) is a conservative module, then

1. Vth(M@(Φ,Σ′, A′)) = Vth(Φ,Σ, A ∪Vth(M ′)), and

2. M@(Φ,Σ′, A′) is conservative if (Φ,Σ, A ∪Vth(M ′)) is conservative.

Technically, enriching is a special case of aggregation in our approach, be-
cause M@(Φ′,Σ′, A′) = M + (Φ′,Σ′, A′). However, the results that were devel-
oped for aggregation assumed that the aggregated modules did not have common
private symbols, which fails for enrichment, where all the private symbols of the
enriched module are available.

5.4 Hiding

Hiding information is very natural in our approach; it just restricts visibility to
a deeper subsignature.

Definition 26 If M = (Φ,Σ, A) is a module and Ψ is a subsignature of Φ, then
Ψ2M is the module (Ψ,Σ, A); also [[Ψ2M]]1 = Vth(Ψ,Σ, A), and [[Ψ2M]]2 =
(Ψ,Φ,Vth(M)). We call 2 the information hiding operator. �

17

Fewer theorems remain visible after an information hiding operation. The term
“export operator” is used for 2 in [1], but we prefer the more explicit term,
after [9]. If ı : Ψ ↪→ Φ, then ı : Ψ2M → M is a module morphism, so m |= M
implies m�Ψ |= Ψ2M for any Φ-model m. The following shows the relationship
between the visible theorems of Ψ2M and the visible theorems of M , that is, a
relationship between the two semantics, and it also gives a sufficient condition
under which hiding preserves conservativity.

Proposition 27 If M = (Φ,Σ, A) is a module and Ψ ↪→ Φ is a signature
inclusion, then

1. [[Ψ2M]]1 = [[Ψ2M]]2 and

2. Ψ2M is conservative if M and (Ψ,Φ,Vth(M)) are conservative.

Proof: 1. is equivalent to ThΣ
Ψ(A)) = ThΦ

Ψ(ThΣ
Φ(A)), which is 10. of Proposi-

tion 8. For 2., let m be a Ψ-model of ThΣ
Ψ(A)). Since ThΣ

Ψ(A)) = ThΦ
Ψ(ThΣ

Φ(A)),
by the conservativity of (Ψ,Φ, ThΣ

Φ(A)), there is a Φ-modelm′ of ThΦ
Φ(ThΣ

Φ(A)) =
ThΣ

Φ(A) such that m′�Ψ= m. Then by the conservativity of (Φ,Σ, A) there is a
Σ-model m′′ of ThΣ

Σ(A) with m′′�Φ= m′. Therefore m′′�Ψ= m, and so (Φ,Σ, A)
is conservative. �

Although conservativity was not needed to show equivalence of the two se-
mantics for hiding, it is needed for equivalence of the semantics of the other op-
erations. This is why we always give sufficient conditions for the conservativity
of resulting modules. Notice that conservativity of M does not guarantee con-
servativity of Ψ2M : for example, one can take M to be a transparent module,
which is automatically conservative, and Ψ such that Ψ2M is not conservative
(as in Example 13).

Testing conservativity of a module (Ψ,Σ, A) can be difficult, and depends
on the underlying logic. In many sorted equational logics, one can enrich a
Ψ-algebra with new carriers for private sorts (in Σ−Ψ), and with new private
operations, and then show that the new Σ-algebra satisfies A. Of course, the
fewer private symbols, the easier this is. For this reason, we prefer to reduce
showing the conservativity of a module with visible signature Ψ and working
signature Σ, to the conservativity of other two modules: one with visible signa-
ture Ψ and working signature Φ, for Ψ ↪→ Φ ↪→ Σ, and the other with visible
signature Φ and working signature Σ, as in the above proposition.

5.5 Parameterization

One of the most effective supports for software reuse is parameterization. Many
expositions only treat the one parameter case, saying that it generalizes to many
parameters in an obvious way. Since one of our goals is conditions for the cor-
rectness of logic-independent algorithms to flatten complex module structures,
and since shared features of parameters are important in this, we treat multiple
parameterization explicitly, and prove that it is a colimit.

18

Definition 28 A parameterized module M [α1 :: P1, ..., αn :: Pn] is a set of
module morphisms αj ; ıj : Pj →M , where M = (Φ,Σ, A) and Pj = (Φ′j ,Σ

′
j , Bj)

for j = 1, ..., n, such that:

• αj : Φ′j → Φj are isomorphisms of signatures,

• ıj : Φj ↪→ Φ are inclusions of signatures, and

• Φ1, ...,Φn are disjoint.

We say that M is parameterized by α1, ..., αn. P1, ..., Pn are called the inter-
faces and M the body. Given a parameterized module M [α1 :: P1, ..., αn :: Pn]
and morphisms hj : Pj → Mj with Mj = (Ψj ,Ωj , Aj) for j = 1, ..., n, the
instantiation of M by h1, ..., hn, written M [h1, ..., hn], is the module

(Φh, Σ(hΦ) ∪
n⋃
j=1

Ωj , (hΦ)Σ(A) ∪
n⋃
j=1

Aj) ,

where h =

n⋃
j=1

α−1
j ;hj (see Section 2.2 and Convention 5). �

Φi
� � //

α−1
i ;hi

��

n⋃
j=1

Φj
� � //

h��

Φ �
� //

hΦ

��

Σ

(hΦ)Σ

��
Ψi
� � //

n⋃
j=1

Ψj
� � // Φh

� � // Σ(hΦ)

This apparently abstract and complex definition has a natural interpretation.
First, it says that parameters are regarded as having disjoint interface signatures
in the parameterized module, which is natural to avoid obvious name clashes
(in practice, parameter signatures can be automatically made disjoint by tag-
ging them with their parameter names). Second, it informally says that the
instantiation of a module is computed as follows:

1. Calculate α−1
i ;hi, which gives for each symbol in M belonging to a pa-

rameter Pi its actual instance symbol;

2. store all these mappings in a table h;

3. Calculate h’s pushout hΦ, which “knows” how to avoid name clashes be-
tween visible symbols defined in M and visible symbols that may acciden-
tally occur in some of the actual parameters;

4. Calculate hΦ’s pushout (hΦ)Σ, which solves further name conflicts with
M ’s private symbols; and

5. Rename all sentences declared in M accordingly.

Notice that all these steps are purely textual and can be efficiently implemented.

Proposition 29 In the context of Definition 28,

1. hΦ : M →M [h1, ..., hn] is a module morphism,

2.
⋃n
j=1 Ψj ↪→ Φh : M1 + · · ·+Mn →M [h1, ..., hn] is also a morphism, and

3. M [h1, ..., hn] = M ? hΦ +M1 + · · ·+Mn .

19

Proof: For 1., hϕ : M →M [h1, ..., hn] is a morphism because:

hΦ(Vth(M)) = hΦ(ThΣ
Φ(A))

⊆ Th
Σ(hΦ)

Φh
((hΦ)Σ(A)) (Lemma 9)

⊆ Th
Σ(hΦ)∪

⋃n
j=1 Ωj

Φh
((hΦ)Σ(A) ∪

⋃n
j=1Aj) (Proposition 8)

= Vth(M [h1, ..., hn]) .

2. is straightforward, because by Proposition 8,

Th
⋃n

j=1 Ωj⋃n
j=1 Ψj

(

n⋃
j=1

Aj) ⊆ Th
Σ(hΦ)∪

⋃n
j=1 Ωj

Φh
((hΦ)Σ(A) ∪

n⋃
j=1

Aj) .

3. follows from the equalities

M ? hΦ +M1 + · · ·+Mn

= (Φ,Σ, A) ? hΦ + (Ψ1,Ω1, A1) + · · ·+ (Ψn,Ωn, An)
= (Φh,Σ(hΦ), (hΦ)Σ(A)) + (Ψ1,Ω1, A1) + · · ·+ (Ψn,Ωn, An) (Def. 19)
= (Φh ∪

⋃n
j=1 Ψj ,Σ(hΦ) ∪

⋃n
j=1 Ωj , (hΦ)Σ(A) ∪

⋃n
j=1Aj) (Def. 14)

= (Φh,Σ(hΦ) ∪
⋃n
j=1 Ωj , (hΦ)Σ(A) ∪

⋃n
j=1Aj)

= M [h1, ..., hn] , (Def. 28)

using Proposition 8. �
This proposition suggests the following for the two semantics of instantiating a
parameterized module:

Definition 30 Using the same context and notation as in Definition 28, let
[[M [h1, ..., hn]]]1 = Vth(Φh,Σ(hΦ) ∪

⋃n
j=1Ωj , (hΦ)Σ(A) ∪

⋃n
j=1Aj) and also let

[[M [h1, ..., hn]]]2 = (hΦ(Vth(M))∪
⋃n
j=1 Vth(Mj))

•, where closure is over Φh. �

The following gives sufficient and necessary conditions under which the two
semantics of the instantiated module coincide, and shows that conservativity
of the instantiated module does not depend on conservativity of its original
interface:

Proposition 31 In the context of Definition 28, if the given institution is dis-
tributive and if

• M,M1, ...,Mn are conservative,

• Σ(hΦ) ∩ Ωj = Ψj for j = 1, ..., n, and

• Ωi ∩ Ωj = Ψi ∩Ψj for i, j = 1, ..., n, with Mi 6= Mj,

then

1. [[M [h1, ...,Mn]]]1 = [[M [h1, ...,Mn]]]2 ,

2. m |= M [h1, ..., hn] iff m�hΦ |= M and m�Φj |= Mj for any Φh-model m,

3. M [h1, ..., hn] is conservative.

20

Proof: By Proposition 20, V th(M ? hΦ) = hΦ(V th(M))• and M ? hΦ is
conservative, where the closure is over Φh-sentences. Since M [h1, ..., hn] =
M ? hΦ + M1 + · · · + Mn, iteratively applying Proposition 17 we get that
V th(M [h1, ..., hn]) = (hΦ(V th(M))•∪

⋃n
j=1 V th(Mj))

• and M [h1, ..., hn] is con-
servative, where the closures are over Φh-sentences. �

The conservativity of M,M1, ...,Mn and all the equalities Ωi∩Ωj = Ψi∩Ψj

are needed because of 3. in Proposition 29 and because of their necessity in
Propositions 17 and 20. The condition Σ(hΦ) ∩ Ωj = Ψj may look restrictive,
but a correct implementation of instantiation must consider it; informally, it says
that either some private symbols in M should be renamed in the instantiated
module to avoid conflicts with private symbols in Mj , or else that some symbols
in Mj should be renamed before the actual instantiation takes place.

An important general property of parameterization is that the instantiated
module is a colimit. This can be proved in a logic independent framework for
modules which respect the above natural requirements:

Theorem 32 In the context of Definition 28, if Sij are (Ψi ∩ Ψj)-modules3

such that Vth(Sij) ⊆ Vth(Mi) ∩Vth(Mj), then M [h1, ..., hn] is a colimit of

M1 P1
h1oo

α1;ı1

��

Mi Pi
hioo

αi;ıi

Sij
. �

ıiij
==

p�

ıjij !!

M

Mj Pj
hjoo

αj ;ıj

>>

Mn Pn
hnoo

αn;ın

GG

where ıiij is the inclusion Ψi ∩Ψj ↪→ Ψi, for i, j = 1, ..., n.

Proof: Notice that ıiij : Sij → Mi are module morphisms, and that giving a
cocone of the diagram above is equivalent to giving a module C, a morphism
f : M → C, and morphisms gj : Mj → C such that

• hi; gi = αi; ıi; f for i = 1, ..., n, and

• ıiij ; gi = ıjij ; gj for i, j = 1, ..., n.

3Think of Sij as the shared modules of Mi and Mj .

21

The diagram below may help the reader follow the rest of this proof.

Φi
� � //

α−1
i ;hi

��

⋃n
j=1 Φj

h

��

� � // Φ

hΦ

��
f

��

Ψi
� � //

gi

++

⋃n
j=1 Ψj

� � //

g

((

Φh

r

��
Ψ

First, we show that hΦ : M →M [h1, ..., hn] and Ψi ↪→ Φh : Mi →M [h1, ..., hn]
is a cocone for i = 1, ..., n:

hi; (Ψi ↪→ Φh)
= (αi;α

−1
i);hi; ((Ψi ↪→

⋃n
j=1 Ψj); (

⋃n
j=1 Ψj ↪→ Φh))

= αi; ((α−1
i ;hi); (Ψi ↪→

⋃n
j=1 Ψj)); (

⋃n
j=1 Ψj ↪→ Φh)

= αi; ((Φi ↪→
⋃n
j=1 Φj);h); (

⋃n
j=1 Ψj ↪→ Φh)

= αi; (Φi ↪→
⋃n
j=1 Φj); (h; (

⋃n
j=1 Ψj ↪→ Φh))

= αi; (Φi ↪→
⋃n
j=1 Φj); ((

⋃n
j=1 Φj ↪→ Φ);hΦ)

= αi; ((Φi ↪→
⋃n
j=1 Φj); (

⋃n
j=1 Φj ↪→ Φ));hΦ

= αi; ıi;hΦ .

Also, it is straightforward that ıiij ; (Ψi ↪→ Φh) = ıjij ; (Ψj ↪→ Φh), because
there is only one inclusion Ψi ∩Ψj ↪→ Φh.

Now let f : M → C and gi : Mi → C for i = 1, ..., n be another cocone, with
C = (Ψ,Ω, B). Then Ψ together with the signature morphisms gi : Ψi → Ψ
for i = 1, ..., n form a cocone in Sign for the diagram given by the pairs of
inclusions

Ψi Ψi ∩Ψj
� � //? _oo Ψj

for i, j = 1, ..., n, so by 2. of Proposition 1, there is a unique signature morphism,
let us call it g :

⋃n
j=1 Ψj → Ψ, such that (Ψi ↪→

⋃n
j=1 Ψj); g = gi. Since

(Φi ↪→
⋃n
j=1 Φj); ((

⋃n
j=1 Φj ↪→ Φ); f)

= ((Φi ↪→
⋃n
j=1 Φj); (

⋃n
j=1 Φj ↪→ Φ)); f

= ıi; f
= (α−1

i ;αi); ıi; f
= α−1

i ; (αi; ıi; f)
= α−1

i ; (hi; gi)
= (α−1

i ;hi); gi
= (α−1

i ; ;hi); ((Ψi ↪→
⋃n
j=1 Ψj); g)

= ((α−1
i ; ;hi); (Ψi ↪→

⋃n
j=1 Ψj)); g

= ((Φi ↪→
⋃n
j=1 Φj);h); g

= (Φi ↪→
⋃n
j=1 Φj); (h; g) ,

22

by 1. of Proposition 1, we get (
⋃n
j=1 Φj ↪→ Φ); f = h; g. But the rightmost

square in the diagram at the beginning of this proof is a pushout, so there is a
unique r : Φh → Ψ such that hΦ; r = f and (

⋃n
j=1 Ψj ↪→ Φh); r = g.

We claim that r is a module morphism, from M [h1, ..., hn] to C. Indeed,

r(V th(M [h1, ..., hn])) = r((hΦ(V th(M)) ∪
⋃n
j=1 V th(Mj))

•)

⊆ r(hΦ(V th(M)) ∪
⋃n
j=1 V th(Mj))

•

= (r(hΦ(V th(M))) ∪
⋃n
j=1 r(V th(Mj)))

•

= (f(V th(M)) ∪
⋃n
j=1 gj(V th(Mj)))

•

⊆ V th(C)•

= V th(C) .

The first assertion above follows by 1. of Proposition 31, and the second by
the Closure Lemma. The uniqueness of r : M [h1, ..., hn] → C follows from the
uniqueness of r : Φh → Φ as a signature morphism. Let r′ : M [h1, ..., hn] → C
be another morphism such that hΦ; r′ = f and (Ψi ↪→ Φh); r′ = gi for i =
1, ..., n. Since the inclusions Ψi ↪→

⋃n
j=1 Ψj are an epimorphic family and

(Ψi ↪→
⋃n
j=1 Ψj); ((

⋃n
j=1 Ψj ↪→ Φh); r′)

= ((Ψi ↪→
⋃n
j=1 Ψj); (

⋃n
j=1 Ψj ↪→ Φh)); r′

= (Ψi ↪→ Φh); r′

= gi
= (Ψi ↪→

⋃n
j=1 Ψj); g ,

by 1. of Proposition 1, (
⋃n
j=1 Ψj ↪→ Φh); r′ = g. By the uniqueness of r : Φh →

Ψ with hΦ; r = f and (
⋃n
j=1 Ψj ↪→ Φh); r = g, it follows that r′ = r. �

Many practical modules have just one parameter, so that sharing between
actual parameters is not a problem, and a simpler result can be stated:

Corollary 33 If M [α1 :: P1] is a parameterized module and if h1 : P1 →M1 is
a module morphism, then the square

P1
α1;ı1 //

h1

��

M

hϕ

��
M1 ı

// M [h1]

is a pushout in MSpec, with h = α−1;h1 and ı = ψ1 ↪→ ϕh.

Proof: By Theorem 32 with S11 = M1. �

6 Conclusions and Future Research

This paper studies the composition of modules that can hide information, over
inclusive institutions, which seem to include all logical systems of practical in-
terest. Two different semantics for composed modules were defined, and it was

23

shown they agree if all the involved modules are conservative. In addition, a
number of basic “laws of software composition” were proved; these assert that
two different module compositions have the same semantics, for all instances
of their variables that range over modules. An important conclusion is that
inclusive institutions can greatly simplify the kind of proofs that are done in
this paper. This setting also allows algorithms for flattening compositions to
be presented as mainly based on signatures pushouts, which is a purely textual
operation for concrete institutions.

Interesting directions for future research include: extending the results to a
multi-institutional framework (e.g., see [8, 25]), to accommodate multi-paradigm
specification languages; proving further laws, such as distributivity (see [1, 9]);
adapting the normalization theorem of [1] to our setting; and attempting to
implement (e.g., in Perl) the composition operations in a way that would work
for a wide range of specification and programming paradigms.

Acknowledgements. The authors thank Virgil Emil Căzănescu for his ongo-
ing collaboration on inclusion systems, and Răzvan Diaconescu for stimulating
debates on institution-based modularization.

Dedication. This paper is dedicated to Johan-Ole Dahl, a gentleman of the
old school, and a pioneer in language design, whose work always exhibited the
good taste and elegance of its author.

References

[1] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the
Association for Computing Machinery, 37(2):335–372, 1990.

[2] Jan Bergstra and John Tucker. Equational specifications, complete term rewriting
systems, and computable and semicomputable algebras. Journal of the Associa-
tion for Computing Machinery, 42(6):1194–1230, 1995.

[3] Rod Burstall and Joseph Goguen. Putting theories together to make specifica-
tions. In Raj Reddy, editor, Proceedings, Fifth International Joint Conference
on Artificial Intelligence, pages 1045–1058. Department of Computer Science,
Carnegie-Mellon University, 1977.

[4] CoFI. casl summary, 2000. www.brics.dk/Projects/CoFi.

[5] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathematical
Structures in Computer Science, 7(2):195–206, 1997.

[6] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems; part 2. Journal
of Universal Computer Science, 6(1):5–21, 2000.

[7] Răzvan Diaconescu. Category-based modularization for equational logic program-
ming. Acta Informatica, 33(5):477–510, 1996.

[8] Răzvan Diaconescu. Extra theory morphisms in institutions: logical semantics for
multi-paradigm languages. Applied Categorical Structures, 6(4):427–453, 1998.

[9] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularization. In Gerard Huet and Gordon Plotkin, editors, Logical Environ-
ments, pages 83–130. Cambridge, 1993.

24

[10] Joseph Goguen. Parameterized programming. Transactions on Software Engi-
neering, SE–10(5):528–543, September 1984.

[11] Joseph Goguen. Principles of parameterized programming. In Ted Biggerstaff
and Alan Perlis, editors, Software Reusability, Volume I: Concepts and Models,
pages 159–225. Addison Wesley, 1989.

[12] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95–146, January 1992.

[13] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer
Science, 245(1):55–101, August 2000.

[14] Joseph Goguen and Grigore Roşu. Hiding more of hidden algebra. In Formal
Methods 1999 (FM’99), volume 1709 of Lecture Notes in Computer Sciences,
pages 1704–1719. Springer-Verlag, 1999.

[15] Joseph Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of
Computing, 2002. To appear.

[16] Joseph Goguen and William Tracz. An implementation-oriented semantics for
module composition. In Gary Leavens and Murali Sitaraman, editors, Founda-
tions of Component-based Systems, pages 231–263. Cambridge, 2000.

[17] Horst Herrlich and George Strecker. Category Theory. Allyn and Bacon, 1973.

[18] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.

[19] José Meseguer and Joseph Goguen. Initiality, induction and computability. In
Maurice Nivat and John Reynolds, editors, Algebraic Methods in Semantics, pages
459–541. Cambridge, 1985.

[20] Till Mossakowski. Specifications in an arbitrary institution with symbols. In
Proceedings, WADT’99, volume 1827 of Lecture Notes in Computer Science, pages
252–270. Springer, 2000.

[21] David Parnas. Information distribution aspects of design methodology. Informa-
tion Processing ’72, 71:339–344, 1972. Proceedings of 1972 IFIP Congress.

[22] Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego,
2000. http://ase.arc.nasa.gov/grosu/phd-thesis.ps.

[23] Grigore Roşu. Abstract semantics for module composition. Technical Report
CSE2000–0653, University of California at San Diego, May 2000.

[24] Grigore Roşu and Joseph Goguen. Hidden congruent deduction. In Ricardo
Caferra and Gernot Salzer, editors, Automated Deduction in Classical and Non-
Classical Logics, volume 1761 of Lecture Notes in Artificial Intelligence, pages
252–267. Springer, 2000. Papers from First Order Theorem Proving ’98 (FTP’98).

[25] Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf
Owe, and Ole-Johan Dahl, editors, Recent Trends in Data Type Specification,
volume 1130 of Lecture Notes in Computer Science, pages 478–502. Springer,
1996.

[26] William Tracz. lileanna: a parameterized programming language. In Proceed-
ings, Second International Workshop on Software Reuse, pages 66–78, March
1993. Lucca, Italy.

25

